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Summary

We consider forecasting from age-period-cohort models, as well as from
the extended chain-ladder model. The parameters of these models are known
only to be identified up to linear trends. Forecasts from such models may
therefore depend on arbitrary linear trends. A condition for invariant fore-
casts is proposed. A number of standard forecast models are analysed.

Some key words: Age-period-cohort model; Chain-ladder model; Forecasting;
Identification.

1 Introduction

Consider the age-period-cohort model used in epidemiology and demography.
It describes the logarithm of the mortality in an additive form, involving three
interlinked time scales,

µij = αi + βj + γi+j−1 + δ, (1)

where i is the cohort, j is the age, and i + j − 1 is the period. Thus, αi is a
cohort effect, βj is an age effect, γi+j−1 is a period effect, while δ determines
the overall level. The indices i and j vary bivariately in an index set I,
which, for simplicity is assumed to be triangular and given by i, j = 1, . . . , k
so i+ j− 1 ≤ k. Given estimates α̂i, β̂j, γ̂i+j−1 and δ̂ it is of interest to study
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properties of forecasts of µij for the triangle J given by i, j = 1, . . . , k so
i + j − 1 > k. To construct these forecasts it is necessary to extrapolate the
γ-parameters, whereas the α, β and δ-parameters are readily available. It
has long been appreciated that the parametrisation in terms of αi, βj, γi+j−1

and δ is not identified. Even when omitting the parameter δ or when letting
α1 = β1 = γ1 = 0 the identification problem remains. In this paper we discuss
to what extent the identification problem has bearing on the forecasts.

Carstensen (2007) gave a group theoretic description of the identification
problem showing that linear trends can be added to and subtracted from
αi, βj, γi+j−1 and δ, so that their sum µij given in (1) is unchanged. Earlier,
Clayton & Schifflers (1987) had suggested that the ratios of relative risks
are identifiable. On a logarithmic scale these ratios translate into second
differences. Recently Kuang, Nielsen & Nielsen (2008) discussed the identi-
fication problem and suggested a canonical parametrization involving these
second differences and which has a bijective correspondance with µij, for
all (i, j) ∈ I. Starting from these descriptions this paper provides a simple
condition which ensures that the forecasts for the triangle J are invariant to
these trends.

The forecasting problem has previously been studied by Berzuini & Clay-
ton (1994). Building on the invariance of the second differences they proposed
a latent model for the period effect, γ, in which the second differences are
independent, identically distributed and suggested estimation of the param-
eters α, β and δ jointly with the parameters of the latent model. With this
approach the γ-parameters can be extrapolated using the latent model in such
a way that the identification problem is avoided. In this paper we split this
procedure into two stages. In a first stage the parameters α, β, γ and δ are
estimated. In the second stage, which is analyzed here, a forecasting model
is fitted to the estimated γ-parameters. This procedure gives more flexibility
in formulating a forecasting model for the γ-parameters and thereby exploits
experience on forecasting of non-stationary time series (Clements & Hendry,
1999).

The presented condition for invariant forecasting allows forecast models
which are based directly on the second differences of the canonical parameter.
This relates to the proposal by Berzuini & Clayton (1994). However, it is also
possible to construct invariant forecasts that are motivated by a forecasting
model that appear to involve a particular identification of αi, βj, γi+j−1 and δ.
A number of examples are presented here. In particular, if the γ-parameters
are extrapolated using a linear trend or a random walk with a drift then the
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forecast for µij in the triangle J are invariant. Extrapolation using a constant
level or a random walk without a drift will, in contrast, lead to non-invariant
forecasts.

Kuang, Nielsen & Nielsen (2008) gave a brief introduction to the typi-
cal applications for these forecast methods. In particular, age-period-cohort
studies have been discussed by Keiding (1990), whereas the extended chain-
ladder models used in non-life insurance were introduced by Zehnwirth (1994)
and Barnett & Zehnwirth (2000) as an extention of the classical chain-ladder
model discussed by for instance England & Verrall (2002).

In such applications two types of generalizations may be needed. First,
the triangular index set I may have a more general form than the triangular
form discussed here. In many cases it would be a generalized trapezoid
(Kuang, Nielsen & Nielsen, 2008). Secondly, when forecasting outside the
triangular set J it will be necessary also to extrapolate either the cohort
effect, αi, or the age effect, βj, or both. Generalizations of these types are
application specific, but would be covered by extending the arguments of this
paper.

2 Identification

The parameters of (1) are

θ = (α1, . . . , αk, β1, . . . , βk, γ1, . . . , γk, δ) ∈ R3k+1.

As pointed out by Carstensen (2007), linear trends in αi, βj and γi+j−1 can
be added without changing the value of µij. This can be expressed in terms
of the group

g :


αi

βj

γk

δ

 7→


αi + a + (i− 1)d
βj + b + (j − 1)d

γi+j−1 + c− (i + j − 2)d
δ − a− b− c

 , (2)

where a, b, c and d are arbitrary constants. The parameter µ is a function of
θ, which is invariant to g; that is, µ(θ) = µ{g(θ)}.

Kuang, Nielsen & Nielsen (2008) analysed this problem further and found
the representation

µij = µ11 + (i− 1)(µ21 − µ11) + (j − 1)(µ12 − µ11) + aij, (3)
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for all i, j ∈ I, where

aij =
i∑

t=3

t∑
s=3

∆2αs +

j∑
t=3

t∑
s=3

∆2βs +

i+j−1∑
t=3

t∑
s=3

∆2γs,

∆αi = αi−αi−1 and ∆2αi = ∆αi−∆αi−1. Their Theorem 1 shows that the
canonical parameter vector

ξ = (µ11, µ21, µ12, ∆
2α3, . . . , ∆

2αk, ∆
2β3, . . . , ∆

2βk, ∆
2γ3, . . . , ∆

2γk) ∈ R3k−3 (4)

gives a unique parameterization of µ, so that for ξ† 6= ξ†† then µ(ξ†) 6= µ(ξ††).
The group g is maximal, so that θ† = g(θ††) if and only if ξ(θ†) = ξ(θ††).
Invariance properties can then be investigated using g.

3 Forecasting

Suppose now that an estimate θ̂ is available for a particular identification
scheme for the original parameters θ. The aim is to forecast µi,j for some
(i, j) ∈ J . The period coordinate for this point is k + h = i + j − 1, so an
h-step ahead forecast is needed for the period factor, γk+h = γi+j−1. The

overall forecast is then µ̃i,j(θ̂) = α̂i + β̂j + γ̃i+j−1(γ̂) + δ̂, where γ̃i+j−1(γ̂)
is a forecast itself constructed by extrapolation from γ̂ = (γ̂1, . . . , γ̂k). The

question whether the forecast µ̃i,j(θ̂) depends on the chosen identification

scheme for θ can be addressed as follows. Applying the group g to θ̂ results
in the forecast µ̃i,j{g(θ̂)} = {α̂i + a + (i − 1)d} + {β̂j + b + (j − 1)d} +

γ̃i+j−1{g(γ̂)} + (δ̂ − a − b − c). The forecast is invariant to the group g if

and only if µ̃i,j(θ̂) = µ̃i,j{g(θ̂)}, so a condition for invariance is now easily
derived.

Theorem 1 The forecast µ̃i,j for (i, j) ∈ J is invariant to the group g if and
only if, for k + h = i + j − 1 and arbitrary c, d ∈ R,

γ̃k+h{g(γ̂)} = γ̃k+h(γ̂) + c− (k + h− 1)d. (5)

The condition (5) for invariance of the forecast of µi,j allows the forecast
of γi+j−1 = γk+h to be non-invariant as long as the arbitrarily chosen linear
trend appears in an additive fashion. When forecasting outside the triangle
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J two, or even three, of the factors αi, βj and γi+j−1 need to be extrapolated.
The argument can be generalized to that situation.

The linear structure of condition (5) implies that forecasts for γh+k need
to have a structure that involves the canonical parameter ξ. This structure
is summarized in the next theorem, which is proved in the appendix.

Theorem 2 The forecast γ̃k+h(γ̂) satisfies the condition (5) if and only if,
for some function f , it is given by

γ̃k+h(γ̂) = γ̂k + h∆γ̂k + f(∆2γ̂3, . . . , ∆
2γ̂k). (6)

In order to interpret expression (6) note the telescopic formulas

γk+h = γk +
h∑

t=1

∆γk+t, ∆γk+t = ∆γk +
t∑

s=1

∆2γk+s.

Inserting the second expression in the first and noting that estimates are
available for γk and ∆γk only the ∆2γk+s-terms need to be forecasted implies

γ̃k+h(γ̂) = γ̂k + h∆γ̂k +
h∑

t=1

t∑
s=1

∆2γ̃k+s.

Theorem 2 therefore shows that the forecasts for
∑h

t=1

∑t
s=1 ∆2γ̃k+s should

be based exclusively on the second-differences ∆2γ̂`, which are a part of the
canonical parameter ξ.

In applications the question is then how to choose the forecasts ∆̃2γk+t.
A regression model only involving the second-differences, ∆2γ̂`, would clearly
suffice. However, time series models that appear to involve first-differences,
∆γ̂`, or even levels, γ̂`, can also be used as long as they eliminate any linear
trend behaviour. It is interesting to study a few examples.

Consider first a simple forecasting model of the type xt = ν + εt, which
will not produce invariant forecasts. Estimating ν by ν̂ = k−1

∑k
i=1 γ̂i gives

a point forecast of the form γ̃k+h(γ̂) = ν̂. The formula (5) does not hold in
this case since

γ̃k+h{g(γ̂)} = k−1

k∑
i=1

{γ̂i + c− (i− 1)d} = k−1

k∑
i=1

γ̂i + c− (k − 1)d/2

6= k−1

k∑
i=1

γ̂i + c− (k + h− 1)d = γ̃k+h(γ̂) + c− (k + h− 1)d.
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This shows that the forecast µ̃i,j(θ̂) will have a linear trend component {(k−
1)/2+h}d = {(k+1)/2+i+j−1}d depending on the arbitrarily chosen slope
d. The forecasting model xt = νc + νlt + εt will in contrast produce invariant
forecasts. This model is, however, tedious to analyse. In the following two
random walk models are therefore analysed to show the mechanics of the
argument in greater detail.

Consider first a simple random walk forecasting model of the type xt =
xt−1 + εt. The point forecast is γ̃k+h(γ̂) = γ̂k, which is not of the form (6).

Invariant forecasts can, however, be achieved from a random walk fore-
casting model with a drift where xt = xt−1 + ν + εt. Estimating ν by
ν̂ = (k − 1)−1

∑k
j=2 ∆γ̂j, gives a point forecast of γ̃k+h(γ̂) = γ̂k + hν̂. This

is shown to be of the form (6) by noting that ∆γ̂j = ∆γ̂k −
∑k

`=j+1 ∆2γ̂`,

which implies that ν̂ = ∆γ̂k − (k − 1)−1
∑k

j=2

∑k
`=j+1 ∆2γ̂`. Alternatively,

the condition (5) can be proved directly by noting that

γ̃k+h{g(γ̂)} = {γ̂k + c− (k − 1)d}+ (k − 1)−1h
k∑

j=2

(∆γ̂j − d)

= γ̃k+h(γ̂) + c− (k + h− 1)d.

Density forecasts can also be analyzed with these theorems. Suppose, in
the random walk model with intercept, the innovations εt are independently,
normally distributed with mean zero and variance σ2. The innovation vari-
ance is then estimated by σ̂2 = (k−1)−1

∑k
j=2(∆γ̂j− ν̂)2, which is a function

of the second differences. The density forecast γ̃k+h(γ̂) = γ̂k + hν̂ + ε̃k:h,
where ε̃k:h is normally distributed with mean zero and variance hσ̂2, there-
fore satisfies (6).

Turning to forecasting models based on the levels, γ̂`, the same type of
results can be found. A model with deterministic regressors needs to involve
a linear trend to eliminate the arbitrary linear trend in the levels. Likewise,
autoregressions should include linear trends. The results are summarised in
Table 1.

Building on the econometrics literature the models in Table 1 are de-
scribed in terms of integrated processes of a order s, denoted I(s). This no-
tation indicates that the processes need to be differenced s times to achieve
stationarity. Clements and Hendry (1999, §5) discuss the merits of the dif-
ferent forecasting methods. The I(0) methods tend to be preferable if they
describe the sample variation in-sample and no structural changes are ex-
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Invariant forecasts Non-invariant forecasts
I(0) xt = νc + νlt + εt xt = νc + εt

xt = ρxt−1 + νc + νlt + εt xt = ρxt−1 + νc + εt

I(1) ∆xt = νc + εt ∆xt = εt

I(2) ∆2xt = εt

∆2xt = ρ∆2xt−1 + εt

Table 1: Invariance properties of various forecasting models.

pected out-of-sample, whereas the higher order integrated methods tend to
be more robust to structural changes out-of-sample.
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Appendix
Proof of Theorem 2

Proof: Any function of γ̂ satisfying (5) can be written in the form

γ̃k+h(γ̂) = γ̂k + h∆γ̂k + F (γ̂k, ∆γ̂k, ∆
2γ̂3, . . . , ∆

2γ̂k),

for some function F . Since g(γ̂k + h∆γ̂k) = γ̂k + h∆γ̂k + c − (k + h − 1)d,
the condition (5) holds if and only if F is invariant to g, that is, for scalar x
and y, and a (k− 2)-vector z, then F{x + c− d(k− 1), y− d, z} = F (x, y, z)
for all c and d. If F (x, y, z) = f(z) as required by (6) this clearly holds.
Conversely, setting first d = 0 it is seen that the function must be constant
in its first argument, and setting then c = 0 it is seen that function must also
be constant in its second argument. Thus F (x, y, z) = f(z).
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