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1 Introduction

Although the main emphasis of Condorcet (1785) was on the probability of

making a �correct�choice, his name is now most associated with the well-

known paradox of majority voting. In its simplest, symmetric, form the

paradox can be explained as follows: three individuals (1,2,3) have prefer-

ences over three alternatives (x; y; z) as follows

1 : x y z
2 : z x y
3 : y z x

so that 1, for instance, most prefers outcome x, then y, and then z. A

majority prefer outcome x to y (individuals 1 and 2), y to z (individuals 2

and 3), and z to x (individuals 2 and 3). Thus the majority voting rule

gives rise to a ranking of alternatives that exhibits a cycle and there is no

majority or Condorcet winner.

This is by far the most famous example in the collective choice literature.

Principally, it is used to demonstrate the shortcomings of the majority vot-

ing rule. But it is more central that this. The preferences underlying the

example - Condorcet preferences - are not only an example of preferences

giving rise to cycles, they are also the only example (Inada (1969)). Specif-

ically, if, over three alternatives, there are two individuals with preferences

like individuals 1 and 2 in the example then, if it is never the case that there

is an individual with 3�s preferences, majority rule will not exhibit cycles and

there will be a majority winner amongst any set of alternatives. More gener-

ally, Condorcet preferences play a crucial role in Arrow�s (1963) proof of his

impossibility theorem. In the proof, the existence of Condorcet preferences

is used to show that the smallest group of individuals whose preferences are

respected when they agree about a pairwise decision and everybody else dis-

agrees with them, the so-called smallest almost decisive groups, consists of

only one individual. This is the important step in Arrow�s proof to show

that the only collective choice rule satisfying �reasonable�assumptions is a

dictatorship.

It is common to suggest that the Condorcet paradox also implies that, in

some circumstances, the process of decision making based upon majority rule
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will lead to a never ending series of decisions as individuals continually to vote

to upset any proposed status quo. Whilst this is an interesting proposition, it

does not follow from the Condorcet paradox example. Formally, equilibrium

is de�ned to be a state which is a majority or Condorcet winner and, as there

is no such equilibrium in the example, there is no implication about �what

will happen�. The main purpose of this paper is to extend the voting problem

to an intertemporal setting and admit cycles as an equilibrium phenomenon.

In particular, if there is su¢ cient discounting of the future then, with such

myopia, short-term gains will dominate any long-term losses. In this case,

cycles will be induced in the Condorcet example. But with less myopic

preferences, the structure of equilibrium is less clear. It is the purpose of

this paper to investigate this issue.

In voting situations, it is widely recognised that individuals may not vote

for outcomes that seem to give them higher reward. The problem is usually

approached as a game played between voters. For Farquharson (1969) and

most work since, there is a decision mechanism which may have several stages,

with voting at each stage, but there is a �xed conclusion to the procedure

and then implementation of an outcome. One interpretation of this is that

voters do not discount the future and it is the eventual outcome which is all

important.

With several stages of voting, the agenda is crucial for the outcome.

The agenda may be set exogenously (as in Farquharson), or endogenously

(Banks (1985), Austen-Smith (1987)), but it is important that the process

is �nite so that an outcome can be implemented. One implication of this is

that either the possibility of voting is a scarce good or it is made scarce by

monopoly provision by an agenda setter. Adopting an alternative approach

which makes the possibility of voting plentiful in supply raises the spectre of

inconclusive decision making.

If the voting process takes place in real time then there is no need to

reach a �xed outcome. Voters experience a path of outcomes and this, in

principle, can last forever. For very impatient voters, it is only the direct

outcome of any vote that is important; for patient voters, it will be where

the voting process leads that will be important. For an example of repeated
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voting over time, see Banks and Duggan (2002).

The model examined in this paper assumes that a pairwise majority vote

is taken every period between the status quo (the outcome implemented

in the previous period) and some other state, chosen randomly with equal

probability across all states. This process goes on forever so that even if no

change occurs after some �nite time, the then status quo will be subject to

pairwise scrutiny against all other states. With a low rate of impatience,

the possibility of voting is not a scarce resource - the rate of impatience can

be viewed as a measure of scarcity of voting. It will be assumed that there

is complete information and, in equilibrium each individual will be able to

infer what will happen in the future, conditional on what is chosen in the

present period and on the path of alternatives that will o¤ered in the future.

Thus, voters will be able to infer their expected utility from staying at the

status quo or their expected utility from a speci�c change in outcome. With

only one pairwise vote per period, there must be a majority winner each

period. Equilibrium will require that voters beliefs concerning what will

happen in the future be con�rmed in equilibrium (voters cannot hold beliefs

incompatible with the equilibrium).

We start by laying down the model of intertemporal choice and investigat-

ing equilibrium in a simple extension of the Condorcet example which gives

rise to the paradox of voting. Speci�cally, we look at a three person, three

state example with symmetry in states and voters. With such symmetry,

the equilibrium set must be symmetric - it is possible that choosing state y

forever may be an equilibrium (an equilibrium is not required to be symmet-

ric), but then choosing state x forever or z forever would also be equilibria.

We also examine the possibility of cycles and steady states as equilibrium

phenomena and determine the set of equilibria as a function of parameters.

This analysis is conducted in section 3.

Section 4 examines equilibrium in all three person, three state examples

where a Condorcet winner exists. It is shown that, in an intertemporal

model, the Condorcet winner is not always selected as the eventual steady

state. In particular, it is possible for equilibrium to involve cycles in this

case. More interestingly, it is shown that when there is a Condorcet winner in
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the atemporal problem it is possible that no intertemporal equilibrium exists.

Thus, it is possible that the behaviour induced by beliefs will contradict those

beliefs, so ruling out behaviour based upon correct beliefs.

Section 5 shifts the focus away from speci�c examples towards the in-

tertemporal voting problem with general preferences. Section 6 concentrates

on a weakening of the concept of equilibrium which permits a general exis-

tence theorem to be proved. Section 7 develops a de�nition of attractiveness

of a social state �a Generalized Condorcet Winner �with the property that

there are equilibria where there is convergence to such a state. Concluding

remarks are o¤ered in Section 8.

2 The Basic Set-up

Time is discrete (t = 0; 1; ::::) and there is an in�nite horizon. At each date,

social state xt must be chosen from some �nite set X. Let j X j= m + 1:
There is a �nite set of voters N and the preferences of voter i 2 N can be

expressed by an intertemporal utility function

Ui =
1X
0

�tui(xt) (1)

where �; 0 < � < 1, is the discount factor.

At the start of each period there is a status quo state, x at date 0, and xt�1

otherwise. Assume that there is the possibility through pairwise majority

voting, of changing the state. Speci�cally, assume that, at each date t, voters

get to choose between the status quo and some other state, each other state

being o¤ered with equal probability 1/m. The new state is implemented for

period t if a strict majority vote for a change. The new state becomes the

status quo for t+1. This process treats all states other than the status quo

symmetrically.

As all that matters from the past is the current status quo, it is reasonable

to assume that individual behaviour is markovian. A strategy for voter i is

a function si : X �X ! f0; 1g determining voting intention - if si(x; y) = 1;
voter i votes for y when the status quo is x: Given everybody�s strategy,

Ui(x; fsg) is i�s discounted future expected utility, starting from x as the
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outcome at date 0. The set of strategies fsg will be an equilibrium if, for

all, i, x, y;

si(x; y) = 1 i¤ Ui(x; fsg) < Ui(y; fsg) (2)

We are therefore looking at markovian (perfect Bayesian) equilibrium

strategies under a weak dominance requirement - agent i votes for y over x if

he prefers the consequences starting from y, irrespective of the fact that his

vote will �count�only when his vote is pivotal.

3 The Condorcet Example

We �rst investigate equilibrium in an intertemporal version of the Condorcet

example. Thus there are three states (x; y; z) and three individuals (1,2,3).

Individual i�s preferences are given by equation (1). The function ui is a

cardinal function which permits any a¢ ne transformation. The utility of the

worst (best) alternative can therefore be normalized to 0 (1), and it assumed

that there is no indi¤erence. If the three individuals are exactly symmetric

then the instantaneous utility ui(x) will be given as in Table 1:

Table 1

x y z
1 : 1 m 0
2 : m 0 1
3 : 0 1 m

where 0 < m < 1. These preferences imply the Condorcet preferences of the

introduction. Incorporating these instantaneous utilities into the intertem-

poral utility function (1) allows us to see that preferences are dictated by two

parameters, the discount factor � and m, a parameter which is a measure of

the preference for intertemporal variation. Abstracting from discounting, an

agent prefers variation with equal weight on all three states to the constant

median outcome if 1+m+0
3

> m or m < 1
2
. This is akin to convexity of ui and

we will refer to preferences being convex or concave depending upon whether

m falls short or exceeds 1
2
:
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We now investigate equilibrium strategies. The optimal behaviour of a

voter depends upon the future which is induced by the choice of a particular

state in the present. If y is chosen when x is the status quo, then a strict

majority prefers the path of states starting at y rather than x. This implies

that when y is the status quo, x will not be chosen over it. Thus the

movement between states induced through voting is a directed graph over

the set of states. This may be incomplete. Figure 1 is one such example

where, eventually, state y will be chosen and then it will become a steady

state outcome.

With three alternatives there are 33 = 27 possible directed graphs though

many will fail to be compatible with equilibrium. To determine equilibrium,

assume that there is an equilibrium where two states, y and z say, are both

steady states. Consider what happens when z is the status quo and y is

proposed as an alternative. If y is chosen, individual 1 will receive, applying

Table 1, m forever (U1(y) = m
1�� ); if z is chosen then he will receive 0 forever

(U1(z) = 0). Thus he will vote to change to y. Individual 3 will also gain.

Thus, z cannot be a steady state: there is at most one steady state in any

equilibrium. If y is a steady state then individuals 1 and 3 will always vote

for y in a contest between y and z. If z does not beat x then the transfer

from x must be directly towards y. However, individuals 1 and 2 will not

vote for this change. Thus, the only possible voting outcomes which sustain
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y as a steady state are as in Figure 1 (we have yet to show that y must

positively beat x in a contest between the two).

To determine the conditions under which this is an equilibrium, it is

necessary to ensure that individuals have an incentive to induce these voting

outcomes. Consider the vote between x and y. If y is a steady state,

individual 2 will prefer to stay at x (moving to y gives the worse possible

future path of outcomes of utility 0 forever) and 3 will vote for y (thus giving

the best possible future path). What about 1? Suppressing the strategies

from the discounted utility functions gives,

U1(x) = 1 + �(1
2
U1(y) +

1
2
U1(z)) (3)

U1(y) = m+ �(1
2
U1(y) +

1
2
U1(y)) (4)

U1(z) = 0 + �(1
2
U1(z) +

1
2
U1(y)) (5)

which then solve to give:

U1(x) = 1 + m�=2
(1��)(1��=2) (30)

U1(y) = m
(1��) (40)

U1(z) = m�=2
(1��)(1��=2) (50)

so that y will be weakly preferred to x if

m � 1� �=2 (6)

If (6) is not strict then there will be no direct transfer from x to y.

It is still necessary to con�rm that, between x and z, z will be chosen.

Individual 1 will vote against the change, irrespective of what happens in a

ballot between x and y. Individual 2 will vote for the change if and only if

y wins in a ballot between x and y. This requires the inequality in (6) to be

strict. Individual 3 always votes for the change (it is better to spend time

in state z rather than state x before transfer to (y).

We have thus shown:

Proposition 1 If m > 1� �=2 (preferences are su¢ ciently concave), there
is an equilibrium which involves voting transfers as in Figure 1 and state y

being reached as a steady state.
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Through symmetry, there are two other equilibria with x being reached

as a steady state and z being reached as a steady state.

If the opportunities to change the status quo are not scarce then voting

can occur often and the discount factor will be close to unity. In this case,

reaching a steady state can occur as an equilibrium whenever preferences are

strictly concave (m > 1
2
):

We now investigate the possibility of an equilibrium with cycles. When

� ! 0; we have seen that the motivation behind the Condorcet paradox is

applicable. We are interested more in the case where � is closer to unity.

Consider a voting outcome as in Figure 2.

Figure 1:

To examine when this can occur as an equilibrium, consider voting inten-

tions over fx; yg. For 2, anything is better than having state y for the next
period; for 3, state y gives the highest �ow return for one period and delays

the path of (lower) returns for one period. Thus, individual 1 is pivotal and

expected discounted utility is given by

U1(x) = 1 + �(1
2
U1(x) +

1
2
U1(z)) (7)

U1(y) = m+ �(1
2
U1(y) +

1
2
U1(x)) (8)

U1(z) = 0 + �(1
2
(U1(z) +

1
2
U1(y)) (9)
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These conditions can be solved to give expected discounted utilities. In-

dividual 1 is more likely to vote for x over y, the lower is m. Indi¤erence

occurs when U1(x) = U1(y) = m
1�� ; U(z) =

m�=2
(1��)(1��=2) and this occurs when

m = 1� �=2: As voting intentions over fy; zg and fz; xg are symmetric, we
have

Proposition 2 If m < 1 � �=2 (preferences are su¢ ciently convex), there
is a cyclic equilibrium which involves voting transfers as in Figure 2.

Note that, as m < 1; a cyclic equilibrium exists when there is su¢ cient

discounting.

A gap is left by Propositions 1 and 2 when m = 1 � �=2: Both classes
of equilibria depend upon the pivotal voter wishing to vote for change. If

m = 1 � �=2; the pivotal voter is indi¤erent about the outcome, but other
voters must believe that a particular outcome will obtain to sustain their

behaviour in di¤erent ballots. If a strategy can be speci�ed for indi¤erent

voters then there can be equilibria of the type described by Propositions 1

and 2 when m = 1� �=2. This is a measure zero possibility.
Propositions 1 and 2 do not exhaust all the possibilities of potential equi-

libria. Consider the voting outcome in Figure 3 which describes a perverse

cycle.

This possibility is perverse because, when there is a vote for change, a

majority of voters see their �ow payo¤ reduce. Can perverse cycles arise as
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an equilibria? Consider voting intentions over fx; yg. Individual 3 prefers y
because it hastens a path of returns which dominates the current �ow return

of 0; individual 1, on the other hand, will vote for x because it sustains a �ow

return of unity which dominates the future path of returns. Thus, individual

2 is pivotal (recall that with the belief by voters in a normal cycle (Figure

2), it was individual 1 who was pivotal). For 2, expected discounted utility

is given by:

U2(x) = m+ �(1
2
U2(x) +

1
2
U2(y)) (10)

U2(y) = 0 + �(1
2
U2(y) +

1
2
U2(z)) (11)

U2(z) = 1 + �(1
2
(U2(z) +

1
2
U2(x)) (12)

Individual 2 is more likely to prefer y over x when m is small. When

there is indi¤erence, we have U2(x) = U2(y) = m
1�� and U2(z) = m(1�

�=2)=(1��)(�=2) and this occurs when m = �=2. As voting intentions over

the other two possible pairs are symmetric, we have

Proposition 3 If m < �=2; there is a perverse cyclic equilibrium which

involves voting transfers as in Figure 3.

We can collect together the results of these three propositions. Figure 4

divides the parameter space into three regions. In I, there are three voting

equilibria, each involving a move towards a single steady state; in II, the only

equilibrium is the intertemporal extension of the standard Condorcet cycle;

in III, there are two equilibria, the Condorcet cycle and a perverse cycle.

The possible existence of perverse cycles demonstrates that behaviour in

intertemporal voting problems can be driven predominantly by the beliefs of

what will happen in the future, rather than by short-term pay-o¤s. As the

�gure makes clear:
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when � ! 0, behaviour is myopic and normal Condorcet cycles can be ex-

pected to obtain; when � ! 1, which occurs when the time between ballots is

short, perverse cycles are as likely as normal cycles and steady state equilibria

can obtain for a range of parameter values.

To complete this section, we consider an asymmetric version of the model

where ordinal preferences are the same as in the above model but cardinal

preferences di¤er across individuals. In particular, we take the case where

each agent may have a di¤erent median state utility value mi. When can

a voting outcome as portrayed in Figure 1 arise? Our previous analysis

showed that this depended upon m1 > 1� �=2: Similarly, x (z) will be the
steady state if m2 > 1� �=2 (m3 > 1� �=2): If m1;m2;m3 < 1� �=2 then
there are no steady state equilibria but this is exactly the condition needed

for a normal Condorcet cycle.

This demonstrates that, apart from on the boundaries between the dif-

ferent classes of equilibria, an equilibrium always exists. This is a result in

stark contrast to the atemporal version of the model built upon Condorcet

winners as equilibria. We also note that, in this asymmetric model, perverse

cycles can arise when m1;m2;m3 < �=2:

Finally, we note that the asymmetric version of the model favours the

existence of steady state equilibria over cycles (steady state equilibria require

that the relevant inequality be satis�ed by at least one agent, cycles require

the relevant inequality to be satis�ed by all agents).
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4 Non-Condorcet Examples

This section investigates equilibria when underlying preferences do not imply

a Condorcet cycle. We again concentrate on the case of three states and

three individuals as examples with more states or individuals must always

embody components of three state, three person cases within them. For

simplicity, we again rule out individual indi¤erence between states (see the

next section).

Consider �rst the case where there is unanimity of view over some pair

of states x and y, say. If everybody prefers x to y then two individuals, call

them 1 and 2, either prefer z to x or x to z. In the �rst case, 1 and 2 share

the same preference of z over x over y and they will never vote for a move

from z, they will always vote for z in a pairwise ranking and, given this, they

will always vote for x over y. We therefore have:

Proposition 4 If two individuals have the same preferences over the triple

of alternatives then their preferences are respected in the intertemporal equi-

librium.

Next , consider, the second case where 1 and 2 prefer x to z. Now, 1 and

2 will never vote for a move from x, given this they will always vote for x in

a pairwise ballot. Voting over {y; zg will depend upon individual preference
but, whatever, state x will always be reached. Putting together both cases

gives

Proposition 5 If there is unanimity in preference over some pairwise rank-

ing then there is a unique intertemporal equilibrium which involves a steady

state.

The �nal case to consider arises when there is no pairwise unanimity

but there is a Condorcet winner. Without loss of generality, let x be the

Condorect winner with individuals 1 and 2 preferring x to y and 1 and 3

preferring x to z: By suitable of labelling of states, assume that 1 prefers y

to z. If there is no pairwise unanimity then 2 must prefer z to x and 3 must
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prefer y to x. Cardinal preferences must therefore be as in Table 2, where

0 < m1;m2;m3 < 1:

Table 2

x y z
1 : 1 m1 0
2 : m2 0 1
3 : m3 1 0

The �rst question to be addressed is to ask when outcome x will win in any

pairwise ranking. If x always wins, the voting over fy; zg will be determined
by purely short-term interests and y will be the chosen outcome. This,

equilibrium must be as in Figure 5

Individuals 1 and 3 will vote for y over z. Consider the ballot over fx; yg:
As y is chosen from fy; zg; the choice is between x forever and y forever so
individuals 1 and 2 will vote for x and y. Finally, consider the ballot over

fx; zg: Individual 1 prefers outcome x forever to any other intertemporal
path so will vote for x and z. For individual 2, we have

U2(x) = m2

1�� (13)

U2(y) = 0 + �(1
2
U2(x) +

1
2
U2(y)) (14)

U2(z) = 1 + �(1
2
(U2(x) +

1
2
U2(y)) (15)
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which gives

U2(z) = 1 +
�=2

1� �=2

�
m2

1� �

�
: (16)

Thus, 2 will vote for x over z if m2 > 1� �=2. For individual 3, we have

U3(x) = m3

1�� (17)

U3(y) = 1 + �(1
2
U3(y) +

1
2
U3(x)) (18)

U3(z) = 0 + �(1
2
(U3(x) +

1
2
U3(y)) (19)

which gives

U3(z) =
�=2

1� �=2

�
1 +

m3

1� �

�
: (20)

Thus, 3 will vote for x over z ifm3 > �=2; if 2 and 3 have the same preferences

then individual 3 is more likely to vote for x and z. We have

Proposition 6 If there is a Condorcet winner, but no pairwise unanim-

ity, then preferences are as in Table 2 (for some labelling of individuals

and states). The Condorcet winner is the steady state equilibrium if ei-

ther m2 > 1 � �=2 or m3 > �=2: If m2 < 1 � �=2 and m3 < �=2 then the

Condorcet winner cannot be the steady state.

Proposition 6 shows that the Condorcet winner can fail to be the steady

state if preferences are su¢ ciently convex. Indeed, if all three individuals

have su¢ ciently convex preferences then, with large enough �, it is easy to

show that it is possible to support cycles as equilibrium phenomena. Simi-

larly, di¤erent con�gurations of preferences can lead to a steady state away

from the Condorcet winner. Thus, embedding the decision making into an

intertemporal voting problem strips the Condorcet winner of its position as

the natural outcome (but see Section 7 below).

In the last section it was shown that, with Condorcet preferences, an

equilibrium exists generically. When preferences imply the existence of a

Condorcet winner, Proposition 6 tells us that, when � is su¢ ciently small,

m3 > �=2 will be assured and equilibrium exists (with the Condorcet winner

as steady state). However, when � is close to unity, the intertemporal path

dictates individual preference. In particular, if the individuals have di¤erent

preferences towards intertemporal variability, there may be no equilibrium

over a range of parameter values.
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Proposition 7 If preferences are as in Table 2, m1 >
1
2
;m2;m3 <

1
2
; then,

as � ! 1, there is no intertemporal equilibrium.

The proof is given in the appendix. This non-existence result implies

that there are no beliefs that individuals can hold which are con�rmed in

equilibrium. At any date, agents hold some belief about the future. This

allows them to determine which of some pair of states that they would prefer.

This determines the voting outcome at that date. Thus, the model as laid

down has the feature that, given beliefs about the future, an outcome is

determined at every date. Non-existence does not relate to the inability

to choose an outcome at each date; instead, it says that agents�beliefs will

determine outcomes and the outcomes so determined cannot be compatible

with the beliefs. It is interesting to note that the generic non-existence only

arises when there is a Condorcet winner: when there is no Condorcet winner,

the structure biases towards the existence of a cycle - depending upon the

preferences for variability, cycles and/or steady states will be supported as

equilibria.

5 The General Case

This section investigates possibilities when there are many individuals and

many states. Assuming that the number of states is �nite, there are a �nite

number of pairwise-state dependent voting outcomes that can describe an

equilibrium. Generically, any individual will have a strict preference in any

pairwise ballot so that, if there are an odd number of individuals, each ballot

will be decisive: any equilibrium con�guration will be a directed graph with

all states connected.

The implication of equilibria involving all states being connected rules out

an equilibrium con�guration with two steady states at x and at y. When a

ballot occurs between x and y, one of them will be the winner, so ruling out

the other as a steady state. The other possibility of equilibrium requires the

existence of a subset of states Z which recur in�nitely often with a �cycle�

taking place between the states - each state wins in a pairwise ballot with

some other state in the subset, any pairwise ballot between x and y where
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x 2 Z and y =2 Z is won by x. States that tend to win in more ballots

against other elements of Z will recur more often in the cycle. Clearly, there

can be no equilibrium with two �cycles�de�ned by unconnected subsets Z1

and Z2 as the loser in the ballot between z1 and z2; z1 2 Z1; z2 2 Z2, is ruled
out as a possible candidate for a cycle subset. Similarly, it is not possible to

have an equilibrium with both a steady state and a cycle.

Assume that equilibrium involves a cycle. Within the cycle, the shortest

sub-cycle must, generically, be of length three - if x, y, z are part of the

shortest sub-cycle, assume that transfer is from x to y and y to z. If x is

chosen over z then there is a 3-cycle, if z is chosen over x then the shortest

sub-cycle is one link less, excluding y, which is a contradiction. Thus the

motivation for equilibrium cycles is similar to that we have already studied,

the value to an individual of continuing to support a cycle relating, when

� ! 1; to the frequency of occurrence of di¤erent outcomes within the cycle.

6 An Existence Theorem

The model as laid down ensures that, with some beliefs concerning the future,

an outcome is determined in every period. The troublesome result is that

it may be impossible for beliefs to be con�rmed (Proposition 7). In these

situations, the analysis is mute because the de�ned equilibrium concept does

not apply. There are a number of ways of relaxing the equilibrium concept

which permits beliefs to be con�rmed. Firstly, if behaviour can be time

dependent, with equilibrium strategies �xed for t + 1 forwards, strategies

and equilibrium for date t are determined and backward induction de�nes

equilibrium. This process is straightforward, at least when the model has

�nite time. Secondly, it is possible that there are mixed strategies where

individuals determine the probability of voting for a particular outcome in

any pairwise ballot. Equilibrium then relates to the probability that an

outcome will emerge as the majority winner in a pairwise ranking with any

other outcome.

To formalize this, let the strategy of individual i be a function esi : X �
X ! [0; 1] where esi(x; y) denotes the probability that i votes for y over x
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when the status quo is x and fx; yg is the pairwise ballot. The probability
that the vote is for x is assumed to be 1 � esi though it would be possible
to introduce a probability of abstention by the inclusion of another strategy

function. Strategies determine stochastic intertemporal transfers between

states and it is possible to compute i�s discounted future expected utility,

starting from x as the outcome at date 0. As earlier, this can be expressed

as Ui(x; fesg): To be more speci�c, �x all other individuals� strategies at

fes�ig: Given this, let Pi(x; y; fes�ig) be the probability that y is chosen in
the pairwise ranking of fx; yg when i votes for x over y and let Qi(x; y; fes�ig)
be the probability y is chosen when i votes for y over x. The function Ui

will satisfy (where other individuals strategies are suppressed as arguments).

Ui(x; fesg) = ui(x) +
�

m

X
y2Xjx

[Pi(x; y)(1� esi(x; y)) +Qi(x; y)esi(x; y)]Ui(y; fesg)
+
�

m

X
y2Xjx

[1� Pi(x; y)(1� esi(x; y))�Qi(x; y)esi(x; y)]Ui(x; fesg)
(21)

For �xed behaviour of other individuals and behaviour in the future opti-

mized, i chooses esi(x; �) to maximize (21) and, as this is linear in the strategy
vector, the objective function is quasi-concave. Thus, the optimal esi is an
interval. As (21) is also continuous in its arguments, and esi is chosen from
a closed interval, an optimal esi always exists. A standard existence theo-

rem (Fudenberg and Tirole (1991), Theorem 1.1), based upon an application

of Kakutani�s �xed point theorem ensures existence - essentially, we have a

mixed strategy equilibrium where agents are indexed by an individual i and

a pair of states fx; yg.

Proposition 8 If individuals vote probabilistically, an intertemporal equilib-

rium exists.

If such a probabilistic equilibrium involves cycles then the consequences

of randomization is to slow down the speed of the cycle and to ensure that

the outcome incorporates a mixture of the elements that drive both a steady

state or a cyclic equilibrium. For instance, taking the preferences underlying
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the non-existence result given in Proposition 7, it is possible for a stochastic

cycle to exist fx  y; y  z; z  xg. For instance, if m2 = m3 then

an equilibrium exists with individual 1 being pivotal over fx; yg and voting
stochastically for x and individual 3 being pivotal over fx; zg and voting
stochastically for z. The movement from x to z is slowed, allowing 1 to

consider x to be a satisfactory move from y - he will be indi¤erent - and the

extra delay that occurs when y is attained allows 3 to consider the move from

x to z to be satisfactory, again with indi¤erence.

7 Generalized Condorcet Winners

In a static model, a state that is a Condorcet winner is, almost by de�nition,

an equilibrium state. However, we have seen that this does not apply in the

intertemporal setting. In such a setting, a state may be a Condorcet winner

so that, as a steady state, it dominates any other path which is a steady state

- a particular state chosen forever. However, it may fail to be preferred by

an majority to a path of states (leading to a �cycle�) which can be supported

through majority voting. A strengthening of the conditions for a Condorcet

winner gives:

Generalized Condorcet Winner. Let PX be the set of all probability

distributions de�ned over the set of states X. State x is a generalized Con-

dorcet winner (GCW) if for all p 2 Px such that px 6= 1, for all y 2 X j x;
the inequality

ui(x) >
X
y2X
pyui(y)

holds for a strict majority of the population (this majority group being de-

pendent on y).

Thus, if x is a GCW then a majority prefer it to any probability mixing

of other states. We have:

Proposition 9 Let x be a GCW. There exists a probabilistic voting equilib-

rium with x as a steady state.
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This result is proved in the appendix. The result does not rule out the

existence of other equilibria where x is not a steady state: if the belief is

that x is not a steady state then a majority may not vote for x over some

other state y leading to a path of states because x itself will lead to a path

of states.

8 Concluding Remarks

The standard approach to the investigation of voting with �foresight�looks at

an atemporal voting problem and demands of the equilibrium concept, e.g.

sophisticated voting, that agents recognise their strategic role. By looking

at an intertemporal problem, one can ensure that the voting problem at

each point of time is su¢ ciently simple so that the equilibrium concept and

optimal behaviour are uncontroversial. The cost that is paid is that it is

necessary to specify an extensive form game - an agenda - which, through

its construction, will in part determine the type of outcome reached. In this

paper, an attempt has been made to ensure that the agenda is �exible in

the sense that, over time, every chosen outcome will be faced by every other

outcome repeatedly. In addition, every �nite agenda path will recur in�nitely

often. As long as individuals are su¢ ciently patient, they can recognise the

�exibility of the agenda - in particular, equilibria are not determined by a

restrictive agenda per se.

Within the intertemporal model, the nature of possible equilibria is rich,

even when the problem is simple. This paper has provided an exhaustive

analysis of the three state, three agent model. In this model with preferences

as in the Condorcet paradox, it is possible to have a equilibrium Condorcet

cycle as suggested by the paradox, a perverse cycle where a majority lose from

every change, or a steady state. When preferences give rise to a Condorcet

winner, the set of possibilities is further �enriched�to include the possibility

of no equilibrium.

Finally, it has been shown that general models must have, embedded

within them, the features of three state, three agent models. Pure strategy

equilibrium may take the form of a steady state, a cycle, or there may be
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non-existence. However, a probabilistic equilibrium will always exist. If

states are su¢ ciently attractive - they are Generalized Condorcet Winners -

then equilibria always exist with these states as steady states of the system.
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Appendix

Proof of Proposition 7

We show that with preferences as speci�ed, there are eight possible equi-

librium con�gurations and none of them are supportable as equilibrium (no

pairwise ranking involves a ballot outcome that is sensitive to the status quo).

Let con�gurations be denoted so that the Figure 5 con�guration is pre-

sented as fx  y; y  z; z ! xg: Consider the eight con�gurations in

turn:

1. fx y; y  z; z ! xg. As m2, m3 <
1
2
and � is large, individuals 2

and 3 will vote for z over x. #

2. fx! y; y  z; z ! xg. Individuals 1 and 2 will vote for x over y. #

3. fx y; y ! z; z ! xg. Individuals 1 and 3 will vote for y over z. #

4. fx! y; y  z; z  xg. Individuals 1 and 3 will vote for x over z. #

5. fx! y; y ! z; z  xg. Individuals 1 and 3 will vote for y over z. #

6. fx y; y ! z; z  xg. Individuals 1 and 3 will vote for y over z. #

7. fx y; y  z; z  xg. As m1 >
1
2
and � is large, individuals 1 and

3 will vote for y over x. #

8. fx! y; y ! z; z ! xg. As m1 >
1
2
and � is large, individuals 1 and

3 will vote for y over z. #

As this exhausts the con�gurations, there is no equilibrium.

Proof of Proposition 9

To prove this result, we construct an equilibrium with x as a steady state.

Fixing intra period utility functions, consider equilibrium in the model when

individuals have the discount factor
�

m
m+1

�
� and the state space is Xjx,

i.e. the GCW x is excluded from consideration and the number of states is
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m. By Proposition 8, an equilibrium exists in the truncated model. In this

equilibrium, let ep(y; z; �) be the probability that, starting at y, state z will be
chosen after � periods (ep(y; y; 0) = 1): Individual i�s preference for w over y
in a pairwise ranking is judged by comparing

eUi(w) =X
��0

X
z2Xjx

��
m

m+ 1

�
�

�� ep(w; z; �)ui(z) (A1)

with eUi(y) =X
��0

X
z2Xjx

��
m

m+ 1

�
�

�� ep(y; z; �)ui(z) (A2)

Individual i will de�nitely vote for w over y if eUi(w) > eUi(y); he may ran-
domize his vote if eUi(w) = eUi(y):
Now consider the model with state space X where individuals have dis-

count factor �. We postulate a candidate equilibrium where, between w and

y, w; y 2 Xjx, individuals vote as in the truncated model and between w,
w 2 Xjx, and x, the GCW, a strict majority vote for x. With such voting
x is a steady state.

We must check that individuals are maximizing their utility by supporting

this candidate equilibrium. When x is o¤ered it will be chosen and then it

will be chosen forever. Thus, starting at state w, the probability that x is

chosen after � periods is given by

p(w; x; �) = 1�
�

m

m+ 1

��
(A3)

Here
�

m
m+1

��
is the probability that x has not yet arisen on the agenda.

If w is the initial state then the probability that z; z 2 Xjx, is chosen
after � periods is given by

p(w; z; �) = ep(w; z; �)� m

m+ 1

��
(A4)

(A3) holds because the probability that x has not been chosen after � periods

is
�

m
m+1

��
and, conditional on the fact that x has not yet arisen on the agenda,

behaviour and probability of outcomes is the same as in the truncated model.

Individual i�s expected utility, starting from state w, is given by

Ui(w) =
X
��0

X
z2X
��p(w; z; �)ui(z) (A5)
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Using (A3) and (A4), this can be written as

Ui(w) =
X
��0

X
z2Xjx

��
�

m

m+ 1

�� ep(w; z; �)ui(z) + (A6)

X
��0

�
1�

�
m

m+ 1

���
��ui(x)

Thus,

Ui(w) = eUi(w) +X
��0

�
1�

�
m

m+ 1

���
��ui(x) (A7)

The second term in (A7) is independent of w so that decisions in the trun-

cated model, based upon eUi(�), remain optimal in the untruncated model,
based upon, Ui(�).
We now need only check that in the ballot between w and x; the GCW,

a strict majority will vote for x: If x is chosen then we have

Ui(x) =
X
��0
��ui(x) (A8)

Using (A5), x will be strictly prefered to w by i if

ui(x) > (1� �) +
X
��0

X
z2X
��p(w; z; �)ui(z): (A9)

De�ne p(z) by

p(z) = (1� �)
X
��0
��p(w; z; �) (A10)

As p(w; z; �) � 0 and
P
z2X
p(w; z; �) = 1; we have

p(z) � 0 for all z (A11)

and X
z2X
p(z) =

X
z2X
(1� �)

X
��0
��p(w; z; �)

=
X
��0
(1� �)��

X
z2X
p(w; z; �)

=
X
��0
(1� �)��

= 1 (A12)

24



Also, p(w; x; 0) 6= 1 so p(x) 6= 1. Thus, (A9) reduces to

ui(x) >
X
z2X
p(z)ui(z) (A13)

and, from the de�nition of a GCW, this will be satis�ed for a strict majority

of the population. We have now shown that the candidate equilibrium is,

indeed, supported by optimal behaviour and the result is proved.
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