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Abstract
This paper highlights a problem in using the first-differenced GMM panel

data estimator to estimate cross-country growth regressions. When the time se-

ries are persistent, the first-differenced GMM estimator can be poorly behaved,

since lagged levels of the series provide only weak instruments for subsequent first-

differences. Revisiting the work of Caselli, Esquivel and Lefort (1996), we show

that this problem may be serious in practice. We suggest using a more efficient

GMM estimator that exploits stationarity restrictions, and this approach is shown

to give more reasonable results than first-differenced GMM in our estimation of an

empirical growth model.

Keywords: convergence, growth, generalized method of moments, weak instru-

ments
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1 Introduction

The last few years have seen several important advances in the empirical litera-

ture on growth and convergence. There is increasing use of relatively sophisticated

panel data and time series methods, in step with greater awareness of the econo-

metric difficulties facing growth researchers. However, the panel data method that

currently appears to be perceived as the best available, first-differenced general-

ized method of moments (GMM), has its own traps for the unwary. In this paper

we discuss a potentially serious problem with first-differenced GMM in the con-

text of empirical growth models. We also draw attention to an alternative GMM

estimator for dynamic panel data models which appears to give more reasonable

results in this context.

Before we expand on these points at greater length, we discuss the role of es-

timation within empirical growth research, and some of the associated problems.

Mankiw, Romer and Weil (1992) demonstrated that estimation could potentially

cast light on a number of issues. Unfortunately, there are well known problems

with estimating growth regressions. The right-hand-side variables are typically en-

dogenous and measured with error.1 Another difficulty is that of omitted variables.

One variable that should be included in a conditional convergence regression, the

initial level of efficiency, is not observed. This will imply that least squares param-

eter estimates are biased, since the omitted variable is correlated with one of the

regressors, the initial level of income.

An alternative approach, associated primarily with Klenow and Rodriguez-

Claré (1997) and Hall and Jones (1999), is to carry out accounting decompositions

of differences in output levels. Yet this has problems of its own. By imposing tech-

nology parameters based upon microeconomic evidence, the approach assumes
1Both problems are well known from the microeconomic literature on estimating production

functions, and are not easily solved. See, for example, Griliches and Mairesse (1998).
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away the externalities which have been emphasized in the endogenous growth lit-

erature ever since Romer (1986) and Lucas (1988). Furthermore, such exercises

may sometimes take the microeconomic evidence too much at face value. For ex-

ample, the microeconomic estimates of the returns to schooling may be driven by

signalling effects, so that accounting decompositions overstate the contribution of

education.

It is also worth noting that some of the most interesting research questions

cannot be answered by the accounting approach. Accounting decompositions are

silent on the growth effects of political stability, the quality of macroeconomic

policy, income inequality, financial depth, and so on. Since these questions are

likely to be of lasting interest, there is a clear need to develop and apply more

rigorous estimation methods. Ideally, these methods should allow, where possible,

for endogeneity, measurement error and omitted variables.

One prominent way to address these problems has been through first-differenced

generalized method of moments estimators applied to dynamic panel data mod-

els. The relevant estimator was originally developed by Holtz-Eakin, Newey and

Rosen (1988) and Arellano and Bond (1991).2 The approach was introduced

into the growth literature in the important contribution of Caselli, Esquivel and

Lefort (1996), henceforth CEL. Since then, similar techniques have been applied

in growth research by Benhabib and Spiegel (1997, 2000), Easterly, Loayza and

Montiel (1997), Forbes (2000) and Levine et al. (2000) among others.3

We now describe the general form of this approach. The basic idea is to write

the regression equation as a dynamic panel data model, take first-differences to re-

move unobserved time-invariant country-specific effects, and then instrument the

right-hand-side variables in the first-differenced equations using levels of the se-
2Arellano and Bond (1991) also derived associated specification tests.
3We should note that the paper by Levine et al. (2000) uses not only first-differenced GMM, but

also the system GMM estimator that we evaluate in this paper.
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ries lagged two periods or more, under the assumption that the time-varying dis-

turbances in the original levels equations are not serially correlated.

In studying economic growth, this procedure has important advantages over

simple cross-section regressions and other estimation methods for dynamic panel

data models. First, estimates will no longer be biased by any omitted variables that

are constant over time (unobserved country-specific or ‘fixed’ effects). In condi-

tional convergence regressions, this avoids the problem raised by the omission of

initial efficiency. Secondly, as we discuss below, the use of instrumental variables

allows parameters to be estimated consistently in models which include endoge-

nous right-hand-side variables, such as investment rates in the context of a growth

equation. Finally, again as we discuss below, the use of instruments potentially

allows consistent estimation even in the presence of measurement error.

However, there may be a serious drawback with the method adopted by CEL

and later researchers. It is now well known that large finite sample biases can occur

when instrumental variables are weak, and this difficulty carries over into the GMM

estimation of dynamic panel data models.4 When the time series are persistent

and the number of time series observations is small, the first-differenced GMM

estimator is poorly behaved. The reason is that, under these conditions, lagged

levels of the variables are only weak instruments for subsequent first-differences.

These features are typically present in empirical growth models. Output is a

highly persistent series, and to avoid modelling cyclical dynamics, most growth

applications consider only a small number of time periods, based on (say) five-

year averages. These characteristics might lead us to predict difficulties, and this

paper will show that the first-differenced GMM estimator does indeed appear to be

problematic in the growth context.

We also demonstrate that more plausible results can be achieved using a system
4On weak instrument biases, see Nelson and Startz (1990a, 1990b) and Staiger and Stock (1997),

among others. For a discussion in the context of panel data, see Blundell and Bond (1998).
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GMM estimator suggested by Arellano and Bover (1995) and Blundell and Bond

(1998). The system estimator exploits an assumption about the initial conditions to

obtain moment conditions that remain informative even for persistent series, and

it has been shown to perform well in simulations. The necessary restrictions on

the initial conditions are potentially consistent with standard growth frameworks,

and appear to be both valid and highly informative in our empirical application.

Hence we recommend this system GMM estimator for consideration in subsequent

empirical growth research.

The remainder of the paper is organized as follows. In section 2, we describe

the first-differenced and system GMM estimators, and explain in more detail why

the first-differenced estimator may not be well suited to the study of growth. We

also consider the use of GMM in the presence of temporary measurement error and

endogenous explanatory variables. In section 3, we set out the growth model to be

estimated, and discuss whether the assumptions specific to system GMM are likely

to be valid in this context. In section 4, we show that the basic first-differenced

GMM estimates appear to be seriously biased, and that the system GMM estimates

are more plausible. Finally, section 5 provides a brief summary of our findings and

discusses their wider implications.

2 GMM estimators for dynamic panel data models

In this section we briefly review the first-differenced GMM estimator for autore-

gressive linear regression models estimated from short panels in the presence of

unobserved individual-specific time-invariant (‘fixed’) effects. We explain why

large finite sample biases can be expected when the individual series are highly

persistent, and suggest how these biases may be detected in practice. We then de-

scribe the ‘system’ GMM estimator developed by Arellano and Bover (1995) and

Blundell and Bond (1998). The basic idea is to estimate a system of equations in
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both first-differences and levels, where the instruments used in the levels equations

are lagged first-differences of the series. These instruments are valid under restric-

tions on the initial conditions, and later in the paper we will discuss whether or

not these restrictions are sensible in the growth context. Finally, the section also

considers the extension of the estimators to the cases of temporary measurement

error and endogenous regressors.

2.1 First-differenced GMM

We first set out the first-differenced GMM approach. For simplicity, consider an

AR(1) model with unobserved individual-specific effects

yit = αyi,t−1 + ηi + vit |α| < 1 (1)

for i = 1, ..., N and t = 2, ..., T , where ηi + vit = uit has the standard error

components structure

E [ηi] = 0, E [vit] = 0, E [vitηi] = 0 for i = 1, ...,N and t = 2, ..., T. (2)

We assume that the transient errors are serially uncorrelated

E [vitvis] = 0 for i = 1, ...,N and s 6= t (3)

and that the initial conditions yi1 are predetermined

E [yi1vit] = 0 for i = 1, ...,N and t = 2, ..., T. (4)

Together, these assumptions imply the following m = 0.5(T − 1)(T − 2)
moment restrictions

E [yi,t−s∆vit] = 0 for t = 3, ..., T and s ≥ 2 (5)

which can be written more compactly as

E
¡
Z 0i∆vi

¢
= 0 (6)
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where Zi is the (T − 2)×m matrix given by

Zi =


yi1 0 0 ... 0 ... 0
0 yi1 yi2 ... 0 ... 0
. . . ... . . .
0 0 0 ... yi1 ... yi,T−2

 (7)

and ∆vi is the (T − 2) vector (∆vi3,∆vi4, ...,∆viT )
0. These are the moment re-

strictions exploited by the standard linear first-differenced GMM estimator, imply-

ing the use of lagged levels dated t− 2 and earlier as instruments for the equations

in first-differences (cf. Arellano and Bond, 1991). This yields a consistent estima-

tor of α as N →∞ with T fixed.

However, this first-differenced GMM estimator has been found to have poor

finite sample properties, in terms of bias and imprecision, in one important case.

This occurs when the lagged levels of the series are only weakly correlated with

subsequent first-differences, so that the instruments available for the first-differenced

equations are weak (Blundell and Bond 1998). In the AR(1) model of equation

(1), this occurs either as the autoregressive parameter (α) approaches unity, or as

the variance of the individual effects (ηi) increases relative to the variance of the

transient shocks (vit).

Simulation results reported in Blundell and Bond (1998) show that the first-

differenced GMM estimator may be subject to a large downward finite-sample bias

in these cases, particularly when the number of time periods available is small.5

This suggests that some caution may be warranted before relying on this method

to estimate autoregressive models for a series like per capita GDP from samples

containing five or six time periods of five-year averages. It may be that the pres-

ence of explanatory variables other than the lagged dependent variable, and more
5For example, with T = 4 and N = 100 and a true value of α = 0.9, the distribution of the

first-differenced GMM estimator has a mean of 0.23 (with a standard deviation of 0.83) in Table 2(a)
of Blundell and Bond (1998).
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particularly the inclusion of current or lagged values of these regressors in the in-

strument set, will improve the behaviour of the first-differenced GMM estimator in

particular applications. But some investigation of this in the context of empirical

growth models would seem to be in order.

How can we detect whether serious finite sample biases are present? One sim-

ple indication can be obtained by comparing the first-differenced GMM results to

alternative estimates of the autoregressive parameter α. In the AR(1) model of

equation (1), it is well known that OLS levels will give an estimate of α that is

biased upwards in the presence of individual-specific effects (see Hsiao, 1986, for

example), and that Within Groups will give an estimate of α that is seriously biased

downwards in short panels (see Nickell, 1981). Thus a consistent estimate of α can

be expected to lie in between the OLS levels and Within Groups estimates.6 If we

observe that the first-differenced GMM estimate is close to or below the Within

Groups estimate, it seems likely that the GMM estimate is also biased downwards

in our application, perhaps due to weak instruments.

These simple bias results have been extended to models with other regressors

only in the special case when all the regressors except the lagged dependent vari-

able are uncorrelated with ηi and strictly exogenous with respect to vit.7 Never-

theless it may still be useful to compare first-differenced GMM results to those

obtained by OLS levels and Within Groups. A finding that the first-differenced

GMM estimate of the coefficient on the lagged dependent variable lies close to the

corresponding Within Groups parameter estimate can be regarded as a signal that

biases due to weak instruments may be important. In these cases, it may be ap-

propriate to investigate the quality of the instruments by studying the reduced form

equations for ∆yi,t−1 directly, or to consider alternative estimators that are likely

to have better finite sample properties in the context of persistent series.
6Nerlove (1999a, 2000) has also made this observation in the context of empirical growth models.
7See, for example, Sevestre and Trognon (1996).
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2.2 System GMM

We now consider one estimator that may have superior finite sample properties.

To obtain a linear GMM estimator better suited to estimating autoregressive mod-

els with persistent panel data, Blundell and Bond (1998) consider the additional

assumption that

E (ηi∆yi2) = 0 for i = 1, ..., N. (8)

This assumption requires a stationarity restriction on the initial conditions yi1 which

is discussed further in the Appendix. Condition (8) holds if the means of the yit

series, whilst differing across individuals, are constant through time for periods

1, 2, ..., T for each individual. Combined with the AR(1) model set out in equa-

tions (1) to (4), this assumption yields T − 2 further linear moment conditions

E (uit∆yi,t−1) = 0 for i = 1, ...,N and t = 3, 4, ..., T. (9)

These allow the use of lagged first-differences of the series as instruments for equa-

tions in levels, as suggested by Arellano and Bover (1995).

We can then construct a GMM estimator which exploits both sets of moment

restrictions (5) and (9).8 This uses a stacked system of (T − 2) equations in first-

differences and (T − 2) equations in levels, corresponding to periods 3, ..., T for

which instruments are observed.9 The instrument matrix for this system can be

written as

Z+
i =


Zi 0 0 ... 0
0 ∆yi2 0 ... 0
0 0 ∆yi3 ... 0
. . . ... .
0 0 0 ... ∆yi,T−1


8The use of further lags beyond ∆yi,t−1 as instruments in the levels equations can be shown to

be redundant, given the moment conditions exploited in (5).
9In a balanced panel, it would suffice to use the single levels equation for period T , but this

system extends less straightforwardly to the case of unbalanced panels.
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where Zi is given by equation (7). The complete set of second-order moment

conditions available given assumption (8) can be expressed as

E
³
Z+0

i u
+
i

´
= 0 (10)

where u+
i = (∆vi3, ...,∆viT , ui3, ..., uiT )

0.

The system GMM estimator thus combines the standard set of equations in

first-differences with suitably lagged levels as instruments, with an additional set of

equations in levels with suitably lagged first-differences as instruments. Although

the levels of yit are necessarily correlated with the individual-specific effects (ηi)

given model (1), assumption (8) requires that the first-differences∆yit are not cor-

related with ηi, permitting lagged first-differences to be used as instruments in the

levels equations. As an empirical matter, the validity of these additional instru-

ments can be tested using standard Sargan tests of over-identifying restrictions,

or using Difference Sargan or Hausman comparisons between the first-differenced

GMM and system GMM results (see Arellano and Bond, 1991).

The calculation of this system GMM estimator is discussed in more detail in

Blundell and Bond (1998). They also report evidence from Monte Carlo simu-

lations that compare the finite sample performance of the first-differenced and

system GMM estimators. For an AR(1) model, this shows that there can be

dramatic reductions in finite sample bias and gains in precision from exploiting

these additional moment conditions, in cases where the autoregressive parameter

is only weakly identified from the first-differenced equations.10 Blundell, Bond

and Windmeijer (2000) report similar improvements for a model with a lagged de-

pendent variable and additional right-hand-side variables, which is more typical of

the equations estimated in the empirical growth literature.

It is worth noting that there are other method-of-moment-type estimators in the
10In the same experiment described in footnote 5, the distribution of the system GMM estimator

has a mean of 0.94 (with a standard deviation of 0.16).
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literature that may also perform better than first-differenced GMM in the growth

context. Symmetrically normalized first-differenced GMM estimators proposed by

Alonso-Borrego and Arellano (1999) have been shown to have smaller finite sam-

ple biases than standard first-differenced GMM estimators in situations where the

instruments are weak.11 Non-linear GMM estimators exploiting quadratic moment

restrictions of the type

E (uit∆ui,t−1) = 0 for t = 4, 5, ..., T (11)

(see Ahn and Schmidt, 1995) are more efficient than first-differenced GMM in

model (1) to (4), and may also have better finite sample properties. In our later em-

pirical work, however, we focus on the system GMM estimator, which is asymp-

totically efficient relative to either of these alternatives provided that assumption

(8) is satisfied.

2.3 Temporary measurement error

The preceding sections have explained how first-differenced and system GMM

estimators can provide consistent parameter estimates in panel data models with

lagged dependent variables and unobserved time-invariant individual-specific ef-

fects. We now examine how these methods can allow for transient measurement

errors. Note that any permanent additive measurement errors are absorbed into the

time-invariant individual effects, and hence also controlled for.

Suppose we wish to estimate the AR(1) specification in (1), but instead of

observing the true yit series we observe

eyit = yit +mit

11Continuously-updated GMM estimators proposed by Hanson, Heaton and Yaron (1996) and ex-
ponential tilting estimators proposed by Imbens, Spady and Johnson (1998) could also be considered
in this context.

10



for i = 1, ...,N and t = 1, ..., T , where the measurement error mit is serially

uncorrelated

E [mitmis] = 0 for i = 1, ...,N and s 6= t

and uncorrelated with any realizations of the disturbances except the current dis-

turbance vit

E [mitvis] = 0 for i = 1, ...,N and s 6= t.

The empirical model using the observed data is then

eyit = αeyi,t−1 + ηi + εit |α| < 1 (12)

εit = vit +mit − αmi,t−1

for i = 1, ..., N and t = 2, ..., T , and the first-differenced equations are

∆eyit = α∆eyi,t−1 +∆εit |α| < 1 (13)

∆εit = ∆vit +∆mit − α∆mi,t−1

for i = 1, ..., N and t = 3, ..., T .

In this case it is important to notice that the error term εit in (12) is serially

correlated, so that the second lag of the observed series eyi,t−2 is no longer a valid

instrument for the first-differenced equations in (13). Without further assumptions,

this implies that no instruments are available for the first-differenced equation in

period t = 3, and at least 4 time series observations on the mis-measured series are

required to identify the parameter of interest α. Assuming that T ≥ 4, however,

the following moment conditions are available

E [eyi,t−s∆εit] = 0 for t = 4, ..., T and s ≥ 3,

implying the use of lagged levels of the observed series dated t− 3 and earlier as

instrumental variables for the equations in first-differences.
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Assume now that E (ηi∆yi2) = 0 for i = 1, ...,N , so that the additional mo-

ment conditions for the levels equations discussed in section 2.2 would be avail-

able in the absence of measurement error. The first-order moving average serial

correlation in εit again implies that ∆eyi,t−1 is no longer a valid instrument for the

equations in levels. However provided the measurement errormit induces no cor-

relation between the observed first-differences ∆eyit and the individual effects ηi,

that is provided

E [ηi∆mit] = 0 for i = 1, ...,N and t = 2, ..., T,

then the following moment conditions are available

E (∆eyi,t−2(ηi + εit)) = 0 for i = 1, ...,N and t = 4, ..., T.

Thus suitably lagged first-differences of the observed series can still be used as in-

strumental variables for the levels equations in the presence of serially uncorrelated

measurement error. As before, it is likely that the validity of these additional mo-

ment conditions will be crucial to the construction of GMM estimators with good

finite sample properties in the context of highly persistent series.

2.4 Endogenous regressors

As a further extension, we now consider a model with an additional right-hand-side

variable xit

yit = αyi,t−1 + βxit + ηi + vit |α| < 1 (14)

for i = 1, ..., N and t = 2, ..., T , where xit is correlated with ηi and endogenous

in the sense that

E [xitvis] 6= 0 for i = 1, ..., N and s ≤ t,

which allows both contemporaneous correlation between the current shock vit and

xit, and feedbacks from past shocks vi,t−s onto the current value of xit. The er-
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ror components satisfy the assumptions given in section 2.1 above. Taking first-

differences to eliminate the individual effects ηi, the moment conditions

E [xi,t−s∆vit] = 0 for t = 3, ..., T and s ≥ 2

are available here, in addition to those given in (5). Lagged values of endogenous

xit variables dated t−2 and earlier can then be used as instruments for the equations

in first-differences.12

Similarly if in addition to condition (8) from section 2.2 we are willing to

assume that first-differences of xit are uncorrelated with the individual-specific

effects,

E [ηi∆xit] = 0 for i = 1, ...,N and t = 2, ..., T,

then the following moment conditions are available

E (∆xi,t−1uit) = 0 for i = 1, ..., N and t = 3, ..., T

in addition to those given in (9). Suitably lagged first-differences of endogenous

xit variables can then be used as instruments for the levels equations.13

Finally, we consider the presence of measurement error and endogenous right-

hand-side variables combined. One observation is that temporary measurement

error in the observed xit series, with the properties outlined in section 2.3 above,

will have no consequences for the estimation of model (14). Since we are already

allowing for simultaneous correlation between xit and the disturbance here, lagged

values of the observed xit (and yit) series dated t − 2 and earlier continue to be

valid instruments for the first-differenced equations in this case.
12Additional instruments are available for the equations in first-differences if the xit variables

satisfy more restrictive assumptions, for example if they are predetermined with respect to vis (which
rules out contemporaneous correlation but not feedbacks from past shocks) or strictly exogenous with
respect to vis (which rules out correlation between xit and vis at any dates). See Arellano and Bond
(1991) for further discussion of these cases.

13Again there may be additional moment conditions available if the xit variables are predeter-
mined or strictly exogenous. See Blundell, Bond and Windmeijer (2000) for further discussion.
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More generally, if the model contains a lagged xi,t−1 variable that is measured

with error or, as before, if the lagged dependent variable is measured with error, this

will require period t− 2 values of the variables measured with error to be omitted

from the set of instruments used for the equations in first-differences, and period

t−1 first-differences of the variables measured with error to be omitted from the set

of instruments for the equations in levels. If only yi,t−1 is measured with error, this

may or may not affect the validity of some xis instruments, depending on whether

or not the measurement error in the yit series is correlated with xit. Finally the

approach can in principle be extended to allow for low order moving average serial

correlation in the measurement errors, which would require only longer lags of the

series to be used as the instrumental variables.

The potential for obtaining consistent parameter estimates even in the presence

of measurement error and endogenous right-hand-side variables is a considerable

strength of the GMM approach in the context of empirical growth research. Whilst

there are a number of maximum likelihood14 and bias-corrected Within Groups15

estimators that have been proposed for dynamic panel data models, it is far from

clear how these are affected by the presence of measurement error and endogenous

right-hand-side variables. It should also be noted that whilst different assumptions

about the presence of measurement errors and the endogeneity of right-hand-side

variables will have implications for the validity of specific instruments, these as-

sumptions can be tested in the GMM framework, for example by the use of Sargan

tests of over-identifying restrictions and related tests.
14See, for example, Bhargava and Sargan (1983), Hsiao (1986), Blundell and Smith (1991),

Nerlove (1999b), and Hsiao, Pesaran and Tahmiscioglu (2001).
15See Kiviet (1995).
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3 Estimating growth models by system GMM

In this section, we briefly set out the Solow growth model to be estimated by system

GMM. We go on to discuss whether the assumptions needed to use system GMM

are likely to be valid in this context.

The growth equation we wish to estimate has the following form:

∆yit = γt+(α−1)yi,t−1+x
0
itβ+ηi+vit for i = 1, ..., N and t = 2, ..., T (15)

where ∆yit is the log difference in per capita GDP over a five year period, yi,t−1

is the logarithm of per capita GDP at the start of that period, and xit is a vector

of characteristics measured during, or at the start of, the period. In empirical ap-

plications of the Solow model these include the logarithm of the investment rate

(sit), and the logarithm of the population growth rate (nit) plus 0.05, where 0.05

represents the sum of a common exogenous rate of technical change (g) and a com-

mon depreciation rate (δ). In the augmented Solow model the regressors may also

include measures of human capital, such as the logarithm of the secondary-school

enrollment rate (enrit).

Among other things, the unobserved country-specific effects (ηi) reflect dif-

ferences in the initial level of efficiency, whilst the period-specific intercepts (γt)

capture productivity changes that are common to all countries. Country effects and

time effects may also reflect country-specific and period-specific components of

measurement errors.

Clearly the above model can be written equivalently as:

yit = γt + αyi,t−1 + x
0
itβ + ηi + vit for i = 1, ...,N and t = 2, ..., T. (16)

We now consider the additional assumptions that are required to estimate this

equation by system GMM. Blundell and Bond (2000) consider a similar model

without the time effects (γt). Similar to the result for the basicAR(1) specification
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considered in section 2.2, they show that in this case constant means of both the yit

and xit series through time for each country would be sufficient for the validity of

the moment conditions E (ηi∆yit) = 0 and E (ηi∆xit) = 0. This allows for the

levels of the xit variables (and yit) to be correlated with the unobserved country-

specific effects, but permits suitably lagged first-differences of xit (and yit) to be

used as instruments in the levels equations.

At first sight this condition may not look too promising for the estimation of an

empirical growth model. Although stationary means of investment rates and pop-

ulation growth rates are quite consistent with the Solow growth model, constant

means of the per capita GDP series clearly are not. Fortunately the inclusion of

the time dummies allows for common long-run growth in per capita GDP, consis-

tent with common technical progress, without violating the validity of the addi-

tional moment restrictions used by the system GMM estimator.16 This assumption

of common technical progress has been standard in empirical applications of the

Solow model since the work of Mankiw, Romer and Weil (1992).

Further, whilst the assumption of constant means in the yit and xit series after

conditioning on common time effects is sufficient for the validity of these addi-

tional moment conditions exploited by the system GMM estimator, Blundell and

Bond (2000) also show that this condition is not necessary. Consider equation (16)

in first-differences

∆yit = γt − γt−1 + α∆yi,t−1 +∆x
0
itβ +∆vit for i = 1, ...,N and t = 3, ..., T.

Given E (ηi∆xit) = 0 for all t, if this process has been generating the per capita

GDP series for long enough, prior to our sample period, for any influence of the

true start-up conditions to be negligible, then E (ηi∆yit) = 0 as required. This
16The inclusion of time dummies is equivalent to transforming the variables into deviations from

time means (i.e. the mean across the N individual countries for each period). Thus any arbitrary
pattern in the time means is consistent with a constant mean of the transformed series for each
country.
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will hold even if the means of the xit variables, and hence yit, are not constant,

even after removing common time-specific components. The requirement for first-

differences of investment rates and population growth rates to be uncorrelated with

country-specific effects does not seem unreasonable in the growth context. Note

that, if these first-differences were correlated with country-specific effects, this

would have implausible long-run implications.

We should stress that the assumption E (ηi∆yit) = 0 does not imply that the

country-specific effects play no role in output determination. These effects will

be one determinant of the steady-state level of output per efficiency unit of labour,

conditional on initial output and other steady-state determinants like investment

and population growth. The nature of the assumption is, loosely speaking, that

there is no correlation between output growth and the country-specific effect in the

absence of conditioning on other variables. Again, such a correlation would tend

to have implausible long-run implications.

The brief analysis of this section suggests that it is not unreasonable to consider

the system GMM estimator in the context of empirical growth models. It remains to

be seen whether the additional instruments that this estimator exploits for equations

in levels will prove to be valid and useful in an empirical application, and this will

be investigated in the remainder of the paper.

4 Estimating the Solow growth model

We now consider the results of applying GMM to estimation of the Solow and

augmented Solow growth models. We use the same data set used by CEL, and will

compare our findings with theirs. As in their paper, all variables are expressed as

deviations from time means, which eliminates the need for time dummies. Another

point worth noting is that CEL appear to have reported the results of a two-step

GMM estimator (see Arellano and Bond, 1991). For the special case of spherical
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disturbances, the one-step and two-step GMM estimators are asymptotically equiv-

alent for the first-differenced estimator. Otherwise the two-step estimator is more

efficient, and this is always true for system GMM. Unfortunately, Monte Carlo

studies have shown that the efficiency gain is typically small, and that the two-step

GMM estimator has the disadvantage of converging to its asymptotic distribution

relatively slowly. In finite samples, the asymptotic standard errors associated with

the two-step GMM estimators can be seriously biased downwards, and thus form

an unreliable guide for inference. With this in mind, we prefer to report the results

for the one-step GMM estimators, with standard errors that are not only asymptot-

ically robust to heteroskedasticity but have also been found to be more reliable for

finite sample inference (see Blundell and Bond, 1998).

Our results for the basic Solow growth model are reported in Table 1.17 In this

table and those that follow, we use Yit to denote GDP per capita of country i at time

t. The first three columns of Table 1 report the results using OLS levels, Within

Groups and first-differenced GMM estimators respectively. In the first-differenced

and system GMM estimates reported here, both investment rates and population

growth rates are treated as potentially endogenous variables.

Although we were not able to replicate the CEL results exactly, our results

for the first-differenced GMM estimator are qualitatively similar. The differences

between the corresponding coefficient estimates are small relative to their standard

errors. In particular, our estimate of the coefficient on initial income in the first-

differenced GMM results (-0.537) is very similar to that reported by CEL (-0.473).

However, we can see that this point estimate lies below the corresponding Within

Groups estimate, which itself is likely to be seriously biased downwards in a short

panel like this one. CEL suggest that the high rate of convergence implied by

first-differenced GMM favours open economy versions of the neoclassical growth
17All results are computed using the DPD98 software for GAUSS. See Arellano and Bond (1998).
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model (CEL, p. 381). In contrast, we interpret the results in Table 1 as suggesting

that the first-differenced GMM estimate of the coefficient on initial income is likely

to be seriously biased, consistent with the known properties of this estimator in the

presence of weak instruments.

The fourth column of Table 1 reports the results from using system GMM.

Here the estimate of the coefficient on initial income lies comfortably above the

corresponding Within Groups estimate, and below the corresponding OLS lev-

els estimate. Neither the basic Sargan test of over-identifying restrictions nor the

Difference Sargan test, which focuses on the additional instruments used by the

system GMM estimator, detects any problem with instrument validity. These addi-

tional instruments therefore seem to be valid and highly informative in this context.

Overall, the results suggest that there is indeed a serious finite sample bias problem

caused by weak instruments in the first-differenced GMM results, which can be ad-

dressed by system GMM. The system GMM estimator also yields a considerable

improvement in precision compared to first-differenced GMM.

By treating both the investment rate and the population growth rate as poten-

tially endogenous variables, these estimates already allow for the possibility of a

serially uncorrelated measurement error in either of these explanatory variables. In

the final column of Table 1 we consider the possibility of a serially uncorrelated

measurement error in the per capita GDP series, which would invalidate both the

level of this series dated t− 2 as an instrument for the first-differenced equations,

and the first-difference of this series dated t − 1 as an instrument for the levels

equations. The Sargan tests of over-identifying restrictions for the GMM estima-

tors in columns three and four do not indicate a serious problem with the validity of

these instrumental variables. Nevertheless the final column reports the results for

the system GMM estimator when these instruments are excluded. The estimated

coefficients can be seen to be very similar to those in column four, which again

19



suggests no serious problem resulting from transient measurement error in the per

capita GDP series.18

The system GMM results indicate a rate of convergence of around 2% a year,

which is surprisingly similar to the standard cross-section finding. Importantly,

they also indicate that the investment rate has a significant positive effect on the

steady state level of per capita GDP, even after controlling for unobserved country-

specific effects and allowing for the likely endogeneity of investment.

Table 1 here

Table 2 reports our results for a version of the augmented Solow model, where

the logarithm of the secondary-school enrollment rate is included as an additional

explanatory variable, as in CEL.19 It is interesting that the inclusion of the school

enrollment variable in the model and the instrument set produces a somewhat more

reasonable coefficient on initial income using the first-differenced GMM estima-

tor. This now coincides with the Within Groups estimate, rather than being sub-

stantially below it. Nevertheless since Within Groups is itself likely to be seriously

biased in a panel with T = 5, the system GMM estimates in the final column

are again our preferred results. As for the basic Solow model there is no indica-

tion of instrument invalidity, and again our results indicate a rate of convergence

considerably slower than found by CEL.

Table 2 here

We can illustrate the weak instruments problem with the basic first-differenced
18Results for the first-differenced GMM estimator with ln(Yi,t−2) omitted from the instrument set

were also similar to those reported in column three of Table 1. Further omitting the period t − 2
values of the investment rate and the population growth rate from the instrument set also made no
significant difference to our basic results, although the point estimates became less precise.

19School enrollment is measured at the start of each five-year period, and treated as a predeter-
mined variable in the results reported here. Our main findings were robust to alternative treatments.
School enrollment was not available for 1985 for the Congo and Switzerland, and the relevant obser-
vations are dropped from the sample used in Tables 2 and 3.
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GMM estimator in another way. Our preferred system GMM estimates in Table 2

suggest that the particular human capital measure used here can be omitted from the

specification of the model.20 This suggests that we may be able to strengthen the

instrument set used to estimate the basic Solow growth model in first-differences,

by including lags of school enrollment as instruments, and testing their validity.

In Table 3 we report the basic first-differenced and system GMM results, us-

ing the slightly smaller sample for which school enrollment is measured. These

results are very close to those previously reported in Table 1. In the final col-

umn we report the first-differenced GMM results using an extended instrument set,

which also includes the lags of school enrollment. These additional instruments

do make a substantial difference to the first-differenced GMM results, and illus-

trate the fragility of first-differenced GMM in this context. It is striking that the

extended instrument set produces results which are much closer to system GMM.

The implied rate of convergence falls from 14% to 4% a year, and the coefficient

on the investment rate becomes significant at conventional levels (it is not in the

differenced GMM results in the first column of Table 3). There is, however, some

indication that the lags of school enrollment may not be valid instruments in this

specification.

These results imply that lagged school enrollment helps to predict growth in per

capita GDP in the reduced form equations of the first-differenced estimator, even

though current school enrollment may not have a significant effect on the steady

state level of per capita GDP after controlling for unobserved country-specific ef-

fects, investment and population growth. One possible explanation for these find-

ings is that school enrollment affects growth through the rate of investment.

Table 3 here
20The first-differenced GMM results suggest a perverse negative effect of school enrollment, but

we have stressed that these estimates are likely to be biased. In any case, it is not particularly sensible
to expect school enrollment rates to affect growth almost instantaneously.
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Throughout the paper, our preferred results indicate a low convergence rate, in

the region of 2% to 4% a year. It is important to qualify this finding, and to ac-

knowledge that there is a great deal of uncertainty in measuring convergence rates.

As Nerlove (1999a, 1999b, 2000) has emphasized, much depends on the choice of

estimator. This should not be altogether surprising. Allowing for unobserved het-

erogeneity in the estimation of autoregressive parameters, in a short panel based

upon a series as persistent as output, is intrinsically challenging.

As we have shown, some techniques are likely to work poorly in this context,

and even our preferred estimates are quite imprecise. They may also be biased. We

have emphasized the importance of controlling for unobserved heterogeneity in the

intercepts of our empirical growth model (country-specific effects) but there may

also be heterogeneity in the slope parameters (Lee, Pesaran and Smith 1997). Het-

erogeneous slope coefficients would invalidate the use of lagged values of serially

correlated regressors as instruments. In principle such misspecification would be

detected by our tests of over-identifying restrictions, but we should acknowledge

that these tests may not be very powerful in the present context.

Unfortunately it is not possible to allow for unrestricted heterogeneity in both

the intercepts and the slope coefficients for all the countries in our data set, without

the availability of longer time series. One potentially fruitful line of research would

be to develop specifications that allow for some limited heterogeneity in slope co-

efficients, and to investigate the extent of such heterogeneity using sub-samples of

countries where longer time series are available. Work along these lines might give

very different results. Our principal aim has not been to present definitive estimates

of rates of convergence but, more modestly, to highlight the problems with using

first-differenced GMM estimators in estimating empirical growth models.
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5 Summary and conclusions

The work of Caselli, Esquivel and Lefort (1996) has been influential in its recom-

mendation of the first-differenced GMM estimator for empirical growth models.

In this paper, we have shown that the estimator does not appear to perform well in

this context. In particular, we pointed out that the first-differenced GMM estimates

of the coefficient on the lagged dependent variable tend to lie below the corre-

sponding Within Groups estimates. This suggests that the first-differenced GMM

estimates are seriously biased. One plausible explanation, given the high degree of

persistence in output, is that the instruments are weak.

We considered two possible solutions to this problem, which both amount to

using more informative sets of instruments. The first solution is to use the system

GMM estimator developed by Arellano and Bover (1995) and Blundell and Bond

(1998). This estimator uses lagged first-differences of the variables as instruments

for equations in levels, in combination with the usual approach. These additional

instruments are valid under a restriction on the initial conditions which is poten-

tially consistent with the Solow growth framework. In our application, we did not

reject the validity of these instruments, and they turn out to be highly informa-

tive.21 The second solution we tried is to strengthen the instrument set used for the

equations in first-differences by using other variables that are not included in the

model, for example through the use of lags of school enrollment as instruments in

estimating the basic Solow model.

In both cases, we found that the estimates of the coefficient on the lagged de-

pendent variable then lie above the Within Groups estimates. We take this as a

signal that the system GMM approach is probably preferable in this context, and

that earlier results in the literature may be seriously biased due to the weakness of
21We have found similar results for more general growth specifications. For further applications

of system GMM to empirical growth models, see Hoeffler (1998).

23



the instruments. Our preferred results suggest much slower speeds of convergence

than those found by CEL, but confirm the importance to growth of investment rates

even after allowing for simultaneity.

We round off with two messages for growth researchers. The first and most

important is that, since strengthening the instrument set with outside instruments

is usually not an easy task, it may be preferable to use the system GMM estimator

rather than the first-differenced estimator in empirical growth work. At the very

least, researchers who report the standard first-differenced GMM estimates should

probably check their results against those of alternative estimators, as illustrated

here.

The use of more sophisticated techniques should not become an end in itself,

and our second message relates to what we have learned about growth from the

use of system GMM. Previous work, notably that by CEL, found a rapid rate of

conditional convergence. This would imply that externalities from capital inputs

are relatively unimportant, and that most of the cross-country variation in output

arises through differences in total factor productivity. Our work, by indicating a

lower rate of convergence, suggests that such a conclusion would be too hasty.

There is a great deal of uncertainty in measuring the convergence rate, and one

consequence is that significant externalities to physical and human capital should

not yet be ruled out.

6 Appendix

In this appendix we elaborate on the nature of assumption (8) in the AR(1) model

E (ηi∆yi2) = 0 for i = 1, ..., N
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which is a restriction on the initial conditions process generating yi1. To see this,

first write yi1 without loss of generality as

yi1 =

µ
ηi

1− α
¶
+ ei1. (17)

Now consider equation (1) for the first period observed

yi2 = αyi1 + ηi + vi2.

Subtracting yi1 from both sides of this equation

∆yi2 = (α− 1) yi1 + ηi + vi2 (18)

and using (17) we obtain

∆yi2 = (α− 1)
µ

ηi

1− α
¶
+ (α− 1) ei1 + ηi + vi2

= (α− 1) ei1 + vi2.

Hence given the error components structure in (2), assumption (8) is equivalent

to the restriction E (ei1ηi) = 0 for i = 1, ...,N . A sufficient condition is thus

that the initial conditions yi1 satisfy the mean stationarity restriction E (yi1|ηi) =

ηi/(1 − α) for each individual. Note that this requires only the first moments of

the yit series to be constant, and does not require constant second moments.
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7 Tables

Table 1
Estimation of the Solow growth model
Dependent variable∆ lnYi,t

Estimation OLS WG DIF-GMM SYS-GMM SYS-GMM
Observations 479 382 382 479 479

ln(Yi,t−1) -0.031 -0.319 -0.537 -0.101 -0.112
(0.012) (0.055) (0.138) (0.052) (0.047)

ln(sit) 0.089 0.128 0.047 0.188 0.197
(0.015) (0.038) (0.074) (0.047) (0.044)

ln(nit + g + δ) -0.111 -0.083 -0.169 -0.309 -0.410
(0.056) (0.146) (0.305) (0.264) (0.328)

Implied λ 0.006 0.077 0.154 0.021 0.024
(0.003) (0.016) (0.060) (0.012) (0.011)

Sargan test - - 0.24 0.43 0.69
Dif Sargan test - - - 0.74 0.99

Notes

Standard errors in parentheses. ‘WG’ is Within Groups estimation. The figures

reported for the Sargan test and Difference Sargan test are the p-values for the null

hypothesis, valid specification. Difference Sargan tests the additional instruments

used by the SYS-GMM estimator.

Instruments used for DIF-GMM (column (iii)) are ln(Yi,t−2), ln(si,t−2), ln(ni,t−2+

g + δ) and all further lags.

Additional instruments used for levels equations in SYS-GMM (column (iv))

are∆ln(Yi,t−1),∆ln(si,t−1) and ∆ln(ni,t−1 + g + δ).

SYS-GMM estimates in column (v) omit ln(Yi,t−2) from the instruments used

for the first-differenced equations, and replace ∆ln(Yi,t−1) by ∆ln(Yi,t−2) in the

instruments used for the levels equations.

Data are for five-year intervals between 1960 and 1985, as used in CEL.
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Table 2
Estimation of the augmented Solow growth model
Dependent variable∆ lnYi,t

Estimation OLS WG DIF-GMM SYS-GMM
Observations 477 380 380 477

ln(Yi,t−1) -0.052 -0.323 -0.331 -0.081
(0.016) (0.056) (0.107) (0.077)

ln(sit) 0.080 0.136 0.131 0.187
(0.015) (0.038) (0.056) (0.044)

ln(enrit) 0.030 -0.046 -0.149 -0.018
(0.015) (0.027) (0.064) (0.046)

ln(nit + g + δ) -0.098 -0.025 0.297 -0.295
(0.053) (0.143) (0.370) (0.293)

Implied λ 0.011 0.078 0.080 0.017
(0.003) (0.017) (0.032) (0.017)

Sargan test - - 0.26 0.25
Dif Sargan test - - - 0.23

Notes

Standard errors in parentheses. ‘WG’ is Within Groups estimation. The figures

reported for the Sargan test and Difference Sargan test are the p-values for the null

hypothesis, valid specification. Difference Sargan tests the additional instruments

used by the SYS-GMM estimator.

Instruments used for DIF-GMM are ln(Yi,t−2), ln(si,t−2), ln(ni,t−2 + g + δ),

ln(enri,t−1) and all further lags.

Additional instruments used for levels equations in SYS-GMM are∆ln(Yi,t−1),

∆ln(si,t−1), ∆ln(ni,t−1 + g + δ), and ∆ln(enrit).

Data are for five-year intervals between 1960 and 1985, as used in CEL.
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Table 3
Estimation of the Solow growth model, extended instrument set
Dependent variable∆ lnYi,t

Estimation DIF-GMM SYS-GMM DIF-GMM
Observations 380 477 380
Instrument set Basic Basic Extended

ln(Yi,t−1) -0.502 -0.096 -0.191
(0.128) (0.050) (0.096)

ln(sit) 0.054 0.186 0.135
(0.071) (0.046) (0.054)

ln(nit + g + δ) -0.156 -0.281 -0.297
(0.291) (0.252) (0.250)

Implied λ 0.139 0.020 0.042
(0.051) (0.011) (0.024)

Sargan test 0.23 0.45 0.13
Dif Sargan test 0.83 0.16

Notes

Standard errors in parentheses. The figures reported for the Sargan test and

Difference Sargan test are the p-values for the null hypothesis, valid specification.

Difference Sargan tests the additional instruments used by the SYS-GMM estima-

tor.

Instruments used for DIF-GMM (Basic) are ln(Yi,t−2), ln(si,t−2), ln(ni,t−2 +

g + δ) and all further lags.

Additional instruments used for levels equations in SYS-GMM are∆ln(Yi,t−1),

∆ln(si,t−1), and ∆ln(ni,t−1 + g + δ).

Instruments used for DIF-GMM (Extended) are ln(Yi,t−2), ln(si,t−2), ln(ni,t−2+

g + δ), ln(enri,t−1) and all further lags.

Data are for five-year intervals between 1960 and 1985, as used in CEL.
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