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Summary: Empirical analyses of Cagan’s money demand schedule have broadly
speaking suffered from the following problems: (i) Inability to model the data to the
end of the hyperinflation. (ii) Difficulties in making congruent models for systems
of variables. (iii) Discrepancies between “estimated” and “actual” inflation tax. In
this paper the extreme Yugoslavian hyperinflation of the 1990’s is therefore studied.
Two econometric models are presented. First, money, prices and exchange rates are
analysed by a vector autoregression allowing for random walk and explosive common
trends. This analysis of the sample distribution leads on to the second model of real
money and the cost of holding money, rather than the traditional inflation measure.
The three outlined problems can then be addressed, giving support to Cagan’s model.

Keywords: Cost of holding money, Co-explosiveness, Cointegration, Explosive
processes, Hyper-inflation.
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1 Introduction

The money demand equation for hyper-inflation of Cagan (1956) postulates a linear
relationship between real money and the expected rate of change in prices. Cagan’s
own empirical work as well as most later empirical work is essentially single equation
regressions of log real money, mt − pt, regressed on the changes in log prices, ∆pt,
measured at a monthly frequency. For extreme hyper-inflations only little progress has

1The data used in this paper were collected and previously analysed by Zorica Mladenovíc and
her co-authors. I have benefitted from many discussions with her and with David Hendry, as well
as from discussions with Frédérique Bec, Aleš Bulí̌r, Katarina Juselius, Takamitsu Kurita, and John
Muellbauer. Computations were done using PcGive (Doornik and Hendry, 2001) and Ox (Doornik,
1999).
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been made to model the joint system of the variables, thereby avoiding the exogeneity
assumption underlying a single equation approach, and to describe extreme hyper-
inflations to the very end. Typically discrepancies have been found between the
“optimal” and the “actual” inflation tax, and, hence only little support for Cagan’s
model. In this paper, two empirical models for the extreme Yugoslavian hyper-
inflation are proposed with a view towards addressing these issues.
In the first model, a vector autoregressive model for nominal money, mt, nominal

prices, pt, and spot exchange rates, st, is constructed for a sample excluding the last
few months. Due to the accelerating nature of the data the vector autoregression is
found to have an explosive characteristic root. Using econometric methods developed
in tandem with this empirical analysis, it is found that real money is like a random
walk while changes in log prices are explosive. A regression of real money on changes
in log prices is therefore unbalanced and Cagan’s model cannot be supported directly.
While this first model does achieve the aim of finding a well-specified simultaneous
model it is clearly only partially successful.
Since the aim is to find a link between real money and the cost of holding money,

but the variables mt− pt and ∆pt are unbalanced, the idea of the second model is to
consider a transformed set of variables. The cost of holding money is nowmeasured by
ct = ∆Pt/Pt = 1−exp(−∆pt). For small values of ∆pt a Taylor expansion shows that
ct ≈ ∆pt whereas in extreme inflations the two measures are quite different, with ct
being bounded by 1, which opens up for a new interpretation of maximal seigniorage
in Cagan’s model. A well-specified vector autoregressive model can now be set up
for real money, the cost of holding money and a similar measure for the rate of
depreciation, dt, of the Yugoslavian dinar. This transformed time series is integrated
of order one and standard cointegration analysis gives one cointegrating relation that
is a variant of Cagan’s model. The cointegrating relation has an additional component
dt − ct suggesting that the hyper-inflation is pro-longed by uncertainty in the foreign
exchange market. Moreover, the estimated “optimal” and “actual” inflation tax rates
are found to be in line.
The outline of the paper is that §2 gives a brief review of the existing literature

on money demand in hyper-inflations. §3 introduces the data and some institutional
background. The two econometric models are outlined in §4 and §5 while §6 concludes.
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2 A brief review of previous work on hyper-inflation

The main theory for hyper-inflation is due to Cagan (1956). In his equations 2 and 5
real cash balances in hyperinflation are modelled through the equations

mt − pt = −αEt − γ, (2.1)µ
∂Et

∂t

¶
t

= β (Ct −Et) . (2.2)

Here mt and pt represent the logarithm of money and prices, Ct = ∂pt/∂t is the
continuous rate of change in prices, while Et represents an adaptive expectation of Ct.
Other variables, like output, that are usually appearing in quantity theories for money
are assumed to have a negligible influence. By solving equation (2.2) backwards from
present time, t, to an initial value, −T, the expectations term Et can be expressed as
an exponentially weighted average of past values of C, that is

Et = H exp (−βt) + β

Z t

−T
Cx exp {β (x− t)} dx. (2.3)

Inserting this in (2.1), Cagan could then estimate α and β from monthly data as
follows. Letting −T represent the beginning of the sample and assuming that prices
had been almost constant before time −T, then H can be set to zero in (2.3). As-
suming, further, Cx is constant within a month, in which case Ct = ∆pt, the latent
expectations process Et can be approximated by a sum. For a given value of β the
parameter α can then be estimated from (2.1) by regression. By varying the value of
β a joint estimate for α, β can be found.
In the empirical analysis, Cagan considered data from seven hyperinflations. The

infamous German hyperinflation from August 1922 to November 1923 was in this way
analysed using data from September 1920 to July 1923 due to difficulties in fitting
the data from the last few months. In the German case, α is estimated by bα = 5.76.
Cagan also analysed the seigniorage from printing money, arguing that the revenue

from the inflation tax is the product of the rate of tax and the base

R =

µ
dP

dt

1

P

¶
M

P
, (2.4)

where M and P are levels of money and prices, and the timing is left uncertain. He
then proceeds to make the counter-factual assumption that the quantity of nominal
money rises at a constant rate. This would eventually imply constancy of real money
balances, which is contradicted by Cagan’s own observation that real money balances
tend to fall in hyperinflation. It would also imply that Et can be replaced by Ct in
equation (2.1):

M

P
= exp(−αC − γ) (2.5)
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Combining (2.4) and (2.5) gives a revenue of R = C exp(−αC − γ), which has a
unique maximum, with respect to C, when

C =
1

α
.

The inverse of the semi-elasticity α is therefore interpreted as the rate of inflation
that maximises the revenue from seigniorage under the above assumptions.
In the empirical analysis, Cagan estimates for the German hyperinflation that

α̂−1 = 0.183. This is a continuously compounded rate corresponding to a monthly
tax of exp(bα−1) − 1 = 20%. In the counter-factual analysis, this is then compared
with an average monthly rate of inflation, defined as ∆Pt/Pt−1, of 322%. Comparing
the two shows a puzzling mismatch between an “optimal” tax rate and the “actual”
inflation tax.
Sargent (1977) revisited Cagan’s analysis, with a view towards explaining the

discrepancy of the “optimal” and the “actual” inflation tax. While keeping the
above structure of Cagan’s model, the backward looking, adaptive expectations were
replaced by forward looking, rational expectations, and a two-equation structural
simultaneous equations model was proposed.
In Sargent’s econometric analysis, mt and pt are implicitly assumed to be inte-

grated of order one, I(1), and a bivariate first order autoregressive - first order moving
average model was fitted to the monthly growth rates of these variables. In the case
of Germany, the estimate of α is virtually unchanged, bα = 5.97, but the uncertainty
is judged differently with a standard error of 4.6 so the estimated confidence band
for the “optimal” inflation tax covers nearly the whole positive real axis. Sargent’s
analysis therefore lends support, albeit only weakly, to Cagan’s model
Taylor (1991) reformulated the real cash balance equation in an I(2) framework,

which pushed the research in hyperinflations a significant step forward. The equation
(2.1) was written in discrete time as

mt − pt = −α∆pet+1 + ζt, (2.6)

∆pet+1 = ∆pt+1 − �t+1, (2.7)

where the variable ∆pet+1 measures the expected inflation in period t+ 1 and ζt, �t+1
are stationary error terms. Taylor showed that ∆pet+1 can be interpreted as either
a rational expectation, an adaptive expectation or an extrapolative expectation. In-
serting (2.7) into (2.6), subtracting ∆pt on both sides and then reorganising leads
to

∆2pt+1 = −α−1 (mt − pt + α∆pt) +
¡
�t+1 − α−1ζt

¢
. (2.8)

Assuming that mt and pt are both I(2) variables it can be tested whether real money
mt − pt is I(1) and in turn whether mt − pt + α∆pt cointegrates to I(0). In this coin-
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tegrated framework the coefficient to the expected inflation variable ∆pet+1 therefore
shows up as the coefficient to ∆pt in a cointegrating relation.
In the empirical work Taylor considered six of Cagan’s cases. As a justification for

the I(2) framework, unit root tests were applied to levels, first and second differences
of mt − pt and ∆pt with a focus on the left-hand tail of the unit root t-statistics.
Considering instead both tails of the t-statistics the results indicate the presence of
explosive roots for instance in the German data. For Germany, Taylor estimated α
by 5.31 which is in line with previous estimates.
Frenkel (1977) suggested linking real money balances with exchange rates and

forward rates to overcome the problem of measuring expected inflation. The rationale
is that agents hold real money in foreign currency and adjust holdings of real money
to expected exchange rate depreciations. This idea was cast in Taylor’s framework by
Engsted (1996). Abel, Dornbusch, Huizinga and Marcus (1979) went one step further
in suggesting that both inflation and depreciation in exchange rates may influence real
money as in

mt − pt = −α∆pet+1 − β∆set+1 + γ + �t.

Yugoslavia experienced two hyper-inflations in short time. The first had a long
build-up during the 1980s and peaked in 1989 reaching high, but not very extreme
inflation only briefly. The second and very extreme hyper-inflation which is studied
here developed from 1991 to January 1994. Data from these hyperinflations have been
studied using the above methods in a number of papers with for instance Petrovíc and
Mladenovíc (2000) looking at the latter episode following the approaches of Taylor
and Engsted. For the first Yugoslavian hyper-inflation, richer data are available
such as wages. Recently, Juselius and Mladenovíc (2002) have re-analysed this period
seeking a link between wages and prices. They follow a vector autoregressive approach
paying a lot of attention to describing the sample distribution, by which they can free
themselves from the exogeneity assumptions underlying univariate approaches. They
find an explosive root in the data and they proceed to analyse the data in a way that
has inspired the first econometric model that will be presented in §4.

3 Data and institutional background

The institutional background for the extreme Yugoslavian hyperinflation of the 1990s
is described in Petrovíc and Vujoševíc (1996) and Petrovíc, Bogetíc and Vujoševíc
(1999). In short, the former federal republic of Yugoslavia was falling apart in 1991,
the civil war started and United Nations embargo was introduced in May 1992. This
situation led to decreased output and fiscal revenue, while transfers to the Serbian
population in Croatia and Bosnia-Herzegovina as well as military expenditure added
to the fiscal problems. The monthly inflation rose above 50% in February 1992 and
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Figure 1: Data in level for full period. Data in differences (using ∆1-operator) for
shorter period

accelerated further, a price freeze was attempted in the end of August 1993 and the
inflation finally ended on 24 January 1994 with a currency reform after prices had
risen by a factor of 1.6×1021 over 24 months.
Figure 1 shows three time series of monthly data relating to the period 1990:12 to

1994:1. The variables are the monthly retail price index, pt, narrow money measured
as M1, mt, and a black market exchange rate for German mark, st, all reported
on a logarithmic scale. The sources for the data are documented in Petrovíc and
Mladenovíc (2000). They consider the prices for 1993:12 and 1994:1 to be unreliable
and choose end their analyses end at the latest 1993:11. This is in line with previous
studies of hyper-inflation that mostly ignore the last few observations.
Figure 1 also shows first differences of the series. Both in levels and in differences

the series show an exponential growth over time and hence an accelerating inflation.
Cross-plotting the variables against their lagged values would give approximately
straight lines with slopes in the region 1.15-1.35, which would be another indication
of explosive behaviour.
The real money series mt − pt and mt − st discounted by the price level and the

exchange, respectively, are both falling. The former was also observed by Cagan
and motivates the negative sign in equation (2.6). Noting that German prices only
increase a few percent over the period and that mt − st is falling more than mt − pt.
It follows that pt − st is essentially the real exchange rate and it is mostly falling.

6



Test p m s Test (p,m, s)
χ2normality(2) 1.3 [0.53] 6.0 [0.05] 4.5 [0.11] χ2normality(6) 3.1 [0.79]
FAR(1)(1, 20) 1.8 [0.19] 1.0 [0.32] 0.1 [0.82] FAR(1)(9, 39) 1.5 [0.20]
FAR(3)(3, 18) 0.6 [0.62] 0.8 [0.53] 0.3 [0.81] FAR(3)(27, 29) 1.1 [0.44]

FARCH(3)(3, 15) 0.1 [0.94] 0.2 [0.92] 0.1 [0.93]

Table 1: Misspecification tests for the vector autoregressive model for p,m, s. p-values
are given in brackets.
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Figure 2: Misspecification graphics for unrestricted model.

This can be seen more clearly from Figure 3 (a),(d).
In the following two econometric models are proposed for the data. The approach

is general-to-specific as advocated by for instance Hendry (1995). This gives consid-
erable weight to describing the sample distribution of the data, but is carried out as
a dialogue between the economic theory and the data. As seen from the reviewed
empirical research Cagan’s model is not quite rich enough to describe the sample
variation in detail although it of course represents a valuable insight into the basic
structure of hyperinflations.

4 Model 1: Variables in levels

With theories linking money both with prices and exchange rates it seems prudent
to seek to analyse all three variables in a joint model. It will first be established that
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Re(z) 1.21 -0.42 -0.42 0.02 0.02 0.75 0.75 -0.31 0.09
Im(z) 0 0.84 -0.84 0.90 -0.90 0.33 -0.33 0 0
|z| 1.21 0.94 0.94 0.90 0.90 0.81 0.81 0.31 0.09

Table 2: Characteristic roots of unrestricted model

Cointegration rank, r 0 1 2 3
Test 79.1 [0.00] 23.1 [0.11] 9.8 [0.14]
Likelihood 15.30 43.27 49.94 54.84

Table 3: Cointegration rank tests.

a vector autoregression gives a reasonable fit and then an econometric model with
random walk and explosive common trends will be applied.
A model with a constant, a linear trend and three lags is fitted to the data up to

1993:10:

Xt =
3X

j=1

AjXt−j + µc + µlt+ εt,

where the innovations εt are assumed independent normal N3(0,Ω)-distributed. On
the one hand this gives a model that has admittedly few degrees of freedom in that
each equation has 11 mean parameters which are fitted using T = 32 observations.
On the other hand a lot of information should be available in these explosively grow-
ing time series. Formal mis-specification tests are reported in Table 1 while Figure
2 reports graphical tests for mis-specification. Interpreting these in the usual way
indicates that the model is well specified. In doing so it is assumed that the usual
asymptotic theory is valid although this has only been proved for the test for autocor-
relation in the residuals, see Nielsen (2001a). Some of the test statistics are reported
in an F -form as advocated by Doornik and Hendry (2001) in an attempt to deal with
finite sample issues for these tests even though it has not yet been argued whether
this represents an improvement.
Table 2 reports the characteristic roots of the unrestricted vector regression. It

appears as if there is one explosive root and two unit roots as marked with bold face.
The explosive root of 1.21 is within the region of 1.15-1.35 discussed above. There
is a further set of four complex roots near the unit circle. An interpretation of a
seasonal pattern repeating itself every five months seems unlikely. In this analysis
these four roots will be ignored, but it is a matter for further research to understand
the nature of such roots.
The next step of the analysis is a co-integration analysis using the approach sug-
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Re(z) 1.19 1 1 -0.37 -0.37 0.07 0.07 -0.54 0.07
Im(z) 0 0 0 0.88 -0.88 0.83 -0.83 0 0
|z| 1.19 1 1 0.95 0.95 0.83 0.83 0.54 0.07

Table 4: Characteristic roots of restricted model with rank one, r = 1.

p m s t
H1

(
√
LR)

1
(6.2)

−0.35
(−6.5)

−1
(−6.2)

0.065
(6.6)

H1,Hρ 1 −0.35 −1 0.011

Table 5: Cointegrating vector, β̂
∗
= β̂

∗
1, estimated under H1 alone and under the joint

hypothesis H1,Hρ. Signed likelihood ratio statistic,
√
LR, for insignificance is given

in brackets.

gested by Johansen (1996). For this purpose the model is re-parametrised as

∆1Xt = (Π,Πl)X
∗
t−1 +

2X
j=1

Γj∆1Xt−j + µc + εt, (4.1)

where ∆1Xt = Xt − Xt−1 is the usual first difference and X∗
t−1 = (X 0

t−1, t
0)0. This

likelihood can be maximised analytically under the reduced rank hypothesis

rank(Π,Πl) ≤ r ≤ dimX so (Π,Π1) = αβ∗0

for matrices α ∈ Rp×r, β∗ ∈ R(p+1)×r with full column rank. Although the symbols
α, β were used above to describe Cagan’s model, they are used here once again to be
consistent with Johansen’s notation. The interpretation of the cointegrating vectors
β is now that β0Xt has no random walk component but it could have an explosive
component. This statement will be made more precise in connection with the Granger-
Johansen representation in (4.2) below. The usual asymptotic critical values are valid
in the presence of explosive roots as argued by Nielsen (2001) for the univariate case
and Nielsen (2000) for the general case.
The cointegration rank r is determined using the likelihood ratio tests reported in

Table 3. It is relatively clear to conclude that r̂ = 1. The characteristic roots are only
little changed by imposing this restriction as seen from comparing Table 4 with Table
2. Once the rank is determined we can impose restrictions on the cointegrating vector
β∗. A homogeneity restriction, H1 say, between prices and exchange rates reduces the
likelihood value slightly to 43.0 and such a restriction is therefore easily accepted
when comparing the likelihood ratio statistics to a χ2(1) distribution. The resulting
cointegrating vector is reported in the first line of Table 5. As the cointegrating
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relation β0Xt represents those linear combinations that are explosively growing, but
without a random walk component, it can be interpreted as the relation of nominal
money, mt, and real price, pt − st, that generates the explosive trend.
To investigate the influence of the explosive trend the model is now reformulated

as
∆1∆ρXt = α1β

∗0
1∆ρX

∗
t−1 + αρβ

0
ρ∆1Xt−1 + ψ∆1∆ρXt−1 + µc + εt

where β∗1 = β1 is the cointegrating vector from before and ∆ρXt−1 = Xt−ρXt−1 with
ρ being an unknown scale parameter representing the explosive root. The matrix αρβ

0
ρ

has rank dimX − 1 = 2 due to the single explosive root. Nielsen (2004) shows that
in this model the process Xt has Granger-Johansen representation

Xt ≈ C1

tX
s=1

εs + Cρ

tX
s=1

ρt−sεs + yt + τ c + τ lt+ τρρ
t (4.2)

where yt can be given a stationary initial distribution. The impact matrices C1, Cρ are
functions of the parameters and satisfy β01C1 = 0 and β0ρCρ = 0 whereas τ l satisfies
β01τ l+δ

0
1 = 0 and the coefficients τ c, τ ρ are functions of parameters and initial values so

β0ρτρ = 0. The explosive common trend Wt =
Pt

s=1 ρ
−sεs converges almost surely to

a random variable W as t increases according to the Marcinkiewicz-Zygmund result,
see for instance Lai and Wei (1983).
Simple hypotheses on the co-explosive vectors βρ can be tested using χ

2-inference.
The underlying asymptotic result, due to Lai and Wei (1985) and Nielsen (2003) is
that the stationery component, the random walk and the explosive trend are asymp-
totically uncorrelated. Nielsen (2004) then uses this to show that simple hypotheses
on the co-explosive vectors βρ can be tested using χ

2-inference under the normality
assumption to the innovations, which was checked above.
The hypothesis that βρ is known and given by

Hρ : β0ρ =

µ
1 0 −1
0 1 −1

¶
,

implies that each of mt − pt, mt − st and st − pt are co-explosive relations and thus
have random walk behaviour. Since βρ is completely specified, the model can be
estimated by reduced rank regression for each value of ρ. This in turn results in a
profile likelihood in ρ which can then be maximised by a grid search. Searching in
the region ρ > 1 there appears to be a unique maximum to the likelihood function
of 41.3 with ρ̂ = 1.175 and a slightly changed cointegrating vector β1 as given in
Table 5. Once ρ̂, β̂ρ, β̂

∗
1 are known the remaining parameters can be estimated by

regression. The test statistic for Hρ against H1 is 3.4 which is small compared to the
χ2(2) distribution.
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In summary, the above analysis shows that the three variables p,m, s each has
a common explosive trend and two common random walk trends. The series co-
explode so m − p, m − s and p − s are all non-exploding random walks, while the
differenced series ∆p,∆m,∆s are explosive with no random walk. This indicates that
linking for instance m− p with ∆p as in the model of Taylor (1991) may not give a
balanced regression in this situation. A suggestion for getting around this issue and
for recovering Cagan’s money demand schedule is given in the following.

5 Model 2: transformed variables

In order to overcome the difficulty that m − p is I(1) while ∆p is explosive another
inflation measure is constructed. A three dimensional vector autoregression is then
set up and analysed as a cointegration model using the parametrisation in (4.1).
One central question is how to measure the cost of holding money. While Cagan

approximates Ct = ∂pt/∂t = (∂Pt/∂t)/Pt essentially by ∆pt another measure is

ct = 1−
Pt−1

Pt
= 1− exp (−∆pt) ,

showing the relative loss in purchasing power over one period. This can be motivated
by the following argument inspired by Hendry and von Ungern-Sternberg (1981). The
nominal money stock growths according to

Mt =Mt−1 + δt,

where δt represents net money issues. Dividing through by Pt then shows that real
money satisfies

Mt

Pt
=

Mt−1

Pt−1

µ
Pt−1

Pt

¶
+

δt
Pt

where the coefficient ct = 1− Pt−1/Pt is the proportion of the real money stock that
is lost from period to period. The variable ct has the property of being bounded by 1
indicating that in each period one can at most loose all money. This fits nicely with
interpreting inflation as seigniorage, giving a maximal tax rate of 100%. When the
quantity ∆pt = pt − pt−1 = log(Pt/Pt−1) is small, a Taylor expansion shows

ct = 1− exp (−∆pt) ≈ ∆pt.

The measure ct is closely related to the inflation measure ∆pt/(1 + ∆pt), which,
however, has an asymptote for ∆pt = −1.
While the quantity ∆pt is indeed the preferred inflation measure when analysing

economies without severe inflation the choice of measure becomes increasingly im-
portant as the inflation accelerates. As the price series pt accelerates, ct approaches

11



1991 1992 1993 1994

−2

0

2

4

(a) mt−pt

1991 1992 1993 1994

0.25

0.50

0.75

1.00 (b) ct

1991 1992 1993 1994

4

6

8

(c) mt−st

1991 1992 1993 1994

0.25

0.50

0.75

1.00 (d) dt

Figure 3: Transformed variables

1 indicating a nearly complete loss in value of money. This type of transformation
is related to the non-linear models suggested by Frenkel (1977) linking real money,
m−p, with either log(∆pet) or (∆pet)

γ although such an approach would maintain ∆pt
as the central measure of the cost of holding money. A measure like ct appears to
give a more direct measure of the cost of holding money and can more easily be used
in a linear model. It has the added benefit of reducing the impact of measurement
error as prices accelerate.
The transformed variables mt − pt, mt − st and ct as well as a depreciation rate

dt = 1 − exp (−∆st) are plotted in Figure 3. While the measurement problem in
prices show up in real money, mt − pt, money deflated by exchange rate, mt − st,
is more benignly behaved. Concentrating on the variables mt − st, ct, dt at first it is
possible to set up a model for the entire period up to 1994:1.
A third order vector autoregression with a restricted constant is fitted to the data

1991:1 to 1994:1 giving a sample size of T = 37− 3 = 34. Mis-specification graphics
and tests are reported in Figure 4 and Table 6. Neither the formal tests nor the
graphical tests indicate any serious mis-specification. In Figure 4, the first three rows
relate directly to the three variables, mt− st, ct and dt, while the last row relates to a
linear transformation thereof, dt−ct, exploiting that the likelihood for an unrestricted
vector autoregression is invariant to linear transformations of the variables involved.
The last column of Figure 4 consists of recursive plots testing the temporal invariance
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Figure 4: Misspecification graphics for model for transformed data. First column
show quality of the fit, so solid line is the observed series and dashed line is fit.
Second column: standardised residuals. Third column: QQ plots. Fourth column:
One-step-ahead recursive Chow tests. First row: mt− st. Second row: ct. Third row:
dt. Fourth row: ct − dt.

of the model, which is something that could be questioned for hyperinflation data.
The software PCGive has three different recursive plots which are all fine, with the
one-step-ahead Chow test reported here.
There is now one characteristic root at 1.035 while the remaining roots are well

inside the unit circle. The cointegration rank tests reported in Table 7 point to a
rank of 1. Under that hypothesis the slightly explosive root is restricted to 1 and all
characteristic roots, but two unit roots, are well inside the unit circle.
The estimated cointegrating relation is given by

ecmt
(
√
LR)

= 1
(2.8)

(mt − st) + 3.26
(2.0)

ct + 10.27
(5.7)

(ct − dt)− 8.48
(−2.7)

.

The signed log-likelihood ratio test statistics for individual exclusion restrictions are
reported in brackets and are asymptotically standard normal distributed, so one-
sided tests 5% level tests would have a critical value of about plus or minus 1.65.
This cointegrating vector shows that real money, deflated by exchange rates, moves
both with ct and dt and not ct alone. Indeed, excluding dt, by eliminating ct−dt, but
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Test mt − st ct dt Test (mt − st, ct, dt)
χ2normality(2) 0.1 [0.95] 1.2 [0.54] 1.9 [0.38] χ2normality(6) 2.8 [0.83]
FAR(1)(1, 23) 0.1 [0.71] 0.1 [0.70] 1.4 [0.25] FAR(1)(9, 46) 0.5 [0.87]
FAR(3)(3, 21) 0.8 [0.49] 1.3 [0.31] 2.1 [0.13] FAR(3)(27, 38) 0.9 [0.59]

FARCH(3)(3, 18) 1.4 [0.28] 0.2 [0.91] 0.2 [0.88]

Table 6: Misspecification tests for the vector autoregressive model for mt − st, ct, dt.
Asymptotic p-values are given in brackets.

Hypothesis H(0) H(1) H(2) H(3)
Test 60.1 [0.00] 15.5 [0.20] 4.2 [0.40]
Likelihood 80.03 102.31 107.97 110.06

Table 7: Cointegration rank tests for transformed model. Asymptotic p-values are
given in brackets.

keeping ct, is strongly rejected, whereas the decision to keep ct is slightly marginal.
The cointegrating equation is approximately of the same form as Cagan’s with real
money stock measured in foreign currency falling with ct. In addition, the term, dt−ct,
which can be interpreted as the real appreciation rate of the German mark, enters so
that if the German mark appreciates faster than prices rise, goods become relative
cheaper, and the money circulation rises. Comparing the Figures 5(a, b) shows how
the sign of ct − dt varies over time with mt − st tending to increase when ct − dt is
negative. The cointegrating relation itself, normalised on real money is plotted in
Figure 5(c) . Due to the cointegration framework the coefficient to ct can be thought
of as the semi-elasticity for the expected future cost of holding money as in the setup
of Taylor (1991).
Ignoring the differential of the cost of holding money and the depreciation, Cagan’s

semi-elasticity α can be estimated by bα = 3.26. This value is in line with both
Cagan’s and Sargent’s estimates for the German hyperinflation. According to Cagan
the maximal revenue from seigniorage, assuming money rises at a constant rate, is
then estimated by exp(bα−1) − 1 = 36%. It seems natural to compare this with the
average cost of holding money for a month, ct = ∆Pt/Pt, rather than the average of
inflation measure through ∆Pt/Pt−1 since the former is precisely a measure for how
much value is lost over a month. For the full sample this average is 42.6% increasing
to 44.6% when the three initial values are discarded.
Having the cointegrating relation in place, the short term dynamics of the system

can be analysed in order to understand how the variables influence each other. The
notion of weak exogeneity introduced by Engle, Hendry and Richard (1983) is helpful
and can be implemented in the cointegration analysis as zero row restrictions of the α
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Figure 5: (a) (Minus) real appreciation rate for German mark. (c) Cointegrating
relation from Table 8. (b, d) Cost of holding money compared with (minus) real
money measured by deflating with exchange rate and price level, respectively. The
scale and mean of real money have been adjusted to match the (0,1) range.

vector, see Johansen (1996, §8). After exploration of weak exogeneity properties the
approach of Hendry (1995, §16.8) is followed in obtaining a parsimonious vector au-
toregression by single equation regressions using the estimated cointegrating relation
as regressor.
In a first and partly unsuccessful attempt to reducing the model, the depreciation

rate dt is investigated as a candidate for weak exogeneity. The log likelihood ratio
test statistic is 3.02 [p = 0.08] which gives a rather marginal decision given the
small sample. Imposing weak exogeneity, however, only results in minor changes
to the cointegrating vector. This analysis has two interesting features, in that real
money growth, ∆(mt − st), only enters marginally in the equation for ∆ct and that
neither ∆(mt − st) nor ∆ct are significant in the equation for ∆dt indicating that
these variables are non-Granger causing for ∆dt. This analysis only gives a poor
understanding of the dynamics of the system in that it appears as if the exchange
rate is driving the inflation. In other words there is only marginal statistical support
and a weak economic interpretation for imposing weak exogeneity of dt.
An advantage of Johansen’s method for cointegration analysis is its invariance to

linear transformations of the variables, hence it is equivalent to consider the variable
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mt − st ct ct − dt 1

β̂
0

1
(2.7)

3.22
(1.9)

10.3
(6.0)

−8.50
(−2.7)

α̂0 0.33
(5.5)

−0.088
(−5.5)

0

Table 8: Cointegrating vectors β̂ and adjustment vector α̂ for transformed model.
Signed likelihood ratio statistic,

√
LR, for insignificance is given in brackets.

vectors (mt − st, ct, dt) and (mt − st, ct, ct − dt). The fourth row in Figure 4 indicates
the fit for the variable ct − dt. The test for weak exogeneity of the real depreciation
rate ct − dt is given by a test statistic of 0.51 [p = 0.47]. The estimated α, β under
that restriction are reported in Table 8. Using the cointegrating relation normalised
on mt − st as a regressor, ecmt say, a parsimonious vector autoregression was found
as

∆(m− s)t = 0.33
(0.05)

ecmt−1 − 0.86
(0.18)

∆(m− s)t−1 + 1.1
(0.5)

∆ct−2

−1.9
(0.4)

∆(d− c)t−1 + 1.6
(0.3)

∆(d− c)t−2 + 0.20ε̂t. (5.1)

∆ct = −0.090
(0.013)

ecmt−1 + 0.10
(0.04)

∆(m− s)t−1 + 0.20
(0.04)

∆(m− s)t−2

+0.60
(0.11)

∆ (d− c)t−1 − 0.23
(0.06)

∆ (d− c)t−2 + 0.046ε̂t, (5.2)

∆ (d− c)t = −0.25
(0.08)

∆(m− s)t−1

−0.47
(0.14)

∆ (d− c)t−1 − 0.42
(0.14)

∆ (d− c)t−2 + 0.14ε̂t (5.3)

These equations have 2,2 and 3 restrictions imposed, respectively, and are valid even
at a 20% level since the respective marginal log likelihood ratio statistics of 1.80,
1.12 and 1.26 are small compared to χ2-distributions. Apart from the cointegrating
relation that is driving real money and inflation directly, it appears as if most of
the dynamics is generated by the growth of real money, ∆(mt − st), and the real
depreciation rate, dt − ct, while inflation growth, ∆ct, only enters in the equation for
real money. The cointegrating relation ecmt enters with positive sign in the mt − st
equation and negative sign in the ct equation reflecting the much larger coefficient to
ct in the cointegrating vector.
The only outstanding issue is whether a model with real money measured bymt−pt

rather than mt − st can be constructed. This turns out to be difficult. As a start,
it is actually easy to fit well specified vector autoregressions to the bivariate system
(mt−pt, ct) as well as (mt−pt, ct, dt−ct). This is under the proviso that the last three
observations are discarded and a dummy is introduced for July 1993 which is around
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the time of the attempted prize freeze. However, in the bivariate system there is no
evidence of cointegration whereas ct is insignificant in the single cointegrating vector
of the tri-variate system. This point can be illustrated graphically. In Figure 5(b, d),
the negative of the the real money variables, st −mt and pt −mt, respectively, are
plotted with ct with ranges and means adjusted to the latter. It is clear that st−mt

follows ct nicely with discrepancies matched by dt − ct of Figure 5(a) while pt −mt

does not track ct well. Further research would be needed to see whether this is a
problem particular to the Yugoslavian case, or whether the relative ease of measuring
exchange rates rather than prices makes mt − st a better measure for real money in
hyperinflations.

6 Discussion

Since the work of Taylor (1991) hyperinflationary money demand schedules have typ-
ically been analysed using an I(2) approach, where real money, mt − pt, and price
growth, ∆pt, have been modelled as I(1) variables. The first of the presented econo-
metric models for the extreme Yugoslavian hyperinflation therefore looks at an unre-
stricted vector autoregression for nominal money, mt, prices, pt, and exchange rates,
st. Using a recently developed techniques for analysing explosive variables it is found
that real money appears to be I(1) whereas price growth is explosive. This suggests
that at least for the Yugoslavian case Taylor’s approach should be modified to some
extent.
In the second econometric model, the cost of holding money, ct, is therefore con-

sidered instead of ∆pt. This measure has the advantage of being bounded by one,
and it is thus easier to model empirically, and it also seems to be a more reasonable
ingredient in a discrete time version of the seigniorage interpretation of hyperinflation
as presented by Cagan (1956). A further advantage is that the full sample can now
be analysed in contrast to earlier work on the Cagan data.
When analysing money deflated by the exchange rate, mt − st, or alternatively

mt − pt, together with ct and the exchange rate depreciation, dt, it appears as if all
three variables enter a cointegrating relation. With the new measure for inflation
there is only a small discrepancy between “actual” and “optimal” inflation tax as
introduced by Cagan. The depreciation cannot be excluded from the cointegrating
relation which supports the model of Abel, Dornbusch, Huizinga and Marcus (1979)
as opposed to the simpler models of Cagan (1956) and Frenkel (1977). This suggests
that “dollarisation”, in terms of the German mark, played an important role in the
Yugoslavian hyperinflation as found by Petrovíc and Mladenovíc (2000). The real
depreciation rate dt − ct that is now entering the money demand schedule, is found
to be weakly exogenous showing that only real money and inflation are directly dise-
quilibrium correcting. A parsimonious vector autoregression can now be constructed
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indicating that the dynamics is driven mainly by real money growth and real depre-
ciation rate growth with the lagged inflation growth only entering in the equation for
real money.
The results open up for various lines of future research. A first issue is how much

information is available in a dataset like this. The explosive growth explored in the
first model seems to generate a lot of sample variation, which is largely eliminated
when moving on to the second model, so the second model could be more prone to
finite sample issues. For the same reason it is probably right to follow Cagan in
ignoring output in the first model, whereas in the second model the variables are
considered on a scale where a variable like output may matter. Petrovíc, Bogetíc and
Vujoševíc (1999) suggest that the output was reduced by about 50% in US dollar terms
in this period, whereas real money measured as mt − st is reduced by exp(−4.39) ≈
99% over the period, indicating that the velocity of money changes considerably in
hyperinflations. If output data were available to be included in the money demand
schedule the semi-elasticity for the cost of holding money could very well be found to
be more significant. Expectations have not played a large role in this analysis. On the
one hand Taylor (1991) pointed out that cointegrating relations can be interpreted
in terms of different expectation hypotheses, so the results are nonetheless of interest
also in a expectations setup, and on the other hand, it is questionable how agents form
their expectations in an extreme hyperinflation when a country is under embargo and
on war-footing. A final step forward is that the second model actually follows the
hyperinflation to the end, which makes it easier to consider how the hyperinflation
actually ends.
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