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Abstract

Several aspects of GARCH(p, q) models that are relevant for empirical applications are in-

vestigated. In particular, it is noted that the inclusion ofdummy variables as regressors can lead

to multimodality in the GARCH likelihood. This invalidatesstandard inference on the estimated

coefficients. Next, the implementation of different restrictions on the GARCH parameter space

is considered. A refinement to the Nelson and Cao (1992) conditions for a GARCH(2, q) model

is presented, and it is shown how these can then be implemented by parameter transformations.

It is argued that these conditions may also be too restrictive, and a simpler alternative is intro-

duced which is formulated in terms of the unconditional variance. Finally, examples show that

multimodality is a real concern for models of the£/$ exchange rate, especially whenp ≥ 2.
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1 Introduction

The ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models have found widespread application

since their introduction. Indeed, there have been so many publications involving GARCH models,

that we expect that most users consider their estimation to be a routine operation. This paper should

undermine that belief somewhat. Particular issues of practical relevance are multimodality of the

likelihood, of which we shall give several examples, and adoption of restrictions on the parameter

space — issues to which the literature has paid relatively little attention, despite the popularity of

GARCH models.

We write the regression model with normal-GARCH(p, q) errors as:

yt = x′tζ + εt,

εt = ξth
1/2
t , ξt|Ft−1 ∼ N(0, 1),

ht = α0 +

q∑

i=1

αiε
2
t−i +

p∑

i=1

βiht−i, t = 1, . . . , T,

(1)

whereFt is the filtration up to timet. The ARCH(q) model corresponds to GARCH(0, q). Recent

surveys include Bollerslev, Engle, and Nelson (1994), Shephard (1996), and Gourieroux (1997).

At first sight, it would appear that variables entering the mean equation of a GARCH regression

model do not seriously affect the properties of the model, and standard results for explanatory vari-

ables in linear dynamic regression models would apply. In this paper, however, we illustrate how mul-

timodality in the likelihood of GARCH-type models is induced when correcting for an additive outlier

in the mean equation through a dummy variable. The correction for an additive outlier corresponds

to treating one observation as missing. Surprisingly, thismultimodality does not always happen. We

provide analytical and empirical results in§2. Multimodality is more likely to occur when volatil-

ity, according to estimated GARCH parameters, is persistent and when dummies are added before or

within volatile periods, i.e. precisely in those periods where they are considered most relevant. We

show that the multimodality problem may remain when adding dummies that are nonzero for more

than one period. Replacing a GARCH by an EGARCH specificationdoes not remove the problem

either. We do show in§2.5 that adding the corresponding dummy one period lagged inthe variance

equation can solve the problem of multimodality. Doornik and Ooms (2002) use this to implement a

procedure for outlier detection in GARCH models.

Section 3 further investigates whether multimodality is ofpractical relevance, even without dummy

variables in the mean equation. This requires us to be more specific about the model, in particular

about possible restrictions on the GARCH parameter space. We present a refinement to the Nelson

and Cao (1992) conditions, which relax the original Bollerslev (1986) positivity conditions, and show
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how these can be implemented by parameter transformations.The major benefit of this is that we

can estimate the model using standard unconstrained maximization, and that the original analytical

derivatives can be used (see Fiorentini, Calzolari, and Panattoni, 1996), in combination with the Ja-

cobian of the transformation. Because the Nelson and Cao (1992) constraints are very complex for

higher order models, we suggest another set of constraints.These relax the positivity restrictions in

a different way, and are easier to implement and interpret. We compare the impact of the different

parameter sets in GARCH(2, 2) models. Using four choices of the parameter space, we then search

for multimodality in samples from simulated GARCH(2, 2) processes and in an empirical application

using daily British Pound/US Dollar exchange rates. We conclude that multimodality is a potential

problem in applications, and recommend the adoption of a limited search using random starting values

whenever estimating a higher-order GARCH model.

2 Multimodality caused by dummy variables

In a normal linear regression model, the effect of introducing a single dummy variable is to set the

residual,ε̂s, for that observation,ys, to zero. The same effect is obtained by replacingys by ŷs,

its conditional expectation given all other observations:ŷs = E(ys|y1, . . . , ys−1, ys+1, . . . , yT ), and

leaving all other values unchanged. Effectively, the observation is treated as missing and replaced

by the ML estimate. Essentially, the same effect of introducing a dummy applies whenεt follows a

linear Gaussian time-series process, see Gómez, Maravall, and Peña (1999) for a systematic overview

of this topic for ARMA processes. At first sight, it is not unreasonable to think that this also applies

to a regression model with ARCH or GARCH errors. The next example, however, shows that this is

not the case.

As an illustration, we use the Dow–Jones index (Dow Jones Industrial Average: close at midweek

from Janary 1980 to September 1994, 770 observations in total); the figures are for Wednesday (or

Tuesday if the stock market was closed on Wednesday; the dataare from www.djindexes.com). The

returns,log Yt − log Yt−1, are given in the top panel of Figure 1. The large negative return of−17.4%

corresponds to the Black Monday crash of 19 October 1987.

We start by estimating an ARCH(1) model, where the mean equation consists of a constant and a

dummy variable (or impulse intervention) for the 1987 crash:

yt = c+ γdcrash+ εt,

ht = α0 + α1ε
2
t−1,

wheredcrash takes value one for the Wednesday after the crash, zero otherwise. Let ĉ, α̂0, α̂1, γ̂ be
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Figure 1:Log-returns on Dow–Jones index (top), with likelihood gridfor the dummy parameterγ, correspond-

ing to the 1987 crash (bottom);−ŷs = −(ys − γ).

the maximum likelihood estimates, also see equation (2) below. The bottom panel of Figure 1 plots

the log-likelihood values as a function ofγ, with the remaining coefficients kept fixed atĉ, α̂0, α̂1.

The figure shows a pronounced bimodal shape of the likelihood, with a local minimum at̂γ0, and two

maxima atγ̂1 and γ̂2 (γ̂ = γ̂1 = γ̂2). The corresponding interpolated value is given on the lower

horizontal axis of the bottom graph. Quite surprisingly, adding an ARCH term to a regression model

with a dummy variable clearly changes the role of that variable. Table 1 provides details on the two

maxima and single minimum.

Table 1: Extremes of the ARCH(1) likelihood from Figure 1b.

ys γ ŷs(γ) ε̂s(γ)

−0.174 −0.244 −0.242 0.068 left mode,γ̂1

−0.174 −0.176 −0.174 0 local minimum,γ̂0

−0.174 −0.108 −0.106 −0.068 right mode,̂γ2

Even in the simplest ARCH model the estimate for a missing observation does not always corre-
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spond to its conditional expectation given the other observations. For interpolation in this case,ŷs is

not determined by its expectation. An exceptional return, implicit in γ̂1 or γ̂2, can be more likely than

an average return, implicit in̂γ0. We provide an analytical explanation below.

2.1 GARCH models with a dummy variable in the mean

The following proposition explains the effect of the dummy variable for the GARCH(p, q) model.

Proposition 1 Consider the GARCH(p, q) regression model with mean specified asyt = x′tζ+ dtγ+

εt. The additional regressor is a dummydt, wheredt = 1 whent = s, 1 < s < T , anddt = 0

otherwise. Define

Gs =
1

α1

[
hs+1 − α0 −

q∑

i=2

αiε
2
s+1−i −

p∑

i=1

βihs+1−i

]
.

(a) WhenĜs = 0 the log-likelihood̀ (θ) has aunique maximumfor γ:

γ̂0 = ys − x′sζ̂,

with ε̂s = 0.

(b) WhenĜs > 0, `(θ) hastwo maxima, which are only different in the value ofγ:

γ̂1,s = ys − x′sζ̂ − Ĝ
1/2
s ,

γ̂2,s = ys − x′sζ̂ + Ĝ
1/2
s .

Both modes have identical likelihood values and second derivatives, and have otherwise the

same parameter values. In this caseγ̂0,s = ys − x′sζ̂ corresponds to a local minimum.

The role ofGs and the properties of the likelihood are discussed in the next section.

Proposition 1 indicates that the dummy variable does not always lead to multimodality. In the first

case,̂γ = ys − x′sζ̂, and the dummy plays a similar role as in the linear regression model without

GARCH errors. However, whenGs is positive at the maximum, there are two identical modes. The

value ofGs depends on the parameter values and on past and future residuals. In an ARCH(1) model

we can considerG∗

s (defined in (11) below) as a function of the parameters (i.e. not just evaluated at

the values corresponding to the maximum). The next section then shows that negativeG∗

s leads to one

maximum, and positive to two. Also,G∗

s depends only on the residuals immediately after and before

the time of the impulse and both∂G∗

s/∂ε
2
s−1 > 0 and∂G∗

s/∂ε
2
s+1 > 0. Proposition 1 states that the

likelihood derivatives are identical at both maxima. As a consequence, both estimates ofγ have the

5



same estimated standard error, which results in two different t-values. The estimation procedure may

pick either maximum, but deciding significance by looking atthe t-value is problematic. Note that a

dummy at the end of the sample cannot lead to multimodality.

When a dummy is included as regressor, standard econometricsoftware may find the local mini-

mum instead of one of the maxima: if the starting value for thedummy parameter (often determined

by a prior regression) corresponds to the local minimum, thederivative is zero. Then, during subse-

quent iterations, the dummy coefficient will not move, and convergence is to the local minimum. This

will show up when the standard error is computed, because thevariance matrix is negative definite.

Bimodality leads to two residuals:̂ε1,s = Ĝ
1/2
s and ε̂2,s = −Ĝ

1/2
s corresponding to twôys:

ŷ1,s = ys − Ĝ
1/2
s , ŷ2,s = ys + Ĝ

1/2
s . In Table 1, the solution̂y2,s might be more appealing from an

economic point of view, but this does not follow from the statistical model. Diagnostic tests based on

the residuals (or standardized residuals: there is only onevalue forhs) will have different outcomes,

unless only the squared values are used.

0 100 200 300 400 500 600 700
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0.0050 Ĝs for s=3,…,770
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0.00
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0.10

0.15
corresponding ̂γ2,s−γ̂1,s

Figure 2:ARCH(1) model for growth rates of Dow-Jones with moving dummy variable:Ĝ∗

s (top), γ̂2,s − γ̂1,s

(bottom).

To assess the relevance of Proposition 1, we run a singly dummy through the data, re-estimating

the ARCH(1) model every time (the mean is specified asc+ γdt, dt = 1 for t = s, s = 3, . . . , 770).

Figure 2a plots the value of̂Gs for the 768 estimated ARCH(1) models, with positive values indicating

multiple maxima. There are 59 cases withĜs > 0, and correspondingly with two solutions forγ; the

second graph displays the differenceγ̂2,s − γ̂1,s = 2Ĝ
1/2
s . For the cases without multimodality there

is only one estimate ofγ andŷs = ĉ+ γ̂.

In Figure 3 we only consider the cases which have multimodality. The top graph shows the

t-values whenĜs > 0. Using a critical value of two, there are several cases with one t statistic
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Figure 3:t-values of left and right mode (top), and absolutet-values (squares and circles) with square

root of likelihood-ratio test (continuous line). Both onlyfor cases with multimodality.

insignificant, and the other significant. In a few cases (the last, for example), the left mode has nearly

significant negative value, and the right mode a significantly positive value if a critical value of 2

is used. The second panel shows the square root of the likelihood-ratio test, which has one degree

of freedom, together with the absolute values of thet statistics. The LR test has only three of the

displayed observations significant. Interestingly, it follows very closely the lowest of the absolute

t-values, suggesting that the smallest|γ̂| should be selected. Unfortunately, in practice it will be

unknown which of the twot-values is found, unless the modeller is aware of the problem.

2.2 Proof of Proposition 1

The log-likelihood of (1) is given by:

`(θ) =

T∑

t=1

`t(θ) = c−
1

2

T∑

t=1

(
log(ht) +

ε2t
ht

)
. (2)

Assuming that the start-up of the recursive process does notdepend on the parameters, the score is

given by:
∂`t(θ)

∂θ
= −

εt
ht

∂εt
∂θ

−
1

2

1

h2
t

(
ht − ε2t

) ∂ht

∂θ
, (3)

with εt = yt − x′tζ − dtγ. It is convenient to use the ARCH(∞) form. Define the lag polynomials

β(L) = 1 −
∑p

i=1 βiL
i, andα(L) =

∑q
i=1 αiL

i, such that

ht = β(L)−1
(
α0 + α(L)ε2t

)
= α∗

0 +
∞∑

j=1

δjε
2
t−j . (4)
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This requires that the roots ofβ(z) = 0 lie outside the unit circle. Furthermore,β(z) andα(z) are

assumed to have no common roots to ensure identification of the individual GARCH parameters. As

discussed in detail in§3.1, nonnegativity of theδis will ensure thatht is always positive whenα0 > 0.

The main example is the GARCH(1,1) model with0 ≤ β1 < 1, α1 6= α0β1:

ht = α0 + α1ε
2
t−1 + β1ht−1,

which can be written as

ht = α∗

0 + α1

t∑

j=1

βj−1
1 ε2t−j , (5)

given ε0 andh0, whereα∗

0 = α0(1 − βt
1)/(1 − β1) + βt

1h0, which does not depend onγ. In the

ARCH(∞) representation (4) of the GARCH(1,1) case:δ1 = α1, δ2 = α1β1, δ3 = α1β
2
1 , . . ..

The first order conditions (3) forγ can be expressed as a function ofεs andht:

∂εt
∂γ

= −dt,
∂ε2t
∂γ

= −2εtdt, thus
∂ht

∂γ
= −2

t−1∑

j=1

δjεt−jdt−j .

Sincedt = 0 for t 6= s andds = 1:

∂ht

∂γ
= −2δt−sεs for t > s,

and zero otherwise. The full score with respect toγ is:

∂`(θ)

∂γ
=
εs
hs

+ εs

T∑

t=s+1

δt−s
1

h2
t

(
ht − ε2t

)
=
εs
hs

[
1 +

δ1hs

h2
s+1

(
hs+1 − ε2s+1

)
+ κs

]
, (6)

whereκs = hs
∑T

t=s+2 δt−sh
−2
t (ht − ε2t ). In (6), εs is a function ofγ; hs+1 depends onε2s, and is

therefore also a function ofγ, as are allht for t ≥ s+ 1, and thereforeκs. Define

Q1(hs+1) ≡ (1 + κs)h
2
s+1 + δ1hshs+1 − δ1hsε

2
s+1, (7)

so that maximizing the log-likelihood w.r.t.γ requires solving:

∂`(θ)

∂γ
=

εs
hsh2

s+1

Q1(hs+1) = 0. (8)

In order to prove that a solution leads to a minimum or maximumwe need the second derivative

of the log-likelihood with respect toγ:

∂2`(θ)

(∂γ)2
= −

1 + κs

hs
−

δ1
h2

s+1

(
hs+1 − ε2s+1

)
− 2ε2s

T∑

t=s+1

δ2t−s

(
2ε2t − ht

h3
t

)
. (9)

Two situations can attain when solving (8):
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• ε̂s = 0 is the only solution of (8), corresponding tôγ = ys − x′sζ.

For ε̂s = 0, the second derivative matrix at the solution is block diagonal with respect toγ,

because all terms in the derivative of (6) w.r.t. the GARCH parameters contain a factorεs.

The last term in (9) drops out when̂εs = 0. The first two terms add up toQ1(hs+1) divided

by −hsh
2
s+1. SinceQ1(hs+1) is monotonically increasing for positive values ofhs+1 when

1 + κs > 0, we can infer that it must be positive forε̂s = 0 to be the only solution. This makes

the Hessian element negative, as required for a maximum.

Although1 + kappa could be negative, we have not seen any cases whereQ1 < 0 at γ̂.

• There is ãhs+1 such thatQ1(h̃s+1) = 0.

Two additional solutions to (8) can then be derived from:

ε̃2s =
1

α1

[
h̃s+1 − α0 −

q∑

i=2

αiε
2
s+1−i −

p∑

i=1

βihs+1−i

]
≡ Gs

(
h̃s+1

)
≡ G̃s.

This is now positive, and the additional two solutions are

γ̃ = ys − x′sζ ± G̃1/2
s .

In that case, the log-likelihood and its derivatives are identical for both values.

Now ε̂s = 0 leads to a negativeQ1(hs+1). This creates a positive diagonal element in the

Hessian, violating the conditions for a maximum.

A necessary condition for bimodality is that the solution toQ1(hs+1) = 0:

h∗s+1 =
hsδ1

2 (1 + κs)

[
−1 ±

(
1 +

4ε2s+1 (1 + κs)

δ1hs

)1/2
]

(10)

is positive. In addition, the impliedε∗2s must be non-negative. Therefore, when1 + κs is positive, the

negative solution can be ignored. When1 + κs is negative, there are two solutionsh∗s+1. However,

only one of these corresponds toh̃s+1. �

The expression forGs merits further discussion.

In the ARCH(1) model we haveδt = 0 for t > 1, so thatκs = 0 for all s. Now (7) can be solved

expicitly for γ. It is zero when

h∗s+1 =
hsα1

2

[
−1 +

(
1 +

4ε2s+1

α1hs

)1/2
]

9



is positive (the negative solution can be discarded). Then

G∗

s =
hs

2

[
−1 +

(
1 +

4ε2s+1

α1hs

)1/2
]
−
α1

α0
, (11)

and it is easy to see thatG∗

s depends positively on bothε2s+1 andε2s−1. Dummies in a volatile period

can lead to multimodality.

In the GARCH(1,1) model, we can no longer solve (7) analytically. We can only derive some

properties that a solution will have. In particular, knowing κ̂s, there will be two modes if (10) has

a positive solution, which can not be ruled out, in particular when εs+1 is (also) large. The fact

that dummies shortly before a volatile period can lead to multimodality is illustrated in our empirical

application in the next subsection. In practice, if estimation of the model with a dummy yieldŝεs = 0,

then this is either a local minimum or a global maximum, whichcan be verified be inspecting the

second derivative. Otherwise,

Ĝs =
1

α1

[
ĥs+1 − α0 − β1hs

]

is positive and there are two global maxima.

2.3 Dummy variables in EGARCH models

The proof in§2.2 makes it clear that multimodality may occur in GARCH(p, q) models, especially

when a sequence of large squared standardized residuals is present and a dummy is introduced in

the preceding period. A similar effect could be expected forthe EGARCH model (Nelson, 1991),

although not necessarily symmetric multimodality.

Figure 4 shows the likelihood grid when specifying the example of Figure 1 as GARCH and

EGARCH. The EGARCH(p, q) parameterisation for the conditional variance reads:

log ht = α0 +

q∑

i=1

αi {ϑ1ξt−i + ϑ2 (|ξt−i| − E|ξt|)} +

p∑

i=1

βi log ht−i, (12)

with α1 = 1. The main added flexibility of the EGARCH model derives from the asymmetry term

ϑ1ξt−i, which usually implies larger effects onht from negativeξt−1 than from positiveξt1 . As

before, we plot the likelihood grid as a function ofγ, with the other parameters fixed at their values

found at the global maximum.

Both plots in Figure 4 exhibit bimodality. For EGARCH, the two maxima are at different like-

lihood values, owing to the asymmetry term. When imposingϑ1 = 0 in (12) both modes are at the

same likelihood value. Because of the appearance of absolute value in (12), the local minimum is at

a point where the likelihood is non-differentiable. Unlessthe iterative estimation procedure starts at
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Figure 4:Likelihood grid for the dummy parameter corresponding to the 1987 crash, GARCH(1,1) (left) and

EGARCH(1,1) (right).

the local minimum, this non-differentiability will not cause problems in practice. However, now it

matters whether the local or the global maximum is found.

Figure 5 plotŝγ2,s− γ̂1,s for the GARCH(1,1) and EGARCH(1,1) models. Now there are about 30

cases with two modes in the likelihood. Note that the values for γ̂2,s − γ̂1,s = 2Ĝ
1/2
s for the GARCH

model are much larger in the four weeks before the 1987 crash than in the week of the crash itself.

Effects of shifting and extending the dummy are considered in the next subsection.

0.00

0.05

0.10

0.15 γ̂2,s−γ̂1,s for GARCH(1,1) model

0 100 200 300 400 500 600 700

0.00

0.05

γ̂2,s−γ̂1,s for EGARCH(1,1) model

Figure 5:Estimates of̂γ2,s − γ̂1,s for the GARCH(1,1) model (top) and the EGARCH(1,1) model (bottom).

For completeness, we remark that GARCH models with Student-t errors can also exhibit multi-

modality, although we had to try another data set (UK quarterly inflation for 1955Q1 – 2000Q4) to

find some examples.

11



2.4 Extended dummy variables in GARCH models

Up to this point, all dummy variables had only one non-zero observation. Here, we consider a dummy

variable that is unity forj consecutive observations:s, . . . , s + j − 1. The score (6) forγ in the

GARCH(p, q) model becomes:

∂`(θ)

∂γ
=

j−1∑

k=0

εs+k

hs+k

[
1 +

δ1hs+k

h2
s+k+1

(
hs+k+1 − ε2s+k+1

)
+ κs+k

]
. (13)

For example, whenj = 2, the dummy variable is unity for two observations in a row. Then (13) is

zero whenε̂s = ε̂s+1 = 0, but also has a solution whenGs > 0 andGs+1 > 0. In general, any

dummy variable that picks out observations with positiveGs will have two modes. In such a situation

there may even be more than two modes.
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Figure 6: Concentrated likelihood grid for the coefficient ofDj
t . Dj

t+1
starts in the week before the 1987

crash (left graphs);Dj
t starts in the week of the crash (right graphs). Dummy continues forj periods,j =

1, 2, 3, 5, 10, 50. The thick solid lines are for one-period dummies (j = 1). The thin solid lines are for the two

period dummies (j = 2). The dashed lines forj = 3, 5, 10, 50 are below each other within each panel.

To investigate the case with extended dummies, defines as the week of the 1987 crash (this is as
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before; remember that we use weekly data). We now construct the following variable:

Dj
t =





1 for t = s, . . . , s+ j − 1,

0 otherwise,

We also use this dummy variable with a lead of one period,Dj
t+1, which now starts one observation

prior to the crash.

Figure 6 show the effect of shifting and extending the dummy on the ARCH(1) and GARCH(1,1)

profile likelihoods forγ. The thick solid lines in the right graphs are forD1
t and correspond to the

dummy variabledt used in Figures 1 and 4. In Figures 1 and 4 we fixed the remainingparameters

in the construction of the likelihood grids, but Figure 6 plots the concentrated log-likelihoods: for a

range of values forγ, constructy∗t = yt − γDj
t and estimate an ARCH(1) model (top two panels)

and a GARCH(1,1) model (bottom two panels) fory∗t . We expect the GARCH parameter estimates to

depend more strongly on the dummy parameter when the dummy extends over a longer period, and

we therefore choose to re-estimate the GARCH parameters in this case. In all cases, a constant is the

only other regressor in the mean. The circles in the bottom two graphs match the solution that would

be found if the coefficient of the dummy variable is fixed by a prior regression ofyt on a constant and

Dj
t , i.e. the solution corresponding to

∑s+j−1
t=s ε̂t = 0.

The symmetric bimodalities of the thick solid lines correspond to the single period dummies. By

comparing left and right figures, one observes that the bimodality is more pronounced when the single

dummy is added in the week before the crash. For the GARCH model, the multimodality largely

disappears as the dummy is extended. Note that the model withthe three period dummy, attains the

highest likelihood of all models where the dummy starts one period before the crash:D3
t+1. When

the dummy starts with the crash, the two period dummy has the highest likelihoods:D2
t . The profile

likelihoods for the ARCH(1) models reveal many cases with multiple modes once the dummy is unity

over two or more periods.

2.5 GARCH with a dummy variable in the conditional variance

Proposition 2 Consider the GARCH(p, q) regression model specified with a lagged variance dummy

as follows:

yt = x′tζ + γdt + εt,

β(L)ht = α0 + α(L)ε2t + τdt−1,

wheredt = 1 whent = s, 1 < s < T , anddt = 0 otherwise. This combination of dummy variables

does not induce multimodality in the log-likelihood function.
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Proof

We extend the proof in§2.2. The crucial term in the likelihood function,hs+1, is now a function

of bothγ andτ . The ARCH(∞) equation (4) is extended to

ht = α∗

0 +
t∑

j=1

δjε
2
t−j + τ

t−1∑

j=1

φjdt−j , (14)

whereφ(L) = φ1L+ . . . = L [β(L)]−1. In particularφ1 = 1. So

∂ht(γ, τ)

∂τ
= φt−s for t > s,

and zero otherwise.∂`(θ)/∂γ was given in equation (6) and does not change by the introduction of

the variance dummy. From (3), we find the full score with respect to τ as:

∂`(θ)

∂τ
= −

1

2

T∑

t=s+1

φt−s
1

h2
t

(
ht − ε2t

)
= −

1

2

[
1

h2
s+1

(
hs+1 − ε2s+1

)
+ λs

]
,

whereλs =
∑T

t=s+2 φt−sh
−2
t (ht − ε2t ). This leads to a second quadratic equation forhs+1(γ, τ):

Q2(hs+1) ≡ λsh
2
s+1 + hs+1 − ε2s+1 = 0. (15)

Although λs = λs(γ, τ) (unless an ARCH(1) model is considered), an additional solution would

solveQ2 = 0, which can be expressed in terms ofĥs+1. Q2 has a positive real solution if|λs| > 0

andλs > −1
4ε

−2
s+1:

ĥs+1 = (2λs)
−1

[
−1 +

(
1 + 4ε2s+1λs

)1/2
]
, λs > 0

ĥs+1 = (2|λs|)
−1

[
1 ±

(
1 + 4ε2s+1λs

)1/2
]
, −1

4ε
−2
s+1 < λs < 0

(16)

while ĥs+1 = ε2s+1 is the solution ifλs = 0.

The multimodality result forγ only extends to the current model if the root ofQ2 simultaneously

solvesQ1(hs+1) = 0, given in (7), because the extra stationary points of`(θ) were caused by solutions

toQ1(hs+1) = 0. Otherwise, multimodality is avoided, and̂εs = 0 in (6) provides the single solution

for γ.

If λs = 0, the solution to (15) simplifies tôhs+1 = ε̂2s+1. Substitutingĥs+1 into (7) shows

thatQ1(hs+1) = 0 then requiresε2s+1 = hs+1 = 0, which is not a feasible solution to the maximum

likelihood problem as the log-likelihood becomes minus infinity for hs+1 = 0. If |λs| > 0 substitution

of (16) into (7) shows this is not a solution either, unlessε2s+1 = hs+1 = 0, which again can be ruled

out. �
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Proposition 2 shows that adding the corresponding dummy with one lag to the variance equation

provides a way to avoid the bimodality in the GARCH(p, q) model that was detected in Proposition 1.

It is instructive to see what happens forp = 0. The ARCH(q) model hasλs = 0, and therefore

ĥs+1 = ε̂2s+1. A straightforward solution forτ follows:

τ̂ = ε̂2s+1 − α0 − α(L)ε̂2s+1.

Finally, consider another relative timing of the two dummies. If the dummy enters both the mean

and variance without lag, the solution toQ2(·) = 0 applies tohs instead ofhs+1, which does not

immediately interfere with the first order conditions forγ, so bimodality remains a potential issue. If

Gs < 0 andp = 0 the first order condtions forγ andτ lead toε̂2s = ĥs = 0 and a log-likelihood of

minus infinity results.

3 Multimodality without dummy variables

We have shown how the introduction of dummy variables, whichis regularly done in practice, can

cause multimodallity in the GARCH likelihood. However, adding dummy variables may not be the

only cause of multimodality. The objective in this section is to investigate the incidence of multiple

modes without a regression part for the mean. As modes may occur at unreasonable values for the

GARCH parameters, we first discuss restrictions on the GARCHparameter space in§3.1. Implemen-

tation details will also be provided. Next,§3.2 discusses the effects of the restrictions on the number

and type of modes found in samples from simulated GARCH(2,2)processes, and in an empirical data

set concerning daily British Pound/US Dollar exchange rates.

3.1 Parameter restrictions

In order to investigate the incidence of multimodality, it is important to know what restrictions are im-

posed on the parameter space. In practice, the GARCH model isoften estimated without restrictions,

but Bollerslev (1986) formulated the model withα0 > 0, and the remaining parameters nonnegative.

Nelson and Cao (1992) argued that imposing all coefficients to be nonnegative is overly restric-

tive, and that negative estimates occur in practice (they list several examples). Subsequently, He and

Teräsvirta (1999) have shown that such negative coefficients allow for richer shapes of the autocorre-

lation function. Nelson and Cao (1992) gave sufficient conditions such that the conditional variance

is always nonnegative for the GARCH(1, q), and GARCH(2, q) case.1 The restrictions are imposed in

1Instead of nonnegativeht, we use positive; whenht is zero, the log-likelihood is minus infinity.
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the ARCH(∞) form, which was introduced earlier in equation (4) in connection with multimodality

caused by dummy variables. The parameter restrictions may have an impact in that context as well,

but in the remaining part of this paper we focus on multimodality in the absence of dummy variables.

Nelson and Cao (1992) requireα∗

0 = α0/β(1) > 0 andδi ≥ 0 ∀i. This implies that the roots of

β(z) = 0 lie outside the unit circle. Furthermore,β(z) andα(z) are assumed to have no common

roots.

In Appendix 2 we refine the Nelson and Cao (1992) conditions for the GARCH(2, q) case, i.e.

for p = 2, by removing redundant conditions. Table 2 summarizes the restrictions for low-order

GARCH models. The conditions on the roots whenp = 2, as given in Table 2, can also be expressed

asβ2 + β1 < 1, β2
1 + 4β2 ≥ 0. In the original formulation, the restriction for GARCH(2,2) which

is unnecessary isβ1(α2 + β1α1) + α1 ≥ 0; alsoα∗

0 > 0 reduces toα0 > 0.2 In addition, Appendix

2 shows how the restrictions can be imposed by parameter transformations forp ≤ 2, which allows

implementation in the form of unconstrained optimization.

Table 2: Nelson & Cao conditions for some GARCH models.

GARCH(1,1) α0 > 0, α1 ≥ 0 0 ≤ ρ1 < 1.

GARCH(1,2) α0 > 0, α1 ≥ 0 0 ≤ ρ1 < 1 α2 + ρ1α1 ≥ 0.

GARCH(2,1) α0 > 0, α1 ≥ 0 0 ≤ |ρ2| ≤ ρ1 < 1, ρ1, ρ2 real.

GARCH(2,2) α0 > 0, α1 ≥ 0 0 ≤ |ρ2| ≤ ρ1 < 1, ρ1, ρ2 real α2 + (ρ1 + ρ2)α1 ≥ 0,

andα2 + ρ1α1 > 0.

Notes: p = 1: β(L) = (1 − ρ1L), β1 = ρ1;

p = 2: β(L) = (1 − ρ1L)(1 − ρ2L), β1 = ρ1 + ρ2, β2 = −ρ1ρ2.

α(L) andβ(L) have no common roots;ρ1 is largest absolute (inverse) root.

It could be argued that even the Nelson and Cao (1992) conditions are too restrictive.3 For exam-

ple, the restrictions implyht ≥ α∗

0. And, when the initialδi are positive and dominate the coefficients

at higher lags, the probability of obtaining a negative conditional variance becomes essentially zero.

Because the Nelson and Cao (1992) constraints are very complex for higher order models, we

now suggest another set of constraints. These relax the positivity restrictions in a different way, and

are easier to implement and interpret. They are based on the ARMA representation for the variance

2This slightly simplifies the derivations in the Appendix of Engle and Lee (1999), where, in a component GARCH(1,1)

model, the component (which itself follows a GARCH(2,2) process) is shown to be positive.
3This point was also made by Drost and Nijman (1993).
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process. The equation forht of can be written in ARMA form usingut = ε2t − ht = (ξ2t − 1)ht:

ε2t = α0 +

m∑

i=1

(αi + βi)ε
2
t−i −

p∑

i=1

βiut−i + ut, (17)

wherem = max(p, q) andβi = 0 for i > p, αi = 0 for i > q; note thatE[ut|Ft−1] = 0.

Taking unconditional expectations of (17), we can ensure positivity and invertibility by the condi-

tions:
α0 > 0,

αi + βi ≥ 0, for i = 1, . . . ,m.

0 <
∑m

i=1 αi + βi < 1,

(18)

where, as before,m = max(p, q). Note that estimation automatically ensures that in-sample values

of ht are positive, otherwise the log-likelihood would be minus infinity or undefined. The coefficients

in the ARMA representation (17) are:

ε2t = (α+ β)(L)−1 (α0 + β(L)u) = α∗∗

0 +

∞∑

i=0

γiut−i, (19)

whereβ(L) = 1−
∑p

i=1 βiL
i, (α+ β)(L) = 1−

∑m
i=1(αi + βi)L

i, andγ0 = 1. Theγi coefficients

show the IGARCH boundary: if they remain constant after an initial period, then
∑m

i=1 αi + βi = 1.

Table 3: Types of GARCH parameter restriction.

UNR Unrestricted, except for:α0 > 0;

N&C Positive conditional variance: conditions (DO1)–(DO4), see Appendix 2;

UV Positive and finite unconditional variance: restrictions (18), see Appendix 3;

POS All coefficients positive:α0 > 0, αi ≥ 0, βi ≥ 0, also see Appendix 1.

Table 4: GARCH processes A–D.

Process α1 α2 β1 β2 ρ1 ρ2
∑
αi + βi

A 0.10 0 0.85 0 0.85 0 0.95

B 0.10 0.10 0.10 0.65 0.85777 −0.75777 0.95

C 0.10 0.10 −0.10 0.85 −0.97331 0.87331 0.95

D 0.35 −0.20 0.70 0.10 0.82170 −0.12170 0.95
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Table 3 summarizes the parameter restrictions that are considered here. The relevant appendices

show how these restrictions can be implemented through parameter transformations. Then, restricted

estimation can be implemented as an extension to unrestricted estimation, using the Jacobian of the

transformation (which can be computed analytically or numerically).

To compare the impact of these restrictions, we use a GARCH(1,1) and three GARCH(2,2) pro-

cesses, see Table 4. Processes C and D are not allowed when allcoefficients are forced to be non-

negative (POS). Process D is not allowed by parametrizationUV, becauseα2 + β2 < 0, but is fine for

N&C. Process C is just allowed by UV, but not by N&C because thelargest absolute root is negative.
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Figure 7: Coefficientsδi (top) andγi (bottom) for GARCH(2,2) processes B,C,D and GARCH(1,1)

process A.

Figure 7a plots the coefficientsδi from (4) for the three GARCH(2,2) processes. The section from

lag 30 to 60 is shown as a separate inset. Process B starts witha zig-zag pattern, but becomes smooth

as it approaches zero. Process C, on the other hand, only starts to really zig-zag as the lag-length gets

beyond 15. The fact that it moves around zero, while getting smaller, is not allowed by N&C-type

restrictions. Moving process C onto the N&C boundary (β1 = 0, β2 = 0.75) makes the coefficients

behave like a step-function, with increasingly smaller steps as they approach zero. A feature of D is

thatδ2 is smaller thanδ3. Figure 7b plots theγi coefficients from (19), omittingγ0 (= 1).
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3.2 Searching for multiple modes

This section presents some evidence on the possible occurrence of multimodality when the mean only

consists of a constant term. We consider the four types of parameter restrictions UNR, N&C, UV

and POS, as discussed in the previous section. Implementation of N&C is explained at the end of

Appendix 2; for implementation details of UV see Appendix 3.The choice of parameter restrictions

will affect the outcome: restricting the parameter space may reduce the number of modes, but could

also introduce additional solutions on the boundary of the parameter space.

To look for multimodality, we estimate a GARCH model, givingparameter estimateŝθ (say). We

then re-estimate witĥθ + ε as starting values, withε drawn from the standard normal distribution.4

In case restrictions are imposed, the transformed estimates from the first estimation are randomized

(there are no restrictions in the transformed space, see theAppendices) to provide starting values

for subsequent estimations. This automatically keeps the new starting values within the constraints.

We sample starting value until 250 GARCH models have been successfully estimated. If any local

solutions are found, the models are then re-estimated to look at specific properties. For example, the

second derivative at the solution must be negative definite for a local maximum.

We start by considering a single sample of1000 replications for GARCH processes A–D. For

each process, this is generated from the same random normal sequence, and 250 initial observations

are discarded. Table 5 gives the maximum values that were found after this search. For each pro-

cess, the same log-likelihood was found when estimating a GARCH(1,1) model. The table lists the

improvement in log-likelihood when moving from GARCH(1,1)to GARCH(2,2): ̂̀
2,2 − ̂̀

1,1, and

from GARCH(2,2) to GARCH(3,3):̂̀ 3,3 − ̂̀
2,2. A single star indicates that the likelihood-ratio is

significant at5% on aχ2(2) test, while two stars indicates significance at1%.

A notable feature, which we also found in other samples, is that overparametrized unrestricted

estimation finds maxima at ‘strange’ parameter values. These maxima tend to be considerably better,

therefore likely to be accepted on LR or AIC criteria.

For N&C there are two cases in Table 5 where the more general model has a lower log-likelihood.

This indicates a local maximum, because the more restrictedmodel with α̂3 = β̂3 = 0 would be

better. In the random search for GARCH(2,2) maxima on the process A data, the overall maximum

was found90% of the time, and the local in the remaining10%. For the GARCH(3,3) estimates of

process A, the overall maximum was only found in3% of the cases, the next best in1.5%, and the

4We could have considered using the estimated variance for the normal distribution. However, there is no guarantee

that a local optimum would provide a good estimate of the variance. Moreover, this would not allow parameters with low

‘standard errors’ to move very much.
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Table 5: Changes in likelihood valueŝ`p,p at located maxima for GARCH(p, p) models,p = 1, 2, 3

for a single replication from processes A–D.

UNR N&C UV POS

process A

̂̀
2,2 − ̂̀

1,1 3.0678∗ 1.1473 0.4637 0.4290

̂̀
3,3 − ̂̀

2,2 9.2421∗∗ 0.1022 0.6982 0.7296

process B

̂̀
2,2 − ̂̀

1,1 2.6383 1.6220 0.9074 0.8567

̂̀
3,3 − ̂̀

2,2 8.5432∗∗ −0.4132 0.3014 0.3521

process C

̂̀
2,2 − ̂̀

1,1 2.3391 1.5305 0.6626 0.6122

̂̀
3,3 − ̂̀

2,2 7.6686∗∗ −0.2400 0.6279 0.6783

process D

̂̀
2,2 − ̂̀

1,1 6.1170∗∗ 6.1170∗∗ 6.1170∗∗ 4.4192∗

̂̀
3,3 − ̂̀

2,2 0.7556 0.7556 0.3146 1.2327

̂̀
p,pis the log-likelihood for GARCH(p, p) model.

worst in95%. Note that, when searching, the most common solution was randomized (i.e. that found

from default starting values). In general, our experience was that the global maxima of unrestricted

estimation can be hard to find. For the restricted parameterizations, on the other hand, the most

commonly found solution is also usually the best.

Figure 8a shows the coefficientsδi for all unrestricted GARCH(1,1) and GARCH(2,2) estimates

that converged when using the realization from the GARCH(1,1) process A. The corresponding

GARCH(3,3) results are in Figure 8b. The different patternsare quite surprising.

Figure 9 shows the coefficientsγi for N&C and UV. In this case UV and POS are identical,

except that UV found a small number (about1%) of local solutions on the IGARCH boundary. The

corresponding figures for the realization of processes B andC look very similar.

Finally, we look at selecting a GARCH(p, q) model for the British pound to US dollar daily ex-

change rate.5 The sample has 2915 observations (7-Jun-1973 to 28-Jan-1985), and is similar to some

5The data source is: Federal Reserve Statistical Release H.10, available on the web from www.frbchi.org/econinfo

/finance/for-exchange/welcome.html
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Figure 8: Coefficientsδi unrestricted GARCH(2,2) (left) and GARCH(3,3) (right) estimates, for all

(local) maxima. Data is from process A.
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Figure 9: Coefficientsγi of GARCH(2,2) and GARCH(3,3) estimates for N&C, UV and POS. Data

is from process A.

of the estimations in Nelson and Cao (1992). For GARCH(1,1),GARCH(2,1), and GARCH(1,2) we

found no multimodality, but for higher order models, we did find multiple solutions, even with such a

large sample size. Table 6 lists some of the maxima that were found for selected GARCH models. The

columns labelled ‘robustness’ give the percentage of time the same solution was found when using it

as a starting point for a randomized search. Again this is based on 250 successful estimations. A low

robustness value could indicate that it is difficult to locate that particular mode.

In the unrestricted case in particular, the random search delivered considerably higher likelihoods.

The same happened with GARCH(3,3) estimation for the N&C case. For the other cases, the solutions

are very close in terms of the log-likelihood. Testing down the lag length is problematic when there are

many local maxima: it can easily happen that a sequence of nested hypotheses is not nested in terms of
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likelihood values (as happened for the GARCH(3,3) estimates under UV). None of our GARCH(1,1)

estimates, either on the artificial processes or actual data, revealed multiple modes.

Table 7 reports the models that are selected on the AIC criterion. The last column is for the ‘global’

maximum (although we cannot rule out that even better solutions exist). Each parameterization selects

a different model: the estimated GARCH(3,3) for the unrectricted case is quite different from the

Nelson&Cao restrictions. The column labelled ‘Robust’ only considers those modes which were

found at least60% of the time when re-estimating from that solution with randomization. This yields a

different GARCH(3,3) model for unrestricted estimation, and a GARCH(3,1) instead of GARCH(3,3)

for N&C. In the remaining two cases the solution does not change: all modes are very robust.

Figure 10 expresses the models in terms of the estimated coefficientsγi. Note that the UV model

is IGARCH, and the best unrestricted model goes beyond that with a sum of GARCH parameters

equal to1.005.
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Figure 10: Coefficientsγi for models corresponding to Table 7.

4 Conclusion

We found that inclusion of a dummy variable in the mean equation of a GARCH regression model

could lead to multimodality in the likelihood. Interestingly, whether this happens depends on the data,

but it is likely when correcting for large outliers. We believe that this curiosity, while of empirical

relevance, has not yet been explicitly noted in the literature.

This finding has important consequences for empirical modelling. First, at-test on the coefficient

of a dummy variable cannot be used in GARCH regression models. When there are two maxima,

they will both have the same estimated standard errors, and hence potentially very differentt-values.

Consequently, it is possible that one is significant, and theother insignificant. Asymptotic likelihood
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Table 6: GARCH(3,3), GARCH(2,3), GARCH(2,2) likelihood values at located maxima for£/$ re-

turns (T = 2915). And the percentage of occurrence based on 250 model estimates from random

starting values.

UNR N&C UV POS

loglik robustness loglik robustness loglik robustness loglik robustness

GARCH(3, 3)

−2093.7 4.0% −2128.0 47.6% −2141.3 84.4% −2142.3 98.0%

−2109.5 8.4% −2130.8 84.8% −2144.1 99.6%

−2123.7 65.2% −2139.1 96.8% −2145.1 55.6%

−2134.5 3.6%

−2138.4 60.8%

−2140.9 39.6%

GARCH(2, 3)

−2095.9 6.8% −2141.3 100% −2139.0 96.4% −2142.6 74.0%

−2112.7 3.2% −2142.6 94.4% −2143.9 77.2%

−2141.3 81.0%

GARCH(2, 2)

−2113.1 7.6% −2142.3 100% −2139.0 94.4% −2142.6 72.8%

−2134.8 1.2% −2142.6 92.8% −2143.9 70.4%

−2142.6 92.4% −2144.9 99.6%

Robustness is the percentage of estimates that found same mode in randomization.

loglik is the log-likelihood; see Table 3 for UNR, N&C, UV, POS.

theory is affected by this violation of the regularity conditions. Secondly, all model statistics which

involve the value of the dummy are affected. We also noted that with only dummies as regressors,

standard software may find a local minimum of the likelihood.Finally, we showed that adding the

dummy with one lag in the conditional variance equation avoided the multimodality. We use this

result in Doornik and Ooms (2002) to develop a procedure for outlier detection in GARCH models.

Next, we considered several types of restrictions on the GARCH parameters. In particular, we

presented a small refinement to the Nelson & Cao constraints,and showed how these can be made

operational within an unconstrained maximization setting. We proposed a simpler alternative which

allows imposition of the IGARCH boundary, while also being more general than forcing all coeffi-
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Table 7: GARCH model for£/$ returns selected by AIC, for GARCH(p ≤ 3, q ≤ 3).

Robust Best

UNR: unrestricted (3, 3) (3, 3)

N&C: positive conditional variance (3, 1) (3, 3)

UV: positive and finite unconditional variance(2, 2) (2, 2)

POS: all coefficients positive (3, 1) (3, 1)

Robust is outcome with robustness> 60%.

Best is outcome using best solution.

cients to be positive. This seems to behave as well in our applications, albeit with a somewhat higher

incidence of boundary solutions.

We have shown that multimodality of the GARCH likelihood is of practical relevance. It is likely

that applied results have been published without the authors being aware of the possibility of multiple

modes. Our results indicate that, especially when going beyond the GARCH(1,1) model, a search for

local maxima is important. We have also investigated the role of different restrictions on the parameter

space. Unrestricted estimation is especially likely to show multimodality (for example with a unit root

in theβ lag-polynomial, or with the sum of the GARCH coefficients greater than one). In light of this,

it is important that restrictions are imposed on the parameter space.
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Appendix 1 Implementing the GARCH likelihood

Implementation of the GARCH likelihood involves several decisions, often only summarily discussed

in the literature:
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1. How to select initial values for the variance recursion;

Evaluation of the likelihood requires presample values forε2t andht. In this paper we follow

the suggestion of Bollerslev (1986) to use the mean of the squared residuals:

ε2i = hi = T−1
T∑

t=1

ε2t , for i ≤ 0. (20)

2. Which restrictions to impose;

Bollerslev (1986) proposed the GARCH model withα0 > 0, αi ≥ 0, andβi ≥ 0. This

ensures thatht > 0, and can easily be implemented. Letφ0, . . . , φq+p be the parameters used

in estimation, thenα0, α1, . . . , βp = eφ0 , . . . , eφq+p will ensure that all coefficients are positive.

The Jacobian matrix of this transformation is dg(α0, α1, . . . , βp). More general formulations

are discussed in§3.1, and below.

3. Which maximization technique to use;

We have found BFGS (see e.g. Fletcher, 1987 or Gill, Murray, and Wright, 1981) to be the

most successful numerical maximization method. This corresponds with the consensus view

in the numerical analysis literature that BFGS is the preferred quasi–Newton method, see e.g.

Fletcher (1987, p.71) and Nocedal and Wright (1999, p.197).BFGS avoids the need for second

derivatives. It is supplemented by a line search when, at an iteration step, the likelihood does

not increase. BFGS was not considered by Fiorentini, Calzolari, and Panattoni (1996), but we

found 100% convergence when replicating their Table 1 with 1000 replications (requiring about

17 iterations on average, whether starting from the DGP values, or from a starting value rou-

tine). BFGS may be somewhat slower than some other methods, but we believe that robustness

(i.e. success in convergence) is more important.

4. How to compute starting values for the parameters;

We use the ARMA parameterization of the variance process from (17) and apply the method of

Galbraith and Zinde-Walsh (1997), developed for estimation of ARMA models, to the squared

data, after removing regression effects in the mean. If necessary, the resulting parameter values

are adjusted to enforce the unconditional variance to exist.

5. Whether to use numerical or analytical derivatives;

All estimates in this paper use analytical derivatives, except when imposing all positive or

Nelson&Cao-type restrictions, and for EGARCH-type models. When the Hessian matrix is

required for the variance-covariance matrix this is also computed numerically.
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6. Which estimate of the variance-covariance matrix to use.

A comparison of various estimators is given in Fiorentini, Calzolari, and Panattoni, 1996.

Appendix 2 Positive conditional variance

Nelson and Cao (1992) (hereafter NC) formulated conditionsso that the coefficients in (4) are always

positive. The conditions, expressed in terms of the lag polynomialsβ(L) andα(L), require that the

roots ofβ(z) =
∏p

i=1(1 − ρiz) = 0 lie outside the unit circle. Furthermore,β(z) andα(z) are

assumed to have no common roots. Theδi in (4) can be derived recursively fori = 1, 2, . . .:

δi = 0, i < 1,

δi =
∑p

j=1 βjδi−j + αi, i ≤ q,

δi =
∑p

j=1 βjδi−j , i > q.

(21)

Soδ1 = α1.

GARCH(≤ 2, q) case

The necessary and sufficient conditions forδi ≥ 0 ∀i for the GARCH(2, q) case are:

α0 > 0; (DO1)

0 < ρ1 < 1, ρ1 is real; (DO2.1)

|ρ2| ≤ ρ1, ρ2 is real, (DO2.2)

δi ≥ 0, i = 1, . . . , q; (DO3)
∑q

j=1 ρ
q−j
1 αj > 0. (DO4)

NC Theorem 2 gives these conditions as:

α∗

0 > 0; (NC1)

0 < ρ1, ρ1, ρ2 are real; (NC2)

δi ≥ 0, i = 1, . . . , q; (NC3.1)

δq+1 ≥ 0; (NC3.2)
∑q

j=1 ρ
1−j
1 αj > 0. (NC4)

Where it is assumed that|ρ2| ≤ |ρ1| without loss of generality. In the next proposition we show that

these two sets of conditions are identical.

Proposition 3 Conditions (NC1)–(NC3.2) and (DO1)–(DO3) are equivalent when|ρ2| ≤ |ρ1| < 1.
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Proof (DO2.1) and (DO2.2) combine (NC2) with the assumption thatβ(L) is invertible, andρ1 is the

largest root in absolute value. Next, (DO2.x) imply thatβ(1) = 1 − ρ1 − ρ2 + ρ1ρ2 > 0, reducing

(NC1) to (DO1).

To see that (NC3.2) is redundant whenρ2 is negative use

δq+1 = β1δq + β2δq−1 = (ρ1 + ρ2)δq − ρ1ρ2δq−1,

andδq+1 ≥ 0 follows from (NC3.1) and0 < −ρ2 ≤ ρ1.

If the roots are real and distinct (NC equation A.9):

δi = (ρ1 − ρ2)
−1

min(i,q)∑

j=1

(
ρ1+i−j
1 − ρ1+i−j

2

)
αj, i = 1, . . . .

Writing ai =
∑min(i,q)

j=1 ρ1−j
1 αj andbi =

∑min(i,q)
j=1 ρ1−j

2 αj:

δ∗i = δi (ρ1 − ρ2) = ρi
1ai − ρi

2bi.

Thenδ∗q ≥ 0 andρ2 > 0 impliesρ2ρ
q
1aq ≥ ρq+1

2 bq. Combining this with (NC4), which isaq > 0:

δ∗q+1 = ρq+1
1 aq − ρq+1

2 bq ≥ ρq+1
1 aq − ρ2ρ

q
1aq = ρq

1aq (ρ1 − ρ2) ≥ 0.

When the roots are equal,ρ1 = ρ2 = ρ > 0 (NC equation A.6):

δi =

min(i,q)∑

j=1

(1 + i− j)ρ1+i−jαj , i = 1, . . . .

So

ρ−1δq+1 =

q∑

j=1

ρ1+q−j(1 + q − j)αj +

q∑

j=1

ρ1+q−jαj = δq + ρ−qaq,

which is positive by (NC4) and (NC3.1). �

(DO1)–(DO4) has one restriction more than the number of parameters. However,ρq−1
1 (NC4)

= (DO4) is not always binding. For example, whenq = 1, it is automatically satisfied. In the

GARCH(2,2) case:

ρ1α1 + α2 > 0, (NC4),

(ρ1 + ρ2)α1 + α2 > 0, from δq in (21).

Whenρ2 is negative (makingβ2 positive), the first restriction is not binding.

The set of restrictions can implemented by transformation when (DO4) andδq ≥ 0 are combined

in one restriction, obviating the need for constrained estimation. The conditions

∑p
j=1 βjδq−j + αq > 0,

∑q−1
j=1 ρ

q−j
1 αj + αq > 0,
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are both satisfied whenαq is sufficiently large. Therefore, we estimate the product asa parameter

exp(φq) which is always positive, and takeαq as the largest root.

To restrict any coefficient between−ρ andρ we can use:6

x = ρ
1 − eφ

1 + eφ
, −ρ < x < ρ ⇔ φ = log

(
1 − x/ρ

1 + x/ρ

)
, −∞ < φ <∞.

See Marriott and Smith (1992) for the application of such Fisher-type transformations to impose

stationarity in ARMA models.

The restrictions can be implemented as follows. Letφ0, φ1 . . . , φq, ψ1, ψ2 be the unrestricted

parameters. Then:

(a) α0 = exp(φ0),

(b) ρ1 =
exp(ψ1)

1 + exp(ψ1)
, ρ2 = ρ1

1 − exp(ψ2)
1 + exp(ψ2)

,

(c) β1 = ρ1 + ρ2, β2 = −ρ1ρ2,

(d) αi = δi −
∑p

j=1 βjδi−j usingδi = exp(φi) for 1 ≤ i ≤ q − 1, δi = 0 for i < 1,

(e) αq = −1
2(x+ y) + 1

2

[
(x− y)2 + 4exp(φq)

]1/2
, x =

∑p
j=1 βjδq−j, y =

∑q−1
j=1 ρ

q−j
1 αj .

This transformation imposes the necessary and sufficient conditions for GARCH(≤ 2, q) models.

As NC point out, starting theht recursion with the sample mean (20) will ensure positive con-

ditional variance. This is not necessarily the case when using other methods to initialize pre-sample

values ofht.

Appendix 3 Positive and finite unconditional variance

Estimation under restrictions (18) is achieved by transforming the GARCH parameters. Writeπi =

αi + βi, andsi for the partial sums:si =
∑i
j = 1 πj . The restrictions imply that0 < s1 ≤ s2 · · · ≤

sm < 1,m = max(p, q). This can be implemented by introducing0 < θi < 1:

k∑

i=1

πi =
m+1−k∏

i=1

θi.

For example, form = 3:

π1 = θ1θ2θ3,

π1 + π2 = θ1θ2,

π1 + π2 + π3 = θ1.

6Numerically, it is better to use1 − e
φ

1 + e
φ whenφ ≤ 0, and e

−φ
− 1

e
−φ

+ 1
otherwise. This prevents overflow when evaluating

the exponential.
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An unrestricted parameterφ is mapped to(0, 1) usingθi = [1 + exp(−φ)]−1.

If the unconstrained version isθu = α0, π1, . . . , πm, β1, . . . , βn, n = min(p, q), and the trans-

formed parameterizationφ = log α0, φ1, . . . , φm, β1, . . . , βn, usingφi = log[θ1/(1 − θ1)], then the

Jacobian matrix can be used to move backwards and forwards. For example, whenm = 3:

∂θ

∂π′
=




1 0 0

0 (π1 + π2 + π3)
2 0

0 0 (π1 + π2)
2




−1 


1 1 1

π3 π3 −1

π2 −1 0


 ,

and∂φi/∂θi = [φi(1 − φi)]
−1.

This allows the use of standard derivatives, as given in Fiorentini, Calzolari, and Panattoni (1996)

for example. This representation also makes it easy to imposeS = 1, which estimates the IGARCH(p, q)

model.
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Gómez, V., A. Maravall, and Peña (1999). Missing observations in ARIMA models: Skipping approach

versus additive outlier approach.Journal of Econometrics 88, 341–363.

Gourieroux, C. (1997).ARCH Models and Financial Applications. New York: Springer Verlag.
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