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Abstract

A dynamic model for limited dependent variables is proposed, which estimation
does not rely on simulation methods. A latent conditional mean function which is
measurable with respect to past and observable information circumvents the solution
of a T -dimensional integral and yields a simple and computationally parsimonious
maximum likelihood estimation.

It can be shown that the latent process implied by the limited dependent au-
toregressive moving average model is covariance stationary. Parameter estimates of
this model are shown to be consistent but ineÆcient estimates of the parameters
of a standard latent autoregressive moving average model, for which a maximum
likelihood estimator is computationally burdensome. Monte Carlo evidence is pro-
vided to assess parameter estimates based on the limited dependent ARMA given
the data generation process is a standard latent ARMA. The results indicate that
the asymptotic properties hold quite nicely in small samples. An application based
on IBM transaction price changes from the NASDAQ demonstrates a potential use
of the model suggested here.

Keywords: limited dependent variables, quantal response models, latent dynamic,

ARMA process, generalised error
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1 Introduction

In this article a limited dependent autoregressive moving average (LD-ARMA) process

is introduced and shown to be exible, extendible, and computationally inexpensive to

estimate. Further, the likelihood function for a LD-ARMA model provides a valid quasi-

likelihood for the estimation of limited dependent variable models where the latent process

is an ARMA process.

We construct the limited dependent variable yt as

yt = g(mt + et); where et � NID(0; 1); t = 1; : : : ; T; (1)

where mt is the conditional mean of a latent process and where g(�) only needs to be a

Borel measurable function. This class includes Probits, as well as ordered Probits or Tobit

type models, yet, it is not limited to these classical limited dependent variable models

but could be extended to a wider class of models. For a broad range of applications in

economics and statistics along with di�erent observation rules, see e.g. Maddala (1983),

Cox and Snell (1989), McCullagh and Nelder (1989). Denote the information set generated

by the observable limited dependent variables yt up to time t by Fy
t = �(yt; yt�1; : : : ; y1)

and the information generated by the errors et up to t by F e
t = �(et; et�1; : : : ; e1). The

two information sets will only coincide if the observation rule g(�) is a one-to-one function,

or more formally a Borel measurable isomorphism (e.g. Davidson (1994, theorem 10.3)).

In typical applications however, especially in the limited dependent case, we have that

Fy
t � F e

t .

The simplest illustration of this type of process is the LD-AR(1) model where the

conditional mean mt is built up recursively1, conditioning on some initial m0

mt = �(mt�1 + ct�1); (2)

where ct is the conditional expectation of et given the observable information Fy
t at time

t, i.e.

ct = E [etj F
y
t ] = E [etjmt; yt] : (3)

1Note that in a standard observable AR(1) model y�
t�1

= �y�
t�2

+ et�1 = mt�1 + et�1 and therefore

y�
t
= �(mt�1 + et�1) + et.
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The important feature of the mean functionmt of the latent process is that it is measurable

with respect to the observable information Fy
t�1 available by construction. Thereby, the

process yt could be seen as essentially observation driven in the sense of Cox (1981).

Note that the conditional expectation ct relates to a concept known in econometrics

as generalised residuals, see Gourieroux, Monfort, Renault, and Trognon (1987), or in

statistics as Bayesian residuals, see Albert and Chib (1995).

Due to the measurability of the mean function mt with respect to past observable

information Fy
t�1, the maximum likelihood estimation of the parameter � is computa-

tionally inexpensive as the likelihood function of the LD-ARMA process can be directly

computed using the predictive decomposition (e.g. Harvey (1990, ch. 3.5)), without re-

course to simulation. Clearly, in the context of the LD-ARMA model, the conditional

distribution of yt given past observations' information Fy
t�1 is available. In addition to

the very simple case of a LD-AR(1) model just outlined, it is shown in the paper that an

extension to include higher order AR terms and MA terms is easily achieved. The inclu-

sion of exogenous regressors in the dynamic speci�cation raises no particular problems as

well as the presence of additional model parameters in the observation rule g(�), as it is the

case in an ordered Probit with estimated thresholds. Even the inclusion of regressors in

the observation rule g(�) is possible as long as it retains its property of Borel measurability

given all available information up to t. Furthermore, it is shown that the latent process of

an LD-ARMA dynamic is covariance stationary and that the autocorrelation function of

the latent process is identical to the autocorrelation function of the corresponding latent

ARMA process.

Apart from yt being a dynamic process for limited dependent variables in its own

right, the likelihood for � turns out to be a valid quasi-likelihood in the sense of White

(1982) for the parameter � in the more complicated process zt, which is constructed as

zt = g(�t + �t); where �t � NID(0; 1); t = 1; : : : ; T; (4)

where �t is the conditional mean of a latent ARMA process, e.g. a latent AR(1), to match

the LD-AR(1) process outlined in (1)-(2), i.e.

�t = �(�t�1 + �t�1); (5)

conditioning on the initial �0. This latent speci�cation yields an essentially parameter

driven, or state space, model (e.g. Cox (1981) or Harvey (1989)) and has the considerable
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inferential drawback that the conditional mean �t is not measurable with respect to the

available information set F z
t�1 but only with respect to the unobservable information

F �
t�1. As a consequence the prediction decomposition which is readily available for one-

to-one functions g(�) and the LD-ARMA process becomes unfeasible, since the conditional

distribution of zt given past observations' information F z
t�1 is not easily available.

Although the maximum likelihood estimator of � can still be formulated, its compu-

tation involves the solution of T -fold integrals, therefore there is a long tradition in statis-

tics and econometrics of directly using sampling moments of the zt process for inference,

see Lomnicki and Zaremba (1955), Kedem (1980), Keenan (1982), Gourieroux, Monfort,

Renault, and Trognon (1987), and Poirier and Ruud (1988). The wide availability of fast

computing resources favored however the use of simulation methods, especially Markov

Chain Monte Carlo, to overcome the inherent inferential hurdle of parameter driven dy-

namic models, see the general framework proposed in Chib and Greenberg (1998) and

Manrique and Shephard (1998) for an emphasis on time series applications and further

literature given there. Yet, all of the simulation approaches involve a considerable com-

putational overhead. Other alternatives to the LD-ARMA model include the observation

driven models by Cox and Snell (1989, chap. 2.11) and Zeger and Qaqish (1988) as well

as the mixture approach suggested by Jacobs and Lewis (1978a) and Jacobs and Lewis

(1978b).

The main advantage of the model proposed here is the close link it provides between

observation driven and parameter driven models of limited dependent variables. First of

all, the LD-AR(1) process is identical to a latent AR(1) process, if g(�) is one-to-one and

thereby Fy
t = F e

t . Hence in this situation model (1)-(2) would be equivalent to (4)-(5).

Second, also in the general case, where Fy
t � F e

t , it is shown that the autocorrelation

function of (mt+et) and of the correspondingly speci�ed model (�t+ �t) are indeed equal.

Third, the unconditional variance of (mt + et) is bounded from above by the well-known

variance of (�t + �t)

To assess the use of the quasi-likelihood implied by the LD-ARMA process for the

latent ARMA process in practice, Monte Carlo evidence on the small sample properties of

the estimator is provided. It indicates that the asymptotic properties hold quite nicely. We

regard this as the most important result reported in the paper, given a computationally

simple method for estimating the LD-ARMA models.
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The outline of the rest of this paper is as follows. In the second section the LD-

ARMA speci�cation is introduced in the context of a Probit LD-AR(1) model, subse-

quently alternative observation rules, the extension of the model to the LD-ARMA(p,q)

case, and the inclusion of exogenous variables are given here as well. In the third section

the LD-ARMA model is characterized in particular with respect to its implied auto-

correlation function. Furthermore, it is shown that the maximum likelihood parameter

estimates obtained for a LD-ARMA model are indeed consistent, yet ineÆcient, estimates

of the parameters of a latent ARMA model. A Monte Carlo study of a LD-AR(1) and a

LD-MA(1) model completes the comparison. The fourth section gives a small illustration

of the estimator in practice using a sample of IBM trading at the NASDAQ. The �fth

section concludes.

2 Model speci�cation

2.1 Estimation of a Probit-AR(1) model

The main advantage of a LD-ARMA dynamic given by (1)-(2) over the standard latent

ARMA model given by (4)-(5) is the computationally cheap maximum likelihood estima-

tor. Here, the maximum likelihood estimation of a very simple example of an LD-ARMA

model is outlined based on the

Example 1 (Probit observation rule) Assume the setting of Lomnicki and Zaremba

(1955), i.e. a Probit observation rule gP (u) which is independent of additional parameters

and de�ned by

gP (u) =

8>>><
>>>:
0; if u < 0;

1; if u � 0;

u 2 R (6)

The complementary relationship GP (v), which yields the information, i.e. a particular

interval, available on the latent process by observation of the binary variable yt is given
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by

GP (v) =

8>>><
>>>:
(�1; 0); if v = 0;

[0;1); if v = 1;

v 2 f0; 1g: (7)

We choose the simple LD-AR(1) process given by (1) and (2) under the observation rule

gP (�) to outline the evaluation of the computational simple maximum likelihood estimator.

The great advantage of the LD-ARMA speci�cation is that the conditional expectation of

the latent variable mt is measurable with respect to the information available up to time

t� 1, Fy
t�1, and thus allows to rely on a prediction error decomposition of the likelihood.

The evaluation of the likelihood follows the following recursive scheme:

1. The conditional expectation of the latent variable given no available past information

is assumed to equal the unconditional expectation

m0 := E [mt] = 0: (8)

2. The likelihood contribution of observation t given the probit observation rule, the

Gaussian assumption on the error term and most important, the measurable mean

function is

Prob
�
yt
��Fy

t�1

�
=

8><
>:
�(�mt); if yt = 0;

1� �(�mt); if yt = 1:

(9)

3. The generalized error ct, which makes up the mean function is a (conditionally)

deterministic function of the observations, concisely, of the Fy
t�1 measurable mean

function mt and the current observation yt

ct =

8><
>:

��(�mt)
�(�mt)

; if yt = 0;

�(�mt)
1��(�mt)

; if yt = 1:

(10)

See the original paper by Gourieroux, Monfort, Renault, and Trognon (1987) for an

extended discussion of generalized errors in the context of non-dynamic models.

4. Calculation of the conditional expectation of the future latent variable given the

present information,

mt+1 = �(mt + ct): (11)
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5. Steps 2 through 4 are repeated for all yt, t = 1; : : : ; T .

6. The likelihood Ly of the observable model can be directly evaluated, using �yt which

contains all observations of yt up to t, as

Ly(�yT j�) =

Z
GP (y1)

Z
GP (y2)

� � �

Z
GP (yT )

f(u1; u2; : : : ; uT )du1 du2 : : : duT

=

Z
GP (y1)

Z
GP (y2)

� � �

Z
GP (yT )

f(u1)f(u2jF
y
1 ) : : : f(uT jF

y
T�1)du1 du2 : : : duT

=
TY
t=1

Prob
�
yt = 1

��Fy
t�1

�yt Prob �yt = 0
��Fy

t�1

�(1�yt) : (12)

Thus by the use of the LD-ARMA process (1) and (2) and the implied likelihood Ly, the

quite cumbersome likelihood implied by the parameter driven model (4) and (5) can be

circumvented.

2.2 An observation rule with parameters

Unlike in models which rely on the EM algorithm or on simulation methods for estima-

tion, the introduction of parameters in the observation rule does not raise any additional

problems for model speci�cation. See Ruud (1991) for a discussion of ordered probits in

the EM context.

To demonstrate this, the dynamic model is extended to the case of ordered probits.

Example 2 (Ordered probit observation rule) The observation rule gOP (u; ) is de-

�ned using parameters . The latent process is mapped through a threshold function into

the observable, discrete variable yt

gOP (u; �) =

8>>>>>>>>>><
>>>>>>>>>>:

v1; if u 2 (�1; 1);

v2; if u 2 [1; 2);

...

vJ ; if u 2 (J�1;1);

(13)

�1 < 1 < 2 < : : : < J�1 <1:
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where the variable vj contains the distinct values yt can take on, with v1 � v2 � : : : � vJ ,

i.e. the di�erent values of the dependent variable need to be ordered but not necessarily

observed on a metric scale.

The form of GOP (u; ) is just the straightforward extension of the binary case in

example 1 to the present model.

Note that in this setting neither the level of the latent variable nor the scale of the

latent variable are identi�ed. The generalised error ct follows readily by an evaluation of

the conditional expectation in (3). In the context of the modi�ed observation rule the

generalized error ct given in (10) is extended to the case of multiple categories as

ct =

8>>>>><
>>>>>:

��(�t;1)

�(�t;1)
; if yt = v1;

�(�t;j�1)��(�t;j)

�(�t;j)��(�t;j�1)
; if yt 2 fv2; : : : ; vJ�1g;

�(�t;J�1)

1��(�t;J�1)
; if yt = vJ ;

(14)

with �t;j := j �mt:

The likelihood function of this model has the well-known form of an ordered probit with

at least weakly exogenous regressors, see e.g. Maddala (1983), and is a simple extension

of the probit likelihood Ly given by (12). The likelihood contributions are a function of

the generalized errors ct through the conditional expectation mt of the latent variable as

in (9)

Prob
�
yt
��Fy

t�1

�
=

8>>>>><
>>>>>:

�(1 �mt); if yt = v1;

�(i �mt)� �(i�1 �mt); if yt 2 fv2; : : : ; vJ�1g;

1� �(J�1 �mt); if yt = vJ :

(15)

This makes it clear that the use of the LD-ARMA dynamic suggested in (1) and (2) has a

wide range of possible applications. The key feature necessary in a particular application

is the evaluation of the generalized error ct given by (3). This is however a straightforward

task as long as the observation rule is conditionally deterministic given observations up to

time t. It would even be possible to include regressors in the formulation of the thresholds.
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2.3 Higher order dynamics

The extension to include AR(p), for p > 1, and MA(q) terms in the dynamic speci�cation

is described most easily in the context of an ARMA model which is cast in state space

form. In order to do so coeÆcient matrices F , H, and the dimension of the state space r

are de�ned as

F =

2
6666666664

�1 �2 : : : �r�1 �r

1 0 : : : 0

0 1 0 : : :
...

...
. . . 0

0 : : : 0 1 0

3
7777777775
; H 0 =

h
1 �1 : : : �r

i
; r = max(p; q + 1); (16)

where we have for the AR parameters �i = 0 for i > p and for the MA parameters likewise

�i = 0 for i > q. See e.g. Hamilton (1994, chap. 13.1). The conditional mean mt of the

latent process is just

mt = H 0st; (17)

where an additional state process st is introduced. The conditional mean of the latent

state st is de�ned by the recursion

st = F (st�1 + u1ct�1); where u01 =
h
1 0 : : : 0

i
; (18)

while conditioning on some initial s0. Thereby, an LD-ARMA(p,q) model is de�ned by

(1) and (16)-(18). Thus, the maximum likelihood estimation of the ARMA(p,q) model

proceeds almost exactly along the same lines as in the AR(1) case described initially.

2.4 The inclusion of exogenous variables

There are two ways to include exogenous regressors in the dynamic model. Using again

the context of the state space model, explanatory variables wt can be included in the

mean equation of the latent process (17) to obtain

mt = H 0st + w0

tÆ; (19)

This is equivalent to a limited dependent variables model with exogenous regressors wt

including ARMA(p,q) errors. Alternatively, regressors xt can be included in the dynamic
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speci�cation and thereby obtaining an in�nite distributed lags model, see e.g. Hendry

(1995). A modi�cation of the update of the states' conditional mean in (18) yields thus

st = F (st�1 + u1ct�1) + u1�
0xt; (20)

using regressors xt with coeÆcients �. An extension of the observable information set is

however necessary to de�ned either Fy;w
t = �(yt; wt+1; : : : ; y1; w2; w1) or

Fy;x
t = �(yt; xt+1; : : : ; y1; x2; x1). The de�nition of the innovation term ct in (3) is ad-

justed correspondingly. This makes clear that the latent state is decomposed into a

weighted sum of all the past xt and the MA already known from the ARMA(p,q) model

without regressors. This exibility is sometimes needed. A typical candidate for the in-

clusion as a regressor with an in�nite lag structure is the observed volume per transaction

in the context of an empirical market microstructure analysis. Other variables however

are rendered virtually uninterpretable by a dynamic inclusion, e.g. regressors capturing a

seasonality.

3 A characterization of the LD-ARMA process

3.1 Dynamic properties of the LD-ARMA process

The LD-ARMA process bene�ts from its close relationship to a corresponding latent

ARMA process which is observed through an observation rule g(�). It turns out that the

LD-ARMA process can be considered as a �lter for data generated by the latent ARMA

process. The derivation of its dynamic properties pro�ts greatly from the fact that the

parameter space for which the latent ARMA process is covariance stationary is actually

well established.

We can relate the latent ACF of the LD-ARMA model to the corresponding ACF

of the latent ARMA model by the following proposition:

Proposition 1 For the autocovariance and the ACF at lag s, ��(s), s > 0, of the latent

process mt + et implied by the LD-ARMA process for the observable process yt de�ned by
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(1), (16)-(18) and for the autocovariance and the ACF, �Æ(s), s > 0, of the latent ARMA

process �t + �t, where

�t = H 0�t; �t = F (�t�1 + �t�1); (21)

we have that

1. Cov [mt + et; mt�s + et�s] � Cov [�t + �t; �t�s + �t�s], s � 0, and

2. ��(s) = �Æ(s), s > 0,

Proof: See appendix. �

This quite useful result characterizes the LD-ARMA model as having basically the

same dynamic properties as the latent ARMA but has a lower unconditional variance of

the latent process than the original latent ARMA. Based on the boundedness of the au-

tocovariance from above of the LD-ARMA process, we can give the following proposition,

which establishes the conditions for covariance stationarity of the LD-ARMA process

Proposition 2 The latent process mt + et implied by the LD-ARMA process for the ob-

servable process yt de�ned by (1), (16)-(18) is covariance stationary if the eigenvalues of

F lie inside the unit circle.

Proof: Follows directly from the proof of proposition 1. �

These two propositions given here establish the close relationship to latent ARMA

models, especially since the suÆcient conditions for a covariance stationary process match

the usual assumptions in the VAR context, see e.g. L�utkepohl (1991, chap. 2.1).

3.2 The observable autocorrelation function

The term observable autocorrelation function refers to the ACF of the observable limited

dependent variable yt. Note that the two propositions given above do not involve the ACF
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of the observable process yt, which might not even be de�ned as in the case of categorial

observations, which are not measured on a metric scale. If however, the observations

permit the sensible evaluation of an ACF, the following proposition establishes that the

properties of the latent process carry over to the observable process.

Proposition 3 For an observation rule g(�), which is a Borel measurable function and

has values on a metric scale, so that the ACF of the process yt is de�ned and denoted by

�(s), s > 0, and a latent process (mt+et) which is covariance stationary and has an ACF

��(s), then the observable process yt is

1. covariance stationary, and

2. j�(s)j � j��(s)j, for all s > 0.

Proof: Follows directly from Granger and Newbold (1976, sec. 2) and Stone (1927,

Lemma IV). �

Additionally, one example is considered where the observable ACF is de�ned and its

relationship to the latent ACF is outlined to illustrate the scope of proposition 3. For the

simple, yet fundamental, case of the Probit observation rule in example 1, the relationship

between the latent ACF, ��(s), and the observable ACF, �(s), is well-known, see Lomnicki

and Zaremba (1955). From the properties of the bivariate Gaussian distribution the

functional relationship between the observable ACF and the latent ACF is readily derived

as

�(s) =
2

�
arcsin ��(s): (22)

To illustrate this relationship and for future reference in the context of the Monte Carlo

study, which is based on the Probit observation rule, �gure 1 gives the ACF of the

observable and the latent variable implied by a MA(1) and an AR(1) process at the

�rst lag only for parameters � 2 [�1; 1] and � 2 [�1; 1]. Note that the latent ACFs of

the Probit-AR(1) and Probit-MA(1) are identical to their latent ARMA counterparts by

virtue of proposition 1. The di�erence between both models is quite obvious. While the
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Figure 1: ACF of latent and observable process in a dynamic Probit for a latent

AR(1) and MA(1).
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e�ect the Probit observation rule has on the ACF is quite limited in the AR(1) case,

the e�ect on the ACF of the MA(1) process is considerable. While the ACF of the

latent MA(1) becomes less steep for large parameters in absolute value, the ACF of the

observable process is virtually at for j�j > 0:5. This renders latent MA(1) processes with

such parameters almost observationally equivalent.

3.3 The LD-ARMA process as an auxiliary model

The relationship between the latent autocorrelation functions is described by propositions

1 and 3. Here, the use of the likelihood implied by the LD-ARMA process as a valid quasi-

likelihood for the latent ARMA process is examined.

We consider the scores of both models with respect to the parameter of the latent

dynamic � in a simple AR(1) and LD-AR(1) model in the context of a Probit observation

rule. From the structure of the arguments it will be obvious that the limitation to the

latter model eases the exposition, yet does not limit the validity of the approach for a

more general model. We de�ne the unobservable process z�t = �t + �t and denote its

likelihood by L�

z(�z
�

T j�), where �z�t collects all observations of the dependent variable z
�

t up
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to time t. The score of the unobservable latent AR(1) model is just

@ logL�

z(�z
�

T j�)

@�
= �

TX
t=1

�t
@�t
@�

; (23)

= �
TX
t=1

t�1X
i=0

(i + 1)�i�t�1�i�t: (24)

The score of the observable model for zt follows from a straightforward application of

the EM algorithm of Dempster, Laird, and Rubin (1977) and is given by the conditional

expectation of the latent score given the observable information F z
T

@ logLz(�zT j�)

@�
= E

�
@ logL�

z(�z
�

T j�)

@�

����F z
T

�
(25)

= �
TX
t=1

t�1X
i=0

(i+ 1)�iE [�t�1�ij F
z
T ] E [�tj F

z
T ] (26)

At this point it is obvious, that the use of the EM algorithm of Dempster, Laird, and

Rubin (1977) does not solve the inferential problem of this parameter driven model. The

evaluation of E [�tj F
z
T ] is computationally just as involved as the direct maximization of

the likelihood of the latent ARMA model, since it involves the computation of T -fold

integrals as well. See also the discussion of the EM algorithm and extensions in Ruud

(1991).

The score of the LD-ARMA model on the other hand, has a much simpler structure.

It is directly derived from the likelihood Ly in (12) to obtain

@ logLy(�yT j�)

@�
= �

TX
t=1

t�1X
i=0

(i+ 1)�ict�1�ict; : (27)

Thus, in the LD-ARMA model the identi�cation condition for the parameters of the

latent dynamic boils down to the uncorrelatedness of generalised errors ct. Note that

this result is independent from the particular form of the observation rule g(u), given the

usual regularity conditions. Here, the conditional expectation of the latent error ct can be

thought of as an extension of the generalised errors introduced by Gourieroux, Monfort,

Renault, and Trognon (1987) to dynamic models.

To actually compare the latent ARMA and the LD-ARMA model, assume that the

data generating process (DGP) zt is of the latent AR(1) form with parameter �. If one

estimates, however, the parameter � of a LD-AR(1) based on observations zt, the question
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is whether the estimate �̂ is a consistent estimate of the parameter � of the DGP. In the

given context, the conditional expectation of the latent variable ~mt is given by

~mt = �
t�1X
i=0

�i~ct�1�i; (28)

where ~ct = E [etj F
z
t ] : (29)

The score of the model is similar to the score in (27) under the LD-AR(1) DGP. Here,

however, the generalized errors are evaluated on the basis of the observations �zT , thus,

the generalized errors ct are replaced by ~ct yielding

@ logLy(�zT j�)

@�
= �

TX
t=1

t�1X
i=0

(i+ 1)�i~ct�1�i~ct: (30)

If one reformulates the score of the latent AR model in terms of the generalized error ~ct

and an error �t the consistency of the quasi maximum likelihood estimation of � based on

the simple likelihood Ly will become obvious.

@ logLz(�zT j�)

@�
= (31)

�

TX

t=1

t�1X

i=0

(i+ 1)�i(E [�tj F
z
t ] + �t)(E

�
�t�1�ij F

z
t�1�i

�
+ �t�1�i);

= �
TX

t=1

t�1X

i=0

(i+ 1)�i(E [�tj F
z
t ] E

�
�t�1�ij F

z
t�1�i

�
+ �t�t�1�i + �tE

�
�t�1�ij F

z
t�1�i

�
+ E [�tj F

z
t ] �t�1�i);

with �t := E [�tj F
z
T ]� E [�tj F

z
t ] :

Now, we can show, that the di�erence between the LD-ARMA model (30) and the latent

ARMA model (31) boils down to three additional terms being present in the score of the

latter. Due to the i.i.d. nature of errors and the fact that F z
t � F z

T , the unconditional

expectation taken with respect to the observations generated by the original process of

each the four terms in (31) is zero, i.e.

E�zT

�
E [�tj F

z
t ] E

�
�t�1�ij F

z
t�1�i

��
= E�zT [E [�tj F

z
t ] �t�1�i] =

E�zT

�
�tE

�
�t�1�ij F

z
t�1�i

��
= E�zT [�t�t�1�i] = 0 (32)

This opens a di�erent perspective to the estimation problem as, the original model

could be interpreted as a GMM estimator based on the four moment restrictions outlined

15



in (32). The alternative estimator, however, relies only on a subset of these moment

conditions, namely the �rst one. See the surveys of Newey and McFadden (1994) and

Wooldridge (1994) for an extended discussion of GMM estimators and their relationship to

ML estimators. From the GMM perspective of this ML estimation problem it is apparent

that the LD-ARMA model yields indeed a consistent estimator of the parameter of the

dynamic in the original model. The intuition behind this can be found in the fact that the

reduced information set F z
t used to form an expectation of the error term �t is a subset

of the full information set F z
T . This is driven by the i.i.d. nature of the error term, as the

incremental information contained in F z
T but not contained in F z

t is uncorrelated with

F z
t .

A second conclusion which can be drawn from the GMM interpretation is that the

alternative estimator is an ineÆcient version of the original model, as three possible mo-

ment restrictions were not used in estimation, see e.g. Newey and McFadden (1994) for an

extended discussion. Thus, the alternative estimator is a consistent but ineÆcient estima-

tor of the dynamic parameter in the original model, which has the considerable advantage

of being easy to evaluate and straightforward to extend to higher order dynamics and

alternative observation rules.

3.4 Small sample evidence

To obtain some evidence on the small sample performance of the estimator based on the

LD dynamic a small Monte Carlo study is performed for the Probit observation rule given

in example 1 in conjunction with the latent AR(1) outlined in the introduction (4)-(5).

Parameter estimates are obtained from the quasi-likelihood implied by the LD-AR(1)

model characterized by the alternative conditional mean of the latent variable given by

(1)-(2). The only parameter of the DGP, �, is drawn from a uniform distribution over

the interval [�0:95; 0:95] for each of the N = 10000 replications. The errors are drawn

from the standard normal distribution. The experiment is carried out for sample sizes

T 2 f50; 100; 200; 1000g. Descriptive statistics of the di�erence between true parameter

and estimate, �i � �̂i, i = 1; : : : ; N , are reported in table 1. The small sample properties

match the expectation build from the asymptotic results, i.e. the variance decreases over

an increasing sample size and likewise do the interquantile ranges (q75 - q25). The results
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Table 1: Probit with latent AR(1) Descriptive statistics of �i � �̂i in a Monte Carlo

study.

sample mean median variance skewness kurtosis q01 q25 q75 q99

T = 50 -3.4e-3 -3.6e-3 3.3e-2 4.8e-2 3.7 -0.45 -0.12 0.11 0.47

T = 100 1.9e-3 1.1e-3 1.7e-2 6.1e-2 3.7 -0.31 -0.08 0.08 0.33

T = 200 3.7e-5 7.2e-4 8.2e-3 -9.8e-3 3.7 -0.23 -0.06 0.06 0.22

T = 1000 -1.3e-4 -7.8e-5 1.7e-3 3.1e-3 3.4 -0.10 -0.03 0.03 0.10

indicate that even a moderately sized sample of 50 observations is quite suÆcient to obtain

reasonable results.

To gain more insight in the consequences the observation rule bears for the estima-

tion task, the results of the Monte Carlo experiment are scrutinized with respect to the

parameter � of the model. The parameter space is subdivided into ten categories, j =

1; : : : ; 10, where the category j is an interval cj of size 0:1,

cj 2 f(�1;�0:9]; (�0:9;�0:8]; : : : ; (0:9; 1)g. Note that the border categories c1 and c10

have an e�ective size of 0:05 due to the support of the random variable the parameter

is drawn from. Descriptive statistics of the di�erence between the true parameter and

the estimate, �i � �̂i, i = 1; : : : ; N , are depicted in �gure 2 in the form of Box plots for

each interval cj. It is quite interesting to observe that the small bias the estimator shows

for a sample size of T = 50 diminishes substantially once a sample size of T = 1000

is reached. The small sample bias shown in the left hand �gure of 2 indicates that the

simple estimator tends to underestimate the absolute size of the parameter, particularly

for larger parameter values.

To further explore the properties, of the proposed model a LD-MA(1) is estimated

for a DGP process which is of the latent MA(1) form. The setup of the experiment is

analogue to the AR(1) experiment. Results are reported in table 2, where descriptive

statistics of the di�erence between true parameter and estimate, �i � �̂i, i = 1; : : : ; N

are given. Results di�er signi�cantly from the LD-AR(1) results reported in table 1.

Especially, the variance and the interquantile range of the di�erence decreases at a much

slower rate compared to the former model and an increasing kurtosis over an increasing
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Figure 2: Probit with latent AR(1) Box plots of �i � �̂i for ten size categories of the

parameter �i in a Monte Carlo study.
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Table 2: Probit with latent MA(1) Descriptive statistics of �i � �̂i in a Monte Carlo

study.

sample mean median variance skewness kurtosis q01 q25 q75 q99

T = 50 -7.1e-4 -4.7e-3 7.0e-2 3.5e-2 3.1 -0.61 -0.18 0.18 0.61

T = 100 3.1e-3 3.8e-3 4.1e-2 -4.0e-2 3.0 -0.48 -0.13 0.14 0.47

T = 200 6.9e-4 1.3e-3 2.7e-2 4.6e-3 3.1 -0.39 -0.11 0.11 0.40

T = 1000 9.1e-4 8.6e-4 1.8e-2 -4.3e-3 3.5 -0.33 -0.07 0.07 0.33

sample size indicates that a closer examination of the results is in place.

Figure 3 reveals the nature of this unexpected behaviour. It shows that for in

absolute value smaller parameters the bias is indeed small and the interquartile range

decreases as in the LD-AR(1) case. Yet, for larger parameters in absolute value the

underestimation is quite substantial and does only decrease slightly for an increasing

sample size. This behaviour seems to indicate a serious de�ciency of the LD-ARMA

estimator of the latent ARMA parameters, yet, the lesson learned from the ACF of the

latent and the observable model given in 3.2 is that the latent and the observable ACF can

deviate substantially depending on the observation rule. This actually helps to resolve

the considerable bias reported in �gure 3, which is due to the information loss incurred by

the Probit observation rule. Note, however, that this is not attributed to the LD-ARMA

process but is a problem of latent MA models as such, and thus a problem simulation

based approaches would have to struggle with as well. Further experiments, not reported
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Figure 3: Probit with latent MA(1) Box plots of �i � �̂i for ten size categories of the

parameter �i in a Monte Carlo study.
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here, have revealed, that the bias goes indeed away, if the information loss imposed by

the observation rule is reduced, e.g. by considering an ordered probit with a latent MA.

4 An empirical illustration

To illustrate the working of the LD-ARMA model in practice a simple empirical study

over the absolute value of transaction-to-transaction price changes is reported in table 3.

Asymptotic t-statistics are given in parentheses. They were evaluated using the sandwich

estimator of the parameters' covariance matrix suggested by White (1982). The data is

extracted from the TAQ data set provided by the NYSE. Here, all the 13; 421 transactions

for IBM carried out at the NASDAQ in September 2000 are employed. The tick size for

IBM at the NASDAQ was at this time 1=16. Thus, categories employed were chosen as

follows. Category one contains the transactions which were not associated with a price

change. Categories two and three, capture price changes of 2=16 and 3=16, respectively.

Category four contains all price changes equal or larger than 4=16. All in absolute value.

Several speci�cations up to an LD-ARMA(3,3) model are assessed in this study. For each

estimate the t-Statistic is reported and the Schwartz information criterion (BIC) and the

Portmanteau type statistic (�20) suggested by Gourieroux, Monfort, and Trognon (1985)

including 20 lags are given for each speci�cation. Note that an increase in the number of

lags for the test statistic, i.e. using �40 instead, tends to shift the p-values towards 1, thus

decreasing the evidence for misspeci�cation. For the sake of brevity, this is however not

reported in table 3. Overall the LD-ARMA(2,2) speci�cation seems appropriate, showing
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Table 3: Estimation results for IBM trading at NASDAQ in September 2000.

�1 �2 �3 �1 �2 �3 �1 �2 �3 BIC �20 p-value

LD-ARMA(1,0) -0.13 0.77 1.33 0.25 -16064 976.90 0.00

(10.28) (53.42) (78.19) (22.26)

LD-ARMA(0,1) -0.13 0.76 1.32 0.19 -16139 1476.80 0.00

(11.41) (57.36) (82.17) (21.92)

LD-ARMA(1,1) -0.11 0.82 1.38 0.94 -0.79 -15717 29.69 0.08

(3.79) (25.91) (42.14) (129.96) (54.54)

LD-ARMA(2,2) -0.11 0.82 1.39 1.63 -0.64 -1.46 0.50 -15715 10.99 0.95

(3.24) (22.80) (37.33) (14.36) (5.91) (12.23) (5.03)

LD-ARMA(3,3) -0.11 0.82 1.39 0.85 0.60 -0.48 -0.67 -0.60 0.37 -15724 10.95 0.95

(3.24) (22.83) (37.38) (4.35) (2.41) (3.15) (3.41) (2.67) (2.79)

the best BIC and no misspeci�cation. The additional lags of an LD-ARMA(3,3) yield

no additional information, yet the LD-ARMA(1,1) is barely rejected due to the serial

correlation indicated by the test.

5 Conclusion

In this paper a new dynamic for limited dependent variable models is proposed, which is

tailored to cope with the information loss incurred by the imposition of an observation

rule on a latent process. The LD-ARMA model circumvents by the reformulation of the

mean function of the latent process the multiple integral problem, which would usually

necessitate the use of simulation methods. It turns out that the LD-ARMA models

are applicable to a wide range of observation rules opening thereby a broad range of

applications. Further it is shown that the latent process implied by this speci�cation

is covariance stationary and has the same autocorrelation function as the corresponding

latent ARMA model. The main di�erence is that the variance of the latent process

of the LD-ARMA model is bounded from above by the variance of the corresponding

latent model. The main result in this context is that the likelihood of the LD-ARMA

model serves as a valid simple to evaluate quasi-likelihood of the latent ARMA. It is

demonstrated in a Monte Carlo study that the quasi-likelihood has indeed favourable
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small sample properties.

Further extensions include the formulation of multivariate models, including further

limited dependent processes as well as standard observable processes. The latter is easily

achieved as the modi�ed mean process boils down to a standard mean process, when the

latent variable is observed.
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Proofs

Proof of proposition (1): The mean of the latent process is evaluated from the MA form

of the states' mean function (18) and the transformation of the latent state in (17)

E [mt + et] = E

"
H 0	ts0 +H 0

t�1X
i=0

	ie1ct�i + u1et

#
= 0; (33)

since s0 = 0 and E [ct�i] = 0 from the law of iterated expectations.

The autocovariance of the latent process associated with the LD-ARMA model is

evaluated from (33) and

E [(mt + et)(mt�s + et�s)] = H 0E
�
sts

0

t�s

�
H; (34)

since the cross term vanish. The covariance of the state process is derived from the usual

Yule-Walker equations, see e.g. L�utkepohl (1991, chap. 2.1). To ease notation, we de�ne

�(l) := E
�
sts

0

t�l

�
. By multiplying (18) with s0t�1 and taking expectations we obtain

�(1) = E
�
Fst�1s

0

t�1 + Fu1cts
0

t�1

�
= F�(0): (35)

21



This uses again the fact that E [ctst�1] = 0. The covariance follows from a multiplication

of (18) with s0t and taking again expectations.

�(0) = F�(1)0 + �c; (36)

where �c := Fu1u
0

1F
0E [c2t ] and again E [ctst�1] = 0 was used. Inserting (35) into (36) and

solving for �(0) yields

vec�(0) = (I � F 
 F )�1vec�c: (37)

The autocovariance function is therefore almost identical to the corresponding latent

ARMA model, see e.g. L�utkepohl (1991, chap. 2.1). The di�erence boils down to the

unconditional expectation of the squared innovation term driving either process. These

are however related by

E
�
c2t
�
= E

h
E [etj F

y
t ]
2
i
� E

�
e2t
�
= E

�
E [etj F

e
t ]
2� ; (38)

since Fy
t � F e

t ; (39)

see e.g. Davidson (1994, theorem 10.27), which proves no. 1. To prove no. 2, de�ne Ry(s)

as the matrix valued ACF at lag s of the state process st in the dynamic of yt by

Ry(s) := D�1�(s)D�1; DD = diag(�(0)): (40)

From this it is evident, that the factor E [c2t ] cancels out and that Ry(s) is equal to the

analogue ACF matrix in the model of zt, i.e. Rz(s). Therefore we have that ��(s) =

�Æ(s).�
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