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Abstract
We discuss computational aspects of likelihood-based estimation of univariateARFIMA(p, d, q) models.

We show how efficient computation and simulation is feasible, even for large samples. We also discuss the
implementation of analytical bias corrections.
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1 Introduction

The fractionally integratedARMA model, denotedARFIMA(p, d, q), has become increasingly popular
to describe time series that exhibit long memory. In many cases, it provides a more parsimonious
description of economic time-series data than theARMA model.

It is important that exact maximum likelihood estimation of the Arfima model is readily available,
if only to serve as a benchmark for other estimators. This problem has essentially been solved by
Hosking (1981), and Sowell (1987). Unfortunately, there were some problems that remained unre-
solved. Initial implementations did not take the structure of the variance matrix into account and were
not suitable for extensions with regression parameters. Consequently, they suffered from numerical
instability, and could only be used on small data sets. This led to frequent remarks in the literature
that it is very difficult to estimate Arfima models by exact maximum likelihood, a misconception that
persists to date. For example, Bollerslev and Jubinski (1999, p. 12) say: ‘even for simple low-order
fractionally integrated models, exact maximum likelihood estimation is extremely time consuming
and would not be practical for the sample sizes (8000) and number of individual stocks (100) ana-
lyzed here’. The Arfima package by Doornik and Ooms (1999) showed that exact MLE is possible
for long time series. Ooms and Doornik (1999) build on this by implementing a parametric bootstrap
for Arfima models of UK and US inflation.
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The improvements that were made include:

• concentration of the log-likelihood with respect to scale and regression parameters;

• partial removal of the restriction that the autoregressive roots must be non-zero;

• exploiting the Toeplitz structure of the variance-covariance matrix;

• efficient implementation of the modified profile likelihood method and related bias reduction
methods for ML estimators.

The organization of this paper is as follows. Section 2 reviews the Arfima model, and compares
several methods to compute the autocovariances. In§3 we implement some improvements to the
expressions for the autocorrelation functions, and consider issues of numerical stability. We discuss
the evaluation of the log-likelihood in§4, where we also pay attention to analytical bias corrections.
Data generation for Monte Carlo experiments is the topic of§5. Section 6 concludes.

2 Maximum likelihood estimation of the Arfima model

The GaussianARFIMA(p, d, q) model is written as

Φ (L) (1 − L)d (yt − µ) = Θ (L) εt εt ∼ NID[0, σ2
ε ]. (1)

Whered is the fractional integration parameter,Φ(L) = 1 − φ1L . . . − φpL
p specifies theAR lag-

polynomial, andΘ(L) = 1 + θ1L . . .+ θqL
q theMA polynomial.

The autocovariance function of a stationaryARMA process with meanµ,

γi = E [(yt − µ) (yt−i − µ)] ,

defines the variance matrix of the joint distribution ofy = (y1, · · · , yT )′:

V [y] =




γ0 γ1 · · · γT−1

γ1 γ0
. . .

...
...

. .. . . . γ1

γT−1 · · · γ1 γ0


 = Σ, (2)

which is a symmetric Toeplitz matrix, denoted byT [γ0, . . . , γT−1]. Under normality:

y ∼ NT (µ,Σ), (3)

and, combined with a procedure to compute the autocovariances in (2), the log-likelihood is (writing
z = y − µ):

logL
(
d, φ, θ, β, σ2

ε

)
= −T

2
log (2π) − 1

2
log |Σ| − 1

2
z′Σ−1z. (4)

Additional regression parameters inµ are denoted byβ, but can be ignored initially.
The autocorrelation function,γi/γ0, of a stationaryARMA process is discussed in many textbooks.

Here, we frequently work with the autocovariances scaled by the error variance,ri = γi/σ
2
ε :

R = T
[
γ0/σ

2
ε , . . . , γT−1/σ

2
ε

]
.

There are two issues that need to be resolved to allow maximum likelihood estimation: evaluation
of the autocovariance function to constructR, and handling this matrix which is of dimensionT × T .
Regarding the former, the main focus here is on the method developed by Sowell (1992). We compare
this to alternatives in the next section, prior to a discussion of the implementation details in§3.
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2.1 Computing the autocovariances

Various techniques are available to evaluate the autocovariance function of a stationaryARFIMA pro-
cess.

A conceptually very simple procedure is to compute the autocovariances from theMA representa-
tion. Because the lag polynomial onzt = yt−µ is invertible for−1 < d < 0.5, its MA representation
is:

zt = Φ(L)−1(1 − L)−dΘ(L)εt =
∞∑

j=0

ψz
j εt,

with ψ0 = 1. Based on this:

γk =
∞∑

j=0

ψz
jψ

z
j+|k|σ

2
ε . (5)

Chan and Palma (1998) used this approach. The drawback is that, becauseψz
j declines hyperbolically,

many terms are needed for an accurate approximation.
Hosking (1981) expressedγk as a function of the autocovariances of theARFIMA(0, d, 0) process

wt = {Θ(L)}−1Φ(L)zt and theARMA(p, q) processut = (1 − L)dzt:

γk =
∞∑

j=−∞
γu

j γ
w
k−j. (6)

Both γw
j andγu

j are easily calculated using simple recursions, see e.g. Brockwell and Davis (1993,
§3.3 and§13.2). Fast decay in theγu

j will help convergence, but whenΦ(z) has roots close to
the unit circle, it remains necessary to use many terms for accurate computation ofγk. For pure
ARFIMA(0, d, q) processes, only2q + 1 terms in (6) are required, which is preferable to using theMA

representation (5).
Ravishanker and Ray (1997) use theMA coefficientsψu

i of ut = (1 − L)dzt instead:

γk =
∞∑

j=0

∞∑
i=0

ψu
i γ

w
k+i−jψ

u
j σ

2
ε , (7)

which alleviates the slow convergence of (5) caused by a larged.
A seemingly simple alternative is to numerically integrate over the spectrum, see e.g. Harvey

(1993, p. 229):

γk =
∫ π

−π
fz(ω)eiωkdω, (8)

where the spectrum of theARFIMA-process,fz(ω), is easily computed. However, numerical integra-
tion for eachk does rapidly get prohibitively slow.

More specific methods improve speed and accuracy of the computation ofγk: Hosking (1981)
provided a closed form alternative to (6) for theARFIMA(1, d, 0) case. Sowell (1992) succeeded in
extending and numerically implementing the results of Hosking for theARFIMA(p, d, q) case, using
the assumption of the unicity of the rootsρ−1

j , j = 1, . . . , p, of theAR polynomialΦ(z) = 0. Eachγk

requires the computation of at leastp hypergeometric function values, which is a slowly converging
series for|ρi| → 1. Sowell (1992) achieved a major speed-up of the algorithm by evaluating the
hypergeometric functions recursively, see§3.

Table 1 compares the methods for anARFIMA(1, d = 0.45, 1) model withφ = 0.8 andθ = −0.5.
This is an example where the autocorrelations exhibit slow decay. First, we look at the accuracy of the
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Table 1: Comparison of ACF computation methods,d = 0.45, φ = 0.8, θ = −0.5

MA (5) Hosking (6) Integration (8) γS
k , Sowell

γ31/γ
S
0 0.12543 (64 terms ) 0.74707 (64) 0.74771 0.74771

0.17978 (128) 0.74771 (128)
0.49223 (320 000)

timing > 1000 15 250 1
Listed are the values of the scaled 31st autocovariance of methods (5), (6), (8), and
Sowell’s method. The numbers in parentheses are the number of terms used in each
approximation. The final row lists the computational time relative to Sowell’s method.

approximations. All methods involve infinite sums, which must be terminated at some point. The first
row in the table lists the 31th autocovariance, standardized with respect to the variance from Sowell’s
method: γ31/γ

S
0 . The number in parentheses for methods (5) and (6) gives the number of terms

used in the summation. The numerical integration for (8) was implemented using QuadPack function
QAGS, see Piessens, de Donker-Kapenga,Überhuber, and Kahaner (1983);QAGS required more than
200 function evaluations to attain the reported precision. The reported timings are for computing1024
autocovariances, and are relative to Sowell’s method.

Table 1 shows that neither theMA representation nor numerical integration are of practical use.
TheMA representation requires an infeasibly large number of terms to attain any precision when there
is even moderately slow decay of theMA terms. The method is also slow, despite using fast Fourier
transforms to computeψz

j and to evaluate the sum. Numerical integration is also too slow unless only
a few autocovariances are required.

Sowell’s method, on the other hand, is both fast and accurate. For Hosking’s method we imple-
mented the convolution using the fast Fourier transform, which made it a reasonably fast procedure.
Its simplicity may occasionally be an argument for using it, e.g. in more complex models.

3 Autocovariance function

3.1 Introduction

An algorithm for the computation of the autocovariances of the ARFIMA process (1) is derived in
Sowell (1992):

γi = σ2
ε

q∑
k=−q

p∑
j=1

ψkζjC(d, p + k − i, ρj), (9)

whereρ1, . . . , ρp are the (possibly complex) roots of the AR polynomial, and

ψk =
q∑

s=|k|
θsθs−|k|, ζ−1

j = ρj


 p∏

i=1

(1 − ρiρj)
p∏

m=1
m6=j

(ρj − ρm)


 , (10)
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whereθ0 = 1. C is defined as:1

C(d, h, ρ) = Γ (1 − 2d)
[Γ (1 − d)]2

(d)h
(1 − d)h

×
[
ρ2pF (d+ h, 1; 1 − d+ h; ρ) + F (d− h, 1; 1 − d− h; ρ) − 1

]
.

(11)

HereΓ is the gamma function,ρj are the roots of the AR polynomial (assumed to be distinct), and
F (a, 1; c; ρ) is the hypergeometric function, see e.g. Abramowitz and Stegun (1970, Ch. 15):

F (a, b; c; ρ) =
∞∑
i=0

(a)i (b)i
(c)i

ρi

i!
,

where we use Pochhammer’s symbol:

(a)i = a (a+ 1) (a+ 2) · · · (a+ i− 1) , (a)0 = 1.

So (1)i equalsi!. Computation ofF (a, 1; c; ρ) can be done recursively, as noted in Appendix 3 of
Sowell (1992):

F (a, 1; c; ρ) =
c− 1

ρ (a− 1)
[F (a− 1, 1; c − 1; ρ) − 1] . (12)

In the absence of AR parameters (9) reduces to:

γi = σ2
ε

q∑
k=−q

ψk
Γ (1 − 2d)
[Γ (1 − d)]2

(d)k−i

(1 − d)k−i

.

The ratio
(d)h

(1 − d)h

for h = p− q − T + 1, . . . , 0, . . . , p+ q,

can be computed using a forward recursion forh > 0:

(d)h = (d+ h− 1) (d)h−1 , h > 0,

and a backward recursion otherwise:

(d)h =
(d)h−1

(d− h)
, h < 0.

3.2 Refinements

Sowell (1992) gives several tricks for recursively computing various quantities needed in (9). This is
further refined in this section.

The autocorrelations are accumulated in a loop overj to avoid a second storage dimension:

γi = σ2
ε

p∑
j=1

ζj


 q∑

k=−q

ψkC(d, p+ k − i, ρj)


 , i = 0, · · · T − 1,

1Note the typo in the equation below (8) in Sowell (1992, p.173):Γ (d + s − l) in the numerator should read
Γ (d − s + l).
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Table 2: Leading terms of hypergeometric sequence,F (d+h, 1; 1−d+h; ρ), h = 2−T, . . . , 17−T ,
from backward and forward recursions, withd = 0.4, ρ = −0.1, p = 1, q = 0

term backward forward term backward forward
1 0.90892 0.90892 9 0.90891 173.55
2 0.90892 0.90890 10 0.90890 −1721.6
3 0.90892 0.90909 11 0.90890 17187.
4 0.90892 0.90717 12 0.90890 −1.7146 × 105

5 0.90891 0.92633 13 0.90890 1.7106 × 106

6 0.90891 0.73512 14 0.90890 −1.7066 × 107

7 0.90891 2.6430 15 0.90889 1.7025 × 108

8 0.90891 −16.394 16 0.90889 −1.6983 × 109

which just reorders the summations in (9).
For eachj, we need a sequence of

C(d, p − q − T + 1, ρj) · · ·C(d, p+ q, ρj).

Because both hypergeometric functions in (11) largely overlap, this is a sequence of functions

F (d+ h, 1; 1 − d+ h; ρj) , for h = p− q − T + 1, . . . , 0, . . . ,− (p− q − T + 1) .

Computation of this sequence can be done with a forward recursion using (12), or with the backward
recursion:

F (a− 1, 1; c − 1; ρ) =
a− 1
c− 1

ρF (a, 1; c; ρ) + 1, (13)

starting from the final term:

F (d− p+ q + T − 1, 1;−d − p+ q + T ; ρj) .

It is crucial that the recurrence is computed backward, the forward recursion (12) will start to grow
exponentially at some stage (see the discussion in Press, Flannery, Teukolsky, and Vetterling, 1993,
§5.5). For an example, see Table 2, which gives the first terms (i.e. the terms computed last in the
backward recursion, but first in the forward recursion) from the two recursions. The forward recursion
becomes meaningless very rapidly.

Returning to (10), the expression forζj involves division byρj, which can create problems when
ρj gets close to zero. In addition the expression is numerically unstable for a single root close to
zero. Equations (9) and (10) can be rewritten slightly, by moving the factorρ−1

j from ζj to C. Both
problems are then solved by writing:

G (a; c; ρ) = ρ−1 {F (a, 1; c; ρ) − 1} =
∞∑
i=0

(a)i+1

(c)i+1

ρi.

The backward recursion formula forG is:

G(a− 1; c− 1; ρ) =
a− 1
c− 1

[1 + ρG(a; c; ρ)] ,
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Table 3: Comparison of first 5 autocovariances forARFIMA(2, d, 2) process, with respectively:φ2 =
0, φ2 omitted, andφ2 = 0 with singularity removed.

0.3,−0.5, 0 usingF 0.3,−0.5 usingF 0.3,−0.5, 0 usingG
1.2774 1.2726 1.2726

−0.17380 −0.27486 −0.27486
−0.72536 −0.34655 −0.34655

0.59408 −0.045409 −0.045409
−0.018257 0.13155 0.13155

andρ−1[ρ2pF (·) + F (·) − 1] from (11) becomes:[
ρ2pG (d+ h; 1 − d+ h; ρ) + ρ2p−1 +G (d− h; 1 − d− h; ρ)

]
.

Therefore the singularity caused by a a single root at zero as present in the expressions of Sowell
(1992) turns out to be unnecessary.

To illustrate the improvement, we choose a model withd = −0.3, AR parameters0.3,−0.5, 0
and MA parameters−0.4, 0.3. This model has AR roots:(0.15 + 0.691i), (0.15 − 0.691i), (10−17).
Rounding errors cause the last root to be close but not identical to zero. We may compare this to a
model which omits the third AR parameter. Table 3 lists the first 5 autocovariances, clearly showing
the increased numerical stability of this reformulation.

4 Likelihood evaluation in estimation

4.1 Concentrating the log-likelihood

Concentratingσ2
ε out of the log-likelihood saves one parameter for estimation. Starting by writing

Σ = Rσ2
ε in (4):

logL
(
d, φ, θ, β, σ2

ε

)
∝ −1

2
log |R| − T

2
log σ2

ε − 1
2σ2

ε

z′R−1z.

Differentiating with respect toσ2
ε , and solving yields

σ̂2
ε = T−1z′R−1z, (14)

with concentrated likelihood (CLF):

`c (d, φ, θ, β) = −T
2

log (2π) − T

2
− 1

2
log |R| − T

2
log

[
T−1z′R−1z

]
.

Whenµ = Xβ it also beneficial to concentrateβ out of the likelihood. The resulting normal
profile log-likelihood function becomes:

`P (d, φ, θ) = −T
2

(1 + log 2π) − 1
2

log |R| − T

2
log

[
T−1ẑ′R−1ẑ

]
, (15)

where
ẑ = y −Xβ̂, β̂ =

(
X ′R−1X

)−1
X ′R−1y. (16)
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Finally, the function to be used in the maximization procedure is:

−1
2

{
T−1 log |R| + log σ2

ε

}
, (17)

which can be maximized using numerical derivatives. The formulation of the autocovariances in terms
of theρi facilitates an implementation that impose stationarity of theAR polynomial.

4.2 Computing the determinant term and generalized residuals

The second issue to be solved is the evaluation of (17) (and (18) below), involving the inverse ofR
and computation of its determinant.R is theT × T Toeplitz matrix of the scaled autocovariances.
There are various ways of approaching this problem:

• Naive Choleski decomposition

Using the standard decomposition requires storing theT × T matrix R = T [r0, . . . , rT−1],
and Choleski decomposition (lower diagonal, so strictly a matrix with1

2T (T +1) elements, but
stored in aT × T matrix in an econometric programming language like Ox, Doornik, 2001).
For largeT , this method becomes very memory intensive and slow: the decomposition is of
orderT 3.

• Efficient Choleski decomposition

A more efficient algorithm derives the Choleski decomposition directly fromr0, . . . , rT−1,
avoiding storage ofR. This can be combined with a version of Levinson’s algorithm (dis-
cussed next) to compute the Choleski decomposition in computations of orderT 2. However,
storing the1

2T (T + 1) Choleski factor remains prohibitive for largeT . This method is used in
Sowell (1992) and Smith Jr, Sowell, and Zin (1997).

• Levinson algorithm

The Levinson algorithm solvesT x = y directly, involving an operation count of orderT 2

and avoiding storage of orderT 2. The algorithm is described in Golub and Van Loan (1989,
§4.7.3).2 Evaluation ofz′R−1z is achieved in two steps. First rewriteR−1z = x asz = Rx
and solve this using the Levinson algorithm to obtainx̂. Then σ̂2

ε = T−1z′x̂, and, with the
determinant as a byproduct, the likelihood can be evaluated. Thus, storage of the1

2T (T + 1)
Choleski factor is avoided. This method was used in earlier versions (up to 0.77) of our Arfima
package.

• Durbin algorithm

This method (see Golub and Van Loan, 1989,§4.7.2) amounts to computing the Choleski de-
composition of the inverted Toeplitz matrix.3 Durbin’s method solves

T [r0, . . . , rT−1] = LDL′ = PP ′, e = D−1/2L−1z = P−1z.

again with an operation count of orderT 2. So we can write:

z′R−1z = e′e.
2This is implemented in Ox as thesolvetoeplitz function, which optionally also returns the determinant.
3This is implemented in Ox as thepacf function, which optionally also returns the determinant.
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Table 4: Timings in seconds for alternative solution methods to evaluate the log-likelihood for
ARFIMA(1, d, 1) with d = 0.45, φ = 0.8, θ = −0.5.

Sample size 1000 2000 4000 8000 16000
Efficient Choleski 0.03 0.15 0.60 38.70 failed
Levinson algorithm 0.02 0.07 0.25 1.02 12.01
Durbin algorithm 0.01 0.04 0.17 0.77 8.37
Autocovariances 0.0005 0.0011 0.0026 0.0057 0.0131

By applying the factorization as it is computed, storage of the1
2T (T+1) matrix is avoided. This

method leads to a more elegant expression of the log-likelihood (in addition to being marginally
faster), and is currently used in our Arfima package, Doornik and Ooms (1999).

Durbin’s method gives residuals that can be used for testing, and is also useful to generate
forecasts.

Table 4 gives timings for one ARFIMA(1, d, 1) likelihood evaluation, when the autocorrelations
have already been computed. The timings are for a 256MB Pentium III/700Mhz notebook using Ox
3.01 running under Windows 2000.4 At 8 000 observations, the12T (T + 1) matrix required by the
efficient Choleski method takes 288MB to store. This pushes the program into virtual memory (i.e.
using hard disk space as memory), making it run much slower. At16 000 the matrix requires more
than 1GB, and does not fit into memory anymore.

Golub and Van Loan (1989,§4.7) gives the floating point operation count of the Levinson algo-
rithm as4T 2, and the Durbin algorithm as2T 2. The relative timings in Table 4 are somewhat lower
than a factor of two. The final row of the table gives the time required for the evaluation of the au-
tocovariances, using the improvements suggested in this note. The time grows linearly with sample
size, but, more importantly, is completely negligeable at these samples sizes. Therefore,ARFIMA es-
timation is comparable toARMA estimation in terms of computational demands (except for the lack
of analytical derivatives).

For completeness, we note that, when anARMA(p, q) model is estimated, there are two additional
methods available:

• Banded Choleski

In the ARMA case, the Toeplitz matrix can be transformed to a banded Choleski matrix. This
method has been proposed by Ansley (1979).

• Kalman filter

The Kalman filter is implemented in SSFPack, see Koopman, Shephard, and Doornik (1999).

4When we started implementation we only had a 32MB Pentium 90Mhz at our disposal, which of course was consider-
ably slower. The lower amount of memory resulted in failure at lower sample size:

Sample size 1000 2000 3000 10000

Efficient Choleski 0.42 2.03 102.15 failed
Levinson algorithm 0.40 1.83 4.03 48.15
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4.3 Bias corrected ML estimation

Higher order asymptotic theory has delivered corrections for the bias in the estimation ofd, φ andθ
caused by the estimation of regression parameters, including the constant term. This source of bias has
the largest impact on estimates ofd, but is also relevant forφ. The bias correction leads to lower mean
squared errors for the estimators, since this type of bias correction does not increase the variance. See
Cheang and Reinsel (2000) for recent analytical results on this topic. Bias corrected estimation ofd, φ
andθ also lead to more accurate inference for the regression parameters and more precise forecast
intervals.

The objective functions for the resulting bias corrected estimators can be written as modified likeli-
hood functions in a number of different approaches. We implemented the modified profile likelihood,
MPL. The modified profile log-likelihood,̀ M , for the regression model with stationaryARFIMA-
errors andµ = Xβ is written as:

`M (d, φ, θ) = −T
2 (1 + log 2π)

−
(

1
2 − 1

T

)
log |R| − T−k−2

2 log
[
T−1ẑ′R−1ẑ

]
− 1

2 log
∣∣X ′R−1X

∣∣ , (18)

see An and Bloomfield (1993), who applied the idea of Cox and Reid (1987) to remove the first order
bias of the EML estimator due to the presence of unknown nuisance parameters of the regressors.
Ooms and Doornik (1999) showed the effectiveness of the bias correction for the estimation ofd in
ARFIMA models for US and UK inflation rates.

The ‘bias correction term’
∣∣X ′R−1X

∣∣ also appears in the objective functions for the marginal
likelihood of Tunnicliffe Wilson (1989), and in restricted maximum likelihood, REML, of Harville
(1974), see Laskar and King (1998) for a comparison of the different formulas. Note that the term
is especially large whenX contains polynomial trends (of high order). Evaluation of

∣∣X ′R−1X
∣∣ for

MPL proceeds along the lines suggested above forẑ′R−1ẑ.
The residual variance estimator can also be bias corrected using modified likelihood functions.

Whenp = q = d = 0, this leads to the familiar degrees of freedom correction due to the estimation
of regression parameters.

σ̂2
ε =

1
T − k

ẑ′R−1ẑ. (19)

Other analytical methods of bias correction lead to degrees of freedom corrections due to the es-
timation of φ and d. Cheang and Reinsel (2000) derived the degrees of freedom correction due
to estimating AR-parameters in approximate ML estimation of regression models with AR distur-
bances. Lieberman (2001) analysed the modified score estimator of Firth (1993) for(d, σ2

ε ) in an
ARFIMA(0, d, 0) model and showed that first order unbiased estimation ofσ2

ε requires a degrees of
freedom correction for the estimation of the parameterd.

4.4 Invertibility of MA polynomial

The same likelihood pertains when the roots of the MA polynomial are inverted. Since the likelihood
of a non-invertible MA can be evaluated without problems, estimation is not affected. In a Monte
Carlo experiment, however, it is essential that non-invertibility is taken into account. Take an MA(1),
with θ = 0.5. Sinceθ = 2 yields the same likelihood, it is thinkable that half the experiments
yield θ̂ ≈ 0.5 and the other half̂θ ≈ 2, resulting in poor average estimates from the Monte Carlo
experiment.
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The following table illustrates the issue (T = 100,M = 100). The first set of results removes the
non-invertible MA (required in 19 cases), the second leaves the MA roots unchanged:

coefficients DGP mean̂θ std.dev mean bias
with MA inversion

θ1 0.9 0.89157 0.075471 −0.0084326
θ2 0.81 0.81967 0.11363 0.0096664

without inversion
θ1 0.9 0.93546 0.26420 0.035462
θ2 0.81 0.86154 0.13834 0.051540

4.5 Alternative computations and approximations of the likelihood

Two alternatives for the computation of the exact log-likelihood have been suggested, which attempt
to avoid the computation of theT autocovariances for each(d, φ, θ). Chan and Palma (1998) use
a prediction error decomposition of the likelihood, which is easily calculated using Kalman Filter
recursions. Unfortunately, the required state dimension equals the sample sizeT and the computation
of the covariance matrix of the initial state still requires the computation ofΣ. Both with regard to
storage requirements and number of computations this is not an attractive method for exact maximum
likelihood estimation.

Ravishanker and Ray (1997) employ a factorization of the likelihood earlier suggested by Pai and
Ravishanker (1996). Their method only requires computation of the firstp and the last2p + q − 1
autocovariances and is easily extended to multivariate models. They achieve this by introducingp+ q
extra parameters which representp pre-sample values ofzt andq pre-sample values ofεt.

Beran (1995) investigated the non-linear least squares method, which is also applicable for non-
stationaryARFIMA-processes withd > 0.5. The approximate log likelihood is:

logLA (d, φ, θ, β) = c− 1
2

log
1

T − k

T∑
t=2

ẽ2t . (20)

The ẽt are the one-step-prediction errors from theAR(∞) representation ofzt:

zt =
∞∑

j=1

πjzt−j + εt,

where pre-sample values are set to zero in forecasting. Beran proved asymptotic efficiency and nor-
mality of the resulting estimators for(d, φ, θ). Since nonlinear least squares estimation is computa-
tionally simpler than maximum likelihood, and since it does not required to be in the stationarity
region, it is an attractive method to obtain starting values for ML estimation. Beveridge and Oickle
(1993) and Chung and Baillie (1993) presented Monte Carlo evidence which suggest it to be a good
estimator forARFIMA(0, d, 0) models with unknown mean.

4.6 Multivariate extensions

The issues in the discussion of ML estimation for univariate ARFIMA processes extend to the multi-
variate case. Sowell showed how to evaluate the autocovariances of bivariate ARFIMA process, see
Sowell (1987) and Sowell (1989). In the bivariate case the likelihood contains a scaled covariance ma-
trix R of dimension2T . Evaluation of the inverse and determinant of this matrix corresponding toR
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in (4) then involves the application of a multivariate Durbin-Levinson Algorithm, see e.g. Brockwell
and Davis (1993,§11.4). Dueker and Startz (1998) implemented the likelihood function of Sowell
(1987) in a bivariate ARFIMA(2,d,1) model for 121 observations. Without the improvements in the
likelihood evaluation suggested above, estimation of their model was still rather time consuming, so
as to make interactive model selection practically impossible5.

5 ARFIMA data generation

Finite sample improvements of estimators and inferences can also be achieved by simulation methods
like the parametric bootstrap. Simulation methods require efficient generation of pseudo-samples.
The problem in data generation for the ARFIMA(p, d, q) process is analogue to that set out in§4.2.

For small samples one can use the naive Choleski method as in the likelihood evaluation. Letr be
the standardized autocovariances of the specified process, andT [r] = PP ′, then

y = σεPε+ µ,

whereε are drawings from the standard normal distribution. For smallT , this is convenient, because
P only needs to be computed once. Once the Choleski decomposition has been computed, generating
data is only of orderT 2.

For larger samples, a modified version of Durbin’s algorithm is used to apply the inverted filter:

T [r0, . . . , rT−1] = PP ′, z = Pe.

This algorithm is of orderT 2, but perhaps somewhat slower than the naive method for smallT .
However, it allows for simulation with a large number of observations.

6 Conclusion

Maximum Likelihood estimation of ARFIMA models with explanatory variables is often considered
prohibitively slow. We attend key factors in the estimation process, as to make ML estimation of
ARFIMA no more problematic than ML estimation of ARMA models. These factors are: efficient
computation of autocovariance functions, careful evaluation of associated hypergeometric functions,
concentrating out regression and scale parameters, and application of the Durbin algorithm to take
advantage of the Toeplitz structure of the covariance matrix. The Durbin algorithm is also key in the
efficient simulation of ARFIMA processed and in the evaluation of extra terms in bias corrected ML
estimation.
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