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Abstract

We use high frequency financial data to proxy, via the realised variance, each day’s finan-
cial variability. Based on a semiparametric stochastic volatility process, a limit theory shows
you can represent the proxy as a true underlying variability plus some measurement noise
with known characteristics. Hence filtering, smoothing and forecasting ideas can be used to
improve our estimates of variability by exploiting the time series structure of the realised
variances. This can be carried out based on a model or without a model. A comparison is
made between these two methods.
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1 Introduction

Neil Shephard was fortunate to have Jim Durbin as his supervisor and time series teacher during

his first year of graduate studies at the London School of Economics in 1986-87. It was just

before Jim retired. Jim was very interested in state space models, having recently written the

Harvey and Durbin (1986) influential seat-belt case study on structural time series models. He

sent Shephard off to read Kalman (1960) as an interesting place to start research. It was the

first research paper Shephard read. Jim thought there was still a considerable amount to be

carried through in this area.

Ole Barndorff-Nielsen’s main contact to the research work of Jim Durbin has been to his

pathbreaking paper Durbin (1980). Together with the papers by Cox (1980) and Hinkley (1980),

this was of key import for the discovery of the general form of the p∗-formula for the law of the

maximum likelihood estimator and hence the development of the theory that has flown from

that formula (see Barndorff-Nielsen and Cox (1994) and the survey paper by Skovgaard (2001)).

Jim’s research has had a profound impact on statistics and econometrics. From modelling,

estimating and testing time series models to instrumental variables and general estimating equa-

tions, through to modern distribution theory, his work has been characterised by energy and

inventiveness. He has an original mind. His teaching at the LSE had a profound impact on the

course of British econometrics for, with Denis Sargan, he revolutionised the technical standards

expected of their students. The current high position of British econometrics is a legacy we

largely owe to Denis and Jim.

This paper touches on a number of Jim’s interests. It uses continuous time methods, discusses

some asymptotic distributional theory and eventually builds towards what might be called a

structural time series model.

We use high frequency financial data to proxy each day’s financial variability. A limit theory

shows you can represent the proxy as a true underlying variability plus some measurement noise

with known characteristics. Hence time series filtering, smoothing and forecasting ideas can

be used to improve our estimates of variability by exploiting the time series structure of the

data. This can be carried out based on a model, which is a particular type of continuous time

structural time series model, or without a model. A comparison is made between these two

methods.

In Section 2 we review the asymptotic distribution theory of realised variance, linking it to

stochastic volatility and quadratic variation. Section 3 uses the distribution theory to derive an

optimal filtering, smoothing and forecasting method for integrated variance. We show that this

can be implemented in a model free way or based on a parametric model. In Section 4 we discuss
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how to operationalise the model free approach, while Section 5 discusses the corresponding model

based approach. In Section 6 we draw our conclusions. The Appendix contains a proof of a

theorem we state in Section 3.

2 Every day is different: historical measures of variability

2.1 The continuous time framework

This paper looks at measuring and forecasting the level of variability of asset prices in a financial

market. This theory assumes a flexible stochastic volatility (SV) model for log-prices y∗ which

follow

y∗(t) = α∗(t) +
∫ t

0
τ1/2(u)dw(u), t ≥ 0, (1)

where the processes τ1/2 and α∗ is assumed to be stochastically independent of the standard

Brownian motion w. We call τ1/2 the instantaneous or spot volatility, τ the corresponding

variance and α∗ the mean process. A simple example of this is

α∗(t) = µt + βτ∗(t), where τ∗(t) =
∫ t

0
τ(u)du.

The process τ∗ is called the integrated variance. Throughout we will assume the following

conditions hold with probability one:

(C) τ > 0 is càdlàg on [0,∞), τ∗ exists and α∗ has the property

�−3/4 max
1≤j≤M

|α∗(j�) − α∗((j − 1)�)| = o(1), (2)

in � > 0 for M a positive integer.

Condition (C) implies that the α∗ process is continuous and so is predictable, while

m(t) =
∫ t

0
τ1/2(u)dw(u),

is a continuous local martingale. Hence y∗ is a rather flexible continuous semimartingale. As-

sumption (C) also allows the volatility to have, for example, deterministic diurnal effects, jumps,

long memory, no unconditional mean or be non-stationary.

Over an interval of time of length � > 0, which is here representing a day, returns on the

i-th day are defined as

yi = y∗ (�i) − y∗ {(i − 1) �} , i = 1, 2, ..., T, (3)

which implies that

yi|αi, τi ∼ N(αi, τi) where αi = α∗(i�) − α∗ {(i − 1) �} ,
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while

τi = τ∗(i�) − τ∗ {(i − 1) �} .

Here τi is called actual variance and αi is the actual mean. Reviews of the literature on the

SV topic are given in Taylor (1994), Shephard (1996) and Ghysels, Harvey, and Renault (1996),

while statistical and probabilistic aspects are studied in detail in Barndorff-Nielsen and Shephard

(2001).

The focus of this paper will eventually be on filtering, smoothing and forecasting τi. For

shorthand, we call filtering and smoothing “measuring.”

2.2 Realised variance

Our econometric approach is motivated by the advent of complete records of quotes or transac-

tion prices for many financial assets. Theoretical and empirical work suggests that the use of such

high frequency data is both informative and simplifying for it brings us closer to the theoretical

models based on continuous time. However, market microstructure effects (e.g. discreteness of

prices, bid/ask bounce, irregular trading etc.) means that there is a mismatch between asset

pricing theory based on semimartingales and the data at very fine time intervals. This means

that we cannot simply rely on empirical computations based on literally infinitesimal returns,

instead we need a distribution theory for these estimators. This theory will reflect the fact that

we will use a large but not infinite number of high frequency returns in our empirical work,

informing us of the difference between the empirical reality and the theoretical limit of using

returns over tiny time intervals.

We suppose there are M intra-� observations during each � > 0 time period and that log-

price of an asset is written as y∗. Our approach is to think of M as large and increasing. It will

drive our limiting theory. Then high frequency observations will be defined as

yj,i = y∗
(

(i − 1) � +
�j

M

)
− y∗

(
(i − 1) � +

� (j − 1)
M

)
, (4)

the j-th intra-� return for the i-th period (e.g. if � is a day, M = 288, then this is the j-th

5 minute return on the i-th day). This is illustrated in Figure 1 which displays y∗(t) at five

minute intervals for the first five days of the Olsen Dollar/DM series. It starts on 1st December

1986 and ignores weekend breaks. This series is constructed every five minutes by the Olsen

group from bid and ask quotes which appeared on the Reuters screen (see Dacorogna, Gencay,

Muller, Olsen, and Pictet (2001) for details). We have set it up so that y∗(0) = 0. Figure 1(b)

displays the returns when M = 1, which correspond to daily price movements. (c) uses M = 8

and shows three hour returns. We can see that the typical variability of each of these higher
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Figure 1: Log-price and returns at different frequencies for the first five days of the Olsen
data. (a): Log price y∗(t) plotted every five minutes with y∗(0) = 0. (b): daily returns with
M = 1. (c) three hour returns with M = 8. (d) thirty minute returns with M = 48. Code:
basic realised.ox.

frequency observations is smaller than the daily returns. Finally (d) displays the case where

M = 48, where we are using thirty minute returns.

The basis of our paper is to first work through the historical summery of variability, which

can be thought of as estimators of past actual volatility τi. These are built using the M intra-�

observations. The focus is on the realised variance1

[y∗M ]i =
M∑

j=1

y2
j,i. (5)

1Sums of squared returns are often called realised volatility in econometrics, while we use the name realised
variance for that term and realised volatility for the corresponding square root. The use of volatility to denote
standard deviations rather than variances is standard in financial economics. See, for example, the literature
on volatility and variance swaps, which are derivatives written on realised volatility or variance, which includes
Demeterfi, Derman, Kamal, and Zou (1999), Howison, Rafailidis, and Rasmussen (2000) and Chriss and Morokoff
(1999). We have chosen to follow this nomenclature rather than the one more familiar in econometrics. Confidence
intervals for the realised volatility follow by square rooting the confidence intervals for the realised variance.

5



Notice this estimator is entirely self-contained, that is it only uses data from the i-th time period

to estimate τi. Its cousin realised volatility√√√√ M∑
j=1

y2
j,i,

have been used in financial economics for many years by, for example, Poterba and Summers

(1986), Schwert (1989), Taylor and Xu (1997), Christensen and Prabhala (1998), Andersen,

Bollerslev, Diebold, and Labys (2001a) and Andersen, Bollerslev, Diebold, and Ebens (2001).

However, until recently little theory was known about realised variance outside the Brownian

motion case. See the incisive review by Andersen, Bollerslev, and Diebold (2002). Some other

pieces on this work we would like to highlight are Meddahi (2002), Andersen, Bollerslev, and

Meddahi (2002) and Andreou and Ghysels (2002), although many other interesting papers exist

which are discussed by Andersen, Bollerslev, and Diebold (2002).

2.3 Properties of realised variance

It is very well known that the theory of quadratic variation (e.g. Jacod and Shiryaev (1987, p.

55), Protter (1990) and Back (1991)) implies that

[y∗M ]i
p→ τi,

as M → ∞. This does not depend upon the exact form of α∗ or τ2.

This consistency result is illustrated in Figure 2 which displays a simulated sample path of

integrated variance τi from an OU process given by the solution to

dτ(t) = −λτ(t)dt + dz(λt),

where z is a subordinator (a process with independent, stationary and non-negative increments).

In this example we construct the process so that τ(t) has a Γ(4, 8) stationary distribution,

λ = − log (0.99) and � = 1. Also drawn are the sample path of the realised variances
∑M

j=1 y2
j,i

(depicted using crosses) where

y∗(t) = βτ∗(t) +
∫ t

0
τ1/2(u)dw(u),

and β = 0.5. The realised variances are computed using a variety of values of M . We see that

as M increases the size of
∑M

j=1 y2
j,i − τi falls, illustrating the consistency of

∑M
j=1 y2

j,i for τi even

though β is not zero.
2Indeed the probability limit of realised variance is known under the even weaker assumptions that the price

process is a semimartingale.
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Figure 2: Actual τi and realised
∑M

j=1 y2
j,i (with M varying) volatility based upon a Γ(4, 8)-

OU process with λ = − log(0.99) and � = 1. This implies ξ = 0.5 and ξω−2 = 8. Code:
/code/realised/simple.ox.

In a recent paper Barndorff-Nielsen and Shephard (2002a), consequently extended in Barndorff-

Nielsen and Shephard (2003) and Barndorff-Nielsen and Shephard (2002b), have strengthened

the above result considerably. The main result is that:

Theorem 1 Under assumption (C) for the SV model in (1), for any positive � and M → ∞√
M
�

(
[y∗M ]i − τi

)√
2τ

[2]
i

d→ N(0, 1), where τ
[2]
i =

∫ i�

(i−1)�
τ2(u)du. (6)

�
We call τ2 and τ

[2]
i the spot and actual quarticity, respectively. Of course the problem with

this theory is that τ
[2]
i is unknown. This is tackled by using the fact that

M

�

M∑
j=1

y4
j,i

p→ 3τ
[2]
i .
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An implication of this is that we can use the feasible limit theory

[y∗M ]i − τi√
2
3

∑M
j=1 y4

j,i

L→ N(0, 1), (7)

due to Barndorff-Nielsen and Shephard (2002a).

Of course in practice it may make sense to transform the above limit theorem to impose, a

priori, positivity on the approximating distribution. In particular it seems natural to work with

the logarithmic transformation of the realised variance ratio so that (see Barndorff-Nielsen and

Shephard (2002c))√
M
�

{
log [y∗M ]i − log τi

}√
2τ

[2]
i / (τi)

2

L→ N(0, 1) or
log [y∗M ]i − log τi√

2

3[y∗
M ]2

i

∑M
j=1 y4

j,i

L→ N(0, 1).

The following remarks can be made about these results.

• ∑M
j=1 y2

j,i converges to
∫

�i
�(i−1) τ(u)du at rate

√
M .

• The limit theorem is unaffected by the form of the drift process α, smoothness assumption

(C) is sufficient that its effect becomes negligible.

• Knowledge of the form of the volatility dynamics is not required in order to use this theory.

• The fourth moment of returns need not exist for the asymptotic normality to hold. In such

heavy tailed situations, the stochastic denominator
∫ i�
(i−1)� τ2(u)du loses its unconditional

mean.

• The volatility process τ can be non-stationary, exhibit long-memory or include intra-day

effects.

• ∑M
j=1 y2

j,i −
∫

�i
�(i−1) τ(u)du has a mixed Gaussian limit implying that marginally it will

have heavier tails than a normal.

• The magnitude of the error
∑M

j=1 y2
j,i −

∫
�i
�(i−1) τ(u)du is likely to be large in times of high

volatility.

3 Time series of realised variances

3.1 Motivation

So far we have analysed the asymptotics of
∑M

j=1 y2
j,i as M → ∞ for a single i. In this section

we will explicitly analyse a long time series of realised variances, trying to use the time series
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Figure 3: Long time series of the daily movements in the Dollar against the DM and Yen.
Figure (a) the level of the log exchange rates compared to the rate at 1st December 1986. Figure
(b) realised volatility each day computed using M = 144 for the DM series. Figure (c) realised
volatility each day computed using M = 144 for the Yen series. File: daily realised.ox.

structure to construct more efficient estimators and forecasts of τi. To start out we have drawn

Figure 3 which displays information on the Olsen data on the DM and Yen against the US Dollar.

Figure 3(a) shows the movement of the log prices since 1st December 1986, with the log-prices

transformed to be zero at the start of the sample. This is the same series as Figure 1(a) but now

the graph is on a very long time scale. Figure 3(b) shows the daily realised volatility
√∑M

j=1 y2
j,i

drawn against i, the day, for the DM series. It is computed using M = 144, corresponding to

10 minute returns. It is quite a ragged series but with periods of increased volatility. A similar

picture emerges from the corresponding realised volatility for the Yen given in Figure 3(c).
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Figure 4: Autocorrelations of realised variances using a long time series of the movements in
the Dollar against the DM and Yen. Figure (a) M=1 case, which corresponds to daily returns.
Figure (b) M = 8 case. Figure (c) M = 72 for the Yen series. File: daily timeseries.ox.

3.2 Asymptotics

For each exchange rate we have computed realised variances each day. We can then regard the

derived series as a daily time series

M∑
j=1

y2
j,1,

M∑
j=1

y2
j,2, ...,

M∑
j=1

y2
j,T .

This new series is of length T , the number of days in the sample.

The correlograms for the daily time series of realised volatilities of these quantities are

displayed in Figure 4 for a variety of values of M . 250 lags are used in these figures which

correspond to measuring correlations over a one year period. Figure 4(a) shows the results for

M = 1. In this case the realised variances are simply squared daily returns. The correlogram

has the well known slow decay but starting at quite a low level. Figure 4(b) shows the effect

of increasing M slightly to 8, now we are computing the realised quantities using 150 minute

returns.
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Figure 4(c) shows the corresponding results for M = 72, which uses 20 minute returns. All

the autocorrelations are boosted as M increases from 8, however the broad story is the same. A

clear observation is that the autocorrelations are becoming less jagged with the increase in M .

Having observed some of the empirical features of the realised variances we will now set out

a theoretical framework for the study of the time series of realised quantities. For the moment

we focus on the realised variances.

We define sequences of realised and actual variances for the s-th day to the p-th day

[y∗M ]s:p =

 M∑
j=1

y2
j,s,

M∑
j=1

y2
j,s+1, ...,

M∑
j=1

y2
j,p

′

and τs:p = (τs, τs+1, ..., τp)
′ ,

where we recall that τi =
∫

�i
�(i−1) τ(u)du. The asymptotic theory of realised variance implies that√

M

�
([y∗M ]s:p − τs:p)

L→ N
{

0, 2diag
(
τ [2]
s:p

)}
,

where τ
[2]
i =

∫
�i
�(i−1) τ2(u)du.

3.3 Linear estimators

Although estimating τs:p by [y∗M ]s:p has attractions, the variance of the error is typically quite

large even when M is high. More precise estimators could be obtained by pooling neighbouring

time series observations for realised variances tend to be highly correlated through time. This

pooling will typically reduce the variance of the estimator, but will induce a bias.

To set up a formal framework for this discussion, abstractly write A as a matrix of non-

stochastic weights. Then√
M

�
(A[y∗M ]s:p − Aτs:p) |τ [2]

[ν]

L→ N
{

0, 2Adiag
(
τ [2]
s:p

)
A′

}
.

Now consider the statistic

τ̂s:p = cE (τs:p) + A[y∗M ]s:p.

We assume that the realised variances constitute a covariance stationary process, which means

that

E (τs:p) = ιE (τt) ,

where ι = (1, 1, ..., 1)′. Notice the stationarity is at the daily level, it does not need that the

continuous time process τ is stationary.

The population weighted least squares estimator of τs:p sets

c = (I − A) ι
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and

A = Cov (τs:p, [y∗M ]s:p) [Cov ([y∗M ]s:p)]
−1

= Cov (τs:p) [Cov ([y∗M ]s:p)]
−1

= Cov (τs:p)

Cov (τs:p) +
2�E

(
τ

[2]
i

)
M

I

−1

.

Of course, as M → ∞ so A → I and so

τ̂s:p
p→ τs:p.

Notice that as M → ∞ so Â → I and τ̂s:p
p→ τs:p. Unconditionally τ̂s:p has a variance of

(2�/M) E
(
τ [2]
s:p

)
AA′ + (I − A) Cov (τs:p) (I − A′)

At the end of this Section we will study conditions under which A is guaranteed to be

non-negative.

3.4 Implementation

In practice A has to be estimated from the data. Broadly this can be carried out in two ways

1. by estimating A by using empirical averages from the data,

2. implying A from an estimated parametric model.

3.5 Positivity

Before going on to discuss the above issues of implementation issues we will take a moment to

give conditions under which all the elements of

A = Cov (τs:p)

Cov (τs:p) +
2�E

(
τ

[2]
i

)
M

I

−1

are non-negative. Such matrices are said to be totally non-negative. The following example

shows that A is not necessarily totally non-negative.

Example 2 Suppose, |a| < 1 and we write ui = [y∗M ]i − τi. Then

Cov(τs:s+1) =
(

1 a
a 1

)
, Cov([y∗M ]s:s+1) = Cov(τs:s+1) + IVar(ui),

and so

A =
1

{Var(ui) + 1}2 − a2

(
Var(ui) + 1 − a2 aVar(ui)

aVar(ui) Var(ui) + 1 − a2

)
.

Hence all weights are non-negative iff a ≥ 0.
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The next theorem gives conditions on Cov(τs:p) to ensure total non-negativity of A.

Theorem 3 Assume that Cov(τs:p) is positive definite. Then the necessary and sufficient condi-

tion for all the elements of A to be non-negative is that Cov(τs:p)−1 has non-positive off-diagonal

elements.

Proof. Given in the Appendix.

The condition that Cov(τs:p)−1 has to have non-positive off-diagonal elements has the fol-

lowing straightforward statistical interpretation.

Remark 1 Suppose X is a positive definite covariance matrix. We write the i, j element of

X−1 as xi,j. Then
−xi,j

√
xi,ixj,j

,

is the partial correlations between yi and yj. That is it is the ordinary correlation between yi

and yj conditioning on all the other elements of y (see, for example, Cox and Wermuth (1996,

p. 69)).

4 Model free approach

Here we will discuss estimating A by using empirical averages from the data, delaying until the

next section a discussion of a model based method.

If we have a large sample from a stationary process of realised variances and the daily process

is ergodic then we have that

̂
E
(
τ

[2]
i

)
=

 1
T

T∑
i=1

M

3�

M∑
j=1

y4
j,i

 p→ E
(
τ

[2]
i

)
,

as T and M go to infinity. Likewise Cov ([y∗M ]s:p) can be estimated by averages of the time series

of realised variances. Hence A can be replaced by

Â =
{

̂Cov
(
[y∗M ]s:p

)− ̂
E
(
τ

[2]
i

)2�

M
I

}[
̂Cov
(
[y∗M ]s:p

)]−1

,

which is a feasible weighting matrix. This will imply ĉ =
(
I − Â

)
ι and

τ̂s:p = ĉÊ (τs:p) + Â[y∗M ]s:p.

This is a feasible model free, optimal linear estimator of τs:p based on [y∗M ]s:p.

13



DM Yen
M Â ĉ Â ĉ
1 .182 .817 .229 .770
8 .449 .550 .513 .486
72 .778 .221 .789 .210
288 .877 .122 .906 .093

Table 1: Estimated weights for τ̂i, the regression estimator of τi which uses only [y∗M ]i and an
intercept. Results for the DM and Yen series against the Dollar. File: daily timeseries.ox.

4.1 Illustration

Table 1 contains the estimated weights for a single actual variance using a single realised variance

sequence, so s = p = i, for the DM and Yen series. This is based on the entire time series sample

of nearly 2500 days.

We can see the results do not vary very much with the series being used. In particular, for

M = 8 then the estimator of τi for the DM series would be

τ̂i = .550
1
T

T∑
j=1

[y∗M ]j + .449[y∗M ]i. (8)

Thus for small values of M the regression estimator puts a moderate weight on the realised

variance and more on the unconditional mean of the variances. As M increases this situation

reverses, but even for large values of M the unconditional mean is still quite highly weighted.

From now on we will solely focus on the DM series to make the exposition more compact.

In the dynamic case the results are more complicated to present. Here we start by considering

estimating three actual variances using three contiguous realised variances — one lag, one lead

and the contemporaneous realised variance. Thus

s : p = (i − 1, i, i + 1) ,

and so Â will be a 3 × 3 matrix and ĉ a 3 × 1 vector. In the case of M = 8 we have that

{Cov ([y∗M ]1:3)}−1 =
1

1002

 2.07 −.358 −.258
−.358 2.10 −.358
−.258 −.358 2.07

 ,

while

Â =

 .418 .100 .072
.100 .409 .100
.072 .100 .418

 , ĉ =

 .408
.388
.408

 .

Thus the second row of Â implies the smoothed estimator of τi is

τ̂i = .100[y∗M ]i−1 + .409[y∗M ]i + .100[y∗M ]i+1 + .388
1
T

T∑
j=1

[y∗M ]j .
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The corresponding result for M = 72 is

Â =

 .712 .105 .053
.105 .684 .105
.053 .105 .712

 , ĉ =

 .128
.105
.128

 .

This shows that the weighting on the diagonal elements of Â are much higher, while the size of

ĉ has fallen by a factor of around 4. In both cases a lot of weight is put on neighbouring values

−4 −3 −2 −1 0 1 2 3 4 5

0.1

0.2
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M=8 
M=72 
M=288 

Figure 5: Estimated weight vector for estimating τi using [y∗M ]i−4,[y∗M ]i−3,...,[y∗M ]i+4 drawn
against lag length. Computed using the Dollar against the DM. Shows that as M increases
the weight on [y∗M ]i increases. Corresponding to these results is ĉ, which moves from .548, .222,
.0553, .026 as M increases through 1, 8, 72 to 288. File: daily timeseries.ox.

of the realised variance and on the intercept, although the weight on [y∗M ]i is not very much

smaller than in the univariate case.

The corresponding filtered estimator (which seems a natural competitor to using the raw

realised variance [y∗M ]i) is obtained by using the last row of the Â matrix. Then we have, for

M = 8,

τ̂i = .072[y∗M ]i−2 + .100[y∗M ]i−1 + .418[y∗M ]i + .408
1
T

T∑
j=1

[y∗M ]j .
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Here we see the usual decay in the weight as we go further back in time.

Figure 5 shows middle row of Â for the case of estimating τi using 9 realised variances, four

lags and four leads together with [y∗M ]i. It displays the weights as a function of M indicating

how quickly the weights focus on [y∗M ]i as M increases. The legend of the Figure also gives the

value of the weight put on the unconditional mean of the realised variance. For M = 72 it is

.0553, which is much lower than in the trivariate case of .105 and univariate case of .221.

Figure 6 shows a time series of realised variances for a number of values of M together with

the corresponding estimator τ̂i based on nine observations, four leads, the current value and

four lags. The smoothed estimator seems to deliver sensible answers, with the results being less

sensitive to large values of the realised variances, in particular for small M .
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τ̂i 
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Figure 6: The estimated τi using realised variance and weighted version of
[y∗M ]i−4,[y∗M ]i−3,...,[y∗M ]i+4. Computed using the Dollar against the DM. (a) M=1, (b) M=8,
(c) M=144 and (d) M=288. File: daily timeseries.ox.

Table 2 reports, using the DM data,

1
T

T∑
i=1

([y∗M ]i − [y∗288]i)
2 ,
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which is an empirical approximation to the mean square error of the realised variance estimator,

using [y∗288]i as a good proxy for τi (the model based estimators would turn out to deliver

even more accurate estimators, but this could be interpreted as biasing the results towards

the model based approach and so here we use the raw realised variance). The Table shows a

rapid decline in the mean square error with M . It also shows the corresponding results for

the estimators based on just a regression on a constant and [y∗M ]i, and τ̂i, which uses [y∗M ]i−4,

[y∗M ]i−3, ...,[y∗M ]i+3,[y∗M ]i+4. The results reflect the fact that these adjusted estimators are much

more efficient than the realised variance, although the difference between using the time series

dynamics and the simple regression estimator is modest.

DM Yen
[y∗M ]i (1 − Â)E (τi) + Â[y∗M ]i τ̂i [y∗M ]i (1 − Â)E (τi) + Â[y∗M ]i τ̂i

M = 1 .822 .175 .145 1.16 .198 .168
M = 8 .207 .0989 .0769 .186 .117 .0985
M = 72 .0377 .0345 .0317 .0424 .0406 .0378

Table 2: Mean square error of the realised variance and the regression estimator and the time
series estimators τ̂i, which is based on [y∗M ]i−4, [y∗M ]i−3, ...,[y∗M ]i+3,[y∗M ]i+4. These are computed
using M = 1 , 8 and 72 . The true value is taken as [y∗M ]i for 288 . File: daily timeseries.ox.

4.2 Forecasting

Suppose we are interesting in forecasting τp+1 based on the time series of realised variances

[y∗M ]s:p. Throughout we assume that the integrated and realised variances are second order

stationary. The best linear forecast is given by

τ̂p+1|s:p = cE (τp+1) + A[y∗M ]s:p,

where

c = 1 − Aι

and

A = Cov (τp+1, [y∗M ]s:p) [Cov ([y∗M ]s:p)]
−1

= Cov ([y∗M ]p+1, [y∗M ]s:p) [Cov ([y∗M ]s:p)]
−1 .

This is a somewhat surprising result for A can be computed without reference to the details of

the asymptotic theory of error. It just falls out from the asymptotic relationship between the

realised variances, which can be empirically determined. Hence τ̂p+1|s:p is feasible. However, as

M → ∞ this is not consistent. Instead

A → Cov (τp+1, τs:p) [Cov (τs:p)]
−1 ,
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and so

τ̂p+1|s:p
p→ cE (τp+1) +

{
Cov (τp+1, τs:p) [Cov (τs:p)]

−1
}

τs:p.

Extensions to multistep ahead predictions are straightforward. Importantly the above forecast-

ing framework means that the one-step ahead predictions are generated by a p − s + 1 order

autoregression plus intercept model, where the intercept follows a particularly simple constraint

so that the weights on the lagged coefficients plus the intercept add to one. Unconstrained

autoregressive forecasting in the context of realised variances has been carried out by Andersen,

Bollerslev, Diebold, and Labys (2001b).

The simplest interesting example of the above approach is where s = p. Then we are

forecasting one-step ahead based on a single realised variance. This produces

τ̂p+1|p = E (τp+1) + Cor ([y∗M ]p+1, [y∗M ]p) {[y∗M ]p − E (τp+1)} .

In practice we replace expectations by averages and correlations by empirical correlations. Table

3 provides empirical estimators of A and c for the DM and Yen series for a variety of values of

M .

DM Yen
M Â ĉ Â ĉ
1 .083 .917 .117 .883
8 .197 .803 .254 .746
72 .471 .529 .428 .572
288 .540 .460 .517 .483

Table 3: Estimated weights for τ̂p+1|p, the regression estimator of τp+1 which uses only
[y∗M ]p and an intercept. Results for the DM and Yen series against the Dollar. File:
daily timeseries.ox.

We can see again that the results do not vary very much with the series being used. In

particular, for M = 8 then the estimator of τi for the DM series would be

τ̂p+1|p = .803
1
T

T∑
j=1

[y∗M ]j + .197[y∗M ]p.

Thus the forecast shrinks much more to the mean than does the corresponding smoother given

in (8).

Table 4 provides the weights when we use six lags of realised variances to forecast τp+1. It

shows again that quite a lot of weight is placed on the constant c, while the most recent realised

variance is also highly weighted. This results from the fact that the autocorrelation function

of the realised variances initially declines very rapidly, followed by a slower decay rate at higher

lag lengths.
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M [y∗M ]p−5 [y∗M ]p−4 [y∗M ]p−3 [y∗M ]p−2 [y∗M ]p−1 [y∗M ]p ĉ

1 .040 .014 .028 .053 .034 .073 .753
8 .074 .046 .074 .089 .083 .138 .493

144 .089 .067 .080 .031 .134 .321 .273
288 .050 .093 .051 .038 .111 .397 .256

Table 4: Estimated weights for 1-step ahead forecast of integrated variance τp+1. File:
daily timeseries.ox.

4.3 Log-based theory

A similar style of argument could have been used based on the log-realised variances. Here we

will write

log[y∗M ]s:p = (log[y∗M ]s, ..., log[y∗M ]p)
′

and

log τs:p = (log τs, ..., log τp)
′ .

The pooled estimator has the asymptotic distribution (see Barndorff-Nielsen and Shephard

(2002c))

√
M

�
(A log[y∗M ]s:p − A log τs:p) |τ [2]

s:p, τs:p
L→ N

0, 2AE


τ

[2]
s /

(
τ2
s

)
0 0

0
. . . 0

0 0 τ
[2]
p /

(
τ2
p

)
A′

 ,

which would allow us to choose A as a least squares estimator of log τs:p repeating the above

argument. Weighting based on the log-realised variances has the advantage that the Monte

Carlo evidence suggests that the asymptotics for the log-realised variance is accurate with the

errors being approximately homoskedastic which suggests the weighting will be more effective.

The important result that we need to use is that 1
T

T∑
i=1

M
3�

∑M
j=1 y4

j,i(∑M
j=1 y2

j,i

)2

 p→ E

(
τ

[2]
i

τ2
i

)
,

and hence

̂log τs:p = cE (log τs:p) + A log[y∗M ]s:p.

Of course
1
T

T∑
i=1

log[y∗M ]i
p→ E (log τi) ,

hence we are left with just determining ĉ and Â. If we assume that the realised variances are a

covariance stationary process then the weighted least squares statistic of log τs:p sets

c = (I − A) ι
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and

A =

Cov (log τs:p) +
2�E

(
τ

[2]
i /τ2

i

)
M

I

−1

Cov (log τs:p)

= [Cov (log[y∗M ]s:p)]
−1 Cov (log τs:p) .

Of course for this statistic

̂log τs:p → log τs:p

as M → ∞, as expected.

This style of approach extends to the multivariate case where the focus is on estimating the

actual covariance matrix (see Barndorff-Nielsen and Shephard (2002b)). Then it makes sense

to use these regression approaches based on the logs of the realised variances and the Fisher

transformation of the realised correlation. The asymptotic theory of the realised covariation

allows this approach to be feasible without specifying a parametric model for the spot covariance

matrix.

5 Model based approach

5.1 General discussion and example

Suppose we write (when they exist) ξ, ω2 and r, respectively, as the mean, variance and the

autocorrelation function of the continuous time stationary variance process τ . Here we re-

call the discussion of Barndorff-Nielsen and Shephard (2002a) on estimating and forecasting τi

based upon a parametric models for τ and the time series of realised variances . Let us write

ui = [y∗M ]i − τi, then the asymptotic theory tells us that for large M the ui are approximately

uncorrelated with

Var
(√

Mui

)
→ 2�2

(
ω2 + ξ2

)
as M → ∞. Thus the second order properties of [y∗M ]i can be approximated. In particular

E ([y∗M ]i) = �ξ + o(1) and for s > 0

Var ([y∗M ]i) = 2M−1�2
(
ω2 + ξ2

)
+ Var(τi) + o(1),

Cov([y∗M ]i, [y∗M ]i+s) = Cov(τi, τi+s) + o(1)

Cov([y∗M ]i, τi) = Var(τi) + o(1)

Cov([y∗M ]i, τi+s) = Cov(τi, τi+s) + o(1).

Var(τi) and Cov(τi, τi+s) were given for all covariance stationary processes in Barndorff-Nielsen

and Shephard (2001). In particular

Var (τi) = 2ω2r∗∗(�) and Cov{τi, τi+s} = ω2♦r∗∗(�s), (9)
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where

♦r∗∗(s) = r∗∗(s + �) − 2r∗∗(s) + r∗∗(s − �), (10)

and

r∗∗(t) =
∫ t

0
r∗(u)du where r∗(t) =

∫ t

0
r(u)du. (11)

Thus, for a given model for the covariance stationary process τ we can compute the approximate

second order properties of the time series of [y∗M ]i and τi.

The above theory implies we can calculate asymptotically approximate best linear filtered,

smoothed and forecast values of τi using standard regression theory. This has recently been

independently and concurrently studied by Andersen, Bollerslev, and Meddahi (2002) for some

diffusion based models for τ . Their results are similar to those we present here.

Suppose we wish to estimate τs:p using [y∗M ]s:p. Then the best linear estimator is

τ̂s:p = (I − A) ιE(τi) + A[y∗M ]i

= A {[y∗M ]s:p − �ξι} + �ξι,

where

A = {Cov([y∗M ]s:p)}−1 Cov (τs:p, [y∗M ]s:p)

=
{
Cov (τs:p) + 2M−1�2

(
ω2 + ξ2

)
I
}−1 Cov (τs:p) .

The simplest special case of this is where s = p = i, that is we use a single realised variance

to estimate actual variance. Then the theory above suggests the efficient linear estimator is

constructed using the scalar

A =
{
r∗∗(�) + M−1�2

(
1 + ξ2/ω2

)}−1
r∗∗(�) ∈ [0, 1], (12)

which implies τ̂i ≥ 0. Meddahi (2002) studied this particular regression, which we write as τ̂i

and call a Meddahi regression. It is always a consistent estimator of τi, but is more efficient

than realised variance under the covariance stationarity assumptions.

In practice it is helpful to use the structure of the Cov (τs:p) in order to carry out the required

matrix inverse of Cov([y∗M ]s:p).

5.2 Special case

Suppose τ has the autocorrelation function r(t) = exp(−λ |t|). This implies that

E (τi) = �ξ, Var (τi) = 2ω2λ−2
(
e−λ� − 1 + λ�

)
,
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and

Cor{τi, τi+s} = de−λ�(s−1), s = 1, 2, ..., (13)

where

d =
(1 − e−λ�)2

2 (e−λ� − 1 + λ�)
∈ [0, 1].

In this case, in particular, the Meddahi regression has

Â =
{

λ−2
(
e−λ� − 1 + λ�

)
+ M−1�2

(
1 + ξ2/ω2

)}−1
λ−2

(
e−λ� − 1 + λ�

)
The above structure implies τi has the autocorrelation function of an ARMA(1, 1) model

τi = φτi−1 + ui + θui−1, φ = e−λ�.

The parameter θ was found numerically in Barndorff-Nielsen and Shephard (2001), however it

can be determined analytically as indicated by Meddahi (2002). In particular, write

ci = τi − φτi−1 = ui + θui−1

then

Var (ci) =
(
1 + φ2

)
Var(τi) − 2φCov(τi, τi−1)

and

Cov(ci, ci−1) =
(
1 + φ2

)
Cov(τi, τi−1) − φVar(τi) − φCov(τi, τi−2)

= Cov(τi, τi−1) − φVar(τi)

= Var(τi) {Cor(τi, τi−1) − φ} .

Note that Cor(τi, τi−1) ≥ φ as eλ� − e−λ� ≥ 2λ�. Write

ρ1 =
Cov(ci, ci−1)

Var (ci)
∈

[
0,

1
2

]
, then θ =

1 −
√

1 − 4ρ2
1

2ρ1
∈ [0, 1].

This argument extends to the case of a superposition where r(t) =
∑J

j=1 wj exp(−λj |t|),
then τi can be represented as the sum of J uncorrelated ARMA(1, 1) processes, with {wj , λj}
determining the corresponding autoregressive and moving average roots {φj , θj}.

In calculating τ̂s:p Barndorff-Nielsen and Shephard (2001) conveniently placed [y∗M ]i into a

linear state space representation so the filtering, smoothing and forecasting can be carried out

using the Kalman filter (see, for example, Harvey (1989) and Durbin and Koopman (2001, Ch.

1)). In particular writing α1i = (τi − �ξ) and ui =
√

2M−1�2 (ω2 + ξ2)v1i, then

[y∗M ]i = �ξ + (1 0) αi + ui,

αi+1 =
(

φ 1
0 0

)
αi +

(
σσ

σσθ

)
vi,

(14)
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where vi is a zero mean, unit variance, white noise sequence uncorrelated with ui which has a

variance of 2M−1�2
(
ω2 + ξ2

)
. The parameters φ, θ and σ2

σ represent the autoregressive root,

the moving average root and the variance of the innovation to the ARMA(1,1) representation

of the τi process. The extension to the superposition case is straightforward. In particular, in

the case where J = 2 this becomes

[y∗M ]i = �ξ + (1 0 1 0)αi + ui,

αi+1 =


φ1 1 0 0
0 0 0 0
0 0 φ2 1
0 0 0 0

αi +


σσ1 0

σσ1θ1 0
0 σσ2

0 σσ2θ2

 vi,

where again vi is a zero mean, unit variance, white noise sequence.

M ξ = 0.5, ξω−2 = 8 ξ = 0.5, ξω−2 = 4 ξ = 0.5, ξω−2 = 2

e−�λ = 0.99 Smooth Predict [y∗
M ]i Smooth Predict [y∗

M ]i Smooth Predict [y∗
M ]i

1 .0134 .0226 .624 .0209 .0369 .749 .0342 .0625 .998
12 .00383 .00792 .0520 .00586 .0126 .0624 .00945 .0211 .0833
48 .00183 .00430 .0130 .00276 .00692 .0156 .00440 .0116 .0208
288 .000660 .00206 .00217 .000967 .00343 .00260 .00149 .00600 .00347

e−�λ = 0.9 Smooth Predict [y∗
M ]i Smooth Predict [y∗

M ]i Smooth Predict [y∗
M ]i

1 .0345 .0456 .620 .0569 .0820 .741 .0954 .148 .982
12 .0109 .0233 .0520 .0164 .0396 .0624 .0259 .0697 .0832
48 .00488 .0150 .0130 .00707 .0260 .0156 .0108 .0467 .0208
288 .00144 .00966 .00217 .00195 .0178 .00260 .00280 .0338 .00347

Table 5: Exact mean square error (steady state) of the estimators of actual volatility. The first
two estimators are model based (smoother and 1-step ahead predictor) and the third is [y∗M ]i.
These measures are calculated for different values of ω2 = Var(τ(t)) and λ, keeping ξ = E(τ(t))
fixed at 0.5. File: ssf mse.ox.

Table 5 reports the mean square error of the model based one-step ahead predictor and

smoother of actual variance, as well as the corresponding result for [y∗M ]i. The results in the

left hand block of the Table corresponds to the model which was simulated in Figure 2, while

the other blocks represent other choices of the ratio of ξ to ω2. The exercise is repeated for two

values of λ.

The main conclusion from the results in Table 5 is that model based approaches can poten-

tially lead to very significant reductions in mean square error, with the reductions being highest

for persistent (low value of λ) variance processes with high values of ξω−2. Even for moder-

ately large values of M the model based predictor can be more accurate than realised variance,

sometimes by a considerable amount. This is an important result from a forecasting viewpoint.

However, when there is not much persistence and M is very large, this result is reversed and

realised variance can be moderately more accurate. The smoother is always substantially more

accurate than realised variance, even when M is very large and there is not much memory in
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variance.

Estimating the parameters of continuous time stochastic volatility models is known to be

difficult due to our inability to compute the appropriate likelihood function. This has prompted

the development of a sizable collection of methods to deal with this problem (e.g. Kim, Shephard,

and Chib (1998) and Gallant, Hsieh, and Tauchen (1997)). Barndorff-Nielsen and Shephard

(2002a) used quasi-likelihood estimation methods based on the time series of realised variance.

The quasi-likelihood is constructed using the output of the Kalman filter. It is suboptimal for it

does not exploit the non-Gaussian nature of the variance dynamics, but it provides a consistent

and asymptotically normal set of estimators. Monte Carlo results reported in Barndorff-Nielsen

and Shephard (2002a) indicate that the finite sample behaviour of this approach is quite good.

Further the estimation takes only a few seconds on a modern computer.

5.3 Empirical illustration

To illustrate some of these results we have fitted a set of superposition based models to the

realised variance time series constructed from the five minute US/DM exchange rate return

data discussed above. Here we use the quasi-likelihood method to estimate the parameters of

the model — ξ, ω2, λ1, ..., λJ and w1, ..., wJ . We do this for a variety of values of M , starting

with M = 6, which corresponds to working with four hour returns. The resulting parameter

estimates are given in Table 6. For the moment we will focus on this case.

M J ξ ω2 λ1 λ2 λ3 w1 w2 Quasi-L BP
6 3 0.4783 0.376 0.0370 1.61 246 0.212 0.180 -113,258 11.2
6 2 0.4785 0.310 0.0383 3.76 — 0.262 — -113,261 11.3
6 1 0.4907 0.358 1.37 — — — — -117,397 302
18 3 0.460 0.373 0.0145 0.0587 3.27 0.0560 0.190 -101,864 26.4
18 2 0.460 0.533 0.0448 4.17 — 0.170 — -101,876 26.5
18 1 0.465 0.497 1.83 — — — — -107,076 443
144 3 0.508 4.79 0.0331 0.973 268 0.0183 0.0180 -68,377 15.3
144 2 0.509 0.461 0.0429 3.74 — 0.212 — -68,586 23.3
144 1 0.513 0.374 1.44 — — — — -76,953 765

Table 6: Fit of the superposition of J volatility processes for a SV model based on realised
variance computed using M = 6, M = 18 and M = 144. We do not record wJ as this is 1 minus
the sum of the other weights. Estimation method: quasi-likelihood using output from a Kalman
filter. BP denotes Box–Pierce statistic, based on 20 lags, which is a test of serial dependence in
the scaled residuals. File: ssf empirical.ox.

The fitted parameters suggests a dramatic shift in the fitted model as we go from J = 1

to J = 2 or 3. The more flexible models allow for a factor which has quite a large degree of

memory, as well as a more rapidly decaying component or two. A simple measure of fit of the
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model is the Box–Pierce statistic, which shows a large jump from a massive 302 when J = 1,

down to a more acceptable number for a superposition model.

To provide a more detailed assessment of the fit of the model we have drawn a series of

graphs in Figure 7 based on M = 8 and M = 144. Figure 7(a) draws the computed realised

variance [y∗M ], together with the corresponding smoothed estimate (based on J = 3) of actual

variance using the model. These are based on the M = 8 case. We can see that realised variance

is much more jagged than the smoothed quantity. These are quite close to the semi-parametric

estimator given in Figure 6. Figure 7(b) shows the corresponding autocorrelation function for
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Figure 7: Results from M = 8 and M = 144. (a) Using M=8, first 50 observations of [y∗M ]i
& smoother. (b) Using M=8, Acf of [y∗M ]i and the fitted version for various values of J . (c)
Using M=144, first 50 observations of [y∗M ]i & smoother. (d) Using M=144, Acf of [y∗M ]i and
the fitted version for various values of J . File: daily timeseries.ox.

the realised variance series together with the corresponding empirical correlogram. We see from

this figure that when J = 1 we are entirely unable to fit the data, as its autocorrelation function

starts at around 0.6 and then decays to zero in a couple of days. A superposition of two processes

is much better, picking up the longer-range dependence in the data. The superposition of two
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and three processes give very similar fits, indeed in the graph they are indistinguishable.

We next ask how these results vary as M increases. We reanalyse the situation when M =

144, which corresponds to working with ten minute returns. Figure 7(c) and (d) gives the

corresponding results. Broadly the smoother has not produced very different results, while the

J = 3 case now gives a slightly different fit to the Acf than the J = 2. The latter result is

of importance, for as M increases the correlogram becomes more informative, allowing us to

discriminate between different models more easily.

5.4 Comparison

We can compare the fit of the smoothers from the model free and model based approaches. In

Figure 8 we display, using crosses, the time series of the model free smoother, based on 4 leads

and 4 lags. This is drawn, for a variety of values of M , as the square root of the estimate, so it is

estimating the square root of integrated variance. The corresponding model based approach is

drawn using a line and it shows a close connection with the model free estimator. Table 7 gives

the correlations between the two estimators as a function of M and the number of leads and lags

in the model free approach. As the number of leads and lags increases the connection between

the two estimators becomes stronger. Likewise, as M increase the two estimators become more

closely correlated.

M RV 1 lead, 1 lag 4 leads, 4 lags
6 .702 .849 .929
48 .903 .924 .932
144 .961 .985 .989
288 .984 .997 .998

Table 7: Correlations between the model free and model based smoothers based on the Dollar/DM
data. We vary M and the number of leads and lags.

6 Conclusion

In this paper we have shown how we can use a time series of realised variances to measure and

forecast integrated variances. These high frequency financial data statistics allow either model

based or model free approaches to the problem. We have spent some time comparing the two

smoothed estimators, which tend to be quite similar when M is large and we employ quite a

few leads and lags.

26



0 100 200 300 400 500 600

0.01

0.02

0.03

a) M=6
Empirical averages 
Model based 

0 100 200 300 400 500 600

0.01

0.02

0.03

0.04

0.05 b) M=48
Empirical averages 
Model based 

0 100 200 300 400 500 600

0.01

0.02

0.03

0.04
c) M=144

Empirical averages 
Model based 

0 100 200 300 400 500 600

0.01

0.02

0.03

0.04 d) M=288
Empirical averages 
Model based 

Figure 8: Shows a comparison of the model free smoother based on 4 leads and lags and the
model based approach. We show the estimators for the first 600 days in the sample, using a
variety of values of M .
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8 Proof of the Theorem

We split the proof into two sections, dealing with the diagonal and non-diagonal elements of the

matrix

A = (X + σI)−1 X.

Here X is positive semi-definite and σ > 0.

(a) Diagonal elements of A.

Since X and I commute then A is positive definite, implying that A has positive diagonal.

To be more explicit write X = V ΛV ′ where I = V V ′ and Λ is diagonal. From

A =
{
V (Λ + σI)V ′}−1

V ΛV ′ = V
{

(Λ + σI)−1 Λ
}

V ′,

it is seen that A is symmetric and positive definite since (Λ + σI)−1 Λ is diagonal with positive

diagonal elements. 3

(b) Off-diagonal elements of A.

Rewrite

A = (X + σI)−1 X =
(
I + σX−1

)−1 = η
(
ηI + X−1

)−1
, η = 1/σ.

It suffices to consider off diagonal elements of

N =
(
ηI + X−1

)−1 .

The proof follows by induction. We use subscripts to denote the size of matrices, and super-

scripts to denote the elements of the inverse of a matrix.

Dimension 2. It holds that N−1
2 = N#

2 / det(N2), where

N#
2 =

(
η + X22 −X12

−X21 η + X11

)
.

Therefore the off-diagonal element is non-negative, N12
2 ≥ 0, for all σ if and only if X12 ≤ 0.

Dimension k + 1. Simultaneous permutation of the i-th and j-th column and the i-th and

j-th row preserves the positive definiteness of matrix. Thus we can look at an arbitrary off

diagonal element to establish this result. Thus, look at the upper right element of Nk+1. This

is given as

N1,k+1
k+1 =

(−1)k

det(Nk+1)
det


X2,1 η + X2,2 · · · X2,k

...
...

Xk,1 Xk,2 · · · η + Xk,k

Xk+1,1 Xk+1,2 · · · Xk+1,k


3”Notice that all of the eigenvalues are strictly less than one.” deleted as it seems unnecessary.
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Expanding the latter determinant along the last row it follows that

N1,k+1
k+1 =

(−1)k

det(Nk+1)

k∑
j=1

(−1)k−j Xk+1,j(−1)j+1N1,j
k det(Nk)

= (−1)
det(Nk)

det(Nk+1)

k∑
j=1

Xk+1,jN1,j
k .

By induction it holds N1,j
k ≥ 0 for all j, and therefore a sufficient condition for N1,k+1

k+1 ≥ 0 is

that Xk+1,j ≤ 0 for all j ≤ k.

To prove necessity note that N1,j
k det(Nk) is a polynomial in η of order k − 1 if j = 1 and

j 	= 1. Thus for large η

N1,k+1
k+1 ≈ (−1)

det(Nk)
det(Nk+1)

Xk+1,1N1,1
k ,

so if N1,k+1
k+1 is non-negative for large η then Xk+1,1 must be non-positive.

This completes the proof.
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