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Abstract

A continuous time econometric modelling framework for multivariate market event (or
‘transactions’) data is developed in which the model is specified via the vector stochastic
intensity. This has the advantage that the conditioning σ-field is updated continuously in
time as new information arrives. We introduce the class of generalised Hawkes models which
allow the estimation of the dependence of the intensity on the events of previous trading
days. Analytic likelihoods are available and we show how to construct diagnostic tests
based on the transformation of non-Poisson processes into standard Poisson processes using
random changes of time. A proof of the validity of the diagnostic testing procedures is given
that imposes only a very weak condition on the point process model, thus establishing their
widespread applicability. A continuous time bivariate point process model of the timing of
trades and mid-quote changes is presented for a NYSE stock and the empirical findings are
related to the theoretical and empirical market microstructure literature.
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1 Introduction

The availability of so-called ‘ultra-high-frequency’ or ‘transactions’ data in empirical finance has

resulted in considerable interest by econometricians in the development of models to analyse

the intraday behaviour of financial markets. This data records the timing and characteristics

of all occurrences of certain types of market event during the trading day.1 For example, the

New York Stock Exchange (NYSE) Trade and Quote (TAQ) database reports the timing, price,

and volume of all reported trades, together with the timing and details of all changes to the

market quotes. Such datasets make possible an unprecedented view of the detailed workings

∗An updated version of this paper is now available in the 2003 Nuffield Economics Discussion Paper Series.
†Correspondence should be sent to the author at clive.bowsher@nuffield.ox.ac.uk. Particular thanks are due to

Neil Shephard, Bent Nielsen and Frank Gerhard. Personal correspondence with Jeff Russell concerning the ACI
model was very helpful and much appreciated. All computational work was performed using Version 3.0 of Ox
(see Doornik(2001)). Financial support from the ESRC under awards R42200034061 and R00023839 is gratefully
acknowledged.

1Henceforth, we refer to such data as ‘market event data’ because the term ‘transactions’ is often taken to be
synonymous with trades.

1



of financial markets and allow researchers to evaluate the hypotheses of the theoretical market

microstructure literature.

The particular contribution of this paper is the development of a continuous time economet-

ric modelling framework for market event data that can readily be applied to the multivariate

case. By multivariate, we mean that more than one type of event is considered – for example,

in the bivariate case, trades and changes to the market quotes, or trades in two related assets.

A relevant issue to be considered at this point is whether the obvious difficulties of modelling

multivariate market event data could not be mitigated somewhat by adopting a simpler ap-

proach based on time series methods, rather than attempting to set the models in continuous

time. Indeed, as Hasbrouck (1999) points out, these difficulties have strongly motivated sim-

pler approaches such as specifying a time series model in ‘event time’ where t indexes trades

(see, for example, Hasbrouck (1991)) or aggregating data over fixed intervals of real time (as in

Hasbrouck (1999)).

We believe the development of statistical models for market event data set in continuous,

real time to be an important challenge in financial econometrics for the following reasons. First,

models set in event time may well ignore aspects of the evolution of the market that are eco-

nomically important. Indeed, a growing number of papers point to the economic importance

of ‘wall-clock’ time. Easley and O’Hara (1992) establish in a sequential trade framework that

when there is uncertainty over whether an information event has occurred, the time intervals

between trades are informative and so affect the quoted prices. Dufour and Engle (2000) provide

empirical evidence that as the intensity of trading in real time increases, the price impact of

trades, the speed of price adjustment to trade related information and the positive autocorre-

lation of signed trades increase. In addition, Hasbrouck (1999) examines empirically the issue

of time deformation in equity markets and concludes that the roles of trades, orders and quotes

are different in ‘fast’ and ‘slow’ markets (where these terms are taken to refer to the evolution

of the market in real time). Such papers highlight the limitations of models that ignore real

time altogether. In addition, most practical applications of models of market event data such as

volatility measurement and the design of optimal order submission strategies (see Harris (1998))

require that the models relate somehow to real time.
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A standard time series analysis of aggregated data using fixed intervals of real time is also

problematic. Since the data records the timing and characteristics of individual market events,

aggregation involves an undesirable loss of information. As Engle and Russell (1998) warn,

“the characteristics and timing relations of individual transactions will be lost, mitigating the

advantages of moving to transactions data in the first place.” The considerations set out above

suggest that models for market event data set in continuous time are likely to provide important

economic insights into the functioning of financial markets.

Econometrically speaking, market event data can be viewed as the realisation of a Marked

Point Process (hereafter Marked PP or MPP): that is, as the realisation of a double sequence

{Ti, Zi}i∈{1,2,...} of random variables where Ti is the random occurrence time of the ith event

and Zi is a vector of additional variables (or ‘marks’) associated with that event. We develop an

econometric modelling framework for multivariate financial PP data – that is, for data generated

by a MPP where Zi ∈ {1, 2, ...,M} indicates the type of the ith event. The distinguishing

feature of our approach is that the model is specified via the vector stochastic intensity rather

than directly specifying a model for the durations (or time intervals) between events. This

is particularly advantageous when a multivariate PP model or a model for a univariate PP

conditional on some other continuous time process is needed. Consider, for example, a model

for the timing of mid-quote changes for a NYSE stock where we condition on the timing of trades.

Specifying the model via the mid-quote intensity rather than via the conditional distribution of

durations between mid-quote changes allows the intensity to change immediately in response to

the occurrence of a trade during a duration. Because the filtration is updated continuously in

time and includes the history generated by the trade arrival process, the additional information

since the start of the duration can be taken into account.2 Whilst considerable progress has been

made in modelling the univariate case using time series models of durations (most notably the

Autoregressive Conditional Duration models of Engle and Russell (1997,1998)), multivariate

extensions of this work have been slow to emerge in the econometrics literature.3 One such

2Hamilton and Jordà (2001) use an intensity based approach to model a discrete time point process and also
note the advantage that this offers in terms of being able to incorporate information that occurs after the most
recent event has taken place.

3Univariate models of market event data, and ACD models in particular, are surveyed by Bauwens and Giot
(2001).
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example is the model of Engle and Lunde (2003) for trades and quotes which is discussed in

Section 6.1 towards the end of the paper.

We believe that approaching the problem of modelling multivariate market event data by

directly specifying the stochastic intensity provides a powerful, flexible framework. We intro-

duce here a family of models – the generalised Hawkes models – for which analytic likelihoods

are available and diagnostic tests based on the integrated intensity can be constructed.4 In

contrast to previous work, the models are general enough to allow us to estimate the nature of

the dependence of the intensity on the events of previous trading days rather imposing strong a

priori assumptions concerning this dependence. This approach recognises a significant feature

of financial markets: namely, that for the majority of markets, the market does not operate

continuously so that the question of dependence between trading days is of considerable impor-

tance. Furthermore, the models have intuitively appealing economic interpretations since the

stochastic intensity for events of a particular type can be interpreted as a conditional hazard –

that is, as the conditional expectation in the limit of the number of events of that type that will

occur per unit time in the future given the current (multivariate) information set. Our approach

is closest to that of Russell (1999) who also specifies a multivariate PP model via the stochastic

intensity. A comparison with his modelling framework is provided in Section 6.2.

The structure of the paper is as follows. Section 2 provides a short introduction to the

modern intensity theory of PPs and makes readily accessible those aspects of the PP literature

that are particularly relevant to the econometric analysis of market event data. With the advent

of high frequency intraday financial data, PPs – although relatively unfamiliar – are becoming

an important tool for financial econometricians. We have therefore devoted some space to the

careful definition of central PP concepts and to the discussion of statistical inference for the

(broad) class of PP models where the stochastic intensity is available in closed form. Section 3

builds on the suggestions of Russell (1999) for the construction of diagnostic tests in this context.

We show that the tests can be thought of as being based on the transformation of non-Poisson

processes into standard Poisson processes using a random change of time, and thus establish that

4We use the term diagnostic test in the sense of a specification test. The term goodness of fit test would be
more usual in the statistical literature.
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the PP model need only satisfy a very weak condition indeed in order for the testing procedures

to be valid. Various diagnostic tests are proposed, some of which are new to the econometrics

PP literature. Section 4 presents the basic ‘building blocks’ of the new models in the simpler

univariate setting before the discussion is extended to the bivariate case in Section 5. Both

Sections 4 and 5 contain empirical applications using data from the TAQ database and illustrate

the empirical usefulness of generalised Hawkes processes. In particular, Section 5 presents a

continuous time bivariate PP model of the timing of trades and mid-quote changes for a NYSE

stock and relates the empirical findings to the theoretical and empirical market microstructure

literature. Section 6 explores connections between our work and previous research, and discusses

possible extensions – in particular, modelling the evolution of the multivariate PP conditional

on a wider filtration than its internal history. Section 7 concludes. The Appendix describes the

adjustments that are made to the TAQ data and presents the results of a sensitivity analysis that

establishes the robustness of our empirical findings in Section 5 to the particular adjustment

rule that is employed. The Appendix also discusses how to numerically compute maximum

likelihood estimates for the models.

2 Point Processes and Stochastic Intensities

This section describes how a statistical model for (possibly multivariate) PP data can be com-

pletely specified via a parametric family of stochastic intensities and establishes that a legitimate

likelihood function and likelihood ratios are available. In so doing, we provide definitions of an

M -variate PP, its associated counting process N(t), and its internal history FN
t . Theorem 2.1

expresses the likelihood in terms of the stochastic intensity. Finally, known asymptotic results

concerning the maximum likelihood estimator (MLE) and likelihood ratio (LR) test for station-

ary PP models are stated and discussed. Textbook treatments of the modern, martingale-based

intensity theory of PPs are given in Brémaud (1981) and Karr (1991), from which we draw

extensively in this section.
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2.1 Point and Counting Processes

Definition 1 Point Process. Let {Ti}i∈{1,2,...} be a sequence of nonnegative random variables

on some probability space (Ω,F , P ) such that 0 < Ti ≤ Ti+1. Then the sequence {Ti} is called a

point process on [0,∞). If in addition, Ti < Ti+1 ∀i then the point process is said to be a simple

point process.

Definition 2 M-variate point process and counting process. Let {Ti}i∈{1,2,...} be a simple

point process on [0,∞), defined on (Ω,F , P ), and let {Zi}i∈{1,2,...} be a sequence of {1, 2, ...,M}-

valued random variables (also defined on (Ω,F , P ), with 1 ≤M <∞). Then the double sequence

{Ti, Zi}i∈{1,2..} is called an M-variate point process on [0,∞). Define for all m, 1 ≤ m ≤M, and

all t ≥ 0

Nm(t) =
∑

i≥1

1(Ti ≤ t)1(Zi = m). (1)

Then theM -vector process N(t) = (N1(t), ..., NM (t)) is the M-variate counting process associated

with {Ti, Zi}.5

In our context, Ti will be the occurrence time of the ith market event and Zi will indicate

the event’s type.6 Nm(t) gives the random number of events of type m that have occurred up

to and including time t.7 Because {Ti} in the above definition is simple, the possibility of the

simultaneous occurrence of two events (of either the same or different types) is ruled out.

Some comments on notation follow. Let X(t) be a measurable process whose sample paths

are either locally bounded or nonnegative. Then the stochastic Stieltjes integral of X with

respect to Nm exists, and for each t,

∫

(0,t]

X(s)dNm(s) =
∑

i≥1

1(T
(m)
i ≤ t)X(T

(m)
i ), (2)

5We allow for the univariate case (M = 1) in the definition of an M -variate PP as this simplifies the statement
of some of the theorems that follow.

6Zi is sometimes referred to as the mark of the ith event. Indeed, an M -variate PP is a special case of a
Marked Point Process, {Ti, Zi}i∈{1,2..}

, in which the mark space is the finite set {1, 2, ...,M}.
7In what follows we sometimes refer, in a slight abuse of terminology, to ‘the M -variate PP N(t).’ This is

harmless since there is a one-one mapping between the M -variate point and counting processes for all M ≥ 1.
When M > 1, we also sometimes refer to {Ti} (or, equivalently,

∑M

m=1 Nm(t)) as the ‘pooled process’ since each
of its realisations is formed by pooling events of all types.
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where T
(m)
i denotes the occurrence time of the ith m-type event.8 For each t and ω, the integral

in (2) is the usual Lebesgue-Stieltjes integral. The internal history of the M -variate PP N(t) is

denoted by {FN
t }t≥0, where FN

t = σ(NA(s) : 0 ≤ s ≤ t, A ∈ E), NA(s) =
∑

i≥1 1(Ti ≤ s)1(Zi ∈

A), and E is the σ-field of all subsets of {1, 2, ...,M}.9 FN
t corresponds to complete observation

of the M -variate PP up to (and including) time t. Also FN
Ti

:= σ(T1, Z1, T2, Z2, .., Ti, Zi). Notice

that in the univariate case (M = 1) the definitions simplify to give N(t) =
∑

i≥1 1(Ti ≤ t),

FN
t = σ(N(s) : 0 ≤ s ≤ t) and FN

Ti
= σ(T1, T2, ..., Ti).

2.2 Stochastic Intensities and Likelihoods

As was stated earlier, a distinguishing feature of our approach is that the models are specified

via the stochastic intensity.

Definition 3 Stochastic Intensity. Let N(t) be a simple point process on [0,∞) (defined

on (Ω,F , P )) that is adapted to some filtration {Ft}, and let λ(t) be a positive, Ft-predictable

process. If

E[N(t)−N(s)|Fs] = E

[
∫ t

s
λ(u)du|Fs

]

P -a.s., (3)

for all s, t such that 0 ≤ s ≤ t, then we say that λ(t) is the (P,Ft)-intensity of N(t).10

In words, (3) says that if one stands at time s having observed the history Fs and wishes

to predict the number of additional events that will occur by time t using the conditional

expectation of (Nt −Ns)|Fs, then one can equivalently use E[
∫ t
s λ(u)du|Fs].

11 In this paper we

shall usually be concerned with the case Ft = FN
t . However, a strength of an intensity based

framework is that it is straightforward conceptually to model the evolution of the PP conditional

on a wider filtration, Ft (where Ft ⊃ FN
t ∀t) that could include, for example, the internal history

of some covariate continuous time process.

8The jth event, with occurrence time Tj(ω), is said to be m-type (for that particular ω) iff Zj(ω) = m.
9Although we refer to the internal history of the process, the term natural filtration is widely encountered and

would also be a suitable description here.
10Note that: 1) sufficient conditions for λ(t) to be Ft-predictable are that the sample paths of the process are

left-continuous and have right-hand limits, and that λ(t) is adapted to {Ft}; 2) the conditional expectations in
(3) are those defined with respect to the probability measure P.

11Under the conditions of definition (3) and the additional assumption that the point process N(t) is integrable
(that is, E[N(t)] < ∞, t ≥ 0), (3) is equivalent to the statement that N(t) −

∫ t

0
λ(u)du is a (P,Ft)-martingale.

That is, the difference between the PP and its compensator is a martingale.
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In the multivariate case (M > 1), the M -variate process λ(t) = (λm(t))Mm=1 is said to be the

(P,Ft)-intensity ofN(t) = (Nm(t))Mm=1 if and only if λm(t) is the (P,Ft)-intensity of the counting

process Nm(t) for m = 1, ...,M .12 As will be made clear later, a multivariate PP model can thus

be determined by the specification of the M intensities of the (univariate) counting processes

Nm(t). This perspective is very natural and productive if one is concerned with developing

new models – one considers how the intensity for m-type events changes in continuous time

as new ‘information’ arrives. The apparent problem with non m-type events occurring during

a duration between m-type events causes no difficulty whatsoever in this framework since the

path of the intensity can be made to depend on such events. Thinking in terms of an intensity

for m-type events is made more intuitive by the fact that the intensity can often be interpreted

as a conditional hazard – that is, as the conditional expectation in the limit of the number of

m-type events that will occur per unit time in the future, given the current information set. We

now make this connection explicit.

Consider a simple PP on [0, T ], {N(t)}0≤t≤T , with the (P,Ft)-intensity λ(t), where
∫ t
0 λ(s)ds <

∞ P-a.s. for all t (which implies that, P -a.s., Nt < ∞ for all t) and the sample paths of λ(t)

are left-continuous with right-hand limits. Under the additional condition that {λ(t)}0≤t≤T is

bounded by an integrable random variable (hereafter r.v.), it is possible to show (see Lemma

3.3, Aalen (1978)) that

lim
s↓t

1

s− tE[N(s)−N(t)|Ft] = λ(t+) P -a.s., (4)

where λ(t+) = lims↓t λ(s).

The following theorem is of fundamental importance since it establishes that legitimate like-

lihood functions and ratios are available for our statistical models, and expresses the likelihood

in terms of the stochastic intensity.

Theorem 2.1 Let 0 < T <∞ and (Nm(t))Mm=1 be an M -variate point process on [0, T ], defined

on (Ω,F) (where FN
T ⊆ F), such that Nm(t) has (P0,FN

t )-intensity equal to 1 for m = 1, ...,M.

Suppose that λ(t) = (λm(t))Mm=1 is an M -variate, positive, FN
t -predictable process satisfying

M
∑

m=1

∫ T

0
λm(s)ds <∞ P0-a.s. (5)

12Note that Nm(t) is also a simple PP and so Definition 3 applies straightforwardly here to each λm(t).
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Define the probability measure P (satisfying P ¿ P0) by the following density with respect to

P0.
13

dP

dP0

∣

∣

∣FN
T

= exp











M
∑

m=1







∫ T

0
(1− λm(s))ds+

∫

(0,T ]

log λm(s)dNm(s)

















. (6)

Then Nm(t) has (P,FN
t )-intensity λm(t) (for m = 1, ...,M).14 Let P̃ be another probability

measure such that N(t) also has (P̃ ,FN
t )-intensity λ(t). Then, P̃ (A) = P (A) for all A ∈ FN

T .

Proof. Repeat the proof of Theorem 5.2, Karr (1991) setting the baseline intensity equal to

(1, 1, ..., 1) = 1M . For the uniqueness of P , see Brémaud (1981), Theorem T8, p.64.

2.3 Intensity-based inference

2.3.1 Statistical models

In this paper each model is specified via a parametric family of stochastic intensities {λθ(t)}θ∈Θ,

where λθ(t) is an M -variate, positive, FN
t -predictable process satisfying (5) for all θ ∈ Θ.

Theorem 2.1 establishes the existence of anM -variate PP N(t) and a unique probability measure

Pθ such that N(t) has (Pθ,FN
t )-intensity λθ(t).. The implication is that we need only specify the

parametric family of stochastic intensities in order to specify the statistical model completely.

In econometrics, the family {Pθ}θ∈Θ would often be referred to as the potential Data Generating

Processes (DGPs). Since {Pθ}θ∈Θ is dominated by P0 (the law of a multivariate Poisson process),

equation (6) constitutes a legitimate likelihood function. An advantage of the models that we

propose is that, in all cases, integration of the sample path of the intensity can be performed

analytically. This is extremely convenient when performing likelihood-based inference – since

the intensity appears in the integrand of the first integral in (6) – and computing the diagnostic

tests that we propose below.

2.3.2 Asymptotic distribution theory

Ogata (1978) establishes conditions under which the MLE for a simple, stationary (univariate)

PP model is consistent and asymptotically normal as T →∞, and under which the LR test of a

13Note that evaluating the second integral in (6) yields
∑

i:0<T
(m)
i

≤T
log λm(T

(m)
i ).

14The Poisson processes N1(t), ..., NM (t) are independent under P0. Since Poisson processes are P̃ -independent
iff they have no jumps in common P̃ -a.s., it follows from P ¿ P0 that N(t) has no common jumps P -a.s. That
is, the pooled process

∑M

m=1 Nm(t) is simple P -a.s.
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simple null hypothesis possesses the standard χ2 asymptotic null distribution. Since the focus is

on stationary PPs, the model is taken to be for a PP on (−∞,+∞), {Ti; i = 0,±1,±2, ...}, which

is observed during the interval [0, T ].15 Let λ∗(t) denote the complete intensity – that is the

H(−∞,t]-intensity, where H(−∞,t] is the ‘infinite history’ of the process – and (for the purposes of

Section 2.3.2 only) let λ(t) =E[λ∗(t)|H(0,t]].
16 The exact log-likelihood for the statistical model,

lT (θ), is then given by the logarithm of (6) with λ(t) =E[λ∗(t)|H(0,t]] (and M = 1). Define also

the (theoretical) conditional log-likelihood under the information from the infinite past, l∗T (θ),

by replacing λ(t) with λ∗(t) in the expression for lT (θ). The central results of Ogata (1978) are

summarised in the following theorem.

Theorem 2.2 Let the true parameter value be denoted by θ0 ∈ Rd, and suppose that the regu-

larity conditions A, B and C of Ogata (1978) are satisfied. Then, the MLE, θ̂T , converges in

probability to θ0 as T → ∞. Suppose further that θ0 is in the interior of the parameter space.

Then, as T →∞
√
T (θ̂T − θ0)→ N (0, I(θ0)

−1), (7)

in law, where I(θ0) is the matrix {Iij(θ0)}ij and

Iij(θ0) = Eθ0

[

1

λ∗θ0
(t)

∂λ∗θ0
(t)

∂θi

∂λ∗θ0
(t)

∂θj

]

= −Eθ0

[

1

T

∂2l∗T (θ0)

∂θi∂θj

]

. (8)

Under the above assumptions,

Eθ0

{
∫ T

0

[

1

λθ0(s)

∂λθ0(s)

∂θi

∂λθ0(s)

∂θj

]

ds

}

= −Eθ0

[

∂2lT (θ0)

∂θi∂θj

]

∀i, j, (9)

and

−Eθ0

[

(1/T )(∂2lT (θ0)/∂θi∂θj)
]

→ Iij(θ0) ∀i, j. (10)

Note that (9) is also valid when {λθ0 , lT (θ0)} is replaced by {λ∗θ0
, l∗T (θ0)}. Also, under the above

assumptions,

2[lT (θ̂)− lT (θ0)]→ χ2d, (11)

in law.

15Note that this is in contrast to the models used in this paper in which the counting processes start at t = 0.
16We define H(s,t] to be the sigma field σ(N(t)−N(u); s < u ≤ t). For a rigorous definition of a simple PP on

(−∞,+∞) and of an H(−∞,t]-stochastic intensity for such a process, see Brémaud (1996). These definitions are
the natural analogues of the definitions we have given for a simple PP on [0,+∞).
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Proof. See Theorem 1 and its subsequent remark, Theorem 2 and Theorem 5 of Ogata

(1978).

These are essentially the standard asymptotic properties of a MLE, but with an additional

subtlety introduced: it is the complete intensity, λ∗θ(t), rather than λθ(t) that appears in (8)

and the conditions of the theorem do not imply that Iij(θ0) = −Eθ0

[

(1/T )(∂2lT (θ0)/∂θi∂θj)
]

.

Nevertheless, the convergence result in (10) motivates the use of the normed Hessian matrix,

(1/T )(∂2lT (θ̂T )/∂θ∂θ
′), to estimate {Iij(θ0)}ij .17

The development of further asymptotic distribution theory following on from the work of

Ogata (1978) is an important area for future research. Results for the M -variate and non-

stationary cases would be of particular interest in our context.

3 Diagnostic Testing

Consider the sequence {e(m)
i }i, obtained by integrating the sample path of the FN

t -intensity for

m-type events over each m-type duration (that is, the time interval between adjacent m-type

events). Russell (1999) suggests the use of this sequence as the basis for diagnostic testing

and indicates that the results of Yashin and Arjas (1988) might be used to establish the i.i.d.

exponential property of this sequence provided that a certain absolute continuity condition is

satisfied. In our discussion of Russell’s paper in Section 6.2 we give reasons why this particular

condition is very restrictive in the context of multivariate PP models for market event data, thus

highlighting the need for a general proof that relies on much weaker assumptions concerning the

PP model. We show in Section 3.1 how the i.i.d. exponential property of the {e(m)
i }i sequence

can be derived by a random change of time argument. It turns out that the condition that

the stochastic intensity must satisfy in order for this proof to apply is extremely natural in

the context of models of financial market events. We thus establish the broad applicability of

diagnostic testing procedures based on the {e(m)
i }i sequences (m = 1, ...,M) to multivariate PP

models of financial market event data. In Section 3.2, various diagnostic tests are proposed,

some of which are new to the econometrics PP literature, and the issue of how to combine the

17Ogata (1978) comments on the validity of the assumptions of Theorem 2.2 for the HawkesE(1) model defined
later by equation (18) with µ(t) = µ ∀t.
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information in the M sequences is considered. A treatment of possible approaches to the impact

of parameter uncertainty on the testing procedures is deferred until Section 6.3.1 in order to

maintain the flow of the exposition of the main subject matter of the paper.

3.1 A random change of time argument

Identifying the {e(m)
i }i sequence as the durations of a standard Poisson process obtained by

transforming the PP, Nm(t), using a random change of time allows us then to establish the i.i.d.

exponential property of the sequence immediately. Theorem 3.1 below (derived from Theorem

T16, p.41 of Brémaud (1981)) forms the basis for the proof of the result in Corollary 3.2. The

main contribution of this section is not the Corollary itself, which is no doubt well known to

probabilists, but lies rather in establishing the connection between change of time techniques and

diagnostic testing for parametric PP models. The benefit gained by introducing these techniques

from the stochastic process literature is a rigorous proof of the i.i.d. exponential property of the

diagnostic sequence, {e(m)
i }, suggested by Russell (1999) and hence the isolation of (12) as a

sufficient condition for the validity of such diagnostic testing procedures. Random changes of

time also appear to have been exploited surprisingly little to construct goodness of fit tests

(for point and counting processes) in both the theoretical and applied statistical literature.18

In the case where a single realisation of the counting process is observed, goodness of fit tests

are sometimes based on the difference, N(t) −
∫ t
0 λ(s)ds, which is a mean zero martingale. An

advantage of the change of time approach is the relative ease of establishing distributional results

(at least in the absence of parameter uncertainty).

Theorem 3.1 Let N(t) be an M -variate point process on [0,∞) (M ≥ 1) with internal history

FN
t and let Nm(t) (m = 1, ...,M) be the associated ‘marginal’ counting processes as given by

Definition 2. Let Ft be a history of N(t) (that is, FN
t ⊆ Ft ∀t ≥ 0), and suppose, for each m,

that Nm(t) has the (P,Ft)-intensity λm(t) where λm(t) satisfies

∫ ∞

0
λm(t)dt =∞ P -a.s. (12)

18Exceptions of which we are aware are Arjas (1986) and Arjas and Haara (1988). They exploit the exponen-
tiality of the integrated hazards (intensities) and their independence across individuals in failure time models.
The hypothesis test in the empirical application of Aalen and Hoem (1978) could also be viewed as a sort of
goodness of fit test based on a random change of time.
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Define for each m and all t, the Ft-stopping time τm(t) as the (unique) solution to19

∫ τm(t)

0
λm(s)ds = t. (13)

Then for each m, the point process Ñm(t) defined by

Ñm(t) = Nm(τm(t)), (14)

is a standard Poisson process (that is, Ñm(t) is a (P,FN
m,t)-Poisson process with intensity 1,

where FN
m,t = σ(Nm(s) : 0 ≤ s ≤ t)).

Proof. Repeat the proof of Theorem T16, p.41, Brémaud (1981) replacing Nt by Nm(t) and

setting (in the notation used there) Gt = Ft.

Theorem T16 of Brémaud (1981) is stated for a univariate PP. Extending the theorem to

the multivariate case where the change of time is applied to the ‘marginal’ counting processes,

Nm(t), of anM -variate PP (using the Ft-intensity of each, λm(t)) is straightforward since Nm(t)

is itself a univariate PP.20 Since we allow FN
t ⊂ Ft here, our diagnostic testing procedures can

also be applied to models where we condition on a wider filtration than the internal history

of the PP. We note that Aalen and Hoem (1978) prove additionally that Ñ1(t), ..., ÑM (t) are

independent Poisson processes.21

Corollary 3.2 Let {T (m)
i }i∈{1,2..} (m = 1, ...,M) be the sequences of points associated with the

Nm(t) in Theorem 3.1, and define for each m, T
(m)
0 := 0, e

(m)
i :=

∫ T
(m)
i+1

T
(m)
i

λm(s)ds (i = 0, 1, 2, ...).

Then {e(m)
i }i∈{0,1,2..}is an i.i.d. sequence of Exponential random variables with mean 1 for

m = 1, ...,M .

Proof. Let {T̃ (m)
i }i∈{1,2..}be the sequence of points associated with Ñm(t) and define T̃

(m)
0 :=

0. Let s satisfy T̃
(m)
i−1 ≤ s < T̃

(m)
i ( for some i ≥ 1). Then (14) ⇒ τm(s) < T

(m)
i ≤ τm(T̃

(m)
i ).

19Recall that λm(s) > 0 ∀s from our definition of a stochastic intensity. This avoids problems with multiple
solutions to (13) that could occur if we allowed λm(s) = 0.

20Theorem T16, p.41 of Brémaud (1981) does not require the intensity to be with respect to the internal history
of the univariate PP in question (FN

m,t in this case). Rather, the requirement is that the univariate PP be adapted
to the history with respect to which the intensity is defined. This requirement is clearly satisfied here since
FN
m,t ⊂ F

N
t ⊆ Ft ∀t.

21See Section 4.5 of Aalen and Hoem (1978); they require that Ft = F
N
t and that each ‘distribution function’

Pr[Ti+1 − Ti ≤ x, Zi+1 = m|FN
Ti
] is absolutely continuous in x and has a derivative which is left continuous and

has right-hand limits at each point. Importantly, Meyer (1971) establishes the result in the more general case
where FN

t ⊂ Ft ∀t.

13



Since τm is continuous, letting s ↑ T̃ (m)
i establishes that τm(T̃

(m)
i ) = T

(m)
i . It then follows from

(13) that T̃
(m)
i+1 − T̃

(m)
i =

∫ T
(m)
i+1

T
(m)
i

λm(s)ds for i = 0, 1, 2, ... The result is then immediate since the

e
(m)
i ’s are the durations of a standard Poisson process.

Note that the only condition that we require is given in (12) and that this holds if and

only if limt↑∞Nm(t) = ∞ P -a.s. (see Lemma L17, p.41, Brémaud (1981)). This condition is

very natural in the context of models of financial market events since it is equivalent to zero

probability being assigned to sample paths in which no more m-type events ever occur after

some point in time.

3.2 Constructing diagnostic tests

We now go on to consider how to use Corollary 3.2 in order to construct diagnostic tests. It is

worth noting at this point that whilst it is often the case for univariate models that the {ei}

series can be obtained by transforming the particular i.i.d. uniform series used for diagnostic

evaluation by authors such as Shephard (1994), Kim, Shephard, and Chib (1998) and Diebold,

Gunther, and Tay (1998) into exponential r.v.’s, our diagnostic procedures for multivariate PPs

cannot be interpreted as an implementation of multivariate extensions of this approach such as

that described in Diebold, Hahn, and Tay (1999). Some additional explanation of this point is

given later in connection with the discussion of the impact of parameter uncertainty in Section

6.3.1.

Since theM -variate PP has the (Pθ,Ft)-stochastic intensity λθ(t) = (λm(t; θ))Mm=1, Corollary

3.2 implies that if the DGP is Pθ0 , then e
(m)
i (θ0) ∼ i.i.d. Exp(1), where

e
(m)
i (θ) =

T
(m)
i+1
∫

T
(m)
i

λm(s; θ)ds, (15)

for m = 1, ...,M. There are many possibilities for the construction of diagnostic tests based

on the M {e(m)
i (θ0)}i series that spring to mind.22 Consider first tests that are based say

the mth individual series. Tests that use the series directly include Box-Ljung tests of zero

autocorrelation of the series itself and the squared series, and tests based on the moments of the

exponential distribution. One such is the test of no excess dispersion suggested by Engle and

22In practice, the aim is to test whether there exists a θ0 such that the DGP is given by Pθ0 . The impact of
the attendant parameter uncertainty (or ‘nuisance parameter’ problem) is discussed in Section 6.3.1.
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Russell (1998) which is given by
√

Nm(T )((σ̂2
e(m)−1)/

√
8), where σ̂2

e(m) is the sample variance of

the e
(m)
i (θ0). The test statistic has an asymptotic N (0, 1) distribution under the null hypothesis

that {e(m)
i (θ0)} is i.i.d. Exp(1).23 Alternatively, the series can be transformed to yield an

i.i.d. uniform series under the null. Thompson (2001) derives the asymptotic distribution of

various test statistics based on the centred empirical distribution function and the normalised

cumulative periodogram under the null that the series is i.i.d. uniform and explains how to

compute quantiles of the (finite sample) null distributions by simulation.24

Other diagnostic testing possibilities arise by combining theM series in some way, either prior

to or after the calculation of the test statistics. We noted above that Aalen and Hoem (1978)

have proved under quite general conditions that, under the null of correct specification, the

transformed processes, Ñ1(t), ..., ÑM (t), are independent Poisson processes each with intensity

1. It follows that the superposition
∑M

m=1 Ñm(t) is a Poisson process with intensity M . Tests

of the independence property of the transformed processes may therefore be constructed by

‘pooling’ the points associated with the M {e(m)
i (θ0)} series (i.e. sorting the collection of points

{T̃ (m)
i }i,m into ascending order) and then calculating tests of the i.i.d. Exp(1) property of the

durations between those points (after rescaling the durations by multiplying by M) as described

above.25 We have not pursued the possibility of either combining multiple tests based on the

mth series into a single test or combining tests based on different series here. The distributional

results of Thompson (2001) can be used to achieve the former. Two tests based on, say, the mth

and qth (m 6= q) series will be independent under the conditions of Aalen and Hoem (1978).

In the empirical sections of the paper, we routinely report 3 diagnostic test statistics for each

m = 1, ...,M : the Box-Ljung tests that the first 15 autocorrelations are all equal to zero for

the {e(m)
i (θ̂)} and {(e(m)

i (θ̂))2} series, and the test for excess dispersion based on the {e(m)
i (θ̂)}

series. θ̂ here denotes the MLE. The corresponding p-values are calculated using the asymptotic

23Note that 8 is the variance of
(

e
(m)
i (θ0)− 1

)2

under the null hypothesis.
24The evaluation of model specification using a transformation of the data that is approximately i.i.d. uniform

has a long history, dating back to Rosenblatt (1952). Smith (1985) and Shephard (1994) were among the first to
use the ‘integral transform’ method to evaluate time series models.

25In practice N1(t), ..., NM (t) are observed on [0, T ], T <∞, but Ñm(t) and Ñq(t) (m 6= q) are usually observed
over different intervals as a result of the change of time. We adopt the following pragmatic approach to this
problem in Section 5.4. Let Cm be the last observed point of Ñm(t) and C := min{Cm,m = 1, ...,M}. Then we

sort {T̃
(m)
i : T̃

(m)
i ≤ C,m = 1, ...,M} into ascending order and then proceed as before.
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null distributions which hold in the case of known parameters. The issue of how to take account

of the impact of parameter uncertainty on the testing procedures is taken up in Section 6.3.1.26

In addition, when M > 1, the same 3 statistics are also reported using the series of durations

obtained by pooling the points associated with the M {e(m)
i (θ̂)} series (see above).

4 Univariate intensity-based models

Our aim in this paper is to develop a continuous time econometric modelling framework that

is applicable to multivariate market event data. Nonetheless, we have chosen to describe first

a model for univariate PPs. This allows the main ideas to be presented in a relatively simple

setting so that extending the discussion to the bivariate case in Section 5 will then be more

straightforward as the univariate and bivariate models share exactly the same basic ‘building

blocks.’

Section 4.2 defines our univariate generalised Hawkes process, elucidates its relationship to

the motivating self-exciting process of Hawkes (1971), and discusses hypothesis testing and the

computation of MLEs. An empirical application of the model is then presented in Section 4.3

for the timing of trades in two different corporate stocks, one listed on the NASDAQ (National

Association of Securities Dealers Automated Quotation) system and the other on the NYSE. In

order to clarify the presentation that follows, we first discuss the data transformation that is

used throughout the paper.

4.1 Data transformation

The empirical applications of our models will consider the timing of trades and the timing of

certain changes to the mid-quote that occur during normal trading hours – that is, during the

6.5 hour period between 9:30 EST and 16:00 EST. Since the equity markets in question do

not operate continuously, the researcher is faced with the question of how to model data that

is generated during trading days that are separated by overnight periods when the market is

closed. We take the following approach throughout the paper. Time zero is taken to be 9:30

on the first trading day of the sample and the data pertaining to each of the 6.5 hour trading

26The approach to the parameter uncertainty adopted in the empirical sections of the paper is in line with most
previous work in the econometrics literature.
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days is then concatenated in order to remove the overnight periods. Thus, the occurrence times

of the market events are mapped onto [0,∞) as follows: if x is the time in hours after 9:30 of

an event occurring on the dth trading day included in the dataset (d = 1, 2, ...), then that event

appears as an event at time x+ 6.5(d− 1) in our final dataset.27

Two comments concerning the above transformation are in order. First, transforming the

data in this way and treating it as a realisation of a single PP on [0, T ] allows us to make

straightforward use of existing theorems in the PP literature. The alternative would be to

view the data for each trading day as the realisation of a different PP and to specify the

nature of the dependence between these PPs. This is unnecessarily complicated. One must be

able to specify how the intensity on a particular trading day depends on the entire history of

events (including those of previous trading days), but this can be achieved within the ‘single

point process’ framework adopted here. However, it is important then to take into account the

overnight periods during which the market is closed and to model carefully how the intensity

today depends on events that occurred on previous trading days in real time. This is the

motivation for the generalised Hawkes models introduced below. Second, other features such

as events occurring outside normal trading hours and stock exchange opening procedures are

excluded from the present analysis. This reflects the particular focus of our empirical work

which is the modelling of the operation of the continuous market during normal trading hours.

Nevertheless, it is in principle straightforward within our modelling framework to condition on

such information by allowing the intensity at the start of the trading day to depend upon these

additional events (see Section 6.3.2).28

4.2 Generalised Hawkes Processes

4.2.1 Representations of the g-HawkesE(k) process

The intensity of the generalised Hawkes (g-Hawkes) process is defined recursively in terms of

the levels of the non-deterministic components of the intensity at the end of the (d − 1)th

trading day and the contributions of the events occurring on day d. In accordance with the

27Note that the units of measurement for ‘wall-clock’ time, t, are hours in the empirical sections of this paper.
28We have not developed such an approach here in any detail. A preliminary analysis for NASDAQ biotechnol-

ogy stocks of quoting activity in the preopening period (including the occurrence of ‘crossed and locked’ quotes)
failed to reveal a significant effect on the intensity of quote changes during normal trading hours.
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data transformation that we employ, we partition the real half-line into intervals of length l that

correspond to the different trading days. This partition is written as

(0,∞) = (0, τ 1] ∪ (τ1, τ2] ∪ ... ∪ (τd−1, τd] ∪ ...,

where τd = l ·d (d = 0, 1, 2, ...). τ d denotes the time corresponding to the end of the dth trading

day.29

Definition 4 Univariate g-HawkesE(k) model. The model is defined by the stochastic

intensity

λ(t) = µ(t) +
k
∑

j=1

λ̃j(t), (16)

where µ(t) is a positive, deterministic function of time and, for j = 1, 2, ..., k,

λ̃j(t) = πjλ̃j(τd−1)e
−ρj(t−τd−1) +

∫

[τd−1,t)

αje
−βj(t−u)dN(u), (17)

for τd−1 < t ≤ τd (d = 1, 2, ....), and λ̃j(0) = 0, αj ≥ 0, βj > 0, πj ≥ 0, ρj > 0.30

The stochastic intensity of the g-HawkesE(k) model is thus the sum of a deterministic com-

ponent, µ(t), and k non-deterministic components, (λ̃j(t))
k
j=1. Equation (17) expresses each

λ̃j(t) as the sum of the exponentially-damped value of πj · λ̃j(τd−1), where λ̃j(τd−1) is the level

of the jth component at the end of the previous trading day, and the contributions of events oc-

curring on day d and prior to time t. Thus λ̃j(t) depends on the timing of events occurring prior

to day d only via the term λ̃j(τd−1). We call the first term in (17) the (jth) intensity ‘spillover

effect’ between trading days. Evaluating the second term yields
∑

i:τd−1≤Ti<t αje
−βj(t−Ti). We

refer to this as the (jth) ‘Hawkes-type’ term for reasons that will be made explicit later. A

sample path of this term is left-continuous, jumping up by an amount equal to αj in response

to the occurrence of an event and then decaying exponentially (according to the parameter β j)

until the occurrence of the next event.

It is clear that the g-HawkesE(k) model allows the dependence of the intensity on events

occurring on previous trading days to be estimated from the data. The model nests the important

29l = 6.5 in all of the empirical sections of the paper.
30The ‘E(k)’ refers to the superposition of k non-deterministic components, λ̃j(t), each of which is specified

in terms of an Exponential ‘response function,’ αje
−βjs.This function gives the current ‘response’ to an event

that occurred s time units ago. Clearly, other specifications of the response functions are possible, but are not
considered here.
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case where there is no dependence between trading days. This occurs when πj = 0 ∀j. The g-

HawkesE(k) process is also equivalent to the ‘self-exciting’ process of Hawkes (1971) when the

restrictions πj = 1, ρj = βj for j = 1, ..., k are imposed.31 Note that this imposes a very

restrictive form on the spillover effects. The Hawkes (1971) model – referred to here as the

HawkesE(k) model – is given by

λ(t) = µ(t) +

∫

(0,t)

k
∑

j=1

αje
−βj(t−u)dN(u) (18)

= µ(t) +
k
∑

j=1

∑

i:0<Ti<t

αje
−βj(t−Ti),

where µ(t) is again a positive, deterministic function of time and αj ≥ 0, βj > 0 for j = 1, ..., k.32

The second term in (17) is the same as the inner sum in (18) except that the sum is not

taken over Ti < τd−1. The equivalence of the g-HawkesE(k) and HawkesE(k) models when

πj = 1, ρj = βj ∀j is a corollary of the following proposition that establishes a representation of

the g-HawkesE(k) model in terms of the contributions of the events occurring on the previous

trading days.

Proposition 4.1 Define λ̆j(t) for j = 1, ..., k by

λ̆j(t) =
d−1
∑

s=1

πs
jCj(d− s)e−ρj(t−l(d−s)) +

∫

[τd−1,t)

αje
−βj(t−u)dN(u), (19)

for τd−1 < t ≤ τd (d = 1, 2, ....) and λ̆j(0) = 0, where

Cj(d) =

∫

[τd−1,τd)

αje
−βj(τd−u)dN(u), (20)

is the contribution of the events occurring on day d. Then if λ̆(t) = µ(t) +
∑k

j=1 λ̆j(t), and λ(t)

is the g-HawkesE(k) model defined above by (16) and (17), then the processes λ(t) and λ̆(t) are

indistinguishable – that is λ(t)ω = λ̆(t)ω, t ≥ 0 for all ω ∈ Ω.

Proof. Since the proof is straightforward only the basic approach is indicated here. Fix an

ω ∈ Ω and hence {Ti(ω)}. Clearly λ(0)ω = λ̆(0)ω = µ(0). Then show that λ(t)ω = λ̆(t)ω ∀t > 0

31Despite their usefulness, Hawkes-type models do not seem to have been used before in financial econometrics.
The probabilistic properties of Hawkes processes are discussed in Hawkes (1971), Hawkes and Oakes (1974), and
Brémaud (1996); ML estimation of self-exciting models is considered by Ogata (1978), and Ozaki (1979), Ogata
and Akaike (1982); and application of such models to earthquake data is treated by Vere-Jones and Ozaki (1982)
and Ogata (1983).

32Strictly speaking, the original Hawkes (1971) model is given by (18) with µ(t) = µ ∀t.
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by establishing that, for j = 1, .., k and d = 1, 2, ..., λ̃j(t)ω = λ̆j(t)ω, τd−1 < t ≤ τd. The latter

fact may be established by induction on d.

Corollary 4.2 The g-HawkesE(k) model with the parameter restrictions (πj = 1, ρj = βj)

for j = 1, ..., k and the HawkesE(k) model in (18) are identical models (that is, the processes

are indistinguishable). This follows easily by substitution into (19) and some straightforward

algebraic manipulation.

The representation of the g-HawkesE(k) model given by Proposition 4.1 is intuitively ap-

pealing as it expresses the jth non-deterministic component of the intensity at time t (on day d)

as the summation of a Hawkes-type term that depends only on day d events and the weighted

sum of the contributions, Cj(d− s), of previous trading days. Provided that πj > 0, the weights

are declining in s iff 6.5ρ > log π (a condition that is found to hold in all of our applications).33

The strength of our approach is that rather than imposing strong, a priori assumptions

about the nature of the dependence between trading days, we are able to estimate the effect

from the data. Our empirical results will illustrate the value of avoiding such assumptions in

improving the goodness of fit of models for market event data. Adopting an inappropriate

a priori assumption (such as a lack of dependence between trading days for some NASDAQ

stocks) can result in the rejection of a model that is essentially well specified (apart, that is,

from its treatment of the spillover effects). Similarly, fitting a model such as the HawkesE(k)

model (which might be more appropriate if trading were continuous) usually results in rejection

of the model because the spillover effects it implies are too restrictive. Since the nature of the

dependence is likely to vary across different exchanges, stocks and calendar periods it is clearly

desirable to estimate the effect from the data.

Our approach thus recognises an important feature of financial markets: namely, that for

the majority of markets, the market does not operate continuously. Previous work has tended

not to focus on this feature of the data. Often a lack of dependence is assumed so that the

33It is also interesting to consider the contribution of the term that depends only on day d events to the jth
component, λ̃j(t), as t increases (for 6.5d < t). This component is of the form K(t)Cj(d). When πj > 1, K(t) is
strictly decreasing during the day but jumps up at the start of each day; when πj = 1, K(t) is continuous and
strictly decreasing in t; and when 0 < πj < 1, K(t) is again strictly decreasing during the day and jumps down
at the start of each day.
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intensity today depends only on the timing of trades that have occurred since today’s opening

(see, for example, Engle and Russell (1998)). Russell (1999) maps the data onto the real half

line as we do and then treats it as the realisation of a (multivariate) PP on [0,∞). However,

the approach adopted there is analogous to the HawkesE(k) model in (18) in the following way:

when there is an ‘infinite past’, identical past realisations of the process prior to time t imply

that the non-deterministic component of the intensity at time t is the same whatever wall-clock

time in the trading day t corresponds to.34

4.2.2 Hypothesis testing and computation of MLEs

Consider testing the null H0 : α2 = 0, against the alternative H1 : α2 > 0 (the maintained

hypothesis being that α2 ≥ 0). This testing problem violates two of the regularity conditions

that are assumed to hold in standard testing problems. The parameter value under the null lies

on the boundary of the maintained hypothesis, and there are nuisance parameters (π2, ρ2, β2)

that are identified under the alternative but not under the null. The same comments apply to

a test of H0 : πj = 0 against the alternative H1 : πj > 0 (in which case ρj is unidentified under

the null). A consequence is that the LR tests of the various hypotheses will not possess the

standard χ2 asymptotic null distributions. Such a situation is not uncommon in econometrics –

consider, for example, a test of the null of no conditional heteroskedasticity in a GARCH(1,1)

model – and is exactly the situation considered by Andrews (2001) in the context of time series

models. Establishing analogous results for PP models is not a trivial task and is beyond the

scope of the present paper. This matter will be explored in future work.

We now briefly describe the computation of MLEs for the univariate models.35 In order

to simplify the presentation, we assume that the process is observed over an integer number

of trading days. Taking logarithms of (6) (with M = 1) and decomposing the resultant log-

likelihood into the contributions of the different trading days yields

l(θ) =

T/l
∑

d=1











∫

Ad

(1− λθ(s))ds+
∫

Ad

log λθ(s)dN(s)











, (21)

34By ‘identical past realisations’ we mean that the distance of all of the points from t is the same in both cases.
35Note that when we view the g-HawkesE(k) model as a statistical model we impose the additional constraints

β1 > β2 > ... > βk so that it is identified.
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where Ad = (τd−1, τd] and λθ(s) is the intensity of the g-HawkesE(k) model given by (16) and

(17). Decomposing the log-likelihood in this way allows us to use the recursive specification given

by (17) in order to compute the log-likelihood. Evaluating (21) yields36

l(θ;T1, ..., TN(T )) = T −
∫ T

0
µγ(s)ds+

T/l
∑

d=1

∑

Ti∈Ad

log λθ(Ti)− (22)

T/l
∑

d=1

k
∑

j=1







πj/ρj(1− e−lρj )λ̃j,θ(τd−1) +
∑

τd−1≤Ti<τd

αj/βj(1− e−βj(τd−Ti))







.

Numerical optimisation of l(θ;T1, ..., TN(T )) − T was performed using the BFGS algorithm

with numerical derivatives (see Doornik (2001)). In order to estimate the g-HawkesE(2) model,

initial parameter values for the algorithm were obtained by a sequential estimation procedure in

which the estimates obtained from each model determine the starting values for the subsequent

one. Full details of this procedure, the recursions used to improve computational efficiency and

the reparametrisation of the log-likelihood employed to impose the parameter constraints of the

model are described in the Appendix.

4.3 An application to the timing of trades on NASDAQ and the NYSE

An illustration of the empirical usefulness and flexibility of the univariate g-HawkesE(k) model

is provided here by an analysis of two different datasets obtained from the TAQ database: the

timing of trades in the biotechnology stock Genzyme General (GENZ) on NASDAQ during

the period from 1 March 2000 to 26 April 2000 and the timing of trades in The Walt Disney

Company (DIS) on the NYSE from 5 July 2000 to 29 August 2000. Each of these datasets

comprises 40 trading days. We model the timing of trades that occur during normal trading

hours (i.e. 9:30 EST to 16:00 EST) only, applying the data transformation described in Section

4.1. Further details regarding amendments that we make to the TAQ data are provided in the

Appendix.

Summary statistics of the durations between trades in the final datasets are given in Table

1.37 The mean intertrade duration for GENZ (13 seconds) is considerably shorter than that

36The specification and parametrisation of the deterministic component of the intensity, µγ(t) = µ(t; γ1, ..., γ8),
is discussed in the following section.

37The following practice is adopted for the reporting of test statistics throughout the paper: p-values are shown
in parentheses and tests that reject at the 1% level are shown in bold.
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GENZ – 1.3.2000 to 26.4.2000 DIS - 5.7.2000 to 29.8.2000

No. of durations 70,102 46,210
Mean duration 0.222 0.338
Std deviation 0.365 0.368
Minimum 1/60 1/60
Maximum 7.550 11.933
BL 16 945 (0.000) 2721.5 (0.000)

Table 1: Summary Statistics of Intertrade durations for Genzyme General (GENZ) and Walt Disney
Company (DIS). The summary statistics are for the series obtained by calculating the time intervals
(durations) between trades. BL is the Box-Ljung statistic for zero autocorrelation calculated using the
first 15 lags; the durations are measured in minutes.

for DIS (20 seconds). The autocorrelation functions of the durations (not shown here) exhibit

long sequences of positive autocorrelations similar to those reported elsewhere for intertrade

durations (see, for example, Engle and Russell (1998)).

It is well known that intradaily seasonality is an important feature of such data. In common

with Russell (1999), we have found that adopting a piecewise linear spline (continuous over

the course of the 6.5 hour trading day and with 8 nodes at 9:30,10:00,11:00,...,16:00) for the

deterministic component µγ(t) works well in practice. Specifically, we set

µγ(t) =



















1v(t)∈(0,0.5][γ1 + 2v(t)(γ2 − γ1)] +
6
∑

i=1

1v(t)∈(i−0.5,i+0.5][γi+1 + (v(t)− i+ 0.5)(γi+2 − γi+1)] for v(t) > 0,

γ8 for v(t) = 0,

(23)

where v(t) = 6.5(t/6.5 − bt/6.5c) is the number of hours that have elapsed since the end of

the previous trading day, and γi > 0 (i = 1, ..., 8) .38 The γi (i = 2, ..., 7) are the values of the

deterministic component (i− 1.5) hours into each trading day. Note that we allow γ1 6= γ8.
39

MLEs and diagnostic statistics for the (unrestricted) g-HawkesE(2) model and the g-HawkesE(2)

model with the restrictions πj = 0 (j = 1, 2) imposed are presented for both stocks in Table

2. The latter model imposes a lack of dependence between trading days and is thus labelled as

the ‘No dependence’ model. LR tests of the restrictions πj = 1, ρj = βj ∀j (which yield the

HawkesE(2) model given by (18)) are also reported and are compared to the χ2(4) distribution.

For each parameter of the selected models, non-symmetric 95% confidence intervals are reported

in square parentheses.40 In order to aid an intuitive understanding of the model, Figure 1 shows

38bxc, the integer part of x, denotes the greatest integer that is less than or equal to x.
39It is convenient to parametrise µ(t) by the γi rather than in terms of the slopes of the linear pieces since this

makes it straightforward to impose the constraint µ(t) > 0 when performing the numerical optimisation.
40The confidence intervals (CIs) were calculated as follows. Letting θ denote the parameters of the selected
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GENZ DIS
Model g-HawkesE(2) No dependence g-HawkesE(2) No dependence

α1 98.043 [95,102] 99.125 3.7671 3.7773 [3.2,4.5]

α2 1.7217 [1.4,2.1] 1.3053 0.2570 0.2622 [0.14,0.49]

β1 190.61 [182,199] 188.24 9.5658 9.6078 [7.2,12.8]

β2 5.0319 [4.2,6.1] 3. 8743 0.4544 0.4611 [0.21,0.99]

π1 1.4834 [0.84,2.6] - 0.0351 -
ρ1 152.64 [87,269] - 0.2504 -
π2 1.9066 [1.2,2.9] - 0.0340 -
ρ2 20.076 [12,33] - 0.0858 -
γ1 122.27 [95,157] 218.17 170.40 177.75 [165,192]

γ2 52.417 [42,65] 45.058 96.660 103.12 [90,118]

γ3 33.443 [26,44] 31.369 42.913 47.863 [35,66]

γ4 26.527 [20,34] 23.450 13.468 17.557 [8.4,37]

γ5 25.201 [20,32] 23.510 0.4980 4.0404 [0.19,85]

γ6 29.438 [24,36] 28.146 14.331 17.383 [7.3,41]

γ7 35.560 [29,43] 34.624 24.289 26.836 [14,52]

γ8 90.324 [79,103] 91.106 81.087 83.084 [64,107]

log-likelihood 335,859 335,767 194,659 194,659
LR (πj = 1, ρj = βj) 60.180 (0.000) - 119.21 (0.000) -

Diagnostics
Mean 1.0000 1.0000 1.0000 1.0000
Variance 0.9689 0.9694 1.0064 1.0058
BL 18.244 (0.250) 41.746 (0.000) 31.182 (0.008) 31.249 (0.008)
BL (squares) 22.800 (0.088) 49.292 (0.000) 6.1732 (0.977) 6.1618 (0.977)
ED -2.9091 (0.004) -2.8618 (0.004) 0.4832 (0.966) 0.4406 (0.882)

Table 2: Generalised HawkesE(2) Models fitted to the times of trades for Genzyme (GENZ) and Walt
Disney Company (DIS). The ‘No dependence’ model is the g-HawkesE(2) model with the restrictions
πj = 0 (j = 1, 2) imposed. 95% confidence intervals for the parameters of the selected models are shown
in square parentheses. LR denotes a likelihood ratio test of the indicated restrictions. The mean and
variance of the series on which the diagnostic tests are based are shown; BL is the Box-Ljung statistic for
zero autocorrelation calculated using the first 15 lags; ED is the Engle and Russell (1998) test for excess
dispersion; the diagnostic tests are described in detail in Section 3.2.

the various components of the estimated intensity for the GENZ stock on one randomly selected

trading day (namely, 16 March 2000). The main features of the results are as follows.

In the case of GENZ our preferred model is the g-HawkesE(2) model, whereas we tentatively

accept the restrictions πj = 0 (j = 1, 2) in the case of DIS. The results of the diagnostic tests

and issues related to testing these restrictions are discussed below. Consideration of the MLEs

of (α1, β1, α2, β2) for the selected models reveals that, in both cases, the initial response of the

model shown in Table 2, the log-likelihood was first parametrised by φ = log θ and a 95% CI for each element of
φ was formed in the usual way using the inverse of the negative Hessian matrix. The end points of these CIs were
then exponentiated to obtain 95% CIs for θ, thus ensuring that the final CI contains only positive values.
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Figure 1: Components of the estimated trade intensity of Genzyme General during 16 March 2000. (a)

the estimated total intensity, λ̂(t), and estimated deterministic component, µ̂(t); (b) H1, the estimated

Hawkes-type component of λ̃1(t); (c) S2 and H2, the estimated Hawkes-type and spillover components of

λ̃2(t); (d) the j = 1 and j = 2 spillover components plotted during the first 0.5 trading hours. Also shown

in both columns are the (vertically jittered) occurrence times of the trades. In all cases, the horizontal

axis is time measured in hours.

intensity to a trade is mainly the result of the first exponential response function (j = 1) but that

this component decays rapidly whilst the second response function (j = 2) is initially smaller

but also decays much more slowly. The second function could be referred to as the ‘long lived’

response function. The deterministic components exhibit the ‘U-shaped’ pattern familiar from

earlier studies (see, for example, Engle and Russell (1998) and Engle (2000)), with high intensity

around the open and close, and the lowest intensity occurring around 13:00.41

These features can be seen in panels (a)-(c) of Figure 1 for GENZ, which show: (a) the total

estimated intensity, λ̂(t), together with the estimated deterministic component, µ̂(t); (b) H1,

the estimated Hawkes-type component of λ̃1(t) (see (17)); and (c) H2 and S2, the estimated

spillover and Hawkes-type components of λ̃2(t). Also shown in both halves of the figure are the

occurrence times of the trades, with the points randomly vertically ‘jittered’ to aid clarity. A

41We also estimated a g-HawkesE(2) model with a deterministic component, µ(t), that incorporates day of
the week effects. Specifically, we set µ(t) = µγ(t) · γday, where µγ(t) is again given by (23) and, for example,
γday = γMon if t occurs on a Monday. γFri was normalised to one. The LR tests for the reduction to the
(unrestricted) g-HawkesE(2) models shown in Table 2 accept for both stocks at the 5% level and there was little
difference in the diagnostics obtained for either stock.
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striking feature is that H2 is very much smoother than H1. We also see that the deterministic

component contributes a relatively small fraction of the total intensity.42 We have already

discussed the difficulties associated with testing ‘boundary hypotheses’ such as H0 : α2 = 0.

Nevertheless, it is worth noting that imposing the restriction α2 = 0 and estimating the resultant

g-HawkesE(1) model results in a reduction in the log-likelihood of 466 and 30 for GENZ and DIS

respectively. The g-HawkesE(3) model was also estimated for both stocks but the sum (over j)

of the estimated response functions was exactly the same as for the g-HawkesE(2) model.43

Of particular interest here are the estimates of the parameters (π1, ρ1, π2, ρ2) that govern the

dependence between trading days and the effect of imposing the restrictions πj = 0 (j = 1, 2).

Again, in the absence of the necessary distribution theory, we cannot formally test the boundary

hypothesis H0 : πj = 0 (j = 1, 2) and so some of the comments that follow are necessarily

tentative. In the case of GENZ, imposing these restrictions results in a reduction of 92.4 in the

log-likelihood and both Box-Ljung statistics having p-values of 0.000. An a priori modelling

assumption of no dependence between trading days would be undesirable in this case. Panel (d)

of Figure 1 shows the estimated j = 1 and j = 2 spillover effects during the first 0.5 trading

hours of the selected day for GENZ. Whilst the decay is very rapid for j = 1, it takes about 15

minutes for the j = 2 spillover effect to decay to a value close to zero. Examining the results for

DIS reveals that imposing the restrictions πj = 0 (j = 1, 2) causes the log-likelihood to decrease

by only 0.7, has a negligible effect on the diagnostic statistics, and does not result in large

differences between the restricted and unrestricted MLEs. Also, the adoption of the minimum

AIC procedure (Akaike (1977)) would result in the selection of the ‘No dependence’ model (with

AIC of -595,675 compared to -595,668) as a result of the gain in parsimony. This model is thus

tentatively accepted in the case of DIS. It should be stressed that an empirical finding of an

absence of spillover effects in certain settings does not render models that incorporate these

effects less valuable. In principle, such models make it possible to test the hypothesis of a lack

of dependence and the failure to reject such a hypothesis is interesting in and of itself.

42In order to provide a rough guide to the importance of including the deterministic component in the model
specification (whilst ensuring the positivity of the intensity) we estimated the g-HawkesE(2) model using the
GENZ data, with the restrictions γ1 = γ2 = ... = γ8 = 0.001 imposed. The log likelihood decreased by 210 and
the diagnostic statistics were (39.7, 68.4,−1.97) for (BL,BL (squares), ED) respectively.

43This finding appeared to be insensitive to the starting values used for numerical optimisation.
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We note that the LR test of the restrictions implied by the HawkesE(2) model has a p-value

of 0.000 for GENZ and that the restrictions result in an additional diagnostic test rejecting at

the 5% level (the Box-Ljung test of the squares now has a p-value of 0.037). The particularly

restrictive form of the spillover effects implied by the HawkesE(2) model is thus rejected for

GENZ, again emphasising the benefits of estimating these effects from the data.

The diagnostic tests for the selected models are very well behaved indeed, especially given

the size of the datasets used. The smallest p-value was that of the excess dispersion test for

GENZ (0.004) and that of the Box-Ljung test for DIS (0.008). The selected models also represent

a huge improvement over the fit of the non-homogeneous Poisson model to these datasets. This

model is given by λθ(t) = µγ(t), where µγ(t) is as in (23). The analogous diagnostic test statistics

(BL,BL (squares),ED) for the non-homogeneous Poisson models are (10571, 2065.0, 117.90) and

(539.70, 3.9096, 10.358) for GENZ and DIS respectively. The g-HawkesE(2) model thus describes

well the self-exciting aspect of the dynamics of the processes, in addition to the deterministic,

intradaily seasonality.

Overall, the results demonstrate the advantages of using a sufficiently general initial model

that allows the nature of the dependence between trading days to be estimated from the data.

As is apparent here, no single a priori modelling assumption is valid for all stocks.44 We have

considered a particular specification in which the jth spillover effect depends on λ̃j(τd−1), the

level of the jth component of the intensity at the end of the previous trading day. In an

alternative specification that may prove useful the spillover effect depends on the entire path of

the intensity during the previous day via the term
∫ τd−1

τd−2
W (τd−1 − s)λ̃j(s)ds, where W (.) ≥ 0

is a non-negative ‘weighting’ function. The model structure introduced here in which the non-

deterministic components of the intensity on trading day d are specified recursively in terms of

functionals of the intensity paths on previous days and the contributions of the events occurring

on day d is very general. This structure provides a useful framework for approaching the issue

of dependence between trading days in PP models of financial markets.

44The difference between the estimated spillover effects for GENZ and DIS may well be due to the different
opening procedures on NASDAQ and at the NYSE.
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5 Bivariate intensity-based models

Having discussed the basic ‘building block’ of our (univariate and bivariate) generalised Hawkes

models – the λ̃j(t) in equation (17) above – we are now in a position to turn again to the main

focus of the paper: namely, the specification of multivariate models for market event data. The

bivariate g-HawkesE(k) model and likelihood are discussed below, drawing to a considerable

extent on our earlier treatment of the univariate model. An application to the timing of trades

and mid-quote changes for an NYSE stock is then presented and the empirical results are related

to the existing theoretical and empirical market microstructure literature.

5.1 Bivariate g-HawkesE(k) models

The univariate generalised Hawkes models can readily be extended to the multivariate case by

including terms that capture the effect of q-type events (q 6= m) on the mth stochastic intensity.

In the bivariate (BV) case, equation (16) is replaced by

λm(t) = µm(t) +
k
∑

j=1

λ̃
(j)
mm(t) +

k
∑

j=1

λ̃
(j)
mq(t), (24)

for m = 1, 2, where µm(t) is a positive deterministic function, q = 2 if m = 1 and q = 1

otherwise, and

λ̃
(j)
mr(t) = π(j)mrλ̃

(j)
mr(τd−1)e

−ρ
(j)
mr(t−τd−1) +

∫

[τd−1,t)

α(j)
mre

−β
(j)
mr(t−u)dNr(u), (25)

for τd−1 < t ≤ τd (d = 1, 2, ...), λ̃
(j)
mr(0) = 0 andmr ∈ {1, 2}×{1, 2}. The now familiar parameter

restrictions α
(j)
mr ≥ 0, β

(j)
mr > 0, π

(j)
mr ≥ 0, ρ

(j)
mr > 0 (∀mr) apply. The crucial extension is the

inclusion of the terms λ̃
(j)
mq(t) in (24), which allow the occurrence of q-type events to influence

the intensity for m-type events. Whilst the notation necessarily becomes more cumbersome in

the bivariate case, the essential building block of the model has not changed, as is evident from

a comparison of equations (25) and (17). We thus retain a key feature of the univariate model

– that is, the flexible specification of intensity spillover effects from one trading day to the next.

The model given by (24) and (25) is henceforth referred to as the BV-g-HawkesE(k) model.

Analogously to the univariate case, we note two special cases of this model. First, under the

restrictions (π
(j)
mr = 1 and ρ

(j)
mr = β

(j)
mr ∀j, ∀mr), the BV-g-HawkesE(k) model is equivalent to the
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‘mutually exciting’ model given in Hawkes (1971).45 Second, when π
(j)
mr = 0 ∀j and ∀mr there

is no dependence between days since there are then no intensity spillover effects between days

for either λ1(t) or λ2(t).

Taking logarithms of (6) yields the following log-likelihood for the BV-g-HawkesE(k) model:

l(θ) = l1(θ1) + l2(θ2), (26)

where θ = (θ1, θ2), θm ∈ Θm is the parameter vector of the mth stochastic intensity, and

lm(θm) =

T/l
∑

d=1











∫

Ad

(1− λm(s; θm))ds+

∫

Ad

log λm(s; θm)dNm(s)











, (27)

where λm(s; θm) is given by (24) and (25), Ad = (τd−1, τd], and we have decomposed lm(θm)

into the contributions of the different trading days as before. Writing argmaxθm lm(θm) as

θ̂m, it follows from the fact that θ1 and θ2 are variation free (i.e. (θ1, θ2) ∈ Θ1 × Θ1) that

argmaxθ l(θ) = (θ̂1, θ̂2).
46 We therefore obtain the MLE of θ by separate numerical optimisation

of (27) for m = 1 and m = 2 in order to reduce the dimensionality of the parameter space of

the optimisation problem.47 Further computational details related to estimation of the BV-g-

HawkesE(2) model are given in the Appendix.

5.2 Timing of trades and quote changes on the NYSE

The BV-g-HawkesE(2) model is now used to analyse the timing of trades and mid-quote changes

occurring on the NYSE for the stock General Motors Corporation (GM).48 This application is of

economic interest since the bivariate model allows the study of the two way interaction between

the arrival processes for trades and price changes, thus providing a microstructure view of the

relationship between trading activity and price volatility.

45In line with our terminology for the univariate case, we refer to the BV-g-HawkesE(k) model with these
parameter restrictions as the BV-HawkesE(k) model.

46If the parameters of interest are, say, the parameters of λ1(t) alone (denoted by θ1), and we have some bivariate
PP model satisfying that θ1 and θ2 are variation free (as is the case here), then the MLE of θ1 is obtained from
the conditional model λ1(t) and the associated ‘conditional likelihood’ l1(θ1). Under these conditions, we might

say that {T
(2)
i } is weakly exogenous for θ1.

47The numerical optimisation was again performed using the BFGS algorithm with numerical derivatives.
48The ‘specialist’ or ‘market maker’ for each stock on the NYSE is required to report the best quotes (i.e.

the highest bid and lowest offer) communicated to ‘the crowd’ by the specialist himself or a floor broker. The
‘mid-quote’ is defined here as the simple average of the reported bid and ask quotes. The quotes may consist of
any of the following: the specialist’s own trading interest, the trading interest of floor brokers in the crowd, or
limit orders in the specialist’s Display Book. The specialist is obliged to execute any order at a price that is at
least as favourable as his published quote. Details of the institutional features of the NYSE, including reporting
procedures for trades and quotes, may be found in Hasbrouck, Sofianos, and Sosebee (1993).
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The period analysed is the 40 trading days from 5 July 2000 to 29 August 2000. The data

transformation described in Section 4.1 is used to map the times of all trades and all changes to

the mid-quote occurring during normal trading hours onto [0,∞). The times of the mid-quote

changes are then thinned (i.e. a subset of the times is selected) to obtain the ‘mid-quote events’

that we model. We define a mid-quote event as occurring at the earliest time that the mid-quote

changes by an amount greater than or equal to $1/16 (in absolute value terms) compared to the

mid-quote in force at the time of the previous mid-quote event.49 The aim of our analysis here

is to examine at a microstructure level of detail the two way interaction of trades and market

quotes. It is therefore desirable not to set the threshold used to thin the quote data too high, in

order to capture changes to the mid-quote over short time horizons. The threshold of $1/16 used

here is approximately equal to half of the average spread of $0.117, and thus represents a very

small movement in the mid-quote.50 In order to avoid the model becoming overly complicated,

we do not directly model the size of the change in the mid-quote between successive events.

Given the way the mid-quote events are defined, the absolute size of this change can exceed

$1/16. However, analysis of this dataset showed that the majority (82.4%) of these changes do

indeed equal $1/16.51

Recall from Definition 2 that, since the pooled process {Ti} is always simple, the M -variate

PPs that we deal with here assign zero probability to the simultaneous occurrence of two events

(of either the same or different types). In the case of the GM dataset analysed here, approxi-

mately 11 per cent of the mid-quote events have exactly the same timestamp as a trade. Since

the simultaneous occurrence of a trade and a mid-quote event in the data will almost always

be the result of lags between the (non-simultaneous) actual occurrence times of the events in

49The first mid-quote event is defined to occur at the time when the first pair of quotes were reported for the first
trading day in the data set. Denote by {T

(1)
1 , T

(1)
2 , ...} the (transformed) times of all changes to the mid-quote.

The first mid-quote event time is T
(1)
1 ; the second mid-quote event time is min{T

(1)
i : i > 1, |q(T

(1)
i )− q(T

(1)
1 )| ≥

0.0625}, where q(T
(1)
i ) is the mid-quote reported by the specialist at time T

(1)
i . Subsequent mid-quote events are

defined similarly. Engle and Russell (1998) use an analogous procedure to define their price events.
50The fit of the model when all changes to the mid-quote are included in the data is somewhat worse but

suggests that perhaps some quite minor change to the model specification (such as the use of a more flexible
functional form for the response function) could rectify the problem. We have not pursued this further in the
current paper.

51The absolute changes are always some multiple of $1/32, with the proportion of the changes equal to $2/32,
$3/32, $4/32 being given by 82.4%, 12.9%, and 3.0% respectively. An equivalent analysis of the absolute value
of all changes to the mid-quote for this data set reveals that 85.9%,11.1%,1.9% are equal to $1/32,$2/32,$3/32
respectively.
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Trade durations Mid-quote event durations

No. of durations 33,372 5,044
Mean duration 0.467 3.087
Std deviation 0.108 4.505
Minimum 1/60 1/60
Maximum 28.733 60.800
BL 4733.1 (0.000) 1192.1 (0.000)

Table 3: Summary statistics of the durations between trades and mid-quote events for General Motors
Corporation. BL is the Box-Ljung statistic for zero autocorrelation calculated using the first 15 lags; the
durations are measured in minutes.

continuous time and the reported times, we adjust the times of those mid-quote events that

coincide with a trade by a small, i.i.d. uniform amount. This procedure retains the original

sequence of the other events and leaves the occurrence time of the mid-quote event unchanged

to the nearest second. The adjustment is uniformly distributed because we do not want to

impose prior assumptions about the original ordering of the two events. A discussion of the ad-

justment procedure used and two possible alternatives is given in the Appendix, together with

the results of a sensitivity analysis comparing the three adjustment rules. These results support

the robustness of the main conclusions of our empirical findings.

Summary statistics of the intertrade durations and durations between successive mid-quote

events are given in Table 3 for the GM data. The average duration between mid-quote events is

approximately 6.6 times the average intertrade duration. The results of fitting a restricted BV-

g-HawkesE(2) model with the restrictions (π
(1)
mm = 0, π

(1)
mq = 0, π

(2)
mq = 0;m = 1, 2; q = 2 if m = 1

and q = 1 otherwise) are shown in Table 4.52 The deterministic components, µm(t; γm1, ..., γm8),

have exactly the same form as in equation (23). The restrictions imposed imply that the non-

deterministic components of the intensity exhibit zero spillover effects, except for the λ̃
(2)
mm(t)

components (m = 1, 2) which capture the j = 2 effect of m-type events on the mth intensity.

The restricted model fits very well indeed, with only one of the diagnostic tests rejecting at

the 5% level.53 Figure 2 graphs the estimated components of the mid-quote event and trade

52The results of fitting the unrestricted BV-g-HawkesE(2) model are not shown here since the unrestricted
model was found to have identical log-likelihood and diagnostic statistics. The ‘restricted parameters’ had MLEs
very close to zero in the unrestricted model and the ‘unrestricted parameters’ were virtually identical for the two
models.

53Two sets of diagnostics are reported in Table 4: one for the quote intensity and one for the trade intensity.
The (BL,BL(squares), ED) tests based on the durations of the pooled process (formed after the changes of time)
were (23.670, 23.277,−3.7246), again indicating a quite pleasing goodness of fit. The mean and variance of these
durations were 0.98 and 0.90. The reader is referred to Section 3.2 for details of the diagnostics used.
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θ1 Quote intensity - λ1(t; θ1) Trade intensity - λ2(t; θ2) θ2

α
(1)
11 1.7224 [1.2,2.5] 10.388 [8.9,12] α

(1)
22

α
(2)
11 0.1469 [0.02,1.1] 1.4838 [0.90,2.4] α

(2)
22

β
(1)
11 8.6842 [5.3,14] 42.716 [31,59] β

(1)
22

β
(2)
11 1.4072 [0.41,4.9] 3.2561 [2.1,5.0] β

(2)
22

π
(2)
11 1.7270 [0.07,43] 0.2103 [0.05,0.84] π

(2)
22

ρ
(2)
11 4.0172 [0.55,29] 1.3812 [0.50,3.8] ρ

(2)
22

α
(1)
12 41.009 [37,46] 216.82 [180,261] α

(1)
21

α
(2)
12 4.4637 [2.7,7.3] 38.830 [27,55] α

(2)
21

β
(1)
12 810.43 [677,971] 1550.8 [1155,2083] β

(1)
21

β
(2)
12 96.386 [64,146] 101.42 [70,148] β

(2)
21

γ11 21.740 [14,34] 74.077 [53,104] γ21
γ12 2.6181 [0.76,9.0] 45.906 [33,63] γ22
γ13 0.0000 15.580 [7.9,31] γ23
γ14 0.0000 21.365 [15,30] γ24
γ15 0.0000 17.928 [13,25] γ25
γ16 0.0000 26.408 [21,33] γ26
γ17 0.7743 [0.14,4.4] 31.456 [25,39] γ27
γ18 0.4877 [0.01,37] 69.602 [60,80] γ28

l1(θ1) 11,762 131,753 l2(θ2)

Mean(1) 0.9993 1.0000 Mean(2)

Var(1) 0.9741 1.0189 Var(2)

BL(1) 20.244 (0.163) 46.487 (0.000) BL(2)

BL(1) (squares) 12.313 (0.655) 4.7585 (0.994) BL(2) (squares)

ED(1) -0.6499 (0.516) 1.2216 (0.222) ED(2)

Table 4: MLEs and diagnostics for a restricted BV-g-HawkesE(2) model of the timing of trades and
mid-quote changes of General Motors Corporation. The parameters of the quote intensity and the trade
intensity are listed in the first and last columns respectively. 95% confidence intervals are shown in square
parentheses. The maximised log likelihood for the bivariate model is 11,762 + 131,753 = 143,515. The
reported diagnostics are analogous to those reported for the univariate models earlier and are described
in Section 3.2; BL again denotes the Box-Ljung test and ED the excess dispersion test; a superscript (1)
denotes a diagnostic based on the quote intensity and a (2) denotes one based on the trade intensity.

intensities (in panels (a),(c),(e) and (b),(d),(f) respectively) for a randomly selected trading day

– day 21 of the dataset, i.e. 2 August 2000. The first panel of the mth column (m = 1, 2) shows

the estimated total intensity, λ̂m(t), and estimated deterministic component, µ̂m(t); the second

shows the occurrence times of the q-type events (q 6= m) in order to highlight the impact of these

events on λ̂m(t); the third shows λ̂mq(t) (q 6= m), which is the estimate of
∑2

j=1 λ̃
(j)
mq(t) in (24);

and the fourth shows λ̂mm(t), the estimate of
∑2

j=1 λ̃
(j)
mm(t), together with Smm, the estimate of
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Figure 2: Components of the estimated mid-quote event and trade intensities for General Motors on

2 August 2000. The first column of panels is for the mid-quote event intensity and the second for the

trade intensity. (a) the estimated total intensity, λ̂1(t), and estimated deterministic component, µ̂1(t);

(c) λ̂12(t), the estimate of
∑2

j=1 λ̃
(j)

12 (t); (e)λ̂11(t), the estimate of
∑2

j=1 λ̃
(j)

11 (t), and S11, the estimate of

the spillover effect π
(2)
11 λ̃

(2)

11 (τ20)e
−ρ

(2)
11 (t−τ20). The other components shown are defined analogously. Also

shown in the first (resp. second) column are the (vertically jittered) occurrence times of the trades (resp.

mid-quote events). Note that panels (a) and (c), and (b) and (d) are drawn to the same scale. In all

cases, the horizontal axis is time measured in hours.

the spillover effect π
(2)
mmλ̃

(2)
mm(τ20)e

−ρ
(2)
mm(t−τ20).

Consider first the MLEs reported in Table 4. Non-symmetric 95% confidence intervals were

calculated as for the univariate case and are again shown in square parentheses.54 The ‘U-

shape’ of the deterministic component of the trade intensity, and the long lived j = 2 response

functions which govern the evolution of the λ̃
(2)
mm(t) terms in (24) (m = 1, 2) are familiar from

the univariate results. The deterministic component of the quote intensity is close to zero after

54The CIs were obtained by exponentiating the CIs for the elements of φm = log(θm) (m = 1, 2). The latter
were based on the inverse of the negative Hessian matrix, as in the univariate case. A pragmatic approach was
taken in order to avoid the problems associated with γ13, γ14, γ15 and γ16 having values near to the boundary of
the parameter space: the model was estimated with the additional restrictions γ13 = γ14 = γ15 = γ16 = 0.0001
imposed (in order to ensure positivity of the intensity process) and CIs for the other quote intensity parameters
were obtained using these restricted estimates. Imposing the additional restrictions had virtually no effect on the
log likelihood and MLEs for the quote intensity.
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the first hour of the day. Of particular economic interest are the estimates of α
(1)
mq, β

(1)
mq, α

(2)
mq,

and β
(2)
mq (m = 1, 2; q 6= m). We see that the occurrence of a trade results in an upward jump in

the estimated mid-quote event intensity (equal to α̂
(1)
12 + α̂

(2)
12 ) and that the effect then decays

away with time. Similarly, the occurrence of a mid-quote event results in an increase in the

estimated trade intensity. These effects bring about the large, short lived spikes that are evident

in the estimated total intensities λ̂m(t) (m = 1, 2) in Figure 2. Notice that the magnitude of the

spikes in λ̂12(t) and λ̂21(t) are large relative to the levels of λ̂11(t) and λ̂22(t) respectively. This

is particularly pronounced in the case of the mid-quote intensity. The response functions of the

‘cross effect’ terms in (24),
∑2

j=1 λ̃
(j)
mq(t), are very short lived, with the j = 1 component having

a half life of 3.1 seconds in the case of λ̂12(t) and 1.6 seconds in the case of λ̂21(t). The picture

that emerges from Figure 2 is one in which the cross effect terms which capture the effect of

q-type events on the mth intensity (q 6= m) exhibit large, short lived fluctuations and play an

extremely important role in determining the dynamics of the process. We shall consider the

economic interpretation of these effects below.

The hypothesis H0 : α
(j)
12 = 0 (j = 1, 2) corresponds to the case where the mid-quote event

intensity does not depend on the history of trades. Again, since the parameter values under

the null lie on the boundary of the maintained hypothesis and there are nuisance parameters

that are unidentified under the null, the standard LR test cannot be applied. Nevertheless,

we note that in this case imposing the restrictions α
(j)
12 = 0 (j = 1, 2) on the λ1(t) intensity

of the (unrestricted) BV-g-HawkesE(2) model yields a univariate g-HawkesE(2) model with a

log-likelihood of 10,672 – a sizeable reduction of 1090 when compared to l1(θ1) in Table 4. All 3

diagnostic tests continue to accept at the 5% level. Similarly, imposing the restrictions α
(j)
21 = 0

(j = 1, 2) on λ2(t) results in a reduction in the log-likelihood of 450 and in the excess dispersion

test rejecting at the 1% level. It would seem that in this case, the bivariate model is a substantial

improvement over the two univariate models which ignore the cross effects. Interestingly, this

appears to be true not only of the mid-quote event intensity but also of the trade intensity,

indicating that the effect of mid-quote events on the intensity for trades should not be ignored.

A sensitivity analysis is presented in the Appendix comparing three different adjustment rules

for the treatment of the simultaneous occurrence of trades and mid-quote events in the original
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Figure 3: Estimated instantaneous volatility, σ̂2(t), for General Motors on 2 August 2000 between 14:30

and 15:30 EST. σ̂2(t) is based on equation (29). Also shown are the (vertically jittered) occurrence times

of the trades. Volatility is measured per trading year (where one year is 252×6.5 trading hours). The

horizontal axis is time measured in hours since the start of the trading day.

data. The analysis strongly suggests that our finding of a positive effect of mid-quote events on

the trade intensity is not the result of the particular adjustment rule employed here.

An aim of one strand of empirical microstructure research is to investigate the relationship

between the trade arrival process and volatility. In order to see how the mid-quote intensity

of the BV-g-HawkesE(2) model can be used to obtain (an approximation to) the instantaneous

volatility of the price process, consider the case where all changes to the mid-quote take values

in {−c,+c} and a mid-quote event is defined to occur whenever the mid-quote changes. Denote

the time of the ith mid-quote event as usual by T
(1)
i and the associated mid-quote change by

∆i. Then define the instantaneous conditional volatility by

σ2(t) = lim
h↓0

E

[

1

h

(

P (t+ h)− P (t)
P (t)

)2

|Ft

]

, (28)

where Ft = σ(P (t))∨FN
t , N is the bivariate PP of trades and mid-quote events, and the right-

continuous price process is given by P (t) = P (0) +
∑

i:T
(1)
i ≤t

∆i. Then, as Engle and Russell

(1998) have noted, it is possible to express σ2(t) in terms of the mid-quote intensity. Specifically,

σ2(t) = c2λ1(t+)/P (t)2, (29)

where we have used Lemma 3.3(ii) of Aalen (1978) and have assumed that λ1(t) is the mid-quote

event intensity with respect to Ft as well as FN
t (i.e. conditioning additionally on the current

price level does not alter the intensity).
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An approximate estimate of the instantaneous volatility can be formed using the estimates

for the restricted BV-g-HawkesE(2) model obtained above by making the following substitutions

in (29): replace λ1(t+) by the (right-continuous version of the) estimated intensity λ̂1(t), set

c = $1/16 and let P (t) = P (0) +
∑

i:T
(1)
i ≤t

∆i (where T
(1)
i is the time of the ith mid-quote

event for the dataset and ∆i is the actual change to the mid-quote since the last mid-quote

event).55 This estimate is graphed in Figure 3 for the trading hour between 14:30 and 15:30

EST on 2 August 2000 (the same day that was used in Figure 2) . Showing just one hour

in this way allows the detail of the function and its relation to the timing of the trades to be

clearly seen. A prominent feature is the association of periods of high volatility with periods of

high trading activity (so called ‘clusters’ of trades). As expected, this feature was evident for

all of the trading days that we graphed. Note also that the volatility and mid-quote intensity

estimates (the latter not shown here) were difficult to distinguish as a result of the relatively

small variability of the price compared to that of the intensity. The BV-g-HawkesE(2) model

can thus be used to obtain a microstructure view of the interaction between financial market

volatility and its determinants. It would be interesting to condition also on the volume of trades

and the size and direction of the price changes between mid-quote events. The extension of our

approach to models that are conditional on a filtration wider than the internal history of the

PP is discussed in Section 6.3.2 below.

5.3 Market Microstructure

Much of the existing theoretical and empirical market microstructure literature concentrates on

the impact of trades on prices rather than on the reciprocal effect of prices on the trade arrival

process. By contrast, the modelling framework presented here allows the two way interaction of

trades and mid-quote changes to be analysed. The empirical results of Section 5.2 are related

to the theoretical and empirical microstructure literatures in turn below.

The theoretical literature is concerned with the role that the trading process plays in the

formation of security prices, and in particular with how new information is incorporated into

55There are 2 sources of approximation error here. First, the mid-quote is assumed to change only at the times
of the mid-quote events whereas in reality it changes more frequently. Second, (29) holds exactly when ∆2

i = c2

∀i but we observe ∆2
i > c2 for a minority of mid-quote events in the dataset. Nevertheless, the approximation is

a useful one.
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prices.56 An important class of models is the sequential trade models of Glosten and Milgrom

(1985), Easley and O’Hara (1987) and Easley and O’Hara (1992). In these models, the Bayesian

specialist learns about the information held by the informed traders by observing the sequence of

trade outcomes and sets his quotes equal to the expected terminal value of the asset conditional

on the past sequence of trading outcomes and a trade at the quote. Thus, the dynamics of the

posted quotes and of transaction prices result from this Bayesian updating. Crucially, trades

convey information to the specialist and so impact the quoted prices. A central feature of the

Easley and O’Hara (1992) model is that uninformed market participants, including the specialist,

are uncertain whether an information event has occurred prior to the start of a given trading

day. This results in periods of low volatility tending to occur in periods when there are few

trades, since such a period increases the probability the specialist attaches to there having been

no information event at the start of the trading day.

The finding in Section 5.2 above that the occurrence of a trade results in an increase in the

mid-quote intensity is thus consistent with the central feature of the sequential trade models:

namely, that the specialist updates his beliefs about the value of the stock in response to the

trades that he observes. A change to the mid-quote is thus more likely immediately following

a trade. We note that a trade would also trigger a mid-quote change when one of the sides

to the trade was a limit order that constituted the market quote before the trade took place.

Theoretical microstructure models have analysed in much less detail the effects of quoted prices

on the trade arrival process and so it is more difficult to interpret our finding that the occurrence

of a mid-quote change results in an increase in the trade intensity. A broad explanation is that

some market participants closely monitor the quoted prices and rapidly submit market orders

in order to take advantage of prices that are favourable to them, whilst others may set their

quotes in order to attract such market orders. For example, when the mid-quote change is

the result of inventory control by the specialist (see Ch. 2, O’Hara (1995)), the altered quote

will tend to be ‘hit’ soon afterwards by an attracted market order on the opposite side of the

market. Asymmetric information considerations might predict a longer run negative effect of

quote changes on trading intensity, reflecting the incorporation of private information into the

56O’Hara (1995) and Hasbrouck (1996) give book and review length treatments respectively of this literature.
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stock price over time and hence reduced incentives for the informed to trade. Such an effect is

not possible in our model since the constraints α
(j)
21 ≥ 0 ∀j are imposed. As is discussed briefly

in Section 6.3.2 it is possible to allow for such negative effects in our modelling framework and

such an extension would be of some interest given our findings here.

In our model, a cluster of trades with short intertrade durations results in a large increase

in the mid-quote event intensity and thus a large increase in volatility (see Figure 3). This is

consistent with the central prediction of the Easley and O’Hara (1992) model noted above –

namely, that periods of low volatility tend to occur in periods when there is little trade. A

number of other empirical studies have reported similar findings.57

With the exception of Engle and Lunde (2003), none of these papers model the dependence

of the intertrade durations on prices. Both Russell and Engle (1998) and Engle (2000) assume

that intertrade durations are not Granger caused by prices. In contrast, the bivariate modelling

approach adopted here is ideally suited to the study of the two way interaction between trades

and prices. Dufour and Engle (2000) provide preliminary evidence that short intertrade dura-

tions tend to follow durations with large absolute returns (and large trades). This is in line

with our finding that the occurrence of a mid-quote change results in a large increase in the

trade intensity. In contrast, Grammig and Wellner (2002) finds that higher lagged volatility

significantly reduces trade intensity.58 The further investigation of the effect of prices on the

trade arrival process is an interesting challenge for both theoretical and empirical microstructure

research.

57Engle and Lunde (2003) found that short intertrade durations predict short (observed forward) mid-quote
event durations; Engle and Russell (1998) found that expected price durations were shorter following price dura-
tions with a higher number of trades per second; Engle (2000) reports that the conditional volatility per unit time
over an intertrade duration was higher when both the expected and actual duration were shorter; and Russell and
Engle (1998) note that the expected squared price change over an intertrade duration was a decreasing function
of the expected length of that duration.

58Note, however, that this study analysed data for a stock on an electronic limit order book system in the
five weeks following a large initial public offering, a situation in which asymmetric information effects would be
expected to be particularly prevalent.
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6 Comparison with previous research and possible extensions

6.1 Model specification via durations

Engle and Lunde (2003) (hereafter EL) specify models for a bivariate sequence of durations

{S(1)
i , S

(2)
i }i∈{1,2,...} , where S

(m)
i = T

(m)
i −T (m)

i−1 is the ith successive duration between the m-type

events. The events are defined so that S
(1)
i and S

(2)
i refer to time intervals with a common origin

in real time. In their setting, S
(1)
i is the ith intertrade duration and S

(2)
i is the time from the

start of the ith intertrade duration until the next trade or mid-quote change (whichever occurs

first). The trade arrival process is thus the ‘driving process’ and the arrival processes for trades

and mid-quote changes are not treated symmetrically. This approach avoids the difficulty that

arises in general when constructing bivariate models via conventional time series modelling of

{S(1)
i , S

(2)
i }: namely, that the origins of S

(1)
i and S

(2)
i may well be far apart in real time.

The EL model is a rather specialised model, designed with a particular economic question

in mind – that is, the speed with which the information content of trades is incorporated into

prices. This sharp focus does, however, limit the scope and wider applicability of the model.

Indeed, the EL model does not (and does not claim to) constitute a full bivariate PP model.

In particular, it does not imply an intensity in continuous time for mid-quote change events.

Other restrictive features are that the occurrence of a mid-quote change during an intertrade

duration cannot influence the trade intensity during that duration, and that there is an implicit

loss of information when multiple mid-quote changes occur without an intervening trade. Also,

the selection of a single ‘driving process’ will often be difficult to justify on economic grounds

when moving to higher dimensional multivariate PP models.

The above discussion prompts the question of how a full M -variate PP model could be

specified via the conditional distribution of durations. We suggest specifying

P[Si+1 ≤ x, Zi+1 = m|FN
Ti ] =

∫ x

0
fi+1(s,m) ds, (30)

for m = 1, ...,M, where Si+1 = Ti+1 − Ti is the (i + 1)th duration of the pooled process {Ti},

FN
Ti

= σ(T1, Z1, T2, Z2, .., Ti, Zi) and
∑M

m=1

∫∞
0 fi+1(s,m)ds = 1. That is, we suggest specifying

the conditional density of the time to the next event of the pooled process given the multivariate
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filtration at the start of the duration and given that the next event has type m.59 Such an

approach may prove useful in future work.60

6.2 Russell (1999)

Russell (1999) also adopts an intensity based approach. The Autoregressive Conditional Inten-

sity (ACI) family of models and the suggestions of Russell (1999) concerning the construction

of diagnostic tests are considered in turn below.

6.2.1 The Autorgeressive Conditional Intensity Model

We define here the bivariate ACI(1,1) model (with time varying intensity between events) that

is estimated in the empirical section of Russell (1999).61 In our terminology, this is anM -variate

PP with M = 2. The FN
t -intensity of the process is given by

λm(t) = µm(t) exp[φm(t)][Um(t)]ϕmm [Un(t)]
ϕmn , (31)

for m = 1, 2, where µm(t) is a positive deterministic function, n = 2 if m = 1 and n = 1

otherwise, ωm, ϕmm, ϕmn are parameters, Uq(t) = t−TN̆q(t)
is the so called backward recurrence

time for q-type events (q = 1, 2), and N̆q(t) is the process with left continuous sample paths

that counts the q-type events. The central feature of the model is the φm(t) processes, whose

sample paths are constant over the durations of the ‘pooled process,’ {Ti}. That is,

φm(t) = φm,i for Ti < t ≤ Ti+1. (32)

An autoregressive specification is adopted for φi = (φ1,i, φ2,i)
′, namely

φi =

{

η1εi +Bφi−1 if Zi = 1
η2εi +Bφi−1 if Zi = 2

, (33)

where η1,η2 and B are parameters of the appropriate dimension.62 εi is the scalar r.v. associated

with the occurrence of the ith event of the pooled process. Let T ∗i denote the time of the most

59Note that specifying fi+1(s,m) for m = 1, ...,M and for all i determines (λm(t))Mm=1 uniquely.
60Indeed, we recently became aware of Kamionka (2001), which essentially adopts this approach to specify a

bivariate PP model.
61The original notation of Russell (1999) has been adapted somewhat here, partly in order to highlight certain

aspects of the model structure and partly to ensure consistent notation throughout this paper. In the notation
used here the model might be better described as an ACI(1,0) model (using ARMA(p,q) type nomenclature).

62Notice that we have been careful to define the λm(t) so that they have left continuous sample paths and are
thus predictable. The use of right continuous λm(t) in the expression for the likelihood in (6) is incorrect and
introduces an error in the evaluation of the log-likelihood.
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recent event that occurred prior to the ith event and is of the same type as that event. Formally,

let T ∗i = sup{Tj : j < i and Zj = Zi} provided that this set is not empty and let T ∗i = 0

otherwise. Then, the r.v. εi(ω) is given by

εi(ω) = 1− ε̃i(ω) = 1−
Ti(ω)
∫

T ∗i (ω)

λZi(ω)(ω, s)ds. (34)

In the univariate case, T ∗i = Ti−1 and φi = ηεi + bφi−1, where {εi} is an i.i.d. sequence

of mean zero r.v.’s (a fact that follows by setting M = 1 in Corollary 3.2 since λ is the FN
t -

intensity). {φi} is thus an AR(1) process. This way of specifying the model allows the powerful

methods of time series analysis to be brought into play. However, we have been unable to prove

that the εi in (34) are independent (or even uncorrelated) in the bivariate case. It does not

follow from Theorem 3.1 and Corollary 3.2 that {εi} is an i.i.d. sequence of mean zero r.v.’s in

this case. Recalling the definition of the {e(m)
i } (m = 1, 2) series in Corollary 3.2, our notation

here highlights that although a particular realisation, {εi(ω)}, consists of some arrangement of

the elements of {e(1)i (ω)} and {e(2)i (ω)}, that arrangement is random (i.e. it varies with ω). It

may well be that further work will resolve this problem.63 An alternative model is given by

leaving the specification unchanged except that εi is now given by

εi = 1− ε̃i = 1−
Ti
∫

Ti−1

2
∑

m=1

λm(s)ds. (35)

Since the FN
t -intensity of

∑

mNm(t) is
∑

m λm(t), it now follows easily from arguments identical

to those in Theorem 3.1 and Corollary 3.2 that {ε̃i} is i.i.d. Exp(1) in this case.

To sum up, the ACI-type model structure offers useful alternative model specifications to the

generalised Hawkes models developed here. Given the complexity of financial market event data,

the availability of different families of econometric models is to be welcomed. An advantage of

the ACI framework is the rich variety of time series specifications that could be adopted for

φi. Possible disadvantages are the technical difficulties sometimes involved in establishing the

properties of the ε̃i and the need to use numerical integration (in all but the simplest cases) to

calculate the log-likelihood and diagnostic tests based on the integrated intensity. Ultimately,

63We would be grateful for any suggestions on proofs related to these points. In private correspondence, Jeffrey
Russell has kindly informed me of the results of some simulation experiments which seem to support the conjecture
that {ε̃i} is i.i.d. Exp(1).
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both families of models will be judged by their ability to provide well specified empirical models

whose parameters may be readily interpreted in economic terms.

6.2.2 Diagnostic testing revisited

We have commented already that Russell (1999) suggests the use of the {e(m)
i (θ0)}i sequence

defined by (15) as the basis for diagnostic testing and indicates that the results of Yashin and

Arjas (1988) concerning the ‘exponential formula’ might be used to establish its i.i.d. Exp(1)

property, provided that a certain absolute continuity condition is satisfied. The difficulty in this

context in applying the formula is that the σ-field upon which conditioning takes place is not

fixed. Consider the process F
(m)
i (x) = Pr[S

(m)
i ≤ x|Gx], where Gx is the observed history on

which the assessment of the hazard is based and S
(m)
i = T

(m)
i − T

(m)
i−1 as above.64 Since non

m-type events can occur within this duration the conditioning is ‘dynamic’ (i.e. Gx depends on

x). In order to apply the exponential formula in the Corollary of Yashin and Arjas (1988) it is

necessary that F
(m)
i is a continuous function of x (with probability one). This is an undesirably

restrictive condition in our context since it does not allow F
(m)
i to exhibit jumps in response to

the occurrence of q-type events (q 6= m). Such jumps would occur when the influence of these

events on S
(m)
i is ‘strong,’ which is a likely scenario here.

The random change of time approach adopted in Section 3.1 thus offers two particular

advantages – as we have shown, it makes possible a rigorous proof that the sequence is i.i.d.

Exp(1) and that proof avoids reliance on restrictive conditions that are unlikely to be satisfied

by realistic models of multivariate market event data.

6.3 Possible Extensions

We outline here a number of directions in which our own work may be extended. For the sake

of continuity with the discussion of diagnostic testing above, we first discuss the issue of how to

take account of the impact of parameter uncertainty on our diagnostic testing.

64Justifying the application of the Theorem and Corollary of Yashin and Arjas (1988) to yield an expression for

Pr[S
(m)
i ≤ x|Gx] in terms of the integral of the FN

t -intensity for m-type events is not trivial and Russell (1999)
does not provide details of the derivation. If the conditioning were on a fixed σ-field, the information observed
since the (i− 1)th m-type event would be excluded and so an intensity other than the FN

t -intensity λm(t) would
then be required as the integrand. Our purpose here is not to explore these issues in any depth but rather to
point out the considerable drawback of the absolute continuity restriction.
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6.3.1 Parameter uncertainty and diagnostic testing

Two alternative feasible procedures that take account of the parameter uncertainty correctly

are presented below, the first of which is applicable only to univariate PP models.

Thompson (2001) considers tests of correct model specification for a sequence of scalar r.v.’s

{Si} based on the fact that applying the ‘integral transforms’ given by the true conditional

distribution functions yields an i.i.d. uniform series. Asymptotically exact critical values and

upper bounds for the asymptotic critical values are provided that take into account the fact that

the parameter has been estimated. In order to see how these results apply in a PP setting, let

Si = Ti−Ti−1 be the ith duration of a univariate PP with FN
t -intensity λ(t). Then it is possible

to show, provided that λ(t) can be expressed in a certain form, that65

Fi(x, θ) = Pr[Si ≤ x|Si−1, ..., S0; θ] = 1− exp

(

−
∫ Ti−1+x

Ti−1

λ(s; θ)ds

)

. (36)

Clearly, {Fi(Si, θ̂)} = {1− exp(−ei−1(θ̂))} (where ei−1(θ̂) is given by (15) and M = 1).66 Thus,

provided that the PP model in question satisfies the relevant assumptions of Thompson (2001),

the critical values provided there will be valid for the tests of uniformity and independence

based on {1 − exp(−ei−1(θ̂))}. However, this approach is generally not feasible in the case of

a multivariate PP model. For example in the bivariate case, letting S
(m)
i = T

(m)
i − T

(m)
i−1 as

usual, the series of durations {S(1)
i , S

(2)
i }i∈{1,2,...} can be readily constructed. The problem is

that the calculation of objects such as Pr[S
(m)
i ≤ x|S(2)

i−1, S
(1)
i−1..., S

(2)
1 , S

(1)
1 ; θ] and Pr[S

(m)
i ≤

x|S(q)
i , S

(2)
i−1, S

(1)
i−1..., S

(2)
1 , S

(1)
1 ; θ] (q 6= m) is usually infeasible because the distribution functions

are not known in closed form. In the context of diagnostic testing for multivariate models, as in

that of model specification, the switch in focus from durations to intensities is a very powerful

one.

An alternative procedure (also noted by Thompson (2001)) that applies to both the uni-

variate and multivariate cases is to minimise the diagnostic test statistic with respect to the

parameters. Let T (m)(θ) denote the test statistic evaluated at θ (obtained by calculating the

65The condition that λ(t) must satisfy and the main part of the proof may be found in E5, p.63 of Brémaud
(1981). (36) is an example of the ‘exponential formula’ referred to in Section 6.2.2 above.

66Note that it is immediate from Corollary 3.2 that {Fi(Si, θ0)} = {1 − exp(−ei−1(θ0))} is i.i.d. uniform on
(0, 1).
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statistic using the series {e(m)
i (θ)}). The null of correct specification is rejected if and only if

T (m) = min
θ∈Θ

T (m)(θ), (37)

exceeds the (1 − α) quantile of the null distribution of T (m)(θ0) (where θ0 is the true param-

eter value). Since T (m) ≤ T (m)(θ0) everywhere, the probability of falsely rejecting the null is

bounded above by α. The validity of the bound does not depend on the PP model satisfying any

regularity conditions other than the one in (12) and so the procedure has widespread applicabil-

ity. Furthermore, the bound is valid when θ0 is on the boundary of the parameter space, a case

which is of some importance for generalised Hawkes models. We have found that the calculation

of such test statistics is computationally feasible for datasets of the size used here and can yield

tests with sensible properties.67

6.3.2 Conditioning on a wider filtration

An important strength of the modelling framework developed in this paper is the ease with

which the approach can be extended to model the evolution of the multivariate PP conditional

on information that is additional to the internal history of the process, FN
t . In this case the

econometrician specifies the Ft-intensity of Nm(t) for m = 1, ...,M , where Ft ⊃ FN
t ∀t.68

Important additional information in this context includes the marks of the events other than the

event type (for example, the size and direction of trades), data concerning news announcements

that occur both ‘overnight’ and within normal trading hours, and data relating to stock exchange

opening procedures.

A g-HawkesE(k) type intensity can be specified conditional on the marks of the events by

making the jump that occurs in response to an event depend on that event’s marks.69 For

example, consider the specification of the term λ̃
(j)
12 (t) in (24) and (25), and suppose that we

are concerned with a bivariate model of trades and mid-quote events so that λ̃
(j)
12 (t) determines

the (jth) effect of trades on the quote intensity. In (25), the jump in λ̃
(j)
12 (t) in response to a

67It is necessary to choose T (m)(θ) carefully. For example, the procedure results in a test with extremely low
power when the Box-Ljung statistic is used because there are almost always parameter values that make the
sample variance very large indeed, both under the null and the alternative.

68Theorem 3.1 requires that Ft ⊇ F
N
t ∀t. Our diagnostic testing procedures therefore continue to be valid for

models where we condition on a wider filtration than the internal history of the PP.
69Recall that we write a Marked Point Process as {Ti, Zi}i∈{1,2..}

. The marks that we condition on here are
(potentially) all of the elements of the vector Zi other than the event type. In this case an Ft-intensity is specified
where Ft is the internal history of {Ti, Zi}i∈{1,2..}

.
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trade is always equal to α
(j)
12 . The suggested extension is to set the jump that occurs in response

to the ith trade equal to Yi, where Yi is a parametrised function of the marks of that trade.

Denoting the occurrence time and marks of the ith trade by T
(2)
i and Z

(2)
i respectively, the

BV-g-HawkesE(k) type specification for λ̃
(j)
12 (t) thus becomes

λ̃
(j)
12 (t) = π

(j)
12 λ̃

(j)
12 (τd−1)e

−ρ
(j)
12 (t−τd−1) +

∑

T
(2)
i ∈[τd−1,t)

Yie
−β

(j)
12 (t−T

(2)
i ), (38)

for τd−1 < t ≤ τd (d = 1, 2, ...), where Yi = g(Z
(2)
i ) for some function g. Such an extension

should prove useful in future market microstructure research.70

The effect of an overnight news announcement can be included by allowing the intensity

at the start of the day to depend on the announcement data, with the effect damping down

during the day in a manner analogous to the spillover effects in the g-HawkesE(k) models.

Conditioning on data related to opening procedures could be performed in a similar manner.

Finally, we note that if Y (t) is a continuous time stochastic process with sample paths of locally

bounded variation, and we take Ft = σ(N(s), Y (s) : 0 ≤ s ≤ t), then a possible generalisation

of the univariate g-HawkesE(k) model is given by,71

λ(t) = µ(t) +
k
∑

j=1

λ̃j(t) +

∫ t

0
f(t− s)dY (s), (39)

where λ̃j(t) is as in (17), f(.) is a deterministic function, and the integral is the stochastic

Stieltjes integral with respect to Y .

This paper points to a number of challenges for future research. In terms of the specification

of useful empirical models, the case where M is moderately large (say, M = 5) and alternative

forms of spillover effect such as the one discussed towards the end of Section 4.3 are of partic-

ular interest. An important theoretical challenge is the development of a body of asymptotic

distribution theory following on from the work of Ogata (1978), including the extension of those

results to the multivariate case and establishing results for the case where parameters are on

the boundary of the parameter space.72

70If Yi is allowed to take negative values, then the question arises of how to ensure the positivity of the intensity.
A possible solution (for BV-g-HawkesE(k) type models) is to set the non-deterministic component of the mth

intensity equal to max{0,
∑k

j=1 λ̃
(j)

mm(t) +
∑k

j=1 λ̃
(j)

mn(t)}.
71Ogata and Akaike (1982) make a similar observation.
72Ogata (1981) extends Lewis’ thinning simulation algorithm to multivariate PPs which are absolutely con-
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7 Conclusion

We develop here a continuous time econometric modelling framework for multivariate market

event data in which the model is specified via the vector stochastic intensity. This is a powerful

and natural approach to specifying multivariate models, since one considers how the intensity

(conditional hazard) for each type of event changes as the information set is updated in con-

tinuous time. Using the specific example of generalised Hawkes models, a model structure is

introduced in which the non-deterministic components of the intensity on trading day d are

specified recursively in terms of functionals of the intensity paths on previous days and the

contributions of the events occurring on day d. This structure takes into account the existence

of overnight periods when the stock market is closed and allows the dependence of the intensity

on the events of previous trading days to be estimated. Analytic likelihoods are available for

the models and diagnostic tests can be readily computed. Our empirical results highlight the

importance of not imposing a priori assumptions such as a lack of dependence between trading

days.

We show how to use a random change of time approach to construct diagnostic tests of

parametric, multivariate PP models. This involves transforming the non-Poisson processes into

Poisson processes and then exploiting the i.i.d. exponential property of the durations of the

latter to construct the tests. The technique has widespread applicability since the restriction it

imposes on the PP model is very natural in the context of financial market event data. Change

of time techniques appear to have been exploited very little to date in the statistical literature

on goodness of fit tests for counting processes. We propose various diagnostic tests, some of

which are new to the econometrics PP literature, and the impact of parameter uncertainty on

the testing procedures is considered.

A full bivariate PP model of the occurrence times of trades and changes to the mid-quote is

presented for a NYSE stock. Importantly, the bivariate g-HawkesE(2) model allows the study

of the two way interaction between trades and price changes. We find that not only do trades

tinuous with respect to the (suitably multivariate) standard Poisson process. This provides an efficient way to
simulate from PPs that are specified via the stochastic intensity and should prove useful in future work, including
the study of the finite sample properties of various statistics.
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result in an increase in the intensity for mid-quote events (as is expected from the sequential

trade models), but mid-quote events also result in increased trade intensity. The estimated

mid-quote intensity is used to provide an approximation to the instantaneous price volatility of

the stock and supports a central prediction of the Easley and O’Hara (1992) model – namely,

that periods of low volatility tend to occur in periods when there are few trades. Finally, a

comparison with previous related work is provided and suggested extensions to the modelling

framework are discussed. An important strength is the ease with which the approach can be

extended in order to model the evolution of the multivariate PP conditional on a wider filtration

than its internal history.

8 Appendix

8.1 Data Adjustments

In all cases, the final data pertaining to trades and quotes was obtained as follows. First the

times of all changes to the mid-quote were determined. Events (i.e. trades and quotes) occurring

outside of normal trading hours (9:30 EST to 16:00 EST) were then deleted; for NYSE stocks

the first reported trade of each calendar day was removed as this details the price and volume

of the opening auction.73 Trades that were later cancelled were also deleted.74 The times of the

events were then mapped onto [0,∞) using the data transformation described in Section 4.1,

and the times of changes to the mid-quote were thinned to obtain the ‘mid-quote events’ that

we model (see Section 5.2 for details). Events of the same type (i.e. two trades or two quotes)

that have the same timestamp were then treated as a single event with that timestamp. In all

of the datasets analysed here, the occurrence of such events was rare.75

TheM -variate PPs that we deal with in this paper assign zero probability to the simultaneous

occurrence of two market events (of either the same or different types). The treatment of two

events of the same type with identical timestamps has already been discussed. The treatment of

73We thus exclude from our analyses data relating to the preopening period on NASDAQ and the opening
auction of the NYSE.

74Only trade records with a TAQ correction indicator equal to 0 or 1 were included in the analysis. In the case
of trades that underwent correction, the original occurrence time of the trade is used.

75E.g., in the case of the General Motors (GM) data analysed in Section 5.2, the number of trade events is
reduced by only 0.26 per cent as a result of treating trades with identical timestamps as single trades; the reduction
in the number of (‘post thinning’) mid-quote events was only 0.14 per cent.
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the simultaneous occurrence of trades and mid-quote events is a more substantive issue. In the

case of the GM data, approximately 11 per cent of the mid-quote events have exactly the same

timestamp as a trade. We adjust the occurrence times of these mid-quote events as follows: if

x is the original occurrence time (in seconds), then the time becomes x − 0.5 + U in the final

dataset, where U is the realisation of a uniform r.v. on (0, 1).76 This adjustment procedure is

referred to below as Algorithm 1.

Some comments concerning this procedure are in order. First, although the reported times-

tamps (in whole seconds) of the mid-quote event and the trade are the same in the data, the

actual occurrence times (in continuous time) will rarely be the same. By the actual occurrence

time we mean the time of trade execution by the specialist and the time when the specialist made

known his revised quotes to the trading crowd. Consider the situation where the specialist calls

out in one sentence the details of a trade and new quotes set in response to that trade. These

events might well receive the same timestamp in the data although in reality trade execution

occurred first. An alternative to the approach adopted here would be to define a third type of

event as occurring whenever a trade and a mid-quote event have identical timestamps. However,

this would be to aggregate market outcomes that are quite different economically: such times-

tamps could be the result of a trade execution occurring just prior to a quote change; a quote

change occurring just prior to a trade execution; or the events occurring further apart in real

time but being reported with identical timestamps as a result of lengthier reporting delays.77

We thus prefer to adopt the adjustment procedure described above and regard the simultaneous

occurrence of a trade and a mid-quote event in the data as almost always the result of lags

between the (non-simultaneous) actual occurrence times of the events in continuous time and

the reported times.78

76If this procedure does not result in a time different to that of the trade, then a further draw from U is
generated. However, this was not necessary here.

77A number of studies highlight the reporting delays associated with this sort of data (see, for example, Has-
brouck, Sofianos, and Sosebee (1993) and Lee and Ready (1991)) and it is known that the reported times of the
events and the actual occurrence times may differ by several seconds. The time delays tend to be (but are not
always) greater for trades than for quotes as a result of the different reporting mechanism that is sometimes used
for trades, and the delays also vary across events of the same type (see, for example, the discussion relating to
trade reporting at p.9, Hasbrouck, Sofianos, and Sosebee (1993)).

78It has been suggested that the ‘5 second rule’ of Lee and Ready (1991) be applied when modelling a bivariate
system of trade and quote times. This involves delaying every quote time by five seconds. However, the results
presented by Lee and Ready (1991) show a frequency distribution for the difference between the timestamp of the
trade and the quote in circumstances where it is reasonable to believe that the actual occurrence times were very
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Since it would be expected that the estimates of α
(1)
mq, β

(1)
mq, α

(2)
mq, β

(2)
mq (m = 1, 2; q 6= m) would

be sensitive to the particular treatment of the identical timestamps that is adopted, we conducted

a sensitivity analysis by comparing our results with those obtained using two other adjustment

rules: in the first of these the adjusted mid-quote event time is given by x+ U (with U defined

as above), and in the second the trade with the identical timestamp is deleted from the data.

The first (Algorithm 2) is designed to capture the assumption that the identical timestamps

are very often the result of the specialist executing a trade and then very rapidly calling out

details of the trade and the new quotes. The second rule (Algorithm 3) is an alternative way of

avoiding strong a priori assumptions concerning the actual ordering of the mid-quote event and

the trade. Since there are many more trades than quotes, Algorithm 3 results in only a small

reduction in the number of trades. All three algorithms gave very similar MLEs for parameters

other than α
(1)
mq, β

(1)
mq, α

(2)
mq, β

(2)
mq (m = 1, 2; q 6= m), and resulted in diagnostic tests that accepted

at the 1% level with the exception of the BL test for the trade intensity. The estimates of

(α
(1)
12 , α

(2)
12 , β

(1)
12 , β

(2)
12 ;α

(1)
21 , α

(2)
21 , β

(1)
21 , β

(2)
21 ) were (59.4, 6.3, 1163.5, 123.7; 81.6, 19.1, 436.1, 58.5) for

Algorithm 2 and (27.9, 2.04, 475.4, 55.4; 80.6, 19.7, 423.8, 57.5) for Algorithm 3. These should be

compared with those given for Algorithm 1 in Table 4. It is the positive effect of mid-quote events

on the trade intensity that is perhaps the more surprising of our findings. Crucially, although

the estimates of α
(1)
21 and α

(2)
21 are smaller for Algorithms 2 and 3 than for Algorithm 1, they

are still far from zero. For example, when Algorithm 3 is employed, imposing the restrictions

α
(j)
21 = 0 (j = 1, 2) on λ2(t) results in a reduction in the log-likelihood of 277 and in the excess

dispersion test again rejecting at the 1% level. We conclude that our finding of a positive effect

of mid-quote events on the trade intensity is not the result of having employed a data adjustment

rule that was unduly biased in favour of finding such an effect.

8.2 Computation of MLEs

We describe in detail here the procedure used to compute MLEs for the univariate g-HawkesE(k)

models and discuss how to extend this procedure to the bivariate case. Evaluating the log-

close together in real time (and trading is slow). The distribution has a mode of zero and 38.3% of the trades
are recorded prior to the quote change. This suggests that it is preferable not to adjust all quote times by a
deterministic amount.
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likelihood for the univariate g-HawkesE(k) model given in (22) yields

l(θ;T1, ..., TN(T )) = −
∫ T

0
µ(s ; γ)ds−

T/l
∑

d=1

k
∑

j=1

{

πj/ρj(1− e−lρj )λ̃j,θ(τd−1)+ (40)

∑

τd−1≤Ti<τd

αj/βj(1− e−βj(τd−Ti))







+

T/l
∑

d=1

∑

Ti∈Ad

log{µ(Ti ; γ) +

k
∑

j=1

[

πj λ̃j,θ(τd−1)e
−ρj(Ti−τd−1) + αjAd,j(i)

]

}+ T,

where Ad,j(i) =
∑

z:τd−1≤Tz<Ti

e−βj(Ti−Tz) for d = 1, 2, ..., T/l (and we adopt the convention that

an empty sum is equal to zero). When computing (40) in practice, we use the recursion in (17)

to calculate the λ̃j,θ(τd−1)’s. We also make use of the following recursion in i

Ad,j(i+ 1) = (1 +Ad,j(i))e
−βj(Ti+1−Ti), (41)

in order to improve computational efficiency. For the purposes of numerical optimisation, the log-

likelihood was reparametrised in terms of logα1, ..., logαk, log β1, log(δ2/(1−δ2)), ..., log(δk/(1−

δk)), log π1, log ρ1, ..., log πk, log ρk, log γ1, ..., log γ8, where δj = βj/βj−1 (j = 2, ..., k) . We thus

impose the positivity constraints αj > 0, πj > 0, ρj > 0 (j = 1, ..., k) , γ1 > 0, ..., γ8 > 0, and

β1 > β2 > ... > βk > 0.

The evaluation of the log-likelihood for the bivariate g-HawkesE(k) model given by (26) and

(27) is a straightforward extension of (40) above. The log-likelihood was reparametrised in the

same way as for the univariate model (with the obvious extension to the bivariate case) when

performing numerical optimisation. A slight complication arises in the need to calculate terms

of the form

A(d,j)
mq (i) =

∑

z:τd−1≤T
(q)
z <T

(m)
i

e−β
(j)
mq(T

(m)
i −T

(q)
z ), (42)

for all T
(m)
i ∈ (τd−1, τd] (where q = 2 if m = 1 and q = 1 if m = 2). We then make use of the

following recursion in i

A(d,j)
mq (i+ 1) = A(d,j)

mq (i)e−β
(j)
mq(T

(m)
i+1 −T

(m)
i ) +

∑

z:T
(m)
i ≤T

(q)
z <T

(m)
i+1

e−β
(j)
mq(T

(m)
i+1 −T

(q)
z ). (43)
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When estimating the univariate g-HawkesE(2) model, initial parameter values for the BFGS

algorithm were obtained by estimating the following sequence of models:79

1) Non-homogeneous Poisson model given by λ(t) = µγ(t), where µγ(t) is given by (23);

2) HawkesE(1) model with γ̄ = γ̂;

3) HawkesE(2) model with ᾱ1 = ᾱ2 = 0.5α̂1, β̄1 = β̂1, β̄2 = 0.99β̂2, γ̄ = γ̂;

4) g-HawkesE(2) model with ᾱj = α̂j , β̄j = β̂j , π̄j = 1, ρ̄j = β̂j , γ̄ = γ̂.

In order to estimate the bivariate g-HawkesE(2) model, we maximise lm(θm)− T for m = 1

and m = 2 separately (where lm(θm) is given by (27)). Initial parameter values were again

obtained by maximising a sequence of log-likelihoods, commencing with the maximisation of

lm(θm)− T for the BV-HawkesE(2) model using as starting values the estimates obtained from

the univariate HawkesE(2) model for m-type events in step 3) above:80

1) BV-HawkesE(2) model with

ᾱ(j)
mm = α̂j , β̄

(j)
mm = β̂j , ᾱ

(j)
mq = 0, β̄

(j)
mq = β̂j , γ̄m = γ̂m (q 6= m) ;

2) BV-g-HawkesE(2) model with

ᾱ(j)
mr = α̂(j)

mr, β̄
(j)
mr = β̂

(j)

mr, π̄
(j)
mr = 1, ρ̄(j)mr = β̂

(j)

mr, γ̄m = γ̂m(∀mr).
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