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Abstract

A continuous time econometric modelling framework for multivariate financial market event (or
‘transactions’) data is developed in which the model is specified via the vector conditional intensity.
Generalised Hawkes models are introduced that incorporate inhibitory events and dependence be-
tween trading days. Novel omnibus specification tests based on a multivariate random time change
theorem are proposed. A bivariate point process model of the timing of trades and mid-quote changes
is then presented for a New York Stock Exchange stock and related to the market microstructure
literature. The two-way interaction of trades and quote changes in continuous time is found to be
important empirically.
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1 Introduction

This paper develops a continuous time econometric modelling framework for analysis of the dynamic

microstructure of financial markets – that is, their dynamic evolution viewed at a very fine level of

detail. These dynamics can be described in terms of the stochastic occurrence times and characteristics

of well-defined market events such as trades and changes to the quoted prices. The work is motivated by

the growing theoretical market microstructure literature and the advent of datasets providing complete

records for some or, in the case of certain electronic markets, all types of market event. Such datasets

potentially provide an enormous amount of information about the intraday behaviour of financial markets

and allow testing of the hypotheses of the theoretical literature. However, progress in modelling the data

in continuous time has hitherto been hindered by the difficulties presented by the multivariate case.

Furthermore, many interesting economic questions concerning financial market microstructure can only

be addressed using such multivariate models. The approach adopted here overcomes these difficulties

by focusing on the conditional intensities of the market event arrival processes, and provides a general
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framework for model specification and inference that it is hoped will greatly facilitate the econometric

analysis of these vast and important datasets in the future.

The main contributions of the paper may be summarised as follows. First, an intensity-based approach

to model specification is used to develop a new class of models that permits the analysis of multivariate

financial market event (or ‘transactions’) data – that is, data that records the timing and characteristics

of several different types of market event.1 The models are general enough to incorporate ‘inhibitory’

events that result in a decrease in a conditional intensity and to allow dependence between trading days.

Second, the use of a multivariate random change of time to construct specification tests for parametric

point process models is established. Novel omnibus tests for the multivariate case are proposed together

with tests of the specification of each component, scalar conditional intensity. A sufficient condition for

the validity of the testing procedures is derived which is shown to be natural in the context of financial

markets. Finally, applying the econometric methods developed in the paper to data for a New York Stock

Exchange (NYSE) stock provides evidence that the two-way interaction between the timing of trades and

quote changes is important empirically.

The development of continuous time models for market event data is an important challenge in

financial econometrics for the following reasons. First, models set in ‘event time’ may well ignore aspects

of the evolution of the market that are economically important. Indeed, a growing number of papers

point to the economic significance of real, ‘wall-clock’ time (see, inter alia, Easley and O’Hara 1992,

Hasbrouck 1999 and Dufour and Engle 2000). Second, most potential practical applications such as

volatility measurement and the design of optimal order submission strategies (see Harris 1998) require

that the models relate to real time. Finally, a standard time series analysis of aggregated data using

fixed intervals of real time involves an undesirable loss of information since the characteristics and timing

relations of individual events are lost.

In the econometric analysis, the market event data are viewed as the realisation of a multivariate

Point Process (PP): that is, as the realisation of a double sequence, {Ti, Zi}i∈{1,2,...}, of random variables

where Ti is the occurrence time of the ith event and Zi ∈ {1, 2, ..., M} indicates the ith event’s type.

Whilst considerable progress has been made in modelling the univariate (M = 1) case using time series

models of the intervals or durations between events (see in particular, Engle and Russell 1997,1998),

1Such data is referred to here as ‘market event data’ because the term ‘transactions’ is often taken to be synonymous
with trades.
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multivariate extensions of this work have been slow to emerge in the econometrics literature.2 Engle and

Lunde (2003) specify a model for a bivariate sequence of durations {S(1)
i , S

(2)
i }i, where S

(1)
i is the ith

intertrade duration and S
(2)
i is the time from the start of the ith intertrade duration until the next trade

or mid-quote change (whichever occurs first). The trade arrival process is treated as the ‘driving process’,

thus avoiding the difficulty that would otherwise arise with the origins of S
(1)
i and S

(2)
i possibly being far

apart in real time. It is worth noting that the model does not (and does not claim to) imply a conditional

intensity in continuous time for mid-quote change events.3 The specification of a full multivariate PP

model may be achieved within a duration-based approach by specifying the joint conditional probability

of (Ti+1−Ti) and Zi+1, that is the next duration and event type respectively of the PP, given its observed

history up to (and including) the ith event.4 However, progress in this direction has so far been limited

– indeed, the creation of new empirical models from this starting point seems unduly difficult.

I adopt a different approach in which the model is specified via the conditional intensity for each type

of market event. This provides a powerful and more natural modelling framework for multivariate market

event data. The common information set upon which each intensity is conditioned is updated continuously

as new information arrives, thus allowing other types of event to have an immediate impact on the intensity

as they occur in continuous time.5 When the intensities are conditioned on the natural filtration of the

multivariate PP, the approach is mathematically equivalent to the duration-based one just discussed but is

intuitively more appealing. The intensity-based approach also has the advantage that it is straightforward

to condition additionally on the history of some other continuous time process. Intensity-based modelling

in the econometrics literature has hitherto utilised the Autoregressive Conditional Intensity (ACI) model

of Russell (1999) and its extensions. Hall and Hautsch (2004) estimate a bivariate ACI model for the

arrival of buy and sell trades on a limit order book market. Bauwens and Hautsch (2003) propose an

extension of the ACI model which adds a latent, Gaussian autoregressive component to the log intensity.

The core component of all of these ACI models is specified in ‘event time’, with the consequence that

understanding the properties of the continuous time conditional intensity process, or equivalently the

2Univariate models of market event data, and Autoregressive Conditional Duration models in particular, are surveyed
by Bauwens and Giot (2001).

3Other restrictive features are that the occurrence of a mid-quote change during an intertrade duration cannot influence
the trade intensity during that duration, and that there is an implicit loss of information when multiple mid-quote changes
occur without an intervening trade.

4Note that the duration in mind here is that of the so-called ‘pooled process’, {Ti}. Spierdijk, Nijman, and van Soest
(2004) adopt this approach to a multivariate study of the timing of trades in several stocks of the same sector.

5Hamilton and Jordà (2001) use an intensity-based approach to model a discrete time PP and also note the advantage
that this offers in terms of being able to incorporate immediately the effect of information that occurs within a duration.
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distribution of the multivariate PP, is difficult.

The structure of the present paper is as follows. Section 2 introduces the new generalised Hawkes

(g-Hawkes) models for financial market event data and establishes sufficient conditions for identification

of linear Hawkes models. Section 3 describes an intensity-based approach to likelihood inference for PPs

and considers the maximum likelihood estimation (MLE) of g-Hawkes models. In novel work, Section

4 proposes a range of specification tests based on a multivariate random time change theorem for PPs.

Section 5 then makes use of the models and specification testing procedures developed earlier in order to

analyse the two-way interaction between the timing of trades and mid-quote changes for a New York Stock

Exchange (NYSE) stock. The empirical findings are related to both the theoretical and empirical market

microstructure literature. Section 6 develops a computationally efficient algorithm for the simulation of

g-HawkesE(k) processes and reports the results of a Monte Carlo study of the properties of the MLEs

and specification tests for the bivariate g-HawkesE(k) model used in the empirical analysis of Section 5.

Section 7 then concludes.

Diffusions and point processes are two major classes of continuous time process, but the latter are

still far less familiar in econometrics. Appendix B therefore briefly provides some technical background

on point processes, counting processes and the martingale-based definition of a conditional intensity. The

names of mathematical objects in the theory of point processes are italicised the first time they occur in

Section 2 and, if not rigorously defined in the main text, are given proper definition in Appendix B.

2 Generalised Hawkes Models

This section introduces the generalised Hawkes models – a class of models for multivariate market event

data which are specified via the vector conditional intensity. Recall that the type of dataset in mind here

consists of a record of the occurrence time and type of each market event, the events being sequenced

according to the order in which they occurred. For example, Section 5 uses a bivariate model to analyse

the relationship between the timing of two different types of market event, namely trades and price

(mid-quote) changes.

As noted in the introduction, the events will be described as the realisation of an M -variate point

process {Ti, Zi}i∈{1,2,...}, where Ti denotes the occurrence time of the ith event and Zi ∈ {1, 2, ..., M}
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indicates the ith event’s type.6 The M -vector counting process associated with {Ti, Zi} will be written as

N(t) := (Nm(t))M
m=1, with each element Nm(t) counting the number of type m events that have occurred

up to and including time t.7 Note that the different types of event are indexed here by m and that T
(m)
i

is used to denote the occurrence time of the ith type m event. The internal history (or natural filtration)

of the M -variate PP N(t) is denoted by {FN
t }t≥0, the information set FN

t corresponding to complete

observation of N(t) up to (and including) time t.

The distinguishing feature of the approach here is that the M -variate PP model is specified via the

vector conditional intensity process, λ(t) = (λm(t))M
m=1. This perspective is very natural and productive

when developing new empirical models – one considers how the intensity for type m events, λm(t), might

change in continuous time as new information arrives. Furthermore, it will be shown later that such an

intensity-based approach readily lends itself to both likelihood inference and specification testing using a

random change of time. Each intensity, λm(t), can be interpreted as the conditionally expected number

of type m events per unit time as the time interval tends to zero. When the conditioning filtration is

{Ft} and the data generating process (DGP) is P, we say that λ(t) is the (P,Ft)-intensity of N(t). Note

that the term (P,Ft)-intensity is always used here in the sense of the martingale-based definition given in

Definition 3 of Appendix B.2. The reader interested in the technical details is referred to that section of

the paper. It is important always to be clear about which conditioning filtration is in mind – this section

and much of the paper is concerned with FN
t -intensities that are defined with respect to the internal

history, {FN
t }.

The remainder of this section describes various bivariate models in the generalised Hawkes class.

Section 2.2 introduces the linear g-HawkesE(k) models which are applied later in the empirical analysis

of Section 5, and establishes sufficient conditions for identification of linear Hawkes models. Section

2.3 then extends these models to give new non-linear specifications allowing for inhibitory events, that

is events that result in a decrease in a conditional intensity.8 The concepts introduced can readily be

extended to the general multivariate case (M ≥ 2). The bivariate models have two important features.

The FN
t -intensity for type 1 events (e.g. changes to the mid-quote), λ1(t), depends on the history of type

6It is assumed throughout that no two occurrence times are the same (i.e. that the PP {Ti} is simple) – whilst this
feature can sometimes be restrictive in empirical applications, it should be noted that almost all of the existing probability
and statistics literature in the field of point processes makes this assumption.

7There is a one-one mapping between the M -variate point and counting processes for all M ≥ 1. It is therefore permissible
to refer to ‘the M -variate PP, N(t)’.

8A more flexible nomenclature than g-HawkesE(k) for the linear models would be L-gHawkesE(k), but the distinction
is not needed in the sequel since the non-linear models feature only in Section 2.3.
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2 events (e.g. trades) and vice versa. In addition, the models are general enough to allow the estimation

of the dependence of the intensity on the events of previous trading days, thus taking into account the

existence of overnight periods when the stock market is closed. Finally, Section 2.4 discusses how to

condition also on covariates or ‘marks’ associated with the events. In order to clarify the presentation

that follows, it is useful first to discuss the data transformation that is used throughout the paper.

2.1 Data transformation

Since equity markets do not operate continuously, the researcher is faced with the question of how to

model data generated during trading days separated by non-trading periods.9 The approach taken here

is to concatenate the data pertaining to each of the days of length l in order to remove the non-trading

periods. Thus, the occurrence times of the market events are mapped onto (0,∞) as follows: if x is the

time in hours after 09:30 of an event occurring on the dth trading day in the dataset (d = 1, 2, ...), then

that event has occurrence time x + l(d − 1) in the final dataset. The real half-line is thus partitioned as

follows

(0,∞) = (0, τ1] ∪ (τ1, τ2] ∪ ... ∪ (τd−1, τd] ∪ ...,

with τd = l · d (d = 0, 1, 2, ...) representing the end of the dth trading day. Treating the data as a

realisation of a single PP on (0, T ] allows the use of existing theorems in the PP literature. However, it is

important then to model carefully how the intensity depends on the events of previous calendar days.10

2.2 Generalised HawkesE(k) models

In order to simplify the exposition, the univariate, linear g-HawkesE(k) process will be described before

then extending the discussion to the bivariate case. Its intensity is defined recursively in terms of the

levels of the stochastic components of the intensity at the end of the (d − 1)th trading day and the

contributions of the events occurring on day d.

Definition 1 Univariate g-HawkesE(k) process. The process is defined by the (scalar) FN
t -conditional

intensity

λ(t) = µ(t) +

k
∑

j=1

λ̃j(t) ∀t ≥ 0, (1)

9The normal opening hours of the NYSE are the 6.5 hour period between 09:30 EST and 16:00 EST (Eastern Standard
Time).

10The alternative would be to view the data for each trading day as the realisation of a different PP and to specify the
nature of the dependence between these PPs. This is unnecessarily complicated. One must be able to specify how the
intensity on a particular trading day depends on the entire history of events (including those of previous days), but this can
be achieved within the ‘single point process’ framework adopted here.
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where µ(t) is a positive, deterministic function, λ̃j(0) = 0, and

λ̃j(t) = πj λ̃j(τd−1)e
−ρj(t−τd−1) +

∫

[τd−1,t)

αje
−βj(t−u)dN(u), (2)

for τd−1 < t ≤ τd (d = 1, 2, ....), where αj ≥ 0, βj > 0, πj ≥ 0, and ρj > 0.11

The conditional intensity of the g-HawkesE(k) process is thus the sum of a deterministic component,

µ(t), and k stochastic components, (λ̃j(t))
k
j=1. Equation (2) expresses each λ̃j(t) as the sum of the

exponentially-damped value of πj · λ̃j(τd−1), where λ̃j(τd−1) is the level of the jth component at the

end of the previous trading day, and the contributions of events occurring prior to time t on day d. I

refer to the first term in (2) as the (jth) intensity ‘spillover effect’ between trading days. The purpose of

including such terms in the model specification is discussed below.

Evaluating the second term in (2) yields
∑

i:τd−1≤Ti<t

[

αje
−βj(t−Ti)

]

, where the ‘response function’

[

αje
−βj(t−Ti)

]

gives the (jth) impact at time t of the event with occurrence time Ti (as a function of

t). The term has sample paths that are left-continuous, jumping up by an amount αj in response to the

occurrence of an event and then decaying until the occurrence of the next event. The events are thus

self-exciting in the sense that their occurrence increases the intensity for future events, resulting in their

‘clustering’ which is a well known feature of market event data. When k > 1, the superposition of the

stochastic components (λ̃j(t))
k
j=1 in (1) thus introduces additional flexibility in the shape of the response

of the conditional intensity to past events.12 In practice, the superposition is important empirically since

it allows events to exert ‘separable’ short and long lived impacts on the conditional intensity (see Section

5.2).

The univariate g-HawkesE(k) process can readily be extended to the bivariate (BV) case by including

k ‘cross effect’ terms that capture the effect of type 2 events on the intensity for type 1 events, and vice

versa.

Definition 2 Bivariate (BV) g-HawkesE(k) process. The process is defined by the vector FN
t -

conditional intensity (λ1(t), λ2(t))
′, where

λm(t) = µm(t) +
k

∑

j=1

λ̃
(j)

mm(t) +
k

∑

j=1

λ̃
(j)

mq(t), (3)

11Note the integral with respect to the counting process N(u) in (2). Such integrals are explained in Appendix B.1.
12This follows since the sum of k Exponential functions, as in the ‘E(k)’ models, is not itself exponential. Other specifi-

cations of the response functions, including hyperbolic functions, are clearly possible but are not considered here.
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for m = 1, 2, with µm(t) a positive, deterministic function, q = 2 if m = 1 and q = 1 if m = 2, and

λ̃
(j)

mr(t) = π(j)
mrλ̃

(j)

mr(τd−1)e
−ρ(j)

mr(t−τd−1) +

∫

[τd−1,t)

α(j)
mre

−β(j)
mr(t−u)dNr(u), (4)

for τd−1 < t ≤ τd (d = 1, 2, ...), λ̃
(j)

mr(0) = 0, where mr ∈ {1, 2} × {1, 2}. The parameter constraints

α
(j)
mr ≥ 0, β(j)

mr > 0, π
(j)
mr ≥ 0, ρ

(j)
mr > 0 (∀mr and ∀j) apply.

Note the presence of the cross effect terms λ̃
(j)

mq(t) in (3), which allow the occurrence of type q events

to influence the intensity for type m events.13 The essential building block of the model has not changed

in moving from the univariate to the bivariate case, as is evident from a comparison of equations (2) and

(4). The BV g-HawkesE(k) process nests two important cases. First, when π
(j)
mr = 0 (∀mr and ∀j) there

is no dependence between trading days since there are then no intensity spillover effects for either λ1(t)

or λ2(t). Second, when the restrictions given by Proposition 2.1 below are in force, the BV g-HawkesE(k)

process is identical to the bivariate ‘mutually exciting’ process of Hawkes (1971). This process – referred

to here as the ‘BV linear Hawkes (1971)’ process – can be written as λm(t) = µm(t) + λ̆m(t) where

λ̆m(t) :=

2
∑

r=1

k
∑

j=1

∫

(0,t)

α(j)
mre

−β(j)
mr(t−u)dNr(u), (5)

for m = 1, 2, µm(t) > 0, and α
(j)
mr ≥ 0, β(j)

mr > 0. Note that the integral in (4) is the same as that in (5)

except that the range of the former is restricted to [τd−1, t).

Proposition 2.1 The BV g-HawkesE(k) process with the parameter restrictions (π
(j)
mr = 1, ρ

(j)
mr = β(j)

mr

∀mr, ∀j) imposed and the BV linear Hawkes (1971) process are identical.

Proof. A consequence of the fact that for all mr ∈ {1, 2}×{1, 2}, the process {λ̃(j)

mr(t)}t>0 in (4) can

be written as

λ̃
(j)

mr(t) =
d−1
∑

s=1

(π(j)
mr)

sC(j)
mr(d − s)e−ρ(j)

mr(t−l(d−s)) +

∫

[τd−1,t)

α(j)
mre

−β(j)
mr(t−u)dNr(u), (6)

for τd−1 < t ≤ τd (d = 1, 2, ....) where

C(j)
mr(d) =

∫

[τd−1,τd)

α(j)
mre

−β(j)
mr(τd−u)dNr(u), (7)

is the contribution of the type r events occurring on day d. The result follows by imposing the parameter

restrictions on (6) and some algebraic manipulation.

13By definition, q 6= m. Note that both λ̃
(j)
mm(t) and λ̃

(j)
mq(t) are defined by equation (4).
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This proposition is interesting since it shows that applying a linear Hawkes (1971) model to concate-

nated trading periods implies spillover effects between periods based on the end-of-period levels λ̃
(j)

mr(τd−1)

and equal to [1 · λ̃(j)

mr(τd−1)e
−β(j)

mr(t−τd−1)]. This has not been recognised before. The g-HawkesE(k) model

does not necessarily impose the restrictions of Proposition 2.1, thereby providing a much more flexible

specification of the spillover effects than the original Hawkes (1971) model.

2.2.1 Recursive model specification

There are two basic motivations for adopting a recursive model specification that incorporates intensity

spillover effects from one trading day to the next. First, the g-Hawkes models allow the nature of the

dependence between trading days to be estimated from the data, rather than imposing untestable, a

priori assumptions concerning this dependence. Two types of assumption have been adopted in previous

work – either the data is treated as the realisations of independent PPs (each PP corresponding to a

trading day) or is viewed as the realisation of a single PP on (0, T ] (after the removal of the non-trading

periods), without taking the special nature of the times (τ1, τ2, ...) that correspond to the ends of the

trading days into account.14 By adopting a flexible specification, the g-HawkesE(k) models nest both

of these approaches whilst also allowing for more general spillover effects. Empirically, such generality

is found to be an important aspect of the model specification - see the discussion in Section 5. The

second motivation for the recursive specification is that it can easily be extended in order to condition on

additional information such as an overnight news announcement or a stock exchange opening procedure

that occurs ‘between’ trading days. Another additive term depending on the additional data would enter

(3), with the effect damping down during the trading day in a manner analogous to the spillover effects.

The model structure introduced here in which the stochastic components of the intensity are specified

recursively in terms of functionals of the paths of those components on previous days and the contributions

of the events occurring on day d is very general, and provides a useful framework for approaching the

issue of dependence between trading days in PP models of financial markets. It would be interesting in

future work to explore alternative specifications of the spillover effect in g-Hawkes models, for example,

one in which the effect depends on the entire path of the component of the intensity during the previous

day via the term
∫ τd−1

τd−2
W (τd−1 − s)λ̃

(j)

mr(s)ds, where W (.) ≥ 0 is a non-negative ‘weighting’ function.

14In the latter case the same model (e.g. the linear Hawkes (1971) model) is fitted to several days of data as is used for
a single day or in the case of continuous trading.
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A further extension would be to allow the spillover effect to depend on the length of the non-trading

periods, which are variable due to weekends and holidays.

2.2.2 Identification of linear Hawkes models

Conditions for the statistical identification of linear HawkesE(k) models, including the Hawkes (1971)

models, do not appear to have been considered previously in either the statistics or econometrics literature.

The pertinent issue is whether these models are identified for any finite k. Since the proof is already quite

complicated for a BV linear Hawkes (1971) model, I focus here on a rigorous treatment of this case, which

also captures the essential features of the problem for g-HawkesE(k) models. Furthermore, assuming that

the deterministic functions µm(t) are known avoids confining the exposition to a particular parametric

specification of these functions. A parametric statistical model or family of DGPs, {Pθ}θ∈Θ, is said to

be identified here if and only if,

Pθ = Pθ̄ ⇒ θ = θ̄ ∀θ, θ̄ ∈ Θ. (8)

That is, different parameter vectors give rise to different DGPs and hence are not observationally equiv-

alent. It is shown below that the BV linear Hawkes (1971) model is identified for any finite k, no matter

how large, essentially because different parameter vectors always give rise to ‘response functions’ that

cross only at a finite number of points. This result is stated formally in the following lemma whose proof

relies on the non-singularity of generalised Vandermonde matrices (see Norberg 2002, p.2).

Lemma 2.2 Define the response functions h(s; θ) =
∑K

j=1 αje
−βjs and h(s; θ̄) =

∑K
j=1 ᾱje

−β̄js, and the

set of points where the 2 functions cross, Ch(θ, θ̄) = {s > 0 : h(s; θ) = h(s; θ̄)}. Suppose that at least one

element of the parameter vectors differs, that is, θ 6= θ̄. Then, under the conditions

αj , ᾱj > 0 ∀j, β1 > β2 > ... > βK > 0, and β̄1 > β̄2 > ... > β̄K > 0, (9)

the number of distinct crossing points #Ch(θ, θ̄) < 2K − b, where b = #[{βj}j=1,...,K ∩ {β̄j}j=1,...,K ],

0 ≤ b ≤ K, and # denotes the cardinality of a finite set.

Proof. Given in Appendix A.

Lemma 2.2 states that when at least one element of the two parameter vectors differs the number of

crossing points is always strictly less than 2K, and is central to the proof of the following identification

theorem for the BV linear Hawkes (1971) model.
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Theorem 2.3 (Identification) Consider the BV linear Hawkes (1971) model with unknown parameter

vector θ = (α
(j)
11 , β

(j)
11 , α

(j)
12 , β

(j)
12 , α

(j)
21 , β

(j)
21 , α

(j)
22 , β

(j)
22 )j=1,...,k, and deterministic functions µm(t) assumed

known for m = 1, 2. Conditions (C1) to (C3) below are sufficient for the model to be identified:

(C1) {α(j)
mr > 0, ∀mr and ∀j};

(C2) {β(1)
mr > β(2)

mr > ... > β(k)
mr > 0, ∀mr};

(C3) [{β(j)
11 }j=1,...,k ∩ {β(j)

21 }j=1,...,k] = [{β(j)
22 }j=1,...,k ∩ {β(j)

12 }j=1,...,k] = ∅.

Proof. Given in Appendix A.

Condition (C3) states that for any parameter vector θ, the beta-type parameters governing the responses

to type r events are all non-equal, for both r = 1 and r = 2.

2.3 Broadening the g-Hawkes model class

This section considers extending the g-Hawkes class to include non-linear intensity processes with the

feature that events can exert a negative or inhibitory effect on a conditional intensity. The implications

for the stationarity of the PP are derived. As we shall see, the specification testing methods developed

in Section 4 are applicable to the entire g-Hawkes class and beyond.

The constraints (α
(j)
mr ≥ 0, π

(j)
mr ≥ 0 ∀mr, ∀j) in Definition 2 ensure that the intensities of the BV

g-HawkesE(k) process are, as they must be, strictly positive. Such constraints may appear to limit the

applicability of a Hawkes approach. For example, it is sometimes important to allow negative jumps

(α
(j)
mq < 0) in the mth conditional intensity to occur in response to type q events (or more broadly in

response to the value of a covariate associated with some event).

Two new non-linear g-Hawkes models are now proposed which allow for such inhibitory events by

removing the constraints α
(j)
mr ≥ 0. For expositional simplicity models for a single trading day are

considered. Spillover effects between days are straightforward to incorporate. First recall that the linear

Hawkes term λ̆m(t) is defined by equation (5). The Exponential model, called E-HawkesE(k) below, sets

λm(t) = µm(t) + exp{λ̆m(t)}, m = 1, 2, (10)

where the exponential transformation ensures positivity of the conditional intensity. The Threshold effect

model, called T-HawkesE(k), has

λm(t) = µm(t) + max{ǫm − µm(t), λ̆m(t)}, ǫm > 0, m = 1, 2. (11)
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This ensures that λm(t) ≥ ǫm > 0 for all t. The motivation is that once the financial market intensity

for type m events has fallen to the threshold level ǫm, the occurrence of otherwise inhibitory events has

no (immediate) impact.15 The threshold ǫm could in principle be estimated or else set to a very small

value. Setting ǫm = 0 is not allowed since this would imply no further events of type m occurring in the

future which is undesirable in this context (and would render the proposed specification testing methods

of Section 4 inapplicable – see equation (21)).

Thus one can describe a broad class of g-Hawkes models, linear and non-linear, that has widespread

applicability in the modelling of multivariate financial market event data. This is a convenient juncture

to consider the stationarity of multivariate Hawkes processes. To do this it is natural to consider PPs on

(−∞, +∞) which have an infinite history at any time, t.16 As in Brémaud and Massoulié (1996), I will

consider both linear and non-linear HawkesE(k) processes of the form

λm(t) = fm{λ̆m(t)}, m = 1, 2, (12)

where the functions fm : R → (0,∞) and λ̆m(t) is given as in (5) except that the range of all of the

integrals there is now taken to be (−∞, t). Suitable choices of the fm functions then yield the BV linear

Hawkes (1971), E- and T- HawkesE(k) processes defined previously. Since non-constant deterministic

components induce non-stationarity, µm(t) = µm > 0 will always be imposed. The following theorem

gives conditions under which the processes are stationary.

Theorem 2.4 (Stationarity) Let N be a bivariate HawkesE(k) process on (−∞, +∞), i.e. let N(t)

have
(

P,FN
t

)

-intensity given by (12). Define the 2 × 2 matrix A with elements amr =
∑k

j=1 α
(j)
mr/β(j)

mr.

Recall that the spectral radius of A, ρ(A), is the maximum of the absolute values of its eigenvalues. The

following statements hold under P :

(1) Let fm(x) = µm + x; if ρ(A) < 1, then N is a stationary, linear Hawkes (1971) process. (2) Let

fm(x) = µm + exp(x) for x ≤ log(Λm − µm) and fm(x) = Λm > µm for x ≥ log(Λm − µm). Then N is a

stationary E-HawkesE(k) process. (3) Let fm(x) = µm + max{(ǫm − µm), x}, ǫm > 0; if ρ(A) < 1, then

N is a stationary T-HawkesE(k) process.

Proof. The function fm : R → (0,∞) is said to be δ-Lipschitz iff |fm(y)−fm(x)| ≤ δ|y−x| ∀x, y ∈ R,

15An alternative specification would exclude all impact, immediate and future, of events occurring when λm(t) = ǫm.
16The M -variate PP, N , is stationary iff for every r = 1, 2, ...and all bounded Borel subsets B1, ...,Br of the real line, the

joint distribution of [N(B1 + t), ...,N(Br + t)] does not depend on t (−∞ < t < ∞). Here the M -vector N(B) gives, for
m = 1, ...,M, the number of type m events whose occurrence time lies in the subset B.
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δ > 0. Recall also that
∫ ∞

0 α
(j)
mre−β(j)

mr(t)dt = α
(j)
mr/β(j)

mr. (1) Follows from Brémaud and Massoulié (1996,

Theorem 7) since, trivially, fm is δ-Lipschitz for δ = 1. (2) Follows from Brémaud and Massoulié (1996,

Theorem 8) since fm is δ-Lipschitz for δ = (Λm − µm), each fm is bounded by Λ = maxm{Λm} and

∫ ∞

0 tα
(j)
mre−β(j)

mr(t)dt = α
(j)
mr/(β(j)

mr)
2 < ∞. Note that (Λm − µm) is the derivative from the left of fm(x) at

x = log(Λm − µm). (3) Follows from Brémaud and Massoulié (1996, Theorem 7) since fm is δ-Lipschitz

for δ = 1.

Note that in the E-HawkesE(k) process of Theorem 2.4 an upper bound, Λm, is imposed on fm and hence

on λm(t).17 This is reasonable here given the physical order processing constraints on any financial ex-

change, electronic or otherwise. It is also possible to show that in cases (1), (2) and (3), roughly speaking,

‘the corresponding PP with no events in (−∞, 0) but the same specification of intensity dynamics on

[0,∞) converges asymptotically to the stationary PP of Theorem 2.4’ (see Brémaud and Massoulié 1996,

Definition 1) for the exact convergence concept of stability in variation). The extension to the general

multivariate case is a straightforward restatement of Theorem 2.4 and is left to the reader.

Conditions for the stationarity of (unrestricted) g-HawkesE(k) processes which have spillovers between

days cannot be established using these methods – the additive effect on the intensity at time t of an event

T
(m)
i on a previous day now usually depends not only on (t − T

(m)
i ) but also on t itself due to the fixed

endpoints of trading days, τd. More generally, shifting the time origin, say, s time units alters the distance

from a given time t to the end of the previous day.

2.4 Conditioning on covariates

An important strength of the approach to model specification, estimation and specification testing de-

scribed by this paper is that it is straightforward to use the same methods when the conditioning is

on {Ft}, a wider filtration than the internal history.18 Important additional information that might be

included in {Ft} in this context is the covariates or ‘marks’ of the events other than the event type (for

example, the size and direction of trades).

A g-HawkesE(k) type intensity can be specified conditional on the marks of the events by making the

jump that occurs in response to an event depend on its marks. For example, consider the specification

of the term λ̃
(j)

12 (t) in equations (3) and (4), and suppose that type 1 (resp. type 2) events are mid-quote

17The exponential feature of fm requires this if stationarity is to be proved using these methods.
18The econometrician then specifies the Ft-intensity of Nm(t) for m = 1, ...,M.
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changes (resp. trades). In (4), the jump in λ̃
(j)

12 (t) in response to a trade is always equal to α
(j)
12 . The

suggested extension is to set the jump that occurs in response to the ith trade equal to Yi, where Yi is

a parametrised function of the marks of that trade (denoted here by Z
(2)
i ). The BV g-HawkesE(k) type

specification for λ̃
(j)

12 (t) thus becomes

λ̃
(j)

12 (t) = π
(j)
12 λ̃

(j)

12 (τd−1)e
−ρ

(j)
12 (t−τd−1) +

∑

i:T
(2)
i

∈[τd−1,t)

Yie
−β

(j)
12 (t−T

(2)
i

), (13)

for τd−1 < t ≤ τd (d = 1, 2, ...), where Yi = g(Z
(2)
i ) for some parametrised function g. Such an extension

should prove useful in future market microstructure research.19

3 Likelihood Inference

Point process models such as the g-Hawkes class, that are specified via the conditional intensity, are

readily amenable to likelihood-based statistical analysis. The specification of a statistical model for

multivariate PP data via a parametric family of such FN
t -conditional intensities is now considered before

turning to the computation and properties of MLEs for g-HawkesE(k) models.

3.1 Conditional intensities and likelihoods

Theorem 3.1 below establishes that one can work directly with the parametrised family of FN
t -intensities,

{λθ(t)}θ∈Θ. This family completely specifies the parametric statistical model in the sense that each λθ(t)

fully determines the corresponding DGP, Pθ. Let λθ(t) = {λm(t; θ)}M
m=1. The intuition for the result is

that, since the PP is simple, each intensity λm(t+; θ) gives the conditional probability per unit time of a

type m event as the time interval tends to zero (c.f. equation (38)). Furthermore, the likelihood function

can be expressed in terms of the intensities, as in equation (15) below. Note that analytic likelihoods

are available for the g-HawkesE(k) models since these possess intensities whose sample paths can be

integrated analytically.

Theorem 3.1 (Likelihood Function) Suppose that a parametric family of vector processes, {λθ(t)}θ∈Θ,

is specified and let N(t) = (Nm(t))M
m=1 be an M -variate point process on (0, T ], 0 < T < ∞. Also let

each λθ(t) be an M -variate, positive, FN
t -predictable process. Then there exists a corresponding family

of DGPs, {Pθ}θ∈Θ, such that the M -variate PP N(t) has FN
t -intensity λθ(t) under the DGP Pθ (for all

19The non-linear E- and T-HawkesE(k) models are easily adapted to this setting in order to allow Yi to take negative
values.

14



θ). Furthermore, each Pθ is unique in the sense that if λθ(t) is also a (P̃,FN
t )-intensity, then Pθ equals

P̃ on FN
∞.

Furthermore, suppose that N(t) is a standard multivariate Poisson process under Po, i.e. Nm(t) has

(Po,FN
t )-intensity equal to 1 for m = 1, ..., M , and that

M
∑

m=1

∫ T

0

λm(s; θ)ds < ∞ Po-a.s. (14)

Then the family {Pθ}θ∈Θ is dominated by Po and the likelihood function (i.e. the density of Pθ w.r.t. Po)

is given by 20

L(θ; {N(t)}t∈(0,T ]) = exp











M
∑

m=1







∫ T

0

(1 − λm(s; θ))ds +

∫

(0,T ]

log λm(s; θ)dNm(s)

















. (15)

Proof. Apply the proof of Karr (1991, Theorem 5.2) setting the baseline intensity equal to (1, 1, ..., 1)′

= 1M . For the uniqueness of the Pθ corresponding to each λθ(t), see Brémaud (1981, Theorem T8, p.64).

In the case where the intensities, λm(t; θ), do not have parameters in common, equation (15) yields

the following log-likelihood for an M -variate PP model

l(θ) =

M
∑

m=1

lm(θm). (16)

Here θ = (θ1, ..., θM ) and θm is the parameter vector of the intensity for type m events which varies in the

parameter space Θm. Provided that the θm are variation free (i.e. θ may take any value in Θ1× ...×ΘM ),

computation of the MLE can be performed via the separate maximisation of each component, lm(θm),

of the log-likelihood function. This is of some importance since it greatly facilitates the application of

the modelling approach discussed in the paper to higher dimensional cases involving a larger number of

different types of event, M.

In the case of the BV g-HawkesE(k) model given by Definition 2,

lm(θm) =

T/l
∑

d=1







∫

Ad

(1 − λm(s; θm))ds +

∫

Ad

log λm(s; θm)dNm(s)







, (17)

where λm(s; θm) is given by (3) and (4), Ad = (τd−1, τd], and lm(θm) has been decomposed into the

contributions of the different trading days. This decomposition allows the use of the recursive specification

20Note that since (15) is a density with respect to Po, the corresponding log-likelihood function contains the additive
constant MT . Clearly, this constant does not affect the MLE.
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in (4) in order to compute the log-likelihood more efficiently. As was mentioned earlier, integration of

the sample path of the intensity (with respect to Lebesgue measure) can be performed analytically in the

case of g-HawkesE(k) models. Evaluating (17) thus yields

lm(θm) = T −
∫ T

0

µm(s; θm)ds +

T/l
∑

d=1

∑

T
(m)
i

∈Ad

{log λm(T
(m)
i ; θm)} (18)

−
2

∑

s=1

T/l
∑

d=1

k
∑

j=1

{

π
(j)
ms

ρ
(j)
ms

(1 − e−lρ(j)
ms)λ̃

(j)

ms(τd−1; θm)+

∑

τd−1≤T
(s)
i

<τd

α
(j)
ms

β(j)
ms

(1 − e−β(j)
ms(τd−T

(s)
i

))

}

.

3.2 Maximum likelihood estimation

Ogata (1978) establishes under certain regularity conditions that the MLE for a simple, stationary,

univariate PP model is consistent and asymptotically normal as T → ∞, and that the likelihood ratio

(LR) test of a simple null hypothesis possesses the standard χ2 asymptotic null distribution. Denoting

the asymptotic covariance matrix of the MLE by I(θ∗)−1, where θ∗ is the true parameter value, Ogata

(1978) also demonstrates (under the same regularity conditions) that

−Eθ∗

[

(1/T )(∂2l(θ∗)/∂θ∂θ′)
]

→ I(θ∗), (19)

where l(θ) denotes the exact log-likelihood for observation over (0, T ] of the stationary process (which is

assumed to be a PP on (−∞, +∞)). Further details concerning these results may be found in Bowsher

(2002). Section 2.3 derived conditions for the stationarity of multivariate HawkesE(k) processes, including

two non-linear cases.

There are currently no results in the statistical or econometrics literature concerning the properties

of MLEs for multivariate PP models. Furthermore, multivariate PP models of financial market event

data are usually nonstationary owing to the presence of deterministic components in the intensities which

capture intradaily seasonality. Section 6 addresses this problem via simulation, demonstrating that the

MLEs and associated asymmetric confidence intervals (CIs) for the bivariate g-HawkesE(k) model are

well behaved in the context of a DGP based on the estimated empirical model presented later in Section

5. The asymmetric CIs are computed here by parametrising the log-likelihood in terms of ϕm = log(θm)

(m = 1, 2), calculating CIs for the elements of ϕm using the inverse of the negative Hessian matrix and

assuming normality in the usual manner, and then exponentiating their endpoints to obtain CIs for the
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elements of θm. The validity of this procedure is discussed further in Section 6.

Thus far I have advocated an intensity-based approach to the specification of parametric, multivariate

PP models and discussed likelihood inference for such models. The development of specification testing

procedures for these models based on a multivariate random change of time is one of the contributions

of this paper, and is considered in the following section.

4 Specification Testing

The setting is that of a general parametric model for an M -variate PP, N(t) = (Nm(t))M
m=1, that is

specified by the family of Ft-intensities {λθ(t)}θ∈Θ, where {Ft} includes but is not limited to the internal

history of the M -variate PP, {FN
t }. The issue is how to construct specification tests for such a PP model

and what conditions any suggested procedure imposes on the model in order to ensure its validity.

Building on the work of Ogata (1988) and Russell (1999), I show that specification testing may be

performed by transforming the M non-Poisson processes, (Nm(t))M
m=1, to independent, unit intensity

Poisson processes, using a multivariate random change of time.21 It appears that this is the first paper

to provide an in depth treatment of specification testing for multivariate PP models. The changes of

time are based on the Ft-intensities for type m events, where FN
t ⊆ Ft ∀t. This yields an independence

result that is then used to construct novel omnibus specification tests for the multivariate case. So-called

m-tests are also proposed that allow investigation of the specification of the individual intensities for type

m events, λm(t). Ogata (1988) introduced testing procedures based on the analogous random change of

time in the univariate case under the name ‘residual analysis’, but did not consider the conditions which

the PP model and the history on which the intensity is conditioned must satisfy.

Consider the M sequences of ‘generalised residuals’ {e(m)
i (θ)}, m = 1, ..., M , where

e
(m)
i (θ) :=

∫ T
(m)
i+1

T
(m)
i

λm(s; θ)ds (i = 0, 1, ...), (20)

the integrand is the intensity for type m events and (T
(m)
i , T

(m)
i+1 ] is the duration between adjacent type

m events. Russell (1999) suggests basing a set of specification tests on each of these sequences and

conjectures that the results of Yashin and Arjas (1988) could be used to prove that each sequence is

i.i.d. Exponential(1) (when θ is the true parameter vector). However, this would require F
(m)
i (x) =

21The usefulness of random changes of time for specification testing in PP models has recently been emphasised by Daley
and Vere-Jones (2003, Ch. 7).
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Pθ[T
(m)
i+1 −T

(m)
i ≤ x|Gx] to be absolutely continuous (with respect to Lebesgue measure), where Gx is the

information set on which the assessment of the hazard is based and depends on x.22 Such a condition is

undesirably restrictive in this context since it does not allow F
(m)
i (x) to exhibit jumps in response to the

occurrence of type q events (q 6= m).

4.1 A random time change argument

It turns out that the generalised residuals {e(m)
i (θ)} can be identified as the durations of the Poisson

processes obtained from the multivariate random time change discussed above. This provides a means of

proving in considerable generality the i.i.d. Exp(1) property of the {e(m)
i (θ)} sequences and, importantly,

their independence across m. The proof imposes a much weaker condition on the PP model (equation

(21) below) than the absolute continuity condition of Russell (1999). Furthermore, the intensities are

conditional on {Ft} which is permitted to include information additional to the internal history of the PP.

This is important in financial econometrics where it is commonly required to condition also on covariates

(or ‘marks’) associated with each of the events. Note that Theorem 4.1 requires {Ft} to be a history of

N(t), that is {Ft} must contain the internal history of the multivariate PP N(t).

Theorem 4.1 (Multivariate Random Time Change) Let N(t) be an M -variate point process on

(0,∞) with internal history {FN
t } and M ≥ 1. Also let {Ft} be a history of N(t) (that is, FN

t ⊆ Ft

∀t ≥ 0), and suppose, for each m, that Nm(t) has the (Pθ,Ft)-intensity λm(t; θ), where λm(t; θ) satisfies

∫ ∞

0

λm(t; θ)dt = ∞ Pθ-a.s. (21)

Define for each m and all t ≥ 0, the Ft-stopping time τm(t; θ) as the (unique) solution to

∫ τm(t;θ)

0

λm(s; θ)ds = t. (22)

Then the point processes {Ñm(t; θ)}M
m=1 defined by

Ñm(t; θ) = Nm(τm(t; θ)), t ≥ 0 (23)

are independent Poisson processes with unit intensity. Furthermore the durations, {(T̃ (m)
i+1 − T̃

(m)
i )}, of

each Poisson process Ñm(t; θ) are given by

(T̃
(m)
i+1 − T̃

(m)
i ) = e

(m)
i (θ) (i = 0, 1, ...), (24)

22Further discussion is given in Bowsher (2002, p.41).
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where e
(m)
i (θ) is the generalised residual in (20).

It is now immediate that each sequence {e(m)
i (θ)} is i.i.d. Exp(1) under Pθ. To prove the multivariate

random time change Theorem 4.1, I shall draw on the elegant and relatively accessible proof of Brown and

Nair (1988).23 The following lemma will be needed to provide the required link between their Theorem

1 and Theorem 4.1 for time-changed counting processes.

Lemma 4.2 Let {T̃ (m)
i }i∈{1,2...} be the PP that has the associated counting process Ñm(t; θ) given by

(23). Then T̃
(m)
i =

∫ T
(m)
i

0
λm(s; θ)ds ∀i, ∀m.

Proof. Let s satisfy T̃
(m)
i−1 ≤ s < T̃

(m)
i (for some i ≥ 1). Then Ñm(s) = i − 1 and Ñm(s) =

Nm(τm(s)) = i − 1 for all such s by (23). Now as s ↑ T̃
(m)
i , τm(s) ↑ τm(T̃

(m)
i ) by the continuity of τm

and Nm(τm(s)) ↑ i − 1. Since Nm(τm(T̃
(m)
i )) = Ñm(T̃

(m)
i ) = i by (23), the counting process Nm must

jump at τm(T̃
(m)
i ), that is τm(T̃

(m)
i ) = T

(m)
i . It then follows from (22) that T̃

(m)
i =

∫ T
(m)
i

0
λm(s; θ)ds.

The proof of Theorem 4.1 now follows.

Proof. (Theorem 4.1) Recall that Am(t; θ) :=
∫ t

0 λm(s; θ)ds is known as the Ft-compensator of

Nm(t) and note that Am(t; θ) has continuous sample paths here. It follows from Lemma 4.2 that T̃
(m)
i =

Am(T
(m)
i ; θ). Brown and Nair (1988, Theorem 1) establishes that the M point processes {{Am(T

(m)
i ; θ)}∞i=1

: m = 1, ..., M} are independent Poisson processes with unit intensity, which completes the proof.

Note that the only conditions required for Theorem 4.1 are that {Ft} is a history of N(t) (Ft = FN
t

∀t is not required) and that (21) is satisfied. Furthermore, (21) can be shown to hold if and only if

limt↑∞ Nm(t) = ∞ Pθ-a.s. (see Brémaud (1981, Lemma L17, p.41)). This condition is natural in the

context of models of financial market events since it is equivalent to zero probability being assigned to

sample paths in which no more type m events ever occur after some point in time. A sufficient condition

for the BV g-HawkesE(k) model to satisfy (21) for m = 1, 2, is that

µm(t) ≥ ζm > 0 ∀t and m = 1, 2, (25)

where ζm is some positive constant, since this implies that
∫ ∞

0
µm(t)dt = ∞ (m = 1, 2).24

The changes of time for each m in (22) are based on the Ft-intensities, λm(t), m = 1, ..., M, where

{Ft} is identical for each m and includes the internal history of the multivariate PP, N(t). This is

23The first multivariate random time change result for point processes is attributed to Meyer (1971), although it is stated
indirectly there.

24The BV g-HawkesE(k) model used later to analyse the trade and quote dataset in Section 5 has µm(t) given by equation
(27), which clearly satisfies (25).
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what underlies the result in Theorem 4.1 that the time-changed Poisson processes {Ñm(t; θ)}M
m=1 are

independent across m. If instead λm(t) in (22) were the FNm

t -intensity, where {FNm

t } is the internal

history of the univariate PP Nm(t) alone, each Ñm(t; θ) continues to be a unit intensity Poisson process

but their independence across m no longer holds in general.

4.2 Constructing specification tests

The motivation for the specification tests proposed below is as follows. Imagine the generation of a

sample path of N(t) conditional on its history, according to the intensities {λm(t)}M
m=1. Then the level of

λm(t) will tend to be high over durations between type m events that turn out to be short and vice versa.

Cumulating the levels by integration of λm(t) over each (T
(m)
i , T

(m)
i+1 ] yields generalised residuals whose

empirical distribution is close to Exp(1) for a long sample path. In the context of specification testing,

large deviations from the Exp(1) distribution then indicate that the model for λm(t) explains poorly the

conditional generation of the data. Under correct specification, the joint distribution of type m and type

q generalised residuals (m 6= q) also exhibits independence.

The aim is to test the null hypothesis that there exists a θ∗ ∈ Θ such that the DGP is Pθ∗ . I propose

two types of such specification test for the multivariate case based on the generalised residuals {e(m)
i }

in (20): novel omnibus or ‘o-tests’, and ‘m-tests’ for the specification of each intensity λm(t). These

are considered in turn below. Russell (1999) proposed tests similar to the m-tests but did not consider

their joint distribution across m. The focus here is on the multivariate case, with tests for univariate PP

models being the m-tests for a single type, m. The discussion abstracts from the impact of parameter

estimation for the time being.

Theorem 4.1 states that if the DGP is Pθ∗ , in which case λm(t; θ∗) is the true Ft-intensity for m =

1, ..., M , then the time-changed PPs {Ñm(t; θ∗)}M
m=1 are independent Poisson processes each with unit

intensity. The superposition Ñ0(t) :=
∑M

m=1 Ñm(t; θ∗) is then a Poisson process with intensity M .25

The new omnibus tests are defined as tests of the i.i.d. Exp(1) property of the rescaled durations of

the superposition Ñ0(t). In order to compute these durations, first ‘pool’ the points associated with the

M sequences of generalised residuals – i.e. sort the collection of points {T̃ (m)
i }i,m into ascending order.

Then calculate the durations between the resultant points and rescale them by multiplying by M .26 The

25Since the Ñm(t) processes are independent, the FÑ
t -intensity of each Ñm(t) is 1. Thus the FÑ

t -intensity of Ñ0(t) is
PM

m=1 1, which is therefore also the FÑ0
t -intensity of Ñ0(t).

26In practice N1(t), ...,NM (t) are observed on [0, T ], T < ∞, but Ñm(t) and Ñq(t) (m 6= q) are usually observed over
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advantage of omnibus tests is clear when the number of types of event M is large since consideration of

many test statistics (at least one for each m) may be avoided.

The proposed m-tests are complementary and allow investigation of possible sources of misspecification

via the separate consideration of each of the intensities for type m events. They are defined, for a given m,

as tests of the i.i.d. Exp(1) property of the single sequence of generalised residuals {e(m)
i (θ∗)}.27 Theorem

4.1 implies that two m-tests based on, say, the qth and rth sequences respectively (q 6= r) are independent,

thus allowing a joint test with known size to be constructed (abstracting from parameter uncertainty).

The independence result of the multivariate random time change Theorem 4.1 thus plays an important

role for both o- and m-tests. In both cases, the problem of specification testing is reduced to that of

testing the joint hypothesis of independence and Exp(1) distribution for a sequence of random variables.

One can either test for exponentiality directly, or test for uniformity after applying the appropriate

transformation. There are numerous ways to test a joint hypothesis of this sort, only a selection of which

are discussed below.

In the empirical section of the paper, three m-tests are reported for each m (m = 1, 2): the Box-Ljung

tests that the first 15 autocorrelations are all equal to zero for the {e(m)
i (θ̂m)} and {(e(m)

i (θ̂m))2} series

(denoted by BL(m) and BL
(m)
2 respectively) and the Engle and Russell (1998) test of excess dispersion

(ED(m)) based on the {e(m)
i (θ̂m)} series; θ̂ = (θ̂1, θ̂2) here denotes the MLE. The test of excess dispersion

is a test for exponentiality and is given by
√

Nm(T )((σ̂2
ê(m) − 1)/

√
8), where σ̂2

ê(m) is the sample variance

of the e
(m)
i (θ̂m)’s.28 In addition, the analogous o-tests are also reported using the series of durations

obtained by pooling the points associated with {e(1)
i (θ̂1)} and {e(2)

i (θ̂2)} as described above.

In all cases, p-values are calculated using the asymptotic null distributions which hold in the case of

known parameters. It is demonstrated using simulation in Section 6 that this ‘plug-in’ approach does

not result in serious size distortions, at least in the context of a DGP based on the estimated empirical

model presented in Section 5. There is evidence that the ED(m) tests based on the MLE are undersized,

raising concerns about their power properties when the nominal critical values are used. The difficulties

different intervals since the change of time results in all processes having unit intensity (e.g. consider the case where Nm(T )

is much greater than Nq(T )). The following pragmatic approach to this problem is adopted later in Section 5.2. Let T̃
(m)
∗

be

the last observed point of Ñm(t) and T̃∗ := min{T̃
(m)
∗

, m = 1, ...,M}. Then sort the points {T̃
(m)
i : T̃

(m)
i ≤ T̃∗, m = 1, ...,M}

into ascending order and proceed as before.
27Berman (1983), in the context of non-stationary Poisson processes, seems to have been the first to suggest testing the

properties of the durations of the transformed PP in this manner in order to assess goodness-of-fit.
28The test statistic would have an asymptotic N(0, 1) distribution if {e

(m)
i (θ̂m)} were i.i.d. Exp(1).
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created by parameter estimation error in this context are now discussed, together with a partial solution.

Tests of time series model specification are often based on the i.i.d. Uniform(0, 1) generalised residuals

obtained from the transform based on the conditional distribution functions (known as the ‘probability

integral transform’) – see e.g. Smith (1985), Shephard (1994), and Diebold, Gunther, and Tay (1998).

Thompson (2001, 2004) and Hong and Li (2005, Section 1.2) provide critical values for joint tests of the

independence and uniformity of the generalised residuals that are asymptotically exact in the presence

of parameter estimation error. In the case of a univariate PP, it can be shown that the sequence {1 −

exp(−ei)} is identical to these i.i.d. U(0, 1) generalised residuals, but no such equivalence statement

holds for the {e(m)
i } in the multivariate case. One reason is that whereas in the time series setting, the

conditioning information set is fixed each period, the relevant information set for the duration S
(m)
i+1 :=

(T
(m)
i+1 − T

(m)
i ) is not constant over that duration.

An asymptotic theoretical treatment of the impact, in the multivariate case, of parameter estimation

on the null distributions of both o- and m-tests is therefore an open, challenging problem and the results

of Thompson (2001, 2004) and Hong and Li (2005, Section 1.2) do not transfer readily. A solution is to

consider ‘p-tests’ based on the generalised residuals of the ‘pooled process’, N0(t) :=
∑M

m=1 Nm(t), and

given by

e
(p)
i (θ) :=

∫ Ti+1

Ti

M
∑

m=1

λm(s; θ)ds (i = 0, 1, ...). (26)

Provided that Ft = FN
t ∀t, the conditioning information set σ(T1, Z1, ..., Ti, Zi) is now constant over

(Ti, Ti+1). Since the FN
t -intensity of N0(t) is given by

∑M
m=1 λm(t), e

(p)
i (θ∗) ∼ i.i.d. Exp(1) and [1 −

exp(−ei(θ
∗))] ∼ i.i.d. U(0, 1). I conjecture that the critical values of the tests of Thompson (2004) will

be asymptotically exact for such p-tests in the presence of parameter estimation error.29 Similarly, the

nonparametric test of Hong and Li (2005, Section 1.2) might also be applied in this context. The p-test

solution is a partial one since the part of the model specification determining the conditional generation

of the type of the next event, Zi+1, is not being directly tested.

5 Empirical Application: Trades and Quotes

In order to illustrate the usefulness of generalised Hawkes models in the analysis of financial market event

data, this section presents the results of fitting a linear BV g-HawkesE(k) model to the timing of trades

29The setting is not identical to Thompson (2004) due to the conditioning on the additional covariates (Z1, ..., Zi).
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and mid-quote changes for a NYSE stock. The specification testing procedures developed in Section 4

above are used to assess the goodness-of-fit of the model. The application is of economic interest since

the bivariate model allows the study of the two-way interaction between the arrival processes for trades

and price changes, thus providing a microstructure view of the relationship between trading activity and

price volatility. Engle (2002, p. 427) comments on the desirability of an “ultra high frequency” model

that can “give a continuous record of instantaneous volatility, where events such as trades and quote

revisions as well as time itself modify the volatility estimate.” It will be shown in Section 5.3 that the BV

g-HawkesE(k) model (see Definition 2) can be used to obtain just such an estimate of the instantaneous

volatility of the price process.

5.1 Data and institutional background

The dataset was extracted from the NYSE Trade and Quote (TAQ) database and records the timing and

characteristics of all trades and changes to the mid-quote that occurred on the NYSE for the heavily-

traded stock General Motors Corporation (GM). The period covered is the 40 trading days from 5 July

2000 to 29 August 2000 inclusive.

The ‘specialist’ for each stock on the NYSE is obliged to report the best quotes (i.e. the highest

bid and lowest ask) communicated to the trading crowd and to execute any order at a price that is at

least as favourable as his published quote.30 The mid-quote is defined here as the simple average of the

reported bid and ask quotes. A change to the mid-quote occurs when the specialist reports new quotes

(whose average differs from the previous mid-quote, as is usually the case). A trade occurs when the

specialist matches a buy and a sell order (or alternatively, takes one side of the transaction himself).

Thus, a trade might be expected to affect the waiting time to the next change in the mid-quote because

of the information it conveys to the specialist and floor brokers. Similarly, a price change might alter the

trade intensity if agents monitor the market closely and submit market orders in order to benefit from

advantageous prices. Evidence will be presented below that trades do indeed exert a large impact on the

intensity for mid-quote changes, and vice versa.

The adjustments that are made to the data are now described. First, market events (i.e. trades

or changes to the mid-quote) occurring outside of normal trading hours (9:30 EST to 16:00 EST) were

30The quotes reported by the specialist may consist of any of the following: the specialist’s own trading interest, the trading
interest of floor brokers in the crowd, or limit orders in the specialist’s display book. Further details of the institutional
features of the NYSE may be found in Hasbrouck, Sofianos, and Sosebee (1993).
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deleted from the dataset.31 Having mapped the times of the market events onto (0,∞) using the data

transformation described in Section 2.1 (with the day length l set to 6.5 hours), the times of the mid-

quote changes were then thinned (i.e. a subset of the times was selected) as in Engle and Russell (1998)

in order to obtain the ‘mid-quote events’ that are modelled. A mid-quote event is defined to occur at

the earliest time that the mid-quote changes by an amount greater than or equal to $1/16 (in absolute

value terms) compared to the mid-quote in force at the time of the previous mid-quote event.32 The

threshold of $1/16 used here is approximately equal to half of the average spread of $0.117, and thus

represents a quite small movement in the mid-quote. In order to avoid the modelling task becoming

overly complicated, the absolute size of the change in the mid-quote between successive events is not

modelled directly. Given the way the mid-quote events are defined, this can exceed $1/16. However,

analysis of this dataset showed that the majority (82.4%) of these changes do indeed equal $1/16.33

Recall from the definition of an M -variate PP that, since the associated ‘pooled process’ {Ti} is always

simple, the M -variate PPs considered in this paper assign zero probability to the simultaneous occurrence

of two events (of either the same or different types). In the case of the GM dataset, approximately 11

per cent of the mid-quote events have exactly the same timestamp as a trade. Since the simultaneous

occurrence of a trade and a mid-quote event in the data will almost always be the result of measurement

error – i.e. lags between the (non-simultaneous) actual occurrence times of the events in continuous time

and the reported times – I adjust the times of those mid-quote events that coincide with a trade by a

small, i.i.d. uniform amount. The procedure adopted retains the original sequence of the other events and

leaves the occurrence time of the mid-quote event unchanged to the nearest second. The adjustment is

uniformly distributed so as not to impose strong a priori assumptions about the original ordering of the

two events. Further discussion of the treatment of events with identical timestamps is given in Appendix

C, together with the results of a sensitivity analysis that examines two other adjustment rules. These

results strongly support the robustness of the main empirical findings reported below.

[Table 1 here]

31Trades relating to the opening auctions were also deleted, as were trades that were subsequently cancelled. Only trade
records with a TAQ correction indicator equal to 0 or 1 were included in the analysis. In the case of trades that underwent
correction, the original occurrence time of the trade was used.

32The first mid-quote event is defined to occur at the time when the first pair of quotes was reported for the first trading

day in the dataset. Denote by {T
(1)
1 , T

(1)
2 , ...} the (transformed) times of all changes to the mid-quote. The first mid-quote

event time is T
(1)
1 ; the second mid-quote event time is min{T

(1)
i : i > 1, |q(T

(1)
i ) − q(T

(1)
1 )| ≥ 0.0625}, where q(T

(1)
i ) is the

mid-quote reported by the specialist at time T
(1)
i . Subsequent mid-quote events are defined similarly.

33The absolute changes are always some multiple of $1/32, with the proportion of the changes equal to $2/32, $3/32,
$4/32 being given by 82.4%, 12.9%, and 3.0% respectively.
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Summary statistics of the intertrade durations and durations between successive mid-quote events

for the final dataset are given in Table 1.34 Note that the average duration between mid-quote events is

approximately 6.6 times the average intertrade duration.

5.2 Model estimates and diagnostics

It is well known that intradaily seasonality is an important feature of financial market event data. In

common with Russell (1999), it was found that adopting a piecewise linear function for the deterministic

components, µm(t), in (3) worked well in practice. The spline is continuous over the course of the 6.5

hour trading day, with knots at 9:30,10:00,11:00,...,16:00. Noting that t is measured in hours, µm(t)

(m = 1, 2) can be written as:

µm(t; γm) =



















1v(t)∈(0,0.5][γm1 + 2v(t)(γm2 − γm1)] +
6

∑

i=1

1v(t)∈(i−0.5,i+0.5][γm,i+1 + (v(t) − i + 0.5)(γm,i+2 − γm,i+1)] for v(t) > 0,

γm8 for v(t) = 0,

(27)

where v(t) = 6.5(t/6.5 − ⌊t/6.5⌋) is the number of hours that have elapsed since the end of the previous

trading day and γmi > 0 (i = 1, ..., 8) . The γmi (i = 2, ..., 7) are the values of the deterministic component

(i − 1.5) hours into each trading day. Note that γm1 6= γm8 is allowed.

The results of fitting the unrestricted BV g-HawkesE(2) model are not given here. Rather Table 2

reports results for a restricted model that was found to have identical log-likelihood and specification

test statistics.35 This restricted BV g-HawkesE(2) model has the restrictions (π
(1)
mm = 0, π

(1)
mq = 0, π

(2)
mq =

0; m = 1, 2; q = 2 if m = 1 and q = 1 if m = 2) imposed. These imply that the stochastic components

of the intensity exhibit zero spillover effects, except for the λ̃
(2)

mm(t) (m = 1, 2) components in equation

(3) which capture the j = 2 effect of type m events on the mth intensity. The spillover effects are

discussed in more detail below. Results are considered only for models with k = 2 since such E(2)

models were found to be clearly superior both in terms of specification tests and log-likelihood to E(1)

models. Numerical optimisation of the log-likelihood was performed using the MaxBFGS algorithm with

numerical derivatives in Ox (see Doornik 2001).36

[Table 2 here]

34The following practice is adopted for the reporting of test statistics throughout the paper: p-values are shown in
parentheses and tests that reject at the 1% level are shown in bold.

35The ‘restricted parameters’ had MLEs very close to zero in the unrestricted model and the MLEs of the ‘unrestricted
parameters’ were virtually identical for the two models.

36For this, a sequential estimation procedure was used involving univariate non-homogeneous Poisson, Hawkes (1971)
and g-HawkesE(k) models and bivariate Hawkes (1971) and g-HawkesE(k) models. Details of this procedure and of the
recursions used to improve computational efficiency may be found in Bowsher (2002).
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The restricted model fits very well indeed. Only one of the m-tests of specification in Table 2 rejects

at the 5% level. Furthermore, the omnibus or o-test statistics (BL(o), BL
(o)
2 , ED(o)) were (23.670, 23.277,

−3.7246), corresponding to p-values of (0.0709, 0.0784, 0.0002) respectively. For discussion of the m-

and o-tests used see Section 4.2. The adequacy of the specification runs counter to the view sometimes

encountered that the structure of the conditional intensities of linear Hawkes models may be too restrictive

in the context of financial market event data.

Figure 1 graphs the estimated components of the mid-quote event and trade intensities (in panels

(a),(c),(e) and (b),(d),(f) respectively) for a randomly selected trading day – day 21 of the dataset, i.e.

2 August 2000. The first panel of the mth column of the figure (m = 1, 2) shows the estimated total

intensity, λ̂m(t), and estimated deterministic component, µ̂m(t); the second shows the occurrence times of

the type q events (q 6= m) in order to highlight the impact of these events on λ̂m(t); the third shows λ̂mq(t)

(q 6= m), which is the estimate of the ‘cross effect’ component
∑2

j=1 λ̃
(j)

mq(t) in (3); and the fourth shows

λ̂mm(t), the estimate of the ‘self exciting’ component
∑2

j=1 λ̃
(j)

mm(t), together with Smm, the estimate of

the spillover effect π
(2)
mmλ̃

(2)

mm(τ20)e
−ρ(2)

mm(t−τ20).

[Figure 1 here]

Consider first the MLEs reported in Table 2. Asymmetric 95% confidence intervals (CIs) are shown in

square parentheses.37 The ‘U-shape’ of the deterministic component of the trade intensity is familiar from

previous studies (see, for example, Engle and Russell (1998) and Engle (2000)), whilst the deterministic

component of the quote intensity is close to zero after the first hour of the day. Comparing the estimates

of α
(j)
mr, β

(j)
mr (mr ∈ {1, 2}× {1, 2}) for j = 2 and j = 1, we see that the response function α

(j)
mre−β(j)

mr(s) is

initially smaller but ‘longer lived’ for j = 2 than j = 1. Of particular economic interest are the estimates

of the cross effect parameters α
(1)
mq, β

(1)
mq, α

(2)
mq, and β(2)

mq (m = 1, 2; q 6= m). The occurrence of a trade

results in an upward jump in the estimated mid-quote event intensity (equal to α̂
(1)
12 + α̂

(2)
12 ) and the effect

then decays away with time. Similarly, the occurrence of a mid-quote event results in an increase in the

estimated trade intensity. These effects bring about the large, short-lived spikes that are evident in the

estimated total intensities, λ̂m(t) (m = 1, 2), in Figure 1. Notice that the magnitude of the spikes in

37These were computed using the method described in Section 3.2. A pragmatic approach was taken in order to avoid
the problems associated with γ13, γ14, γ15 and γ16 having values near to the boundary of the parameter space: the model
was estimated with the additional restrictions γ13 = γ14 = γ15 = γ16 = 0.0001 imposed (in order to ensure positivity
of the intensity process) and CIs for the other quote intensity parameters were obtained using these restricted estimates.
Imposing the additional restrictions had virtually no effect on the log-likelihood and MLEs for the quote intensity.
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λ̂12(t) and λ̂21(t) are large relative to the levels of λ̂11(t) and λ̂22(t) respectively. This is particularly

pronounced in the case of the mid-quote intensity. The response functions of the cross effect terms in (3),

∑2
j=1 λ̃

(j)

mq(t), are very short-lived, with the j = 1 component having a half life of 3.1 seconds in the case

of λ̂12(t) and 1.6 seconds in the case of λ̂21(t). The picture that emerges from Figure 1 is one in which the

cross effect terms – which capture the effect of type q events on the intensity for type m events (q 6= m) –

exhibit large, short-lived fluctuations that play an extremely important role in determining the dynamics

of the process. The economic interpretation of these effects is considered in Section 5.4 below.

The hypothesis H0 : α
(j)
12 = 0 (j = 1, 2) corresponds to the case where the mid-quote event intensity

does not depend on the history of trades. The standard LR test cannot be applied here since the

parameter value under the null lies on the boundary of the maintained hypothesis, and there are nuisance

parameters (π
(j)
12 , ρ

(j)
12 , β

(j)
12 ; j = 1, 2) that are identified under the alternative but not under the null.38

Nevertheless, it is noted that imposing the restrictions α
(j)
12 = 0 (j = 1, 2) on the λ1(t) intensity of the

BV-g-HawkesE(2) model yielded a univariate g-HawkesE(2) model with a log-likelihood of 10,672 – a

sizeable reduction of 1090 when compared to l1(θ1) in Table 2. All 3 specification tests for the mid-quote

event intensity continued to accept at the 5% level. Similarly, imposing the restrictions α
(j)
21 = 0 (j = 1, 2)

on λ2(t) resulted in a reduction in the log-likelihood of 450 and in the excess dispersion test then rejecting

at the 1% level. The bivariate model thus seems to be a substantial improvement over the two univariate

models which ignore the cross effects. Interestingly, the effect of mid-quote events on the intensity for

trades should not be ignored. A sensitivity analysis is presented in Appendix C comparing the above

results with those obtained using two other adjustment rules for the treatment of trades and mid-quote

events with identical timestamps. The analysis confirms that the finding of a positive effect of mid-quote

events on the trade intensity is not the result of the particular adjustment rule employed here.

In order to investigate the spillover effects further, two more models were estimated: the BV linear

Hawkes (1971) model with k = 2 (see (5)) and the model with no dependence between trading days given

by imposing the restrictions π
(j)
mr = 0 (∀mr, ∀j) on the BV g-HawkesE(2) model. The linear Hawkes

(1971) model has a log-likelihood of 143,461 (corresponding to a LR test with p-value 0.000) and the

ED(2) test now has a p-value of 0.018. The model with π
(j)
mr = 0 (∀mr, ∀j) has a log-likelihood of 143,513

38The same comments apply to a test of H0 : π
(j)
mr = 0 against the alternative H1 : π

(j)
mr > 0 (in which case ρ

(j)
mr is

unidentified under the null). Such a situation is not uncommon in econometrics – consider, for example, a test of the null
of no conditional heteroskedasticity in a GARCH(1,1) model – and is exactly the situation considered by Andrews (2001).
Establishing analogous results for PP models is not a trivial task and is beyond the scope of the present paper.
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(a reduction of 2) and very similar MLEs and specification test statistics to those presented in Table 2.39

In the absence of a likelihood ratio test of H0 : π
(j)
mr = 0 (∀mr, ∀j), I have erred on the side of caution and

presented the results for the model given in Table 2. However, the hypothesis of no dependence between

trading days is not strongly rejected by the data in this case (as evidenced by the specification tests

obtained under the restrictions π
(j)
mr = 0). This is perhaps surprising and merits further investigation.

Elsewhere, I present evidence for the empirical importance of positive spillover effects in g-HawkesE(k)

models of the timing of trades for NASDAQ stocks (see Bowsher (2002, Table 2)). The absence of such

positive spillover effects here may well be due to the different opening procedures on NASDAQ and

the NYSE. Whereas normal, ‘continuous’ trading simply recommences each day on NASDAQ after a

preopening period in which virtually no trade occurs, data relating to the NYSE opening auction is

omitted from the analysis in the present study. It would be interesting in future work to model jointly

the opening auction and the continuous trading process on the NYSE. A general framework has been

proposed here for modelling dependence between trading days in PP models of financial markets. A

detailed empirical examination of spillover effects in different settings would be worthwhile, but is beyond

the scope of this paper.

5.3 Approximating the instantaneous volatility

An aim of one strand of empirical microstructure research is to investigate the relationship between the

trade arrival process and volatility. In order to see how the mid-quote intensity of the BV g-HawkesE(k)

model can be used to obtain (an approximation to) the instantaneous volatility of the price process,

consider the case where all changes to the mid-quote take values in {−c, +c} and a mid-quote event is

defined to occur whenever the mid-quote changes. Denote the time of the ith mid-quote event as usual

by T
(1)
i and the associated mid-quote change by ∆i. The (right continuous) price process can thus be

written as P (t) = P (0) +
∑

i:T
(1)
i

≤t
∆i. Also define the instantaneous conditional volatility by

σ2(t) = lim
h↓0

E

[

1

h

(

P (t + h) − P (t)

P (t)

)2

|Ft

]

, (28)

39The MLEs and specification tests for this model are presented in Tables 3 and 4 as part of the simulation study in
Section 6.
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where Ft = σ(P (t))∨FN
t and N is the bivariate PP of trades and mid-quote events.40 It is then possible

to express σ2(t) in terms of the mid-quote intensity. Specifically,

σ2(t) = c2λ1(t+)/P (t)2, (29)

where Aalen (1978, Lemma 3.3(ii)) has been used and it has been assumed that λ1(t) is the mid-quote

event intensity with respect to Ft as well as FN
t (i.e. conditioning additionally on the current price level

does not alter the intensity). Engle and Russell (1998) note an analogous relationship for their univariate

model of price events; the difference here is that the instantaneous volatility is also conditional on the

timing of trades.

[Figure 2 here]

An approximate estimate of the instantaneous volatility can be formed using the estimates for the

restricted BV-g-HawkesE(2) model obtained above by making the following substitutions in (29): replace

λ1(t+) by the (right continuous version of the) estimated intensity λ̂1(t), set c = $ 1/16 and let P (t) =

P (0)+
∑

i:T
(1)
i

≤t
∆i (where T

(1)
i is the time of the ith mid-quote event for the dataset and ∆i is the actual

change to the mid-quote since the last mid-quote event).41 This estimate is graphed in Figure 2 for the

trading hour between 14:30 and 15:30 EST on 2 August 2000 (the same day as that used in Figure 1).

Showing just one hour in this way allows the detail of the function and its relation to the timing of the

trades to be clearly seen. A prominent feature is the association of periods of high volatility with periods

of high trading activity (so-called ‘clusters’ of trades). As expected, this feature was evident for all of

the trading days that were graphed. Note also that the volatility and mid-quote intensity estimates (the

latter not shown here) were difficult to distinguish visually as a result of the relatively small variability

of the price compared to that of the intensity. The multivariate g-Hawkes models can thus be used to

obtain a microstructure view of the interaction between financial market volatility and its determinants.

It would be interesting in future work to condition also on the volume of trades and the direction of the

price changes between mid-quote events.

40The smallest σ-field containing σ(P (t)) and FN
t is denoted by σ(P (t)) ∨ FN

t .
41There are two sources of approximation error here. First, the mid-quote is assumed to change only at the times of the

mid-quote events whereas in reality it changes more frequently. Second, (29) holds exactly when ∆2
i = c2 ∀i but we observe

∆2
i > c2 for a minority of mid-quote events in the dataset. Nevertheless, the approximation is a useful one.
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5.4 Connections with the market microstructure literature

Much of the existing theoretical and empirical market microstructure literature concentrates on the

impact of trades on prices rather than on the reciprocal effect of prices on the trade arrival process. By

contrast, the modelling framework presented here allows the two-way interaction of trades and mid-quote

changes to be analysed. The empirical results of Sections 5.2 and 5.3 are related to the theoretical and

empirical microstructure literatures in turn below.

The theoretical literature is concerned with the role that the trading process plays in the formation of

security prices, and in particular with how new information is incorporated into prices.42 An important

class of models is the sequential trade models of Glosten and Milgrom (1985), Easley and O’Hara (1987)

and Easley and O’Hara (1992). In these models, the Bayesian specialist learns about the information

held by the informed traders by observing the sequence of trade outcomes and sets his quotes equal to the

expected terminal value of the asset conditional on the past sequence of trading outcomes and a trade at

the quote. Thus, the dynamics of the posted quotes and of transaction prices result from this Bayesian

updating procedure. Crucially, trades convey information to the specialist and so impact the quoted

prices. A central feature of the Easley and O’Hara (1992) model is that uninformed market participants,

including the specialist, are uncertain whether an information event has occurred prior to the start of a

given trading day. This results in periods of low volatility tending to occur in periods when there are

few trades, since such a period increases the probability the specialist attaches to there having been no

information event at the start of the trading day.

The finding in Section 5.2 above that the occurrence of a trade results in an increase in the mid-quote

intensity is thus consistent with the central feature of the sequential trade models: namely, that the

specialist updates his beliefs about the value of the stock in response to the trades that he observes. A

change to the mid-quote is thus more likely immediately following a trade. Note that a trade also triggers

a mid-quote change when one of the sides to the trade is a limit order that constituted the market quote

before the trade took place. Theoretical microstructure models have analysed in much less detail the

effects of quoted prices on the trade arrival process and so it is more difficult to interpret the finding that

the occurrence of a mid-quote change results in an increase in the trade intensity. A broad explanation

is that some market participants closely monitor the quoted prices and rapidly submit market orders in

42Useful reviews of this literature are given by O’Hara (1995) and Hasbrouck (1996).
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order to take advantage of prices that are favourable to them, whilst others may set their quotes in order

to attract such market orders. For example, when the mid-quote change is the result of inventory control

by the specialist (see O’Hara 1995, Ch. 2 ), the altered quote will tend to be ‘hit’ soon afterwards by an

attracted market order on the opposite side of the market. Asymmetric information considerations might

predict a longer run negative effect of quote changes on trading intensity, reflecting the incorporation of

private information into the stock price over time and hence reduced incentives for the informed to trade.

As has already been discussed, it is possible to allow for inhibitory effects using the g-Hawkes model class.

For the estimated BV g-HawkesE(2) model, a cluster of trades with short intertrade durations results

in a large increase in the mid-quote event intensity and thus a large increase in volatility (see Figure

2). This is consistent with the central prediction of the Easley and O’Hara (1992) model noted above –

namely, that periods of high volatility tend to occur in periods when there are many trades. A number of

other empirical studies have reported similar findings.43 With the exception of Engle and Lunde (2003),

none of these papers model the dependence of the intertrade durations on prices. Both Russell and Engle

(1998) and Engle (2000) assume that intertrade durations are not Granger caused by prices. In contrast,

the bivariate modelling approach adopted here is ideally suited to the study of the two-way interaction

between trades and prices. Dufour and Engle (2000) provide preliminary evidence that short intertrade

durations tend to follow durations with large absolute returns. This is in line with the finding here

that the occurrence of a mid-quote change results in a large increase in the trade intensity. In contrast,

Grammig and Wellner (2002) find that higher lagged volatility significantly reduces trade intensity.44

The further investigation of the effect of prices on the trade arrival process is an interesting challenge for

both theoretical and empirical microstructure research.

6 Monte Carlo Study of MLEs and Specification Tests

This section uses simulation to examine the appropriateness of the asymptotic approximations employed

in Section 5 in the context of a DGP based on the estimated empirical model for the General Motors (GM)

43Engle and Lunde (2003) found that short intertrade durations predict short (observed, forward) mid-quote event
durations; Engle and Russell (1998) found that expected price durations were shorter following price durations with a
higher number of trades per second; Engle (2000) reports that the conditional volatility per unit time over an intertrade
duration was higher when both the expected and actual duration were shorter; and Russell and Engle (1998) note that
the expected squared price change over an intertrade duration was a decreasing function of the expected length of that
duration.

44Note, however, that this study analysed data for a stock on an electronic limit order book system in the five weeks
following a large initial public offering, a situation in which asymmetric information effects would be expected to be
particularly prevalent.
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dataset presented there. Specifically, I consider the bias of the MLEs, the coverage of the asymmetric

confidence intervals (CIs) computed as described in Section 3.2 and the size properties of the o- and

m-tests of specification obtained using both the true parameters and the ‘plug-in’ method which replaces

those parameters by their MLEs.

The DGP used in the simulation study is a BV g-HawkesE(2) model over 40 trading days with no

dependence across days (i.e. the restrictions π
(j)
mr = 0 ∀mr and ∀j apply) and with parameter values set

equal to the MLEs obtained by fitting the same model to the GM dataset. This DGP was chosen because

of the importance of ‘independence across days’ as a baseline case. As was noted earlier, the results of

fitting this model to the GM dataset were very similar indeed to those presented for the slightly more

general model in Table 2. The results for the no dependence model are labelled ‘GM dataset’ in Tables

3 and 4 below.

Computationally efficient simulation of an M -variate g-HawkesE(k) process with FN
t -intensity λ(t) =

(λm(t))M
m=1 may be performed using a modified version of the thinning algorithm of Ogata (1981).

Thinning simulation algorithms for PPs in which the realised level of the ‘bounding process’ depends on

the past of the proposal process, as well as on that of the target process have been suggested elsewhere

(see e.g. Ogata (1981)), but without proof of their validity. Presented below is such an algorithm for the

simulation of the BV g-HawkesE(k) process on (0, T ], together with the requisite proof. Here λm(t) should

be interpreted as the realised intensity for type m events of the target process at time t, conditional on

the simulated past of that process during the interval (0, t). For details of the general simulation approach

the reader is referred to Ogata (1981) and Daley and Vere-Jones (2003, Section 7.5).

Algorithm 6.1 Simulation of BV g-HawkesE(k) process on (0, T ].

1. Set t = 0 and d = 1;

2. If d = (T/l) + 1, terminate the simulation, otherwise:

(a) Set B(t) = K +
∑2

m=1 λm(t+), where the constant K does not depend on d and is defined as

K := max
(t′,t′′)

{

2
∑

m=1

µm(t′′) −
2

∑

m=1

µm(t′+) : τd−1 ≤ t′ < t′′ ≤ τd

}

,

the maximum increase in
∑2

m=1 µm(t) possible over any interval of time (t′, t′′] contained in
some arbitrary day d, and λm(t+) := lims↓t λm(s);

(b) Generate an exponential r.v. S with mean 1/B(t), and a uniform r.v. U distributed on (0, 1);

(c) If t + S > τd, set t = τd, d = d + 1, and return to the beginning of Step 2;
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(d) A point of the proposal process has now been generated at time t + S;

If U ≤ λ1(t)/B(t), accept t + S as the occurrence time of a type 1 event;

If λ1(t)/B(t) < U ≤ [λ1(t)+λ2(t)]/B(t), accept t+S as the occurrence time of a type 2 event;

Otherwise reject (‘thin’) the proposal of an event at time t + S;

(e) Set t = t + S and return to Step 2a. �

Proof. Let λ∗(t) be the process with piecewise constant, left continuous sample paths that jump to take

the value B(t) ‘just after’ time t on every occasion when t changes in Algorithm 6.1, and are constant

otherwise. The processes λ1(t), λ2(t) and λ∗(t) are all F∗
t -predictable where {F∗

t }t := {FN
t ∨ FN∗

t }t,

which also includes the history of the proposal point process, N∗.45 By Proposition 1 of Ogata (1981),

Algorithm 6.1 therefore results in a DGP, P say, such that the bivariate PP has (P,F∗
t )-intensity λ(t) =

(λ1(t), λ2(t))
′. Now since λ(t) is the (P,F∗

t )-intensity, FN
t ⊂ F∗

t ∀t, and λ(t) is adapted to {FN
t } and

càglàd, then λ(t) is also the FN
t -intensity under the DGP P (see Definition 3).

[Table 3 here]

The main features of the results of the simulation study presented in Tables 3 and 4 are as follows.

The MLEs and CIs for the elements of θ1 and θ2 are well behaved (see Table 3).46 In particular,

the coverages of the CIs lead us to conjecture that φ̂ := log(θ̂) is indeed approximately distributed as

N (φ∗,−[∂2lT (φ∗)/∂φ∂φ′]−1) for this DGP, and very likely more generally.47 Nor does estimation by

ML appear to result in large biases for the value of T used here. Turning now to the properties of the

omnibus and m-tests of specification shown in Table 4 , the tests based on the true parameter vector θ∗

have actual size which is well approximated by the nominal size at both the 5% and 1% levels. The use

of the ‘plug-in’ method causes little size distortion for any of the Box Ljung tests but does result in the

ED(m) tests becoming undersized. This raises some concerns about the power properties of the latter

when the critical values based on the known parameter case are used. Examination of Table 4 suggests

that the size distortions are mitigated somewhat in the case of the omnibus-type ED(o) tests.

[Table 4 here]

45Note, however, that λ∗(t) is not FN
t -predictable because λ∗(t) is not adapted to the natural filtration of the target

process, {FN
t }, as λ∗(t) also depends on the timing of the thinned points.

46The CIs for θ1 were originally computed using the method described in footnote 37. However, it was found that
inversion of the Hessian then resulted in negative variances in about 30% of the replications. The CIs shown were therefore

based on a log-likelihood in which α
(2)
11 , γ17, and γ18 are also treated as known. It appears that α

(2)
11 is sufficiently close to

zero to cause problems in this regard.
47Similar coverages were observed in a simulation not reported here using a univariate g-HawkesE(2) process with strong

dependence between trading days as the DGP.
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7 Conclusion

This paper has developed a continuous time econometric modelling framework for multivariate market

event data in which the model is specified via the vector conditional intensity. This is a powerful and

natural approach to specification, since one considers how the intensity for each type of event changes

as the information set is updated in continuous time. Furthermore, such an intensity-based approach

readily lends itself to both likelihood inference and specification testing based on a multivariate random

time change.

The new class of generalised Hawkes models is introduced. This includes non-linear models that allow

for inhibitory events resulting in a decrease in a conditional intensity and models that allow for dependence

between trading days. A recursive model structure is adopted in which the stochastic components of the

intensity on trading day d are specified in terms of functionals of their paths on previous days and

the contributions of the events occurring on day d. The structure takes into account the existence of

non-trading periods and provides a useful framework for approaching the issue of dependence between

trading days. A computationally efficient thinning algorithm for g-HawkesE(k) processes is developed

and is employed in a Monte Carlo study demonstrating that the asymptotic approximations used for

inference in the paper are well behaved. A new result concerning identification of the bivariate linear

Hawkes (1971) model is also proven.

The paper provides what is ostensibly the first in depth analysis of specification testing for parametric,

multivariate point process models. Novel omnibus, or o-tests for the multivariate case are proposed

together with m-tests of the specification of each of the intensities for type m events. The tests are

based on a multivariate random time change that transforms the non-Poisson processes into independent

Poisson processes. Both types of test are joint tests of the independence and exponential distribution of

durations obtained from these Poisson processes. The technique is shown to have widespread applicability

since the restriction it imposes on the model is natural in the context of financial market event data.

A full bivariate point process model of the occurrence times of trades and changes to the mid-quote

is presented for a NYSE stock. Importantly, the bivariate g-HawkesE(k) model allows the study of the

two-way interaction between trades and price changes. It is found that not only do trades result in an

increase in the intensity for mid-quote events (as is expected from the sequential trade models), but also
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mid-quote events result in increased trade intensity. The estimated mid-quote intensity is used to provide

an approximation to the instantaneous price volatility of the stock, in which events such as trades and

quote revisions as well as time itself modify the volatility estimate as time evolves continuously.

APPENDIX

A Proofs

Presented below are the proofs pertaining to identification of the BV linear Hawkes (1971) model.

Proof. (Lemma 2.2) The more difficult case 0 < b < K is given in order to illustrate the method.

Denote the b common parameters by {βC
j }j=1,...,b, and the remainder by {βD

j }
j=1,...,K−b

and {β̄D
j }

j=1,...,K−b

for h(s; θ) and h(s; θ̄) resp. Suppose that #Ch(θ, θ̄) = 2K−b and write Ch(θ, θ̄) = {si}i=1,...,2K−b. Define

the (2K − b) × (2K − b) generalised Vandermode matrix

V (θ, θ̄) := {e−βD
1 si , ..., e−βD

K−bsi , e−β̄D
1 si , ..., e−β̄D

K−bsi , e−βC
1 si , ..., e−βC

b si}2K−b
i=1 , (30)

where the ith row has no 2 elements equal (i = 1, ..., 2K − b). It follows from the Theorem of Norberg

(2002, p.2) that V (θ, θ̄) is non-singular. Also define, using an obvious notation,

α(θ, θ̄) := (αD
1 , ..., αD

K−b,−ᾱD
1 , ...,−ᾱD

K−b, α
C
1 − ᾱC

1 , ..., αC
b − ᾱC

b )′. (31)

Then #Ch(θ, θ̄) = 2K − b implies that

V (θ, θ̄)α(θ, θ̄) = 0, (32)

which yields a contradiction since, by (9), α(θ, θ̄) 6= 0. It follows therefore that #Ch(θ, θ̄) < 2K − b.

Proof. (Theorem 2.3) Let λ0(t; θ) :=
∑M

m=1 λm(t; θ) be the
(

Pθ,FN
t

)

-intensity of the pooled pro-

cess {Ti},with λ0(t; θ̄) defined analogously as its
(

Pθ̄,FN
t

)

-intensity. Then the ‘uniqueness’ of predictable

intensities (see Brémaud 1981, Theorem T12, p.31) gives

Pθ = Pθ̄ ⇒ λ0(T2; θ) = λ0(T2; θ̄) Pθ-a.s. (33)

I prove that the RHS of (33) does not hold when θ 6= θ̄, thus establishing that θ 6= θ̄ ⇒ Pθ 6= Pθ̄.
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Define hr(s; θr) =
∑2

m=1

∑k
j=1 α

(j)
mre−β(j)

mrs for r = 1, 2. Now suppose at least one element of θ and

θ̄ differs, and say w.l.o.g. that we have θ1 6= θ̄1. Then on the event {Z1 = 1}, λ0(T2; θ) = λ0(T2; θ̄) iff

h1(T2−T1; θ1) = h1(T2−T1; θ̄1), which by Lemma 2.2 and (C1), (C2) and (C3) holds for at most (4k−1)

distinct values of the duration (T2 − T1). This follows since application of Lemma 2.2 here with K = 2k

gives #Ch1(θ1, θ̄1) < 4k.

Now, denoting the event [λ0(T2; θ) = λ0(T2; θ̄)] by E, Pθ[E] = Pθ[{E ∩ {Z1 = 1}} ∪ {E ∩ {Z1 = 2}}].

Since {E ∩ {Z1 = 1}} = {(T2 − T1) ∈ Ch1(θ1, θ̄1)}, the duration (T2 − T1) is a continuous r.v. ∀θ, and

Ch1(θ1, θ̄1) is a finite set, it follows that Pθ[E ∩{Z1 = 1}] = 0. Furthermore, Pθ[E ∩{Z1 = 2}] ≤ Pθ[Z1 =

2] < 1 since µ1(t) > 0 ∀t. Therefore

Pθ[λ0(T2; θ) = λ0(T2; θ̄)] = 0 + Pθ[E ∩ {Z1 = 2}] < 1, (34)

and by (33) it follows that Pθ 6= Pθ̄. The case where θ2 6= θ̄2 is symmetric with the one just given. Hence

θ 6= θ̄ implies that Pθ 6= Pθ̄, the condition required for identification.

B A Primer on Point Process Theory

Textbook treatments of the martingale-based, intensity theory of PPs are given in Brémaud (1981) and

Karr (1991). Since these accounts are rather demanding mathematically, and so that the paper is self-

contained, this appendix summarises the aspects of the theory that are needed here.

B.1 Point and counting processes

A simple Point Process on (0,∞), denoted by {Ti}i∈{1,2,...}, is a sequence of positive random vari-

ables with the property that the realisations of the sequence are strictly increasing (almost surely). Let

{Zi}i∈{1,2,...}
be a sequence of {1, 2, ..., M}-valued random variables (1 ≤ M < ∞). Then, if {Ti} is a

simple PP, the double sequence {Ti, Zi} is called an M-variate point process on (0,∞). Define for all

m ∈ {1, ..., M} and all t ≥ 0

Nm(t) =
∑

i≥1

1(Ti ≤ t)1(Zi = m). (35)

Then the process N(t) := (Nm(t))M
m=1 is the M -vector counting process associated with {Ti, Zi}. The ith

event is said to be of type m (for a particular realisation) if and only if Zi(ω) = m.

The (stochastic Stieltjes) integral of a process X with respect to the counting process Nm is defined
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pathwise and, where it exists, is given by

∫

(0,t]

X(s)dNm(s) =
∑

i≥1

1(T
(m)
i ≤ t)X(T

(m)
i ), ∀t > 0. (36)

The natural filtration (or internal history) of the M -variate PP N(t) is denoted by {FN
t }t≥0, where

FN
t = σ(NA(s) : 0 ≤ s ≤ t, A ∈ E), NA(s) =

∑

i≥1 1(Ti ≤ s)1(Zi ∈ A), and E is the σ-field of all subsets

of {1, 2, ..., M}.

B.2 Conditional intensities

The martingale-based definition of the conditional intensity of a simple PP is unfamiliar in econometrics,

but leads to an extremely powerful martingale calculus for dynamic point process systems such as those

encountered in financial econometrics (see Brémaud (1981)).

Definition 3 Conditional Intensity. Let N(t) be a simple point process on (0,∞) that is adapted to

some filtration {Ft}, and let λ(t) be a scalar, positive, Ft-predictable process. If

E[N(s) − N(t)|Ft] = E

[
∫ s

t

λ(u)du|Ft

]

P-a.s., (37)

for all t, s such that 0 ≤ t ≤ s, then λ(t) is the (P,Ft)-intensity of N(t).48

Alternatively, we might then say that λ(t) is the Ft-conditional intensity of N(t) under the DGP P. In

the multivariate case (M > 1), the now M -variate process λ(t) = (λm(t))M
m=1 is the (P,Ft)-intensity of

N(t) = (Nm(t))M
m=1 if and only if λm(t) is the (P,Ft)-intensity of Nm(t) for m = 1, ..., M .

An intuitive understanding of an intensity can be gained by letting s ↓ t in (37) above. Suppose that,

for each m, Nm(t) is observed on [0, T ] and has the (P,Ft)-intensity λm(t), that the sample paths of λm(t)

are càglàd and that {λm(t)}0≤t≤T is bounded by a P-integrable r.v. Define λm(t+) := lims↓t λm(s). Then

lim
s↓t

1

s − t
E[Nm(s) − Nm(t)|Ft] = λm(t+) P-a.s., (38)

(see, for example, Aalen 1978, Lemma 3.3).49

C Adjustment Rules for Simultaneous Events

The M -variate PPs in this paper assign zero probability to the simultaneous occurrence of two market

events (of either the same or different types) – that is, they are simple PPs. This section describes the

48Note that sufficient conditions for λ(t) to be Ft-predictable are that the sample paths of the process are left continuous
and have right-hand limits (i.e. the paths are càglàd) , and that λ(t) is adapted to {Ft}.

49Intuitively, it is the right continuous process λm(t+) rather than λm(t) that appears in (38), because if there is a jump

at time t then
R t+dt

t
λm(u)du ≃ λm(t+)dt 6= λm(t)dt.
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adjustments that were made to the General Motors (GM) dataset analysed in Section 5 in order to deal

with such simultaneous events. The timestamps of all events in the original dataset are an integer number

of seconds. Events of the same type (i.e. two trades or two quotes) that have the same timestamp were

treated as a single event with that timestamp. The occurrence of such events was rare.50 The treatment

of the simultaneous occurrence of trades and mid-quote events, which arises largely as the result of

measurement error, is a more substantive issue. Approximately 11 per cent of the mid-quote events have

exactly the same timestamp in the data as a trade. In Section 5, I have adjusted the occurrence times of

these mid-quote events as follows: if x is the original occurrence time (in seconds), then the time becomes

x − 0.5 + U in the final dataset, where U is the realisation of a uniform r.v. on (0, 1). This adjustment

procedure is referred to below as Algorithm 1.

Some comments concerning this procedure are in order. First, although the reported timestamps of

the mid-quote event and the trade are the same, the actual occurrence times (in continuous time) will

rarely be identical. The actual occurrence time refers to the time of trade execution by the specialist

and the time when the specialist made known his revised quotes to the trading crowd. For example,

consider the situation where the specialist calls out in close succession the details of a trade and new

quotes set in response to that trade. These events might well receive the same timestamp in the data

although in reality trade execution occurred first. An alternative to the approach adopted here would

be to define a third type of event as occurring whenever a trade and a mid-quote event have identical

timestamps. However, this would be to aggregate market outcomes that are quite different economically:

such timestamps could be the result of a trade execution occurring just prior to a quote change; a quote

change occurring just prior to a trade execution; or the events occurring further apart in real time but

being reported with identical timestamps as a result of lengthier reporting delays.51

Since it would be expected that the estimates of α
(1)
mq, β

(1)
mq, α

(2)
mq, β

(2)
mq (m = 1, 2; q 6= m) reported in

Table 2 are affected by the particular treatment of the identical timestamps that is adopted, a sensitivity

analysis was conducted comparing the results with those obtained using two other adjustment rules: in

50The number of trade events is reduced by only 0.26 per cent as a result of treating trades with identical timestamps as
single trades; the reduction in the number of (‘post thinning’) mid-quote events was only 0.14 per cent.

51It has been suggested that the ‘5 second rule’ of Lee and Ready (1991) be applied when modelling a bivariate system
of trade and quote times. This involves delaying every quote time by five seconds. However, the results presented by Lee
and Ready (1991) show a frequency distribution for the difference between the timestamp of the trade and the quote in
circumstances where it is reasonable to believe that the actual occurrence times were very close together in real time. The
distribution has a mode of zero and 38.3% of the trades are recorded prior to the quote change. This suggests that it is
preferable not to adjust all quote times by a deterministic amount.
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the first of these the adjusted mid-quote event time is given by x + U (with U defined as above), and in

the second the trade with the identical timestamp is deleted from the data. The first (Algorithm 2) is

designed to capture the assumption that the identical timestamps are very often the result of the specialist

executing a trade and then very rapidly calling out details of the trade and the new quotes. The second

rule (Algorithm 3) is an alternative way of avoiding strong a priori assumptions concerning the actual

ordering of the mid-quote event and the trade. Since there are many more trades than quotes, Algorithm

3 results in only a small reduction in the number of trades. All three algorithms gave very similar

MLEs for parameters other than α
(1)
mq, β

(1)
mq, α

(2)
mq, β

(2)
mq (m = 1, 2; q 6= m), and resulted in specification

tests that accepted at the 1% level with the exception of the BL(1) test for the trade intensity. The

estimates of (α
(1)
12 , α

(2)
12 , β

(1)
12 , β

(2)
12 ; α

(1)
21 , α

(2)
21 , β

(1)
21 , β

(2)
21 ) were (59.4, 6.3, 1163.5, 123.7; 81.6, 19.1, 436.1, 58.5)

for Algorithm 2 and (27.9, 2.04, 475.4, 55.4; 80.6, 19.7, 423.8, 57.5) for Algorithm 3. These should be

compared with those given for Algorithm 1 in Table 2. It is the positive effect of mid-quote events on

the trade intensity that is the most novel of the empirical findings in Section 5.2. Crucially, although the

estimates of α
(1)
21 and α

(2)
21 are smaller for Algorithms 2 and 3 than for Algorithm 1, they are still far from

zero. For example, when Algorithm 3 is employed, imposing the restrictions α
(j)
21 = 0 (j = 1, 2) on λ2(t)

results in a reduction in the log-likelihood of 277 and in the excess dispersion test again rejecting at the

1% level. Thus, the finding of a positive effect of mid-quote events on the trade intensity should not be

interpreted as the result of having employed a data adjustment rule that was unduly biased in favour of

finding such an effect.
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Hamilton, J. D. and Ò. Jordà (2001). A model for the federal funds rate target. Journal of Political

Economy, 110, 1135–1167.

Harris, L. (1998). Optimal dynamic order submission strategies in some stylized trading problems.

Monograph, forthcoming in Financial Markets, Institutions and Instruments 7(2).

Hasbrouck, J. (1996). Modelling market microstructure time series. Handbook of Statistics, Vol. 14

(North-Holland, Amsterdam) 647-692.

Hasbrouck, J. (1999). Trading fast and slow: Security market events in real time. Working Paper, Stern

School of Business, New York University.

41



Hasbrouck, J., G. Sofianos, and D. Sosebee (1993). New York Stock Exchange systems and trading

procedures. NYSE Working Paper 93-01.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika,

58, 83-90.

Hong, Y. and H. Li (2005). Nonparametric specification testing for continuous-time models with ap-

plications to term structure of interest rates. Review of Financial Studies, 18, 37-84.

Karr, A. F. (1991). Point processes and their statistical inference (Dekker, New York).

Lee, C. M. C. and M. J. Ready (1991). Inferring trade direction from intraday data. Journal of Finance,

46, 733-746.

Meyer, P. A. (1971). Démonstration simplifiée d’un théorème de Knight. Lecture Notes in Mathematics,
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Trade durations Mid-quote event durations
No. of durations 33,372 5,044
Mean duration 0.467 3.087
Std deviation 0.108 4.505
Minimum 1/60 1/60
Maximum 28.733 60.800
BL 4733.1 (0.000) 1192.1 (0.000)

Table 1: Summary statistics of the durations between trades and mid-quote events for General Motors
Corporation. BL is the Box-Ljung statistic for zero autocorrelation calculated using the first 15 lags; the
durations are measured in minutes.



θ1 Quote intensity, λ1(t; θ1) Trade intensity, λ2(t; θ2) θ2

α
(1)
11 1.7224 [1.2,2.5] 10.388 [8.9,12] α

(1)
22

α
(2)
11 0.1469 [0.02,1.1] 1.4838 [0.90,2.4] α

(2)
22

β
(1)
11 8.6842 [5.3,14] 42.716 [31,59] β

(1)
22

β
(2)
11 1.4072 [0.41,4.9] 3.2561 [2.1,5.0] β

(2)
22

π
(2)
11 1.7270 [0.07,43] 0.2103 [0.05,0.84] π

(2)
22

ρ
(2)
11 4.0172 [0.55,29] 1.3812 [0.50,3.8] ρ

(2)
22

α
(1)
12 41.009 [37,46] 216.82 [180,261] α

(1)
21

α
(2)
12 4.4637 [2.7,7.3] 38.830 [27,55] α

(2)
21

β
(1)
12 810.43 [677,971] 1550.8 [1155,2083] β

(1)
21

β
(2)
12 96.386 [64,146] 101.42 [70,148] β

(2)
21

γ11 21.740 [14,34] 74.077 [53,104] γ21

γ12 2.6181 [0.76,9.0] 45.906 [33,63] γ22

γ13 0.0000 15.580 [7.9,31] γ23

γ14 0.0000 21.365 [15,30] γ24

γ15 0.0000 17.928 [13,25] γ25

γ16 0.0000 26.408 [21,33] γ26

γ17 0.7743 [0.14,4.4] 31.456 [25,39] γ27

γ18 0.4877 [0.01,37] 69.602 [60,80] γ28

l1(θ1) 12,022 132,013 l2(θ2)

Mean(1) 0.9993 1.0000 Mean(2)

Var(1) 0.9741 1.0189 Var(2)

BL(1) 20.244 (0.163) 46.487 (0.000) BL(2)

BL
(1)
2 12.313 (0.655) 4.7585 (0.994) BL

(2)
2

ED(1) -0.6499 (0.516) 1.2216 (0.222) ED(2)

Table 2: MLEs and diagnostics for a restricted BV g-HawkesE(2) model of the timing of trades and
mid-quote changes for General Motors. The parameters of the quote intensity and the trade intensity are
listed in the first and last columns respectively. 95% CIs are shown in square parentheses. The maximised
log-likelihood for the bivariate model is 12,022 + 132,013 = 144,035. The reported m-tests are described
in Section 4.2; BL (BL2) denotes the Box-Ljung test based on the levels (squares) and ED the excess
dispersion test; a superscript (1) denotes a test based on the quote intensity and a (2) denotes one based
on the trade intensity.



θ1 GM dataset MLEs MC Mean Coverage θ2 GM dataset MLEs MC Mean Coverage

α
(1)
11 1.725 [1.2,2.4] 1.715 0.954 α

(1)
22 10.40 [8.9,12] 10.54 0.945

α
(2)
11 0.140 0.231 - α

(2)
22 1.542 [0.96,2.5] 1.514 0.960

β
(1)
11 8.626 [5.9,13] 13.06 0.962 β

(1)
22 43.49 [32,60] 43.61 0.941

β
(2)
11 1.361 [0.87,2.1] 1.603 0.954 β

(2)
22 3.359 [2.3,5.0] 3.350 0.956

α
(1)
12 41.02 [1.2,2.5] 41.01 0.937 α

(1)
21 216.8 [180,261] 216.76 0.949

α
(2)
12 4.476 [1.2,2.5] 4.589 0.925 α

(2)
21 38.88 [27,55] 38.559 0.950

β
(1)
12 811.2 [1.2,2.5] 822.1 0.946 β

(1)
21 1552 [1156,2084] 1594 0.946

β
(2)
12 96.62 [1.2,2.5] 97.67 0.928 β

(2)
21 101.6 [70,148] 106.78 0.940

γ11 24.70 [20,30] 24.73 0.957 γ21 91.13 [80,103] 91.33 0.948

γ12 2.893 [1.2,7.3] 3.013 0.943 γ22 53.23 [44,65] 54.69 0.928

γ13 0.000 0.008 - γ23 17.67 [10,31] 18.54 0.921

γ14 0.000 0.030 - γ24 22.05 [16,30] 22.47 0.946

γ15 0.000 0.000 - γ25 18.18 [13,25] 18.64 0.930

γ16 0.000 0.000 - γ26 26.49 [21,33] 27.00 0.931

γ17 0.775 0.709 - γ27 31.48 [26,39] 32.01 0.935

γ18 0.496 0.787 - γ28 69.54 [60,80] 71.57 0.934

Table 3: Properties of MLEs and asymmetric CIs for the BV g-HawkesE(2) model with no dependence
across days. The DGP uses as parameter values the MLEs for the GM dataset (see 2nd and 6th columns);
MC Mean is the Monte Carlo mean of the simulated MLEs across replications; Coverage is the proportion
of replications in which the true parameter lies in the 95% CI. Results based on 1000 replications.



BL(1) BL
(1)
2 ED(1) BL(2) BL

(2)
2 ED(2) BL(o) BL

(o)
2 ED(o)

GM dataset: statistic 21.07 12.65 -0.618 46.17 4.295 1.283 17.72 25.57 -3.049

p-value (0.135) (0.630) (0.536) (0.000) (0.997) (0.200) (0.277) (0.043) (0.002)

Using θ∗ 0.05 0.054 0.071 0.054 0.046 0.056 0.062 0.044 0.060 0.049

0.01 0.014 0.022 0.013 0.005 0.008 0.022 0.005 0.017 0.008

Using θ̂ 0.05 0.050 0.066 0.000 0.029 0.039 0.001 0.036 0.048 0.017

0.01 0.011 0.023 0.000 0.002 0.004 0.000 0.008 0.017 0.001

Table 4: Size properties of specification tests for the BV g-HawkesE(2) model with no dependence across
days. DGP as in Table 3; the m-tests of specification are as in Table 2 and the omnibus tests are
also shown (denoted by a superscript o); θ∗ is the true parameter vector and θ̂ is the MLE; rejection
frequencies are shown at the 5% and 1% nominal levels. Results based on 1000 replications.
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Figure 1: Components of the estimated mid-quote event and trade intensities for General Motors on 2
August 2000. The first column of panels is for the mid-quote event intensity and the second for the
trade intensity. (a) the estimated total intensity, λ̂1(t), and estimated deterministic component, µ̂1(t);

(c) λ̂12(t), the estimate of
∑2

j=1 λ̃
(j)

12 (t); (e) λ̂11(t), the estimate of
∑2

j=1 λ̃
(j)

11 (t), and S11, the estimate

of the spillover effect π
(2)
11 λ̃

(2)

11 (τ20)e
−ρ

(2)
11 (t−τ20). The components of the trade intensity shown are defined

analogously. Also shown in the first (resp. second) column are the (vertically jittered) occurrence times
of the trades (resp. mid-quote events). Note that panels (a) and (c), and (b) and (d) are drawn to the
same scale. In all cases, the horizontal axis is time measured in hours.
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Figure 2: Estimated instantaneous volatility, σ̂2(t), for General Motors on 2 August 2000 between 14:30
and 15:30 EST. σ̂2(t) is based on equation (29). Also shown are the (vertically jittered) occurrence times
of the trades. Volatility is measured per trading year (where one year is 252×6.5 trading hours). The
horizontal axis is time measured in hours since the start of the trading day.


