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This paper reviews the need for powerful computing facilities in econometrics, focus-
ing on concrete problems which arise in financial economics and in macroeconomics.
We argue that the profession is being held back by the lack of easy to use generic
software which is able to exploit the availability of cheap clusters of distributed
computers. Our response is to extend, in a number of directions, the well known
matrix-programming interpreted language Ox developed by the first author. We
note three possible levels of extensions: (i) Ox with parallelization explicit in the
Ox code; (ii) Ox with a parallelized run-time library; (iii) Ox with a parallelized
interpreter. This paper studies and implements the first case, emphasizing the need
for deterministic computing in science. We give examples in the context of financial
economics and time-series modelling.
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1. Introduction

This paper considers high-performance computing from the perspective of one of
the social sciences. In practice, the social sciences span a wide array of research
activities, ranging from economics and sociology to social psychology and political
sciences. Of course, the boundaries between these fields are not well-defined, for
example, political science increasingly uses econometric techniques for data anal-
ysis. Even the outside boundaries are not well-defined, illustrated by the field of
econophysics.

Within the social sciences, econometrics is one of the most technical and quan-
titative fields, with, in many cases, heavy use of computation to solve otherwise
intractable problems. Therefore, we use econometrics to illustrate the benefits that
high-performance computing brings to the social sciences.

In a narrow sense, the task of econometrics is to develop statistical techniques
for the analysis of non-experimental data (although experiments are also performed,
especially for research into auction theory), and to study the properties of these
techniques. In this sense, econometrics develops tools that are used by economists,
including computational tools. The problem is daunting: usually the observed data
are a consequence of decisions made by millions of people, inaccurately measured,
and often collected only at quarterly or annual intervals. Economies tend to be
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highly non-stationary and subject to sudden major interventions and unexpected
shocks. In recent years, there has also been a huge growth in financial econometrics,
driven by the availability of data observed minute-by-minute or even tick-by-tick:
examples are exchange rate and stock market data. In financial econometrics, the
emphasis is on modelling the volatility aspects of the data, rather than the cen-
tral tendency. The database storage and maintenance requirements may also be
challenging, but we shall not consider this.

Within the context of this paper we define high-performance computing as the
use of computational power that exceeds that which is readily available. For the
social sciences this is anything in excess of an up-to-date, but standard, PC (at
the time of writing a computer with a 1–2 Ghz Pentium IV or comparable). This
is a relative definition: if most econometricians would have ready access to a 40-
machine cluster, we would not label this as high-performance computing. Standard
computing progresses quite naturally: regular replacement of equipment means that
the exponential growth of computer power is followed automatically. High-perfor-
mance computing, on the other hand, requires a continuous investment to remain
ahead. In many respects, the benefit is only realized once as the ability to solve
tomorrow’s problem today. From an economic perspective that is a benefit worth
having as long as the costs are not too high.

Econometricians have made use of high-performance computing in the past, and
have similar needs in the future. Some of the authors’ research requires weeks and
sometimes months of computation on an up-to-date PC. Other econometricians use
similarly lengthy calculations, indicating that there is such a need. Also, for financial
applications it can be important to obtain model results very quickly, so that they
can be used in trading decisions. Section 4 provides some detailed illustrations.

A valid question is whether there is any benefit in approaching high-perfor-
mance computing from an econometric perspective. After all, why not just copy
what has already been done in other sciences? To some extent the answer to this is
affirmative: we will certainly borrow as much as possible from numerical analysis
and use available tools for parallel programming. However, there are two reasons for
a slightly different perspective, namely the cost of computing and the opportunity
cost of labour. The former matters because equipment budgets in social sciences
research tend to be small. They rarely go beyond the purchase of a state-of-the-
art PC. Therefore, the recent development of low-cost supercomputing, based on
combining standard PC equipment, is very important. A more substantial barrier
is the cost of programming for high performance. Usually, the resulting program
is tailored to the problem at hand and hardware-specific, and may take weeks or
months to develop. For example, Chong and Hendry (1986) developed Monte Carlo
simulation code for a distributed array processor using DAP FORTRAN,† but writ-
ing and testing the code took several months for a single problem. Unfortunately,
because our subject area puts a low value on computational skills, and young re-
searchers face much higher salaries outside academia, it is usually uneconomical to
adopt high-performance computing when there is a substantive novel programming
effort required. We therefore believe that the bottleneck is primarily on the software

† DAP is now produced by Cambridge Parallel Processing; for a brief history see Wilson (1995,
pp.494–496).
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side, which is labour intensive, rather than on the more capital-intensive hardware
side.

In this paper, we propose a partial solution to that problem. Our approach is to
take an interpreted matrix-programming language called Ox (see Doornik, 2001a),
and try to hide the parallelization within the language. This way, the same Ox
program can be run unmodified on a stand-alone PC or on a cluster as discussed
in section 5. This approach is in the spirit of Wilson (1995, p.496), who claims that
Teradata was one of the most successful parallel computer manufacturers of the
1980s because: ‘in many ways, Teradata’s success was achieved by hiding parallelism
from the user as much as possible’. He also argues for the adoption of high-level
languages (op.cit. p.497).

The organization of this paper is as follows. First, section 2 explains the main
factors behind the need for powerful computing facilities in econometrics, then
Section 3 provides some historical background to computing in econometrics. Next,
section 4 describes two typical computationally-intensive econometric problems,
all of which challenge the capabilities of the present generation of PCs. Section 5
outlines our proposed solution based on Ox; the results are reported in Section 6.

2. The need for computer power in econometrics

There are four main facets of econometric analyses that lead to major demands on
computing power.

First, economics data are intrinsically high dimensional: there are literally bil-
lions of transactions per day in large economies; and economies are closely linked
by trade and financial flows which amount to trillions of dollars per annum. While
models necessarily simplify dramatically, the larger econometric systems comprise
thousands of equations each with numerous parameters estimated from time-series
observations. Simulation analyses of such large estimated econometric models is
often the only way to obtain, say, interval forecasts, and doing so poses significant
demands on computing resources.

Secondly, economics data are highly non-stationary, both evolving and sub-
ject to major shocks. The means and variances of most economic time series have
changed greatly over the last few centuries, reflecting the Industrial Revolution, the
Electrical Revolution and more recently the Technological Revolution. Moreover,
economies are subject to major political and legislative changes, including changes
in the regimes of both macro and micro economic policy (with fiscal, monetary,
and exchange-rate regimes for the former, and nationalization and privatization as
salient examples of the latter), wars, and the creation and destruction of major
trading blocks. Thus, economies are subject to sudden and unanticipated shifts,
the effects of which are relatively long-lasting. Consequently, recursive methods are
essential, and stochastic simulation of artificial processes provides one of the few
ways of obtaining approximations to finite-sample distributions of estimators and
tests. Section 4(a) illustrates the types of information needed to investigate one
aspect of non-stationarity and highlights the resulting computational demands.

Thirdly, any quantitative description of an economy is inherently non-linear. At
the most basic level, identities (such as those comprising National Income Accounts)
are linear functions of the observations, but almost all models involve at least log-
linear relationships. Thus, the likelihood functions that require maximization are
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complicated, time-dependent and very high dimensional. The early researchers into
econometric computations, such as Eisenpress and Greenstadt (1966), were doubt-
ful that appropriate estimators could be feasibly calculated. Section 4(b) focuses
on simulation-based inference where high-dimensional integrals are mapped into
conditional expectations and estimated by the means of simulation samples.

Finally, the complexity of relationships between variables in economies requires
data-based selection of relationships from a larger set of potential candidate vari-
ables, often using many different selection criteria and exploring all feasible simpli-
fications (see e.g., Hendry and Krolzig, 2001, who implement an automatic model
selection procedure). The statistical distributions of the outcomes from such proce-
dures have eluded formal analysis, so necessitate Monte Carlo simulation studies.
While the conventional drawbacks of specificity and imprecision of simulation can
be overcome (see e.g., Hendry, 1984), nevertheless the development of appropriately
calibrated response surface analogues to theoretical distributions require computa-
tional capabilitites and speeds far in excess of those available in the most powerful
PCs or workstations.

3. Historical background

Throughout its history, available computational power has provided a constraint
on the feasible applications of econometrics. As Hendry and Doornik (1999) note
in their discussion of the impact of computational tools on econometrics:

Bean (1929) reported that a single four variable regression analysis for
30 observations would take about 8 hours of work. At the end of 1996,
our computer does about 30 000 per second (and much more accurately),
an increase in speed of almost 109.

Despite such an increase in speed, the scale of analyses has risen at least as fast.
Bean’s calculations were of the order of Tk2, for a sample of size T and a model
with k parameters. However, one complete path search for one equation involves
approximately 2k such regressions where k = 40 is not uncommon; and a Monte
Carlo study thereof might require 104 replications, leading to around 1016 regression
estimates varying in size from 1 through 40 variables, usually with T > 100. Even
with clever shortcuts, investigators confront massive tasks. It can be no surprise
that a substantive fraction of the research effort in econometrics has been devoted
to devising computationally-feasible methods given existing computers.

The first major econometric methods for estimating macro-econometric systems
of non-linear dynamic equations created computational demands that could not be
met (see Eisenpress and Greenstadt, 1966), and led to a proliferation of ‘short-cuts’
to provide operational approaches (see e.g., Hendry, 1976). Denis Sargan recounts
the need to hard-wire early computers to achieve non-linear optimization (Phillips,
1985); Ted Anderson remarks regarding the econometric research by the Cowles’
foundation: ‘we were unable to carry out the program to a big extent because of
the limitations of computational ability’ (Phillips, 1986).

Even with the advent of more powerful computers like the IBM 360/65, en-
hanced by fast FORTRAN compilers, available computational capabilities remained
a binding constraint for the discipline. For example, the likelihood functions for
even small macro-econometric systems might involve several hundred parameters
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and take hours to optimize, so detailed Monte Carlo simulation studies could not
be performed.

By the early 1980s, processor-array computers offered a feasible route, but as
discussed above, posed much greater labour costs, necessitating complete rethinking
of programs – and of course rewriting their code.

This background explains the considerable interest econometricians have in so-
lutions to ‘supercomputing’ that are cheap in both capital and labour, and so
motivates our approach.

4. Two typical problems

(a) Response surfaces for cointegration analysis

(i) Motivation

As discussed in the introduction, many economic time series appear to be non-
stationary. A simple form of non-stationarity arises when the first differences of
a series are white noise. In that case, we say that the series is integrated of or-
der one, I(1). An important step in the econometric analysis of integrated series
was the realization that it is possible for a linear combination to be stationary.
These variables are then said to cointegrate. Important references are Engle and
Granger (1987), who consider cointegration in a single-equation framework, and Jo-
hansen (1988), who adopts a maximum-likelihood approach within the framework
of a vector autoregression (VAR) (also see Johansen, 1995). Cointegration analysis
formalizes the empirical approach that was developed earlier, notably in Sargan
(1964) and Davidson, Hendry, Srba, and Yeo (1978). Cointegration analysis has
now become a standard tool in econometrics.

(ii) Vector autoregressions

An example of a VAR with one lag is:

yt = πyt−1 + εt, εt ∼ NIDn [0, Ω] , (4.1)

where yt is an n × 1 vector and π an n × n matrix, and NID indicates that the
errors have an independent normal distribution. This system can be rewritten by
subtracting yt−1 from both sides:

∆yt = (π − In) yt−1 + εt.

Alternatively, using Π = π − In:

∆yt = Πyt−1 + εt.

This shows that the rank of the matrix Π determines how the level of the process
y enters the system: for example, when Π = 0, the dynamic evolution does not
depend on the levels of any of the variables.

The statistical hypothesis of cointegration is: H(r): rank Π ≤ r. Under this
hypothesis, Π can be written as the product of two matrices:

Π = αβ′,
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where α and β have dimension n×r, and vary freely. Maximum likelihood estimation
requires solving a generalized eigenproblem. Then a likelihood-ratio test of H(r) can
be performed.

(iii) Test for cointegration rank

Johansen (1995, Theorem 11.1) gives the limiting distribution of the so-called
trace test for the rank of Π as:

tr

{∫ 1

0

(dW )F ′
[∫ 1

0

FF ′ds

]−1 ∫ 1

0

F (dW )′
}

. (4.2)

Here, W is short-hand for an n-dimensional standard Brownian motion W (s), and
F (s) depends on W (s) and the adopted model for deterministic terms. In its sim-
plest form: F (s) =

∫ s

0
dW (u).

The distribution in (4.2) is non standard, and requires tabulation. This can be
based on discrete approximations to the stochastic integral.

The simulation procedure starts by constructing E∗, which consists of T × n
drawings from a standard normal distribution. As a variance reduction technique,
we use E, which is the standardized version of E∗ such that E′E = TIn. A zero
mean cannot be imposed on E because the tests are not similar with respect to the
treatment of the mean. E approximates dW in (4.2).

Next, S is constructed as the lagged sum of E. Writing E′ as (e1, . . . , eT ), and
S similarly, then s1 = 0, st =

∑t−1
i=1 ei. In the simple case that we consider here

(i.e. no deterministic variables in the VAR), S approximates F in (4.2). Note that
in general, the counterpart to F depends on the treatment of the deterministic
terms: four additional cases could be considered, which involve augmenting S and
regressing it on a constant or constant and trend.

Finally, the approximation to the test statistic is computed as:

−T

n∑
i=1

log(1 − λ̂i), (4.3)

with λi denoting the eigenvalues of:

T−1 E′S (S′S)−1
S′E. (4.4)

Nielsen (1997) found that this method converges much faster to the asymptotic
distribution than the trace of (4.4).

(iv) Distributed computing and the distribution approximation

Early tabulations of the trace test were not so accurate, because the simulations
were too computationally intensive. Doornik (1998) approximated the asymptotic
distribution of the trace test by a gamma distribution, based on accurate simula-
tions. The experimental design was:

replications M : 100 000, (except: 20 000 for T = 2500, 5000, n = 9, . . . , 15),
dimension n: 1, . . . , 15,
sample size T : 50, 75, 100, 150, 200, 250, 500, 1000, 2500, 5000.
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This requires nearly 10 × 105 × 15 × 5 ≈ 7 × 107 evaluations of the statistic (when
considering five specifications of the mean). In addition, the paper considered tests
for doubly integrated series, and partial systems. The required computation time
on a standard PC was several months. (Ericsson and MacKinnon, 1999, in a related
problem, use 107 replications). Once the parameters for the Gamma distribution
have been estimated from the response surface, p-values and quantiles can be com-
puted in essentially zero time.

(b) Simulation-based econometric inference

(i) Motivation

One of the main motivations for the development of simulation based econo-
metric methods has been the profession’s interest in estimating analytically in-
tractable non-linear economic models. Some of this has been carried out in micro-
econometrics. See, for example, the work of McFadden (1989), the recent Nobel
Prize recipient, as well as Hajivassiliou and Ruud (1994) and Hajivassiliou and
McFadden (1998). Our focus will be on the problem of carrying out inference for
discretely observed continuous time processes. These diffusion-based models play
a crucial role in modern financial economics, providing the basis of most option
pricing, asset allocation and term structure theory currently being used. However,
traditionally we have not had strong methods for estimating such models, especially
when some components of the model are not observed.

In the econometric literature at least two basic methods have been either in-
vented or advanced to deal with this type of problem. Both are based on simulation.
The first is the use of importance sampling and Markov-chain Monte Carlo meth-
ods to perform likelihood inference for these models. Leading references to this
include Danielsson and Richard (1993), Danielsson (1994), Kim, Shephard, and
Chib (1998), Sandmann and Koopman (1998), Elerian, Chib, and Shephard (2001)
and Durham and Gallant (2001).

More originally, econometricians have been developing simulation-based moment-
dependent inference methods in their work on indirect inference. Leading references
to this include Gourieroux, Monfort, and Renault (1993), Smith (1993) and Gal-
lant and Tauchen (1996). Important work in the context of continuous-time models
includes Andersen and Lund (1997), Gallant, Hsieh, and Tauchen (1997), Gallant,
Hsu, and Tauchen (1998).

In all of these papers the estimation of the above models is computationally
intensive, often taking many minutes and sometimes many days. In some cases
the methods are so slow that there have not been any Monte Carlo studies of the
sampling performance of the estimation methods. The simulation nature of the
methods does mean that they are well suited to being sped up using distributed
computing technology. To our knowledge this has not yet been carried out.

(ii) Continous time stochastic volatility process

Here, we will illustrate the potential use of our approach to distributed com-
puters by applying it to the estimation of a stochastic volatility (SV) model. The
starting point for this is the so called Black-Scholes or Samuelson model which
models the logarithm of an asset price by the solution to the stochastic differential
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equation:
dx(s) =

{
µ + βσ2

}
ds + σdW (s), s ∈ [0, S], (4.5)

where W (s) is standard Brownian motion. This means aggregate returns over in-
tervals of length ∆ > 0, are:

yt =
∫ t∆

(t−1)∆

dx(s) = x(t∆) − x {(t − 1)∆} (4.6)

∼ NID
[
µ∆ + βσ2∆, σ2∆

]
. (4.7)

Unfortunately, for moderate to small values of ∆ (corresponding to returns mea-
sured over 5 minute to one day intervals) returns are typically heavy-tailed, exhibit
volatility clustering (in particular, the |yn| are correlated) and are skew, although
for higher values of ∆ a central limit theorem seems to hold and so Gaussianity
becomes a less poor assumption for {yt} in that case. This means that every single
assumption underlying the Black-Scholes model is routinely rejected by the type of
data usually used in practice.

This common observation, which carries over to the empirical rejection of op-
tion pricing models based on that approach, has resulted in an enormous effort to
develop empirically more reasonable models which can be integrated into finance
theory. The most successful of these are the generalized autoregressive conditional
heteroskedastic (GARCH) and the diffusion based stochastic volatility (SV) pro-
cesses. This very large literature, which was started by Clark (1973), Engle (1982)
and Taylor (1982), is reviewed in, for example, Bollerslev, Engle, and Nelson (1994),
Ghysels, Harvey, and Renault (1996) and Shephard (1996).

The model we will work with will be of an SV type, based on a more general
system of stochastic differential equations,

dx(s) =
{
µ + βσ2(s)

}
ds + σ(s)dW1(s),

d logσ2(s) = −λ
{
logσ2(s) − ξ

}
+ ηdW2(s), λ > 0,

(4.8)

where W1 and W2 are here assumed to be independent, standard Brownian motions.
Our desire would be to carry out likelihood inference on µ, β, λ, ξ and η based on
the discrete returns {yt}. Of course this is difficult due to both the discretization,
nonlinearity and the fact that we only partially observe the system.

(iii) Analysis of discretized model

We will restrict ourselves to the problems of partial observation and nonlinear-
ity. Note, however, that the methods we look at are also helpful in tackling the
discretization issue: this is discussed at some length in Elerian, Chib, and Shep-
hard (2001). We adopt an Euler-scheme approximation to the continuous time SV
system (4.8). Then returns can be written as:

yt = µ + β exp(αt) + exp(αt/2)εt, t ≥ 1,

αt+1 = ξ + φ(αt − ξ) + σηηt, t ≥ 2,

α1 ∼ N
(
ξ, σ2

η/
[
1 − φ2

])
,

where εt and ηt are independent with a standard normal distribution. The corre-
sponding likelihood function, writing y = y1, ..., yT and α = α1, ..., αT , is:

f(y) =
∫

f(y|α)f(α)dα.
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Computationally-intensive Econometrics 9

This is a T dimensional integral, which we do not know how to solve analytically. In
practice, T almost always exceeds 1000, and is often much larger than that, so we
have to use simulation to approximate f(y). Importance sampling is used to deal
with it (see Marshall, 1956 and Liu, 2001, Ch. 2). An importance sampling density
g(α|y) is introduced which is both easy to evaluate and simulate from. Then f(y)
is approximated by:

f̂(y) =
1
R

R∑
j=1

wj , where wj =
f(y|αj)f(αj)

g(αj |y)
, (4.9)

and:

αj i.i.d.∼ g(α|y),

with g(α|y) positive for all α ∈ R
T . By construction, we know that {wj > 0} are

i.i.d. and that E(wj) = f(y). As a result, a simple application of Kolmogorov’s
strong law of large numbers (e.g. Geweke, 1989, p.1320, and Gallant, 1997, p.132)
shows that:

f̂(y) a.s.→ f(y), as R → ∞,

whatever importance sampler we design.
Of course, the choice of the sampler g(α|y) will determine the efficiency of

the method in practice. We design our importance sampler by using a Laplace
approximation to the posterior of α1, . . . , αT given the data y1, . . . , yT ; see, for
example, Gelman, Carlin, Stern, and Rubin (1995, p.306). This means that the
proposals will be T dimensional Gaussian variables. The details of how such an
approximation for SV type models is obtained quickly is given in Shephard and Pitt
(1997) and Durbin and Koopman (2001, Chapter 10). Our code for this problem is
derived from the program available at www.ssfpack.com.

(iv) Distributed computing and SV model estimation

Each of the R samples from the sampler is T -dimensional. We need R to be
large enough for this to be a reasonably precise estimator of the true likelihood,
which means each function evaluation of f̂(y) is quite expensive. Maximization of
this function with respect to the parameters µ, β, ξ, φ and ση is a computationally
demanding task. Note that we must use common random numbers when evaluating
the likelihood to ensure that f̂(y) is smooth with respect to the parameters (this
complicates the use of particle-filtering techniques, see Kim, Shephard, and Chib,
1998).

We can use a distributed computing architecture when computing the numerical
derivatives of f̂(y), because this task requires 2k function evaluations when central
differences are used for k parameters. This load could be distributed over a number
of computers. Another strategy, which we adopt in Section 6, is to distribute the R
simulations, but have each node do the same computations outside the simulations.
As discussed below, the simulations will be distributed in small blocks.
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5. The Ox matrix language

(a) Introduction

Ox is a matrix-programming language developed by the first author. Ox has
a comprehensive mathematical and statistical library, and, although it is a matrix
language, a syntax that is similar to C and C++. Ox is a relatively young language,
with a first official release in 1996. Despite this, it has been widely adopted in
econometrics and statistics. Two contributing factors are that it is fast, and that
there is a free version for academics (but it is not open source). Ox is available
on a range of platforms, including Windows and Linux. For a recent review see
Cribari-Neto and Zarkos (2001).

In common with other matrix-programming languages (such as Matlab, GAUSS,
S-plus, R, etc.), Ox is an interpreted language,† with a commensurate speed penalty
for unvectorized code such as loops. However, this speed penalty is noticeably less
than in other programs. Indeed, several reviewers have noted that their programs,
after conversion to Ox, actually run faster than their own FORTRAN or C code.‡

Many time-series econometric applications involve a summation over time, which
does not vectorize. In that case, the relevant section of code can be written in
FORTRAN or C, and added to the language as a dynamic link library. Because
of the similarity of Ox to C, it is often convenient to do the prototyping of code
in Ox, before translating it into C for the dynamic link library. All underlying
standard library functions of Ox are exported, so can be called from the C code. An
example of a library that is implemented this way is SsfPack (Koopman, Shephard,
and Doornik, 1999). SsfPack is used to estimate the stochastic volatility model of
Section 4(b).

These features make Ox a good candidate for parallel development: there are
other matrix languages which can be four or even sixteen times slower, removing
most, if not all, of the speed advance we are hoping to achieve.

The Ox language is also object-oriented, along the lines of C++, but with a
simplicity that bears more resemblance to Java. This is aided by the fact that
Ox is implicitly typed. Doornik (2001b) discusses the object-oriented features in a
comparison with C++, Java and C#. There are several pre-programmed classes.
The most important are the Modelbase class, and the Simulation class. The latter
is of interest here: if we can make it parallel, without affecting its calling signature,
we can make existing programs parallel without requiring recoding.

(b) Example

Listing 1 gives a simple simulation example for the trace test, based on the trace
of expression (4.4). Several similarities with C are immediate: there are include files;
the syntax for functions, loops and indexing is the same; indexing starts at zero;
the program has a main function.

Some differences are: implicit typing of variables (internally, the types are int,
double, matrix, string, array, function, object, etc.); use of matrices in expressions;
matrix constants (<...>). Comment can be either C or C++ style.

† More precisely, Ox compiles code into an intermediate language, which is then interpreted.
‡ Steinhaus (1999) reports a speed comparison of many matrix languages, of which Ox is the

fastest on the adopted metric.
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#include <oxstd.h>
#include <oxdraw.h>

main()
{ // variables must be declared

decl ct = 1000, cn = 2, cm = 10000, eps, sum, i, tr, fac;

tr = new matrix[1][cm]; // create new matrix
decl time = timer();
for (i = 0; i < cm; ++i)
{

eps = rann(ct, cn); // T x n std.normal
sum = lag0(cumulate(eps), 1); // lagged sum
fac = eps’sum;
// compute the trace test
tr[i] = trace(fac * invertsym(sum’sum) * fac);

}
println("Simulation time: ", timespan(time));

// draw the non-parametrically estimated density
DrawDensity(0, tr, "trace", FALSE, TRUE);
ShowDrawWindow();
// print selected quantiles (data is in rows)
println( quantiler(tr, <0.50,0.8,0.90,0.95,0.99>) );

}

Listing 1. Example program for Trace test

The simulations in Listing 1 take about 12 seconds on a 500Mhz Pentium III
computer. The actual simulations for the design stated in Section 4(a) would take
about 65 hours (estimated from M = 100). The doubly integrated case adds a loop
over n, so would take more than a month to compute.

It is convenient for a Monte Carlo experiment to derive from the Simulation
class. That way, there is no need to write code to accumulate the results, or print
the final output. The main aspects of the Simulation class are:

• Simulation is the constructor function that sets the design parameters such
as sample size and number of replications.

• Generate virtual function that is called for each replication. This function
should be provided by the derived class, and return 0 if the replication failed.

• GetTestStatistics function that is called after Generate to get the value(s)
of the test statistic(s). If coefficients are simulated, or the distribution is
known (or conjectured) then GetCoefficients and GetPvalues are called
respectively.

The top part of Listing 2 gives the header file with the TraceTest class decla-
ration. Embedding it in #ifndef . . . #endif ensures that the code is only included
once in each file. The #import line includes the Simulation class. The remainder of
the listing is the actual Ox code, with the virtual function overrides. The trace test
is now implemented as in (4.3).

Listing 3 shows how the class is used, and gives some output. This version is
considerably slower than Listing 1 because of the multiplication by the Choleski

Article submitted to Royal Society



12 Doornik, Hendry, and Shephard

factor. The overhead from switching to the object-oriented version is very small
(about half a second).

(c) Parallel Ox

There are several levels at which we can add distributed processing to Ox. Like
other languages, it can be parallelized in the user code, but also in the run-time
library. The fact that Ox is interpreted adds a potential third level, so we could
consider:

level 1: Ox with parallization explicit in the Ox code,
level 2: Ox with parallelized run-time library,
level 3: Ox with parallelized interpreter.

At level 1, the only requirement is to make the parallel functionality directly
callable from Ox. Because Ox can be extended through dynamic link libraries, this
level can be achieved without changing Ox. We would expect optimal performance
gains for embarrasingly-parallel problems.

At the next level, we hide the parallelization in the run-time library. Operations
such as matrix multiplication, inversion, etc., will be distributed across the available
hardware. Here we could use available libraries for the implementation (such as
ScaLAPACK or PLAPACK). Functions which work on matrix elements (logarithm,
loggamma function, etc.) are also easily distributed. The benefits to the user are that
the process is completely transparent. The speed benefit will be dependent on the
problem: if only small matrices are used, the communication overhead would prevent
the effective use of the cluster. The experience of Murphy, Clint, and Perrott (1999)
is relevant at this level: while it may be possible to efficiently parallize a particular
operation, the benefit for smaller problems, and, by analogy for a complete program,
is likely to be much lower.

Level 3 is the most interesting, and, insofar we are aware, has not been tried
successfully before. The basic idea is to run the interpreter on the master, handing
elements of expressions to the slaves. The main problem arises when a computation
requires a previous result – in that case the process stalls until the result is available.
On the other hand, there may be subsequent computations that can already be
done. We envisage that implementation requires a form of database computing:
components of expressions are handed to a database, and a database ‘manager’
decides on the order of computations based on the requests for results it receives.
At this level, which can be combined with level 2, it may also happen that no
satisfactory speed-up results.

In this paper we only consider level 1. On the software side we use the message-
passing interface (MPI), see Snir, Otto, Hus-Lederman, Walker, and Dongarra
(1996) and Gropp, Lusk, and Skjellum (1999).

(d) Deterministic computing

We have always had a strong preference for deterministic computation: when
the same program is run twice on identical hardware the same results should be
obtained. This is relevant when random numbers are used, which is the case in all
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#ifndef TRACETEST_H
#define TRACETEST_H

#import <packages/oxmpi/simulation>

class TraceTest : Simulation
{

TraceTest(const mT, const cN, const cM);
~TraceTest();
RanTest(const cT, const cN);
Generate(const iRep, const cT, const mxT);
GetTestStatistics();
decl m_cN; // dimension
decl m_vTest; // holds test statistic
decl m_time; // to measure simulation time

}
#endif

#include <oxstd.h>
#include "tracetest.h"

TraceTest::TraceTest(const mT, const cN, const cM)
{

m_cN = cN;
Simulation(mT, max(mT), cM, TRUE, -1, <0.2,0.1,0.05>, <>);
SetTestNames("Trace");
m_time = timer();

}
TraceTest::~TraceTest()
{

println("TraceTest object used for: ", timespan(m_time));
}
TraceTest::RanTest(const cT, const cN)
{

decl eps, p, sum, fac, ev;

eps = rann(cT, cN); // T x n std.normal
p = invert(choleski(eps’eps / cT)); // E’E = PP’
eps *= p’; // give eps unit variance: E’E = T*I
sum = lag0(cumulate(eps), 1); // lagged sum
fac = eps’sum;
eigensym(fac * invertsym(sum’sum) * fac’, &ev);
return -cT * sumr(log(1 - ev / cT));

}
TraceTest::Generate(const iRep, const cT, const mxT)
{

m_vTest = RanTest(cT, m_cN);
return 1;

}
TraceTest::GetTestStatistics()
{

return m_vTest;
}

Listing 2. tracetest.h (top) and tracetest.ox (bottom): TraceTest class
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#include <oxstd.h>
#import "tracetest"

main()
{

decl exp = new TraceTest(1000, 2, 10000);
exp.Simulate();
delete exp;

}

T=1000, M=10000, seed=-1 (common)

moments of test statistics
mean std.dev skewness ex.kurtosis

6.1220 3.2655 1.1510 2.0472

critical values (tail quantiles)
20% 10% 5%

8.5391 10.504 12.319
TraceTest object used for: 19.68

Listing 3. tracesim.ox (top) and output (bottom)

our applications. For this reason, Ox random number generation always starts from
the same seed, and not from a time-determined seed.

Let P be the number of processes. The suggestion in much of the literature is
to split a linear congruential generator up into P sequences which are spaced by
P (so each process gets a different slice). This was suggested by Smith, Reddaway,
and Scott (1985), and used by Chong and Hendry (1986); also see Wilson (1995,
p.160) and Gentle (1998, §1.8) for more extensive discussions.

We desire that the Monte Carlo program satisfies more stringent requirement:
the same outcomes attain, regardless of the number of processors.† So we wish
to get the same results on a single-processor notebook as on a cluster. The above
procedure does not achieve this, because we cannot predict how much work is going
to be done at each node. As a solution, we adopt a slightly different strategy.

Ox has three built-in random number generators, the default, with period 231−
1 ≈ 2 × 109 is a modified version of Park and Miller (1988). The highest period
generator is from L’Ecuyer (1997) and has period ≈ 2113 ≈ 4×1034. We denote the
latter as RanLE, and the former as RanPM. RanLE requires four seeds, RanPM
just one.

We propose to assign seeds to each replication (i.e. each iteration of the loop),
instead of each process. The master process runs RanPM, assigning four random
seeds to each replication. Only the slaves execute replications, using the seed for
RanLE as received from the master. We consider the probability that this creates
correlated series negligeable. Although the replications may arrive at the master
in a different order if the number of processes changes, this is still the same set of
replications.

There is one final complicating factor. In some settings, there is random data

† This is less important on a distributed-array machine, where the configuration would not
normally change. Although it may be necessary to mask out non-functioning nodes, affecting the
outcomes.
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that is fixed in the experiment. For example, in a regression we may condition
on regressors, keeping them fixed after the first replication. To achieve this, we
extended the Simulation class with a GenerateInit() function, which is called
from the same seed on each slave. This avoids problem specific communication of
initial values.

At the end of the parallel procedure, each slave is left with the current seed
of the master and using RanPM, so master and slaves are left in identical random
number state.

(e) Embarrassingly parallel computation

All the econometric examples given in Section 4 are embarrassingly parallel. In
this paper we only focus on this type of problem, although other requirements do
exist as well (see, e.g., Abdelkhalek, Bilas, and Michaelides, 2001). To implement
a parallel library in Ox, we adopt the master/slave model written in MPI: the
same program is running on each node, with if statements selecting the appropriate
code section. The Loop class that wraps Ox code around the MPI calls has three
components which are passed as function references:

1. Initialization. This is an optional startup call, running of the same seed on
every slave.

2. Replication. This is were the main work takes place on each slave. To reduce
communication, the replications are handed out in blocks: a slave receives a
vector of seeds, four for each replication, and returns the result in one go. On
the other hand, to achieve automatic load balancing, the blocks should not
be too big. To ensure that replication blocks are not synchronized, we make
the first block that is handed out of uneven size. This is beneficial when there
are several identical processors.

3. Processing. This is an optional step on the master, using the results as they
arrive. The processing stage also determines what is accumulated on the mas-
ter for return to the slaves once the loop has finished. By default, results are
appended, and the final data is returned to the slaves to get all processes
in the same final state. However, in simulation experiments only the master
needs to keep track of the results, and can ensure that no large matrix is sent
back to the slaves at the end. In that case, the slaves end in a different state
of the master, but this is unproblematic if no further processing of the Monte
Carlo outcomes is necessary (beyond what has been done by the master).

Listing 4 sketches some of the functionality of the Loop class. Almost all code is
stripped away. Moreover, we removed the handling of rejected Monte Carlo repli-
cations (e.g. when an iterative estimation procedure does not converge). The Loop
class has only static members, so need not be instantiated using new. If the code
runs outside MPI, neither IsSlave() nor IsMaster() is true, and either doLoop or
doLoopNoSeed is called. The former implements the same random number scheme
that is used when executing in parallel mode. Conditional compilation is used
through OX MPI, which must be defined to enable MPI.

The Loop class uses the following MPI functions, here given in the version that
is exported to Ox (see oxmpi.h):

Article submitted to Royal Society



16 Doornik, Hendry, and Shephard

Loop::doLoopSlave(const iMaster, const fn, const acReject)
{

// switch to the high-period rng

for (k = 0;;)
{

// ask the master for a seed and arguments
// if only one seed received:
// - reset rng and set final seed
// - receive aggregated results from master
// - terminate

// repeat for all received sets of four seeds:
// - set the seed
// - run the experiment and append output
// return the result to the master

}
// return the aggregate result to the caller
return mresult;

}
Loop::RunEx(const fnInit, const fn, const cRep, const fnProcess)
{

// initialize Loop

// call initialization function with same seed for all slaves
// (if requested, i.e. if fnInit is a function)

if (IsSlave())
mresult = doLoopSlave(m_iMaster, fn);

else if (IsMaster())
mresult = doLoopMaster(m_cSlaves, cRep, fnProcess);

else if (m_bNoRandomSeed) // this is for backward compatibility
mresult = doLoopNoSeed(cRep, fn, fnProcess);

else
mresult = doLoop(cRep, fn, fnProcess);

#ifdef OX_MPI
MPI_Barrier(MPI_COMM_WORLD);

#endif
return mresult;

}

Listing 4. Stylized subset of Loop class

MPI_Init();
MPI_Comm_size();
MPI_Comm_rank();
MPI_Finalize();
MPI_Probe(const iSource, const iTag, ...);
MPI_Send(const val, const iDest, const iTag, ...);
MPI_Recv(const iSource, const iTag, ...);
MPI_Barrier(const iComm);

Apart from MPI Probe and MPI Barrier this corresponds to the minimal six-
function API discussed by Gropp, Lusk, and Skjellum (1999, §2.5). The barrier
synchronization function is used at the start and end of the parallel loop. The barrier
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and finalize functions are called when main exits, but, because the DLL can sched-
ule these for automatic calling (cf. the C function atexit), the user need not do
this. Similarly, MPI Init is automatically called when the user calls MPI Comm size
or MPI Comm rank, and tracked by the DLL wrapper to avoid multiple calls.

In the current implementation, it is possible to send an integer, double, matrix,
string, or array consisting of any number and mixture of these. Other derived types
(such as functions and objects) can not be transmitted.

6. Some applications

We have at our disposal two symmetric-multiprocessing (SMP) environments. The
first, labelled M4, has four 500Mhz Pentium III Xeon processors, and runs Windows
NT 4.0 server. The second, M2, consists of two 500Mhz Pentium III processors,
running Windows 2000 Professional. Although we have also built a Beowolf cluster
with four nodes, we shall not report timing results for this. Instead, we restrict
ourselves to running MPICH-NT 1.2.2, see Gropp and Lusk (2001). (We found
it convenient that development of the OXMPI library could be done on a single-
processor notebook running Windows 2000.)

#include <oxstd.h>
#import <packages/oxmpi/loop>

decl s_cT, s_cN;

traceTest(const iCtr)
{

decl eps, sum, i, fac;
eps = rann(s_cT, s_cN); // T x n std.normal
sum = lag0(cumulate(eps), 1); // lagged sum
fac = eps’sum;
return trace(fac * invertsym(sum’sum) * fac);

}
main()
{

decl tr, time;
s_cT = 1000;
s_cN = 2;

time = timer();
tr = Loop::Run(traceTest, 10000);
println("Simulation time: ", timespan(time));

// print selected quantiles (data is in rows)
println( quantiler(tr, <0.50,0.8,0.90,0.95,0.99>) );

}

Listing 5. Parallel version of example program for Trace test

Listing 5 illustrates how the Loop class can be used. The function which is
to be iterated has one argument, the loop counter (which is the counter at the
slave, not the master), so other arguments must be passed through global variables.
A more elegant solution, which avoids global variables, is to use object-oriented
programming: this is used in the next two examples. When running this program
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Table 1. Absolute and relative processing times

Number of processors (hardware) 4 4 4 4 6

Number of processes (software) 1 2 4 5 7

Trace test simulations

Time 7:51 10:29 5:03 3:16 2:05

Speedup 0.75 1.6 2.4 3.8

Efficiency 60% 63%

Stochastic volatility estimation

Time 3:43 3:45 2:25 1:42 1:12

Speedup 1.0 1.6 2.2 3.1

Efficiency 55% 52%

4 processors: machine M4; 6 processors: machines M4+M2.
1 process: non-parallel code.
Timings in minutes:seconds; speedup is relative to non-parallel code.
Efficiency assumes maximum speedup equals number of processors.

through MPI, it is executed on every node. The return value from the Run function
is the aggregated 1 × M vector of all outcomes, the same for each node.

It is inconvenient that the previous Ox program had to be rewritten to access
the new Loop class. Therefore, we have developed a new version of the Simulation
class that uses the Loop class. Because it is entirely compatible with the existing
simulation class, the only change required in a Monte Carlo program is to replace:

#import <simula>

by:

#import <packages/oxmpi/simulation>

The program can be run as (this may depend on the setup; # is the number of
processors): MPIRun -np # \ox\bin\oxl.exe -DOX_MPI ox program
But it can also still be run outside MPI, as a normal Ox program.

Table 1 reports some timing results for the following two examples:

1. Trace test simulations, see Section 4(a)
This corresponds to Listing 3, using the enhanced Simulation class. The tim-
ings are for M = 100 000 replications and dimension n = 5.

2. Stochastic volatility model, see Section 4(b)
As discussed before, we decided to vectorize the simulation part of the likeli-
hood evaluation. Note that for a Monte Carlo, it would be better to vectorize
the outer Monte Carlo loop instead.

Note that we distinguish in Table 1 between the number of processors, which
describes the hardware that is used, and the number of processes which are launched
using MPI. It is optimal to run one process more than the number of processors,
because the master only stores the results, and therefore needs to do very little
work – it is inefficient to assign a whole processor to this. The one processor case
does not use MPI, it only ensures that the outcome is the same. The efficiency is
only listed when the hardware is fully employed, and assumes that the speedup
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could be as high as the number of processors. Because the master needs to run as
well, this is overly optimistic upper bound.

As can be expected from embarrassingly parallel applications, the communica-
tion overhead is small, and we see good scaling. The scaling is less favourable for
the SV estimation, because a smaller part of the program is parallelized. However,
the improvement remains considerable. There may be some scope for removing the
large initial penalty from moving to the master plus one slave model for the Trace
test simulations. It could be that other implementations of MPI, or PVM, achieve
somewhat better scaling within the environment that we considered.

7. Conclusions

We argued that econometricians have significant computational needs, and would
benefit from increased accessibility to high performance computing. However, we
also identified several reasons that reduce its use, particularly the high labour costs
of software development. We suggested a solution that would appeal to econometri-
cians and statisticians, namely to embed parallel computing in a matrix program-
ming language. We expect that availability of this will lead to increased use.

We experimented with two implementation approaches. The first is to harnass
available PCs, and the second to build a dedicated Beowolf cluster. Our experience
suggests that the former is easier to implement in social science departments, es-
pecially if it would be possible to use processing power on machines that sit idle
at nights. A dedicated cluster could be more efficient from the computational per-
spective, but may be more expensive to build and maintain (the hardware costs
can be very low, as recently illustrated by Hargrove, Hoffman, and Sterling (2001)
who describe the construction of Beowolf clusters from left-over hardware, but the
maintenance costs can still be non-negligeable).

Even if this implementation of high-performance is just a one-off improvement,
changing the intercept of computational speed advances, but not the slope, we think
it is an avenue worth pursuing further. Especially for those econometric applications
that are embarrassingly parallel.
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