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Abstract. This paper examines theoretical properties of incentive contracts in the
hedge fund industry. We show that it is very difficult to structure incentive
payments that distinguish between unskilled managers, who cannot generate
excess market returns, and skilled managers who can deliver such returns.
Under any incentive scheme that does not levy penalties for underperformance,
managers with no investment skill can game the system so as to earn (in
expectation) the same amount per dollar of funds under management as the
most skilled managers. We consider various ways of eliminating this “piggy-
back effect,” such as forcing the manager to hold an equity stake or levying
penalties for underperformance. The nature of the derivatives market means that

none of these remedies can correct the problem entirely.
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1. Background

Hedge funds are largely unregulated investment pools that have become
increasingly important in the marketplace. There are currently more than 8000
hedge funds with well over one trillion dollars under management [Ibbotson and
Chen, 2006]. The typical fee structure is a two-part pricing scheme in which the
manager takes a fixed annual percentage of funds under management (the
management fee), plus another percentage on that portion of returns that exceed
some pre-established benchmark (the incentive). A fairly common arrangement is
a management fee of 1-2%, an incentive fee of about 20%, and a benchmark in the

region of 5-10% [Ackermann, McEnally, and Ravenscraft, 1999]

The purpose of such incentive schemes is to reward exceptional performance and
to align the interests of investors and managers as closely as possible. Two-part
incentive schemes certainly reward performance, but they are not very
satisfactory on the second count. One reason is that the convexity of the fee
structure encourages mangers to employ strategies with high variance, which is
not always in the best interests of the investors, particularly those who are risk
averse. A second problem is that the pay-as-you-go feature encourages
managers to push high returns forward in time, because poor returns later are
not used to offset the amounts earned from high returns early on. The impact of
the incentive structure on dynamic portfolio choice has been examined in a
number of papers, including Starks (1987), Carpenter (1998), and Ackermann,
McEnally, and Ravenscraft (1999).!

1 For statistical analyses of recent hedge fund performance see Malkiel and Saha (2005) and
Ibbotson and Chen (2006).



A third problem with these schemes is that they are susceptible to manipulation
by managers who can mimic exceptional performance records with high
probability (and earn large fees), without delivering exceptional performance in
expectation. The purpose of this paper is to show that this ‘piggy-back effect’ is
potentially very large and very difficult to correct. In particular, we shall show
that it is virtually impossible to set up an incentive structure that rewards skilled
hedge fund managers without at the same time rewarding unskilled managers
and outright con artists.? In fact, any incentive scheme that does not directly
penalize underperformance can be gamed by the manager so that he earns (in
expectation) the same amount per dollar of funds under management as can the

most skilled managers.

This rather surprising result, which is established in theorem 1 below, stems
from the unusual flexibility of the derivatives market. It also has a disturbing
corollary: since the cost of entry is low relative to the potentially enormous fees,
the industry may be swamped by managers who are gaming the system rather
than delivering high returns, which could ultimately lead to a collapse in
investor confidence. The problem can be attenuated by insisting on greater
transparency in the strategies that funds employ, but designing measures of risk
exposure that cannot be circumvented turns out to be an extremely challenging

problem.

% A “con artist” is a fund manager who knows that he cannot generate excess returns and tries to
fool his investors into thinking that he can, whereas an “unskilled manager” is one who imagines
that he can generate excess returns even though he cannot. It is rational for both types of
managers to use strategies that maximize returns, which (given the fee structure) means exposing
their investors to large losses with a small but non-negligible probability. Both types of managers
produce bad outcomes for the investors irrespective of their intentions.



2. A ‘whimsical’ example

The nature of the incentive problem can be illustrated by a somewhat whimsical
example. An enterprising man named Oz sets up a new hedge fund with the
aim of earning 10% in excess of some benchmark rate of return, say 5%. The
fund will run for five years, and investors can cash out at the end of each year if
they wish. The fee is ‘two and twenty: 2% annually for funds under
management, and a 20% incentive fee for annual investment returns that exceed

the 5% benchmark.

Step 1. Oz raises $100 million and starts operations on the first day of the year.
He invests the $100 million in Treasury bills yielding 4% and deposits them in
escrow at a bank. Then he writes an event-driven option that works as follows: if
at the end of the year the fourth digit in the S&P 500’s closing value is a 2/, Oz
pays the option holder $100 million; otherwise the option holder pays Oz $10
million. This is a 9:1 bet in which the bad outcome is very bad but has low
probability, and the good outcome is pretty good and has high probability.
Moreover the option is worth money to any buyer that is large and highly

diversified, because its expected payoff is $1 million (100 x 10% - 10 x 90% = 1).

Step 2. Oz sells the option for its fair market value ($1 million). He then rents
some computer terminals, hires a few bright young ‘quants’ (in case his investors

want to eyeball the operation), and takes a long vacation.

Step 3. At the end of the year the closing value of the S&P 500 is reported. If the
fourth digit is not a ‘2’, Oz gets his $10 million. Together with the interest ($4

million) and the sale of the option ($1 million) this makes for a stellar return of



15% -- right on target! The investors are pleased and Oz collects $4 million: $2
million in management fees plus a $2 million performance bonus. If the “unlucky

2" does occur, Oz closes the fund early.

The chances are very good, however, that this will not happen. Oz can then
repeat the gambit next year with even greater profits because the fund has now
grown by 11%, net of fees. Indeed, the chances are over 59% that, by the end of
the fifth year an “unlucky 2" will never have occurred. In this case the fund has

returned 15% per year and Oz looks very skilled indeed.3

A little calculation shows that Oz grosses nearly $25 million if the fund does not
go bust in the first five years, and over $10 million (in expectation) if it does.
Overall, Oz’s expected gross earnings come to about $19 million in spite of the

fact that he has no special investment skill.

We shall call Oz’s strategy a piggy-back strategy. While it is doubtful that hedge
fund managers use strategies that are this transparent, more sophisticated
versions of it probably are in use. Lo (2001) gives the following concrete
example: take short positions in S&P 500 put options that mature in 1-3 months
and are about 7% out-of-the-money (using the investors” funds as collateral).

The chances are high that such options will expire worthless, in which case the

® In practice, incentive schemes often specify that the manager’s next incentive bonus will not be
paid until the fund meets its previous highest value (high water mark). This does not change Oz’s
payments, however, because he keeps the fund growing until it crashes.



manager makes money -- indeed quite a lot of money, as Lo shows by putting

the strategy through its paces using historical data.

Of course, these gains come at a price, namely, there is a small probability that
the market will decline sharply, the puts will be in-the-money, and the fund will
lose a great deal. But this event is rare, and before it happens the manager will
earn very large fees for delivering apparently above-average performance, when
the expected returns are at best average (but this fact is concealed from the

investors).

The same logic is at work in Oz’s strategy, and in many other strategies one can
imagine. While Oz’s strategy is extremely transparent, however, our purpose
here is not to concoct the cleverest way to deceive investors using this approach.
Rather, we exploit the transparency to establish two general theoretical points: i)
it is extremely difficult to detect, from a fund’s track record, whether a manager
is actually able to deliver excess returns, is merely lucky, or is an outright con
artist; ii) it is virtually impossible to design the incentive structure so that it
rewards skilled managers without also rewarding the wunskilled (and

unscrupulous) ones also.

* Lo claims that strategies of this general type are not merely theoretical possibilities, but
constitute a “well-known artifice employed by unscrupulous hedge-fund managers to build an
impressive track record quickly...” (Lo, 2001, p.23). He also shows how a manager can conceal
such a strategy by taking a series of complicated positions that effectively create a synthetic short
position.



3. The piggy-back theorem

Suppose that a fund starts with size 1 at the beginning of year 1 and runs for T
years. Let the ordinary rate of return be r >0. We can think of this as the rate of
return achievable in a given asset class by an ‘ordinary’ investment manager who
has no special investment skill. After t years a fund run by an ordinary manager
will be of size (1+r)'. A skilled investment manager, by contrast, is able to

generate excess returns, by which we mean a rate of return greater than r.

Let us express the total return in year t by the random variable (1+r)X,, where
X, 20. There are excess returns if X, >1, deficient returns if X, <1, and ordinary
returns if if X, =1. We shall only be interested in the stochastic sequence of

returns that a trading strategy generates; we need not concern ourselves with the
mechanism that leads to these returns, such as the specific ways in which

managers exploit arbitrage opportunities in the market.

It will be notationally convenient to deflate the dollar amounts in each period t
by (1+r)". Thus the sequence of random variables {X,, X,,..., X;} represents the
series of returns achieved relative to the ordinary rate r, which will no longer
appear in the notation. To avoid infinite returns, we shall assume from now on
that the realized values of the X, are bounded above by some number u >0, that
is,

0< X, <u. (1)

The object of investors is to maximize final wealth, namely, W, = H X, .
1<t<T



A specific realization of the stochastic process will be denoted by
(X, %, % )€R!. Any such realization generates a series of payments to the
manager. A contract is a function ¢ that maps each realized sequence
(X, X,,..., X; ) of any finite length to a total payment ¢(x,,X,,..., % ). The payments
may be doled out over time or paid in one lump sum. (If doled out over time we
assume that they accumulate at the ordinary rate of return, so that the total
payment is just the sum of payments along the way.) In this section we shall

assume that ¢(x,X,,...,X;) is continuous, nonnegative, and monotone non-decreasing

in each of its arguments. Later we shall consider the effect of negative payments,
that is, penalties that the manager must pay out of his own pocket if he

underperforms.

A person with no skill is someone like Oz who can generate ordinary returns

every period but not more, that is, E[X,:X,X,,...X_;]<1. A series of returns
(X, Xy,..., X ) is comsistently good if X 21 for 1<t<T. This is the best that a

manager with no skill can deliver in expectation.

Piggy-Back Theorem. Under any continuous, non-negative, monotonic contract ¢, a

manager with no skill can earn, per dollar of initial investment, at least

max{p(X,, X,,... . )/ T | %+ all x, =13 2)

1<t<T

The maximum value will be called the optimal reward ratio for the contract ¢.



Proof. Without loss of generality assume that the initial size of the fund is X, =1.
Choose a particular sequence (X,X,,...,%) that maximizes (2), where by
assumption all x, >1. For each period t<T define a binomial process X, such
that the manager is paid x, —1>0 with probability 1/x, and the manager pays
-1 with probability 1-1/%,. Note that the expected value of X, is zero. the
manager can cover the negative payment with the fund’s initial value. At the
beginning of each period t the manager writes an option with distribution
(XXX, -+ % ;) X,. As in the Oz example the event that triggers the option is
external and has the required probability distribution, namely, (1/x,,1-1/X,). The
option is covered because the manager’s obligation (in case of a bad draw) is
—(Xo XX, -+ X,), which is the current value of the fund. (The manager can

guarantee this because (being unskilled) he is simply going to put the fund into a

vehicle that assures an ordinary rate of return.)

At the end of T periods he will have generated the sequence (X, X,,...,X;) with

probability 1/w, where w; = H X, is the final value of the fund. With

1<t<T

probability 1-1/w; the fund crashes at or before period T and the final value is
0. Since the contract carries no penalties for underperformance (¢ is non-

negative), the manager’s expected earnings equal ¢(X,X,,....%;)/ [ | %, which is
1<t<T

the reward ratio. This is one feasible strategy of the unskilled manager, and
others may yield even higher earnings, but all we needed to show is that the

unskilled manager can earn at least this amount. Q.E.D.

A financial wizard is someone who can consistently generate excess returns over

an extended period of time. Specifically, ane-wizard is a person who can



consistently generate excess returns of size £>0. Suppose the fund runs for T
periods. Under the contract ¢, she will be paid, per dollar initially invested, the
amount ¢(l+¢,1+¢,....,1+¢). Moreover the final value of her fund will be

W, =(l+¢&)" with certainty. Hence her expected earnings per final dollar in the

fund equal ¢g(1+¢&,1+¢,....1+¢&)/(l+¢)" .

Corollary. A person with no skill can earn, in expectation, at least as much per dollar of

final value in his fund, as can an & -wizard per dollar of final value in her fund.

The essential idea of the theorem is that an unskilled manager can piggy-back on
any series of returns that a skilled manager might generate. The manager does
this by creating a series of covered options that allow him to mimic the returns of
more skilled managers with nonzero probability, hence he gets the skilled

manager’s rewards with this same probability.>

It is important to realize that the unskilled manager does not need to mimic the
distribution of returns that a skilled manager would generate. The piggy-back
theorem shows that much less is demanded of an unskilled manager: all he
needs to do is mimic a series of returns that could have been generated by a skilled
manager. Therefore, he might as well mimic a series of returns that gives a big

bang for the buck, namely, a series that solves the maximum problem in (2).

To appreciate the magnitude of the piggy-back effect, suppose that a skilled

manager can generate excess returns of 1 + ¢ = 1.03 and does so for ten years in a

® Of course, skilled managers can exaggerate the level of their skill using the same general
approach. Unskilled managers can mimic these exaggerated returns if they choose, but their risk
of exposure is higher.

10



row. Let R be the total reward to such a manager. The theorem shows that an
unskilled manager with the same size fund initially can get at least .74R in
expectation ((1.03) ™ ~.74). Note also that this is a lower bound: there could be

other series of returns that yield even higher expected rewards to the unskilled

manager.

More generally, suppose that R is the expected reward to an &-wizard over T
periods. An unskilled manager who employs an piggy-back strategy will not be
exposed in T periods with probability (1+¢&)". Hence in expectation such a
manager earns at least R(1+¢)". Table 1 shows how the probability of not being

exposed varies with & and T .

&£ T=5 T=10 T=20
01 95% 91% 82%
.03 86 74 55
.05 78 61 38
.10 62 39 15
.20 40 16 3

Table 1. Probability that a piggy-back strategy is not exposed for various values
of ¢ and T. (All probabilities rounded to the nearest whole percent.)

The length of a reporting period is not material to the results in table 1. Suppose,
for example, that managers were required to report their returns at the end of
each day instead of at the end of each year. A manager who can generate excess
returns of & per year can, on average, generate excess returns of per day equal to

(L+£)"*® -1~ £/365. An unskilled manager can mimic each of these daily

11



)—1/365

returns with probability (1+¢ . Hence, over T years, the unskilled manager

can mimic this series with probability (1+&)™", just as before.

One lesson to draw from this table is that unskilled managers can get high
rewards relative to skilled ones unless the latter are very skilled for long periods
of time. For example, it is fairly easy to fake 5% excess returns over 5 years,
whereas it is hard to fake 20% excess returns over 10 years without getting
caught. Still, 5% excess returns is quite an enticing prospect. Thus an unskilled
manager might prefer to mimic a series of moderately high returns rather than a
series of very high returns, because he can get away with the former with much

higher probability than the latter.

Another implication is that investors will have difficulty discriminating between
managers who are truly talented and those who have no talent (or are con artists)
based solely on their “track records.” Suppose, for example, that an investor

wants to be 95% confident that a given history of returns (X, X,,...,X;) was not

generated by a scam of the type described in section 2. The preceding argument

shows that this will be the case if and only if 1/(H X,) £.05. In other words, only

1<t<T
if a fund has grown at least twenty-fold compared to an alternative safe

investment can the investor be 95% certain that it was not generated by a scam.

4. Restructuring the incentives

In this section we consider whether the problem can be remedied by
restructuring the incentive schemes in the hedge fund industry. There are two

separate problems that a properly designed incentive scheme needs to address.

12



The first is how to align the interests of the manager and the investors more
closely. The second is how to distinguish between skilled and unskilled
managers. The former is the alignment problem whereas the second is the

separation problem.

The alignment problem is a standard one in the theory of contracts, and can be
addressed in several ways: a) by rewarding the manager only on the basis of
final total returns; b) by forcing the manager to hold a sizable equity stake; c) by
levying penalties for underperformance. We shall consider each of these
remedies in turn. A basic conclusion is that, while they may partially alleviate
the alignment problem, they do not solve the separation problem: under almost
any arrangement, unskilled managers will be able to piggy-back on the rewards

of skilled ones to some extent.

a) Payments based on final returns

One way to align the objectives of the manager and the investors is to make the

manager’s payments depend only on the final value of the fund w; = H X . In
1<t<T

other words, the contract should take the form ¢(x, X,,...,X;) = g(H X,) for some

I<t<T

nonnegative, monotone increasing function g(w;). To separate the skilled from

the unskilled, we need the payments to be zero whenever H X <1.
1<t<T

Unfortunately this means that the payment function is convex in a neighborhood
of 1, which encourages risk-taking by the manager. If investors are risk-averse

the interests of manager and investors will therefore not be fully aligned.

13



Moreover, even if the function g(w;) is zero for w; <1, the separation problem
remains acute. This follows at once from the piggy-back theorem: an unskilled
manager can make at least max, g(w)/w. Therefore under a final-wealth payment

scheme, an unskilled manager can make at least as much per dollar of final wealth as can

the most skilled managers.

b) Require the manager to hold an equity stake in the fund

Suppose that the fund manager is required to hold an equity stake in the fund.
Let 6<(0,1) be the proportion of the fund’s value that he is required to hold
during the fund’s lifetime T. We begin by noting that this requirement is easy to
undermine, because the manager can always take positions in the derivatives
market that effectively offset the gains and losses generated by his share of the
fund. However, even if such offsetting positions can be prohibited, the

requirement does not do much to solve the piggyback problem.

To see why, let (X, X,,....X;) be some series of returns that a skilled manager can
generate, and let ¢ = ¢(X,, X,,....X;) be the corresponding payment. At the end of

the series his wealth is

O] x+@-6)p. )

I<t<T

The piggy-back theorem shows that an unskilled manager can generate this same

series with probability 1/ H X, . His expected wealth at the end of the period is

I<t<T

composed of two parts: the expected value of his own stake before fees, which is

14



exactly 6 (because he makes bets with zero expected gains); and the expected

fees from the investors, which amount to (1-8)¢/ H X, . Hence the unskilled

I<t<T

manager’s end-wealth is, in expectation,

0+1-0)g/ ] x - 4)

1<t<T

It follows from (3) and (4) that the ratio of the unskilled to the skilled manager’s

end-wealth is 1/ [ | X, which is the same as the ratio of their earnings in the
1<t<T

unconstrained case.

c) Assess penalties for underperformance

Theoretically this is the most satisfactory approach, but it still does not solve the
separation problem. Consider a contract ¢ that calls for negative payments for
some sequences of sub-par returns. We do not need to specify which returns
trigger negative payments, but we will assume that they are bounded below by
some number —6 . The payments must be enforceable, so the manager must put

0 in escrow (earning normal rates of return) until the end of period T .

Consider some series of returns (X, X,,....X;) that can be generated by a skilled

manager. Let w= H X, . Conditional on this realization of returns, the skilled
1<t<T

manager’s end-wealth is 0 +¢(w). He realizes, however, that if he had not

opened the fund to investors, but simply applied his skills to the amount held in

escrow (9), he would have had ow. Therefore his participation constraint is

15



o(w-1) <g(w). (5)

Now consider an unskilled manager who piggy-backs on the sequence

(X, X,,....X; ) . His expected end-wealth is

p(W)/w—-5@1-1/w). (6)

Assuming that the skilled manager participates, the unskilled manager’s end-

wealth divided by the skilled manager’s end-wealth is

@/w)y=o1(0+¢(w)). (7)

Under the other regulatory regimes this ratio was 1/w, so in the current regime
the penalties are in fact penalizing the unskilled manager. Nevertheless they are
not sufficient to keep out the unskilled (and the con artists). Indeed, suppose
that the penalties are high enough that the unskilled manager’s earnings are
negative. Then from (6) we obtain ¢(w)/w-06(1-1/w)< 0, which implies that
#(W) < o(w—1). But then the participation constraint (5) of the skilled manager is
not satisfied. It follows that any contract with penalties that keeps out the unskilled

managers keeps out all the skilled managers as well.

5. Discussion

In this paper we have shown how easy it is to mimic a series of excess returns

without being able to generate such returns in expectation. It suffices to place a
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series of bets, each of which generates a modest excess return with high
probability and a large loss with low probability. As long as the excess returns
are not too excessive, and the series not too long, the probability of being
exposed is low. Furthermore, it is essentially impossible to design an incentive
scheme that keeps out people who are pursuing such strategies (either

unwittingly or by design), without keeping out everybody.

We draw two conclusions. First, investors cannot distinguish between true
financial wizards and those who are mediocre (or duplicitous) without knowing
their track records over long periods of time, and even then there is no sure way
to discriminate between them. Second, because it is easy to fake excess returns
and earn a lot of money in the process, mediocre managers and con artists will be
attracted to the market. The situation is analogous to an automobile ‘lemons’
market with the added feature that ‘lemons’” can be manufactured at will
(Akerlof, 1970). Indeed, it is analogous to a car market with the following
characteristics: i) every car is one of a kind; ii) the car’s engine is locked in a black
box and no one can see how it works (it's not protected under patent law); iii)
anyone can cobble together a car that delivers apparently superior performance
for a period of time and then breaks down completely. In such a case one would
expect the price of cars -- both good and bad — to collapse, because buyers cannot
tell the difference between them. A similar fate may await the hedge fund

industry unless ways are found to make their functioning more transparent.
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