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Abstract

We investigate the properties of the composite likelihood (CL) method for (T ×NT ) GARCH

panels. The defining feature of a GARCH panel with time series length T is that, while nuisance

parameters are allowed to vary across NT series, other parameters of interest are assumed to

be common. CL pools information across the panel instead of using information available in a

single series only. Simulations and empirical analysis illustrate that in reasonably large T CL

performs well. However, due to the estimation error introduced through nuisance parameter

estimation, CL is subject to the “incidental parameter” problem for small T .

Keywords: ARCH models; composite likelihood; nuisance parameters; panel data.

1 Introduction

This study focuses on the application of the composite likelihood (CL) method to GARCH panels.

A GARCH panel is a collection of financial time-series that are characterised by time-varying

volatility. The defining feature of a GARCH panel is that, while nuisance parameters are allowed

to vary across series, other parameters of interest are assumed to be common for all series.
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The CL method has been introduced to financial econometrics only recently by Engle, Shep-

hard, and Sheppard (2008)1 and as a basis for pooling information across not only time, but also

cross-sectionally. In GARCH panels, this amounts to estimating the parameters of interest for

all assets simultaneously, instead of individually. This is very important as the common quasi-

maximum likelihood estimator (QMLE) for the GARCH model delivers poor results in samples of

a few hundred observations. It is illustrated in this study that, through its information pooling

mechanism, CL is potentially capable of delivering satisfactory results in such samples. However,

both methods suffer from error introduced by nuisance parameter estimates. This “incidental pa-

rameter” problem has already been mentioned in the financial econometrics literature by Engle and

Sheppard (2001), Engle, Shephard, and Sheppard (2008) and Engle (2009).

An important point in favour of CL is that, as mentioned before, QMLE based estimation of

GARCH, while satisfactory in samples with 1,000s of observations, is unreliable in small samples.

For example, using a sample of 100 or 250 observations, the fitted GARCH is unlikely to adequately

model the conditional heteroskedasticity in data. On the other hand, CL is potentially able to pro-

duce a reasonable conditional heteroskedasticity structure, even when the number of observations is

very small, since it uses information contained in the whole panel. Although assets in the panel will

be correlated to some degree, it is implausible that all assets will be perfectly correlated. Hence, a

panel of asset prices will contain at least as much information as a single asset does.

Forecasters often have to use a short time-series or a small-T panel. A recent structural break in

data is one cause. Assuming the break occurred a year ago (corresponding to availability of around

250 daily observations following the break) QMLE will most likely deliver poor fitted models of

conditional heteroskedasticity which, in turn, will lead to poor forecasting performance. On the

other hand, CL has the potential to work well for this problem. Another application where CL

can be useful is monthly hedge fund data, which consists of monthly returns on 1000s of funds and

hence, is a short, wide panel.

The relevant large sample theory underlying the method used in this study has already been

developed by Engle, Shephard, and Sheppard (2008) who look at large dimensional time-varying

covariances. They employ CL to produce a computationally feasible estimator, where the CL is

constructed by averaging the log-likelihoods for submodels built using bivariate time series. Our

study develops the GARCH panel structure using the theoretical foundations provided by Engle,

Shephard, and Sheppard (2008) and employs Monte Carlo and empirical analysis to examine its

properties.

Our Monte Carlo simulations demonstrate that CL is capable of modelling conditional het-

1The origins of the composite likelihood method go back to at least Lindsay (1988). See Varin (2008) for a review.
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eroskedasticity correctly using previously infeasible sample sizes. Furthermore, forecast comparison

analysis on stock-market data from S&P100 reveals that even when the parameters of interest are

likely to vary across the panel, CL performs well against QMLE in small-T panels. Nevertheless,

as the sample size increases, information pooling loses its attractiveness, as QMLE performs well

enough in long time series and is robust to wrongly pooling information between series.

The structure of the paper is as follows. In Section 2 we introduce the GARCH panel model

and the analysis by composite likelihood. In Section 3 we report results from various simulation

experiments. This is followed by Section 4 which provides an empirical illustration of these methods

and Section 5 draws some conclusions.

2 The GARCH panel

GARCH models are frequently used in financial econometrics. Reviews of the literature include

Bollerslev, Engle, and Nelson (1994), Bauwens, Laurent, and Rombouts (2006) and Silvennoinen

and Teräsvirta (2009). The focus in this paper will be on a GARCH panel. The (T ×N) GARCH

panel is a collection of N financial time-series that are assumed to have GARCH dynamics and share

a common set of parameters, θ = (α, β), while the nuisance parameters, {γi}N
i=1, are allowed to be

asset-dependent. Our focus will be on fitting a very large number of univariate GARCH models.2

For simplicity of exposition we assume each time series is of length T , although in practice this is

of course not necessary.

Formally, we have a panel of asset returns with T observations for each of the NT assets.

Throughout, it is assumed that the number of series in the cross-section can potentially increase

with the number of observations and so NT has the subscript T . This includes cases where there

are more assets than time series observations. Moreover, asset returns are assumed to display

conditional heteroskedasticity over time and cross-sectional dependence, where yit is the return on

asset i at time t, i = 1, ..., NT and t = 1, ..., T . Moreover,

yit = µit + εit, µit = E(yit|Ft−1), (1)

E [εit|Ft−1] = 0 and Var [yit|Ft−1] = Var [εit|Ft−1] ≡ σ2
it, (2)

where Ft−1 is the historical information set at time t − 1. As the analysis focuses on conditional

variance, it is simply assumed that µit = 0. The relevant GARCH specification is

σ2
it = γi(1 − α− β) + αε2i,t−1 + βσ2

i,t−1, where γi > 0, α, β ∈ [0, 1), α+ β < 1. (3)

2For example, this would be need for the first step of fitting a Dynamic Conditional Correlation model by Engle
(2002).
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Here, α and β constitute the parameters of interest, while {γi} are treated as nuisance parameters as

they are not of direct interest but, nevertheless, have to be estimated in order to obtain θ̂ =
(
α̂, β̂

)
′

.

It can be shown that this specification, often called variance-tracking, implies that

E(y2
it) = γi, (4)

enabling the use of method of moments (MM) to estimate γi. Here we make the ad-hoc choice of

setting σ2
i0 = T−1/2

∑T
t=1 y

2
it. Finally {γ∗i }, α∗ and β∗ are defined as the true parameter values for

{γi}, α and β, respectively, while γ∗(NT ) ≡
(
γ∗1, ..., γ

∗

NT

)
.

This panel structure has many similarities with the autoregressive panels which are commonly

used in economics and statistics. Reviews of that literature include Arellano and Honore (2001)

and Diggle, Liang, and Zeger (1994). We know of only Engle and Mezrich (1996) and Bauwens

and Rombouts (2007) as previous studies on GARCH panels.

Conventionally, estimation of θ can be conducted individually for each asset, by using QMLE.

However, this only utilises information available in a single time-series. What is preferable in this

situation (where all assets share a common θ) is to estimate θ by pooling all information available

in the panel. This is made possible by CL.

2.1 Estimation procedure

Let f(yit|Ft−1; θ, γi) be the conditional density for yit. The joint density specification for all assets

returns at time t is given by f(y1t, ..., yNT t|Ft−1), which we will not model, noting that knowledge of

all of the NT submodels does not deliver knowledge of f(y1t, ..., yNT t|Ft−1) (the conditional copula

is entirely unspecified) unless the individual components are conditionally independent.

This model is indexed by some common parameters θ and individual effects γi. This type of

assumption appeared first in the influential work of Neyman and Scott (1948). Recent papers on

the analysis of this setup include Barndorff-Nielsen (1996), Lancaster (2000) and Sartori (2003).

In those papers, stochastic independence is assumed over i and t.3 In our framework we will have

time series and cross-sectional dependence in the yit|Ft−1.

The composite likelihood function is then defined as

CL(ψ(NT ); y) =
1

T

T∑

t=1

{
1

NT

NT∑

i=1

log f(yit|Ft−1;ψi)

}
=

1

T
l(ψ(NT ); y), where (5)

3Then the maximum likelihood estimator of θ is typically inconsistent for finite T and N → ∞ and needs, when T
increases, N = o(T 1/2) for standard distributional results to hold with rate of convergence

√
NT (see Sartori (2003)).

However, in our time series situation we are content to allow T to be large, while the important cross-sectional
dependence implied by CL amongst the individual quasi likelihoods reduce the rate of convergence to rate

√
T , not√

NT . Under those circumstances MCLE will be consistent and have a simple limit theory however N relates to T
(see Engle, Shephard, and Sheppard (2008) for details).
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l(ψ(NT ); y) =
T∑

t=1

lt(ψ(NT ); yt|Ft−1), and (6)

lt(ψ(NT ); yt|Ft−1) =

NT∑

i=1

log f(yit|Ft−1;ψi), ψi ≡
(
θ′, γi

)
, ψ(NT ) =

(
θ′, γ′(NT )

)
′

.

Estimation of ψ(NT ) is based on the two-step estimation procedure. First, {γi} are estimated

using method of moments estimation based on (4) to obtain {γ̂i}. Then, these are substituted for

{γi} in (3) and θ is estimated using (5).4

Formally, using (4),

mNT
(yt, γ(NT )) =





y2
1t − γ1

...

y2
NT t − γNT



 , implying E(mNT
(yt, γ

∗

(NT ))) = 0. (7)

Equation (7) gives the population moment condition for the nuisance parameters. For θ, the score

function for the normal composite-likelihood function is

g(yt, θ, γ(NT )) =
∂

∂θ

1

NT

(
−1

2

NT∑

i=1

log σ2
it −

1

2

NT∑

i=1

η2
it

σ2
it

)
. (8)

For (7) and (8), respective sample moment conditions are given by

1

T

T∑

t=1

mNT
(yt, γ̂(NT )) = 0, and

1

T

T∑

t=1

g(yt, γ̂(NT ), θ̂) = 0, (9)

where γ̂(NT ) and θ̂ are appropriate estimators for γ∗(NT ) and θ∗ ≡ (α∗, β∗). Stacking (7) and (8),

the population and sample moment conditions are given by

E
[
g̃(yt, θ

∗, γ∗(NT ))
]

= E

[
mNT

(yt, γ
∗

(NT ))

g(yt, θ
∗, γ∗(NT ))

]

= 0, and
1

T

T∑

t=1

g̃t,T (yt, θ̂, γ̂(NT )) = 0.
([NT +2]×1)

We note that (9) is the first order condition for the simple optimization problem

θ̂ = arg max
θ

1

T

T∑

t=1

1

NT

NT∑

i=1

log f(yit|Ft−1, θ, γ̂i). (10)

Equation (10) is based on an m-profile composite likelihood function, formed by ignoring the

potential dependence in the data across individuals. It is an m-profile version as we have plugged

the moment based estimator of γi into the composite likelihood. This will provide a statistically

inefficient estimator for θ as it ignores dependence over individuals, employs a moment based

4A detailed exposition of the theory for two-step estimation is provided by Newey and McFadden (1994). There
NT is fixed so despite similarities in estimation approach, standard results do not apply to the current case.
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estimator to remove γi and the submodels for yit|Ft−1 may really be just quasi-likelihoods and not

true likelihoods.

In this setting, there are NT moment conditions coming from the nuisance parameters and two

moment conditions coming from the score vector. An important observation is that for each asset

in the panel, there is a nuisance parameter estimation.

2.2 Large sample distribution

If we ignore the estimation of the nuisance parameters then this is just a time series extension of

the analysis of Cox and Reid (2003). In that case, the score for the t-th observation is given by

st,N =
1

N

N∑

i=1

∂ log f (yit|Ft−1; θ)

∂θ
,

which is a triangular array martingale difference sequence. We assume that it obeys a central limit

theorem given by

1

T

√
T

T∑

t=1

st,N
d→ N(0,I), where I = p lim E

[
1√
T

T∑

t=1

Var (st,N |Ft−1,N )

]

.

Here N can increase with T , but we assume that I is positive definite. The latter assumption is

not trivial: for example, it would not be expected if the data is i.i.d. in the cross section. More

formally we assume that if N increases, the cross sectional average st,N does not exhibit a law of

large number.

Based on this central limit result, it follows that

√
T
(
θ̂ − θ

)
d→ N(0,J −1IJ−1), (11)

where

J = p lim
1

T

T∑

t=1

E

[
∂st,N

∂θ′
|Ft−1,N

]
,

assuming that J > 0. Notice then J is approximately the average of Hessians of a randomly

chosen submodel at a random time ∂2 log f(yit; θ)/∂θ∂θ
′ and the CLT is only for θ̂, it makes no

statement about the γi. To account for the nuisance parameters, a modified estimator for the score

covariance is required.

zt,N =
1

N

N∑

i=1

∂ log f (yit|Ft−1; θ)

∂θ
− ∂2 log f (yit|Ft−1; θ)

∂θ ∂γi

(
y2

i,t − γi

)
,
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1

T

√
T

T∑

t=1

zt,N
d→ N(0, Ĩ), where Ĩ = p lim E

[
1√
T

T∑

t=1

Var (zt,N |Ft−1,N )

]

.

An important point of (11) is that the rate of convergence of the estimator is not improved

by having a cross-section. Instead the cross section influences the size of I, but its impact is

limited. For a more detailed exposition of the related large sample theory, see Engle, Shephard,

and Sheppard (2008).

In practice, to make inference we need estimators for Ĩ and J . An estimator for J can be

obtained by evaluating the Hessian at sample observations. Ĩ on the other hand requires the use

of a HAC estimator. Examples of such estimators are provided by Newey and West (1987) and

Andrews (1991).

3 Simulation analysis

3.1 The setting

The asset panel is generated using the specification described in (1)-(3). For most stock returns

annual volatility is in the range 15% and 60%, so we draw γi
iid∼ U [0.02, 0.05].5 For each series the

γi are used as the initial values for the conditional variances, hi,0. Cross-sectional dependence is

generated by a single-factor model where

ηit = ρiut +
√

1 − ρ2
i τ it, τ it, ut

iid∼ N(0, 1), (12)

implying

E (ηit|ρi) = 0, Var

[(
ηit

ηjt

)∣∣∣∣∣ ρi, ρj

]

=

[
1 ρiρj

ρiρj 1

]

∀ i 6= j and ∀t,

and Cov(ηit, ηjs|ρi, ρj) = 0 for all t 6= s and all i, j.

The choice of ρi, in a way that ensures neither perfect correlation nor independence, can be

done in various ways. A restrictive option is to assume that ρi is a constant. Engle, Shephard, and

Sheppard (2008) consider a truncated normal distribution to generate ρi, where truncation occurs

at 0.1 and 0.9. This study uses ρi ∼ U [0.5, 0.9] for all i, ensuring that the lowest and highest

correlation between two assets will be equal to 0.25 and 0.81, respectively. Lastly α and β are

chosen from three different alternatives which cover the range of parameter values which are found

in asset data: [
α

β

]
∈
{
θ(1), θ(2), θ(3)

}
=

{[
0.02

0.97

]
,

[
0.05

0.93

]
,

[
0.10

0.80

]}
. (13)

5This follows from σD =
√

σA/252 where σD and σA are daily and annual volatility, respectively. For an annual
volatility of 15%, daily volatility according to this method is 0.0244 while for 60% the daily volatility is 0.0488.
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θ = (0.02, 0.97) (0.05, 0.93) (0.10, 0.80) (0.02, 0.97) (0.05, 0.93) (0.10, 0.80)

Bias MCSD
NT α̂ β̂ α̂ β̂ α̂ β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂

1 3.3% -.81% .15% -.49% .16% -1.2% .007 .019 .010 .017 .020 .050

10 .42% -.29% -.08% -.21% -.40% -.29% .002 .005 .004 .006 .008 .017

50 .17% -.26% -.12% -.19% -.32% -.28% .002 .003 .003 .005 .006 .013

100 .08% -.25% -.19% -.18% -.29% -.27% .002 .003 .003 .004 .005 .012

Table 1: Monte Carlo simulation results: average biases for α̂ and β̂ in percentages and Monte Carlo
standard deviations (σ̄α̂ and σ̄

β̂
). T = 2, 000 in all cases while NT gives the number of series in the cross-

section. Based on 2, 500 replications.

3.2 Simulation results

All results in the following analysis are based on 2,500 replications. Average biases of estimates and

their Monte Carlo standard deviations (MCSD) are amongst obvious criteria for comparison. To

investigate whether the theoretical large sample properties of CL hold in finite samples, asymptotic

standard deviation (ASD) and root mean squared error (RMSE) statistics are also provided. The

statistics are defined as follows:

MCSD : σ̄κ̂ =

√
1

Z

∑Z

z=1

(
κ̂z −

1

Z

∑Z

z=1
κ̂z

)2

,

ASD : σ̂κ̂ =
1

Z

√∑Z

z=1
σ̂2

κ̂,z,

RMSE : RMSEκ̂ =

√
1

Z

∑Z

z=1
(κ̂z − κ)2,

where Z is the number of replications, α̂z and β̂z are the estimates for replication z, z = 1, ..., Z and

κ̂z ∈{α̂z, β̂z}. σ̂2
κ̂,z is the estimated asymptotic variance for κ̂z. ASD serves as an average measure

of the asymptotic standard deviation across all replications. In addition, coverage rates of sample

confidence interval statistics (CI) are provided as a further measure to evaluate the finite sample

performance of asymptotic distribution for the CL based upon σ̂2
κ̂,z. All results are calculated for

95% confidence intervals.

Tables 1 and 2 present the results for the three parameter values in (13), where T = 2, 000. A

second analysis looks at the implications of varying T where T ∈ {100, 250, 500, 1000, 2000}, the

results of which are given in Tables 3 and 4.6 In all cases, results for NT = 1 are also provided,

which corresponds to using QMLE instead of CL.

Simulation results show that when T = 2, 000, CL generally leads to low average bias across

all parameter values, with the highest average bias being equal to .88% for α̂ and −.40% for β̂. In

contrast, the average bias due to QMLE reaches levels as high as 3.34%. An interesting observation

6This second analysis is conducted for θ(2) only, due to space restrictions.
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α = 0.02 β = 0.97

NT σ̄α̂ σ̄β̂ σ̂α̂ σ̂β̂ RMSEα̂ RMSEβ̂ CIα̂ CI β̂

1 .007 .019 .030 .107 .007 .021 .922 .928

10 .002 .005 .002 .005 .002 .005 .936 .948

50 .002 .003 .002 .003 .002 .004 .938 .937

100 .002 .003 .002 .003 .002 .004 .943 .941

α = 0.05 β = 0.93

1 .010 .017 1.71 12.9 .010 .018 .933 .945

10 .004 .006 .004 .006 .004 .007 .938 .952

50 .003 .005 .003 .005 .003 .005 .941 .937

100 .003 .004 .003 .004 .003 .005 .946 .943

α = 0.10 β = 0.80

1 .020 .050 .020 .052 .020 .051 .933 .924

10 .008 .017 .008 .017 .008 .018 .954 .944

50 .006 .013 .006 .013 .006 .013 .968 .954

100 .005 .012 .006 .012 .005 .012 .970 .954

Table 2: Monte Carlo simulation results: Monte Carlo standard deviation (σ̄α̂ and σ̄
β̂
), asymptotic standard

deviation (σ̂α̂ and σ̂
β̂
), root mean squared error (RMSE) and sample confidence interval (CI) statistics.

T = 2, 000 in all cases while NT gives the number of series in the cross-section. Based on 2, 500 replications.

is that, when β̂ is concerned, there is a general tendency for the average bias to initially decrease

and then plateau as NT increases. For example, for θ(1), the change in bias when NT increases from

50 to 100 is equal to .01%. Moreover, taking NT = 1 as a reference, when the panel size increases

by a factor of 10 (to NT = 10) the change in bias is equal to .52% while increasing the panel size

100-fold (to NT = 100) leads to a reduction by .56%. This shows that the speed of decline falls with

NT . Table ?? also suggest that there are substantial gains in shifting from time-series (QMLE) to

panel (CL) structure, in terms of both the average bias and sample standard deviation.

Sample standard deviations are also generally low and decrease with NT . This is not surprising

as an increase in NT implies that there is more information to use. Moreover, the fall in MCSDs

is not large enough to imply that the speed of convergence in finite samples is equal to
√
TNT as

opposed to
√
T . Similar to the previous discussion for average bias, sample standard deviations

exhibit a pattern of convergence to some non-zero limit. Therefore, increasing NT further beyond

100 will not lead to substantial decreases in MCSD. These results are all in accordance with the

asymptotic theory in Engle, Shephard, and Sheppard (2008).

Table ?? shows that, for CL, the MCSD and ASD statistics for both α̂ and β̂ are generally very

close to each other, implying that the simulation results are in line with the relevant asymptotic

theory. The RMSE statistics confirm the earlier observation of a non-vanishing bias as NT → ∞,

since in some cases there is a slight difference between MCSD and RMSE suggesting some very

small bias. As for QMLE, although MCSD and RMSE values are close to each other, ASD is very

high for θ(1) and, especially, θ(2). This is another point in favour of using the panel structure instead

9



NT = 1 (QMLE) NT = 10 NT = 50 NT = 100

Bias
T α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

100 1.41% -15.9% -23.6% -15.2% -26.7% -16.2% -27.2% -16.5%

250 11.3% -10.6% -1.38% -3.50% -3.46% -2.71% -3.61% -2.61%

500 5.34% -4.57% -.157% -1.15% -.650% -.976% -.695% -.955%

1,000 2.37% -1.53% -.004% -.484% -.221% -.406% -.306% -.393%

2,000 .534% -.561% -.076% -.225% -.050% -.185% -.082% -.181%

MCSD
T σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂

100 .069 .227 .030 .169 .023 .163 .022 .160

250 .043 .186 .014 .052 .010 .028 .010 .021

500 .026 .109 .009 .016 .006 .011 .006 .010

1,000 .016 .042 .006 .010 .004 .007 .004 .007

2,000 .010 .019 .004 .006 .003 .004 .003 .004

Table 3: Monte Carlo simulation results: average biases for α̂ and β̂ in percentages and Monte Carlo
standard deviations (σ̄α̂ and σ̄

β̂
). α = 0.05, β = 0.93. T and NT give the number of observations in each

time-series and the number of series in the cross-section, respectively. Based on 2, 500 replications.

of focusing on the series individually. Also, CI statistics are very satisfactory, ranging between 92%

and 97% across all parameter sets and cross-section sizes.

Now, we turn to the implications of varying both the number of assets and observations per

asset by using NT ∈ {1, 10, 50, 100} and T ∈ {100, 250, 500, 1000, 2000}. Table 3 shows that average

bias decreases with T . This is not unanticipated as fitted GARCH usually models the conditional

heteroskedasticity dynamics much better when longer time-series are used. Unsurprisingly, both

σ̄α and σ̄β, decrease with T . Clearly, having a larger number of observations for each series delivers

less biased and more efficient estimators.

Table 4 reveals that CL performs well when there are around at least 500 observations in the

time-series. However, in the remaining cases the large sample theory gives poor finite sample results,

as reflected in the discrepancy between MCSD and ASD. The sample confidence interval statistics

agree with these results. As T decreases, sample confidence intervals move further away from 95%

and become more conservative. Similarly, the discrepancy between the RMSE and MCSD statistics,

especially for β̂, increases as T decreases, pointing to a negative correlation between average bias

and sample size.

Comparing CL to QMLE, QMLE’s relative performance is very poor, especially when average

bias is concerned (except for, when T = 100, which is due to the optimisation routines sensitivity

to the starting values of the algorithm). Clearly, CL is preferable to QMLE, in the hypothetical

situation that all series share a common set of parameters of interest. The general message of the

simulation results so far is that CL performs well when T ≥ 500. The reason for CL’s biases in
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NT = 1 (QMLE) NT = 10

RMSE RMSE

T σ̄α̂ σ̄β̂ σ̂α̂ σ̂β̂ α̂ β̂ CI α̂ CI β̂ σ̄α̂ σ̄β̂ σ̂α̂ σ̂β̂ α̂ β̂ CI α̂ CI β̂

100 .069 .227 .111 2.25 .069 .272 .551 .863 .030 .169 .072 1.67 .032 .220 .791 .832

250 .043 .186 .187 7.75 .043 .210 .842 .866 .014 .052 .017 .129 .014 .061 .911 .920

500 .026 .109 .028 .143 .026 .117 .889 .905 .009 .016 .009 .018 .009 .019 .931 .937

1,000 .016 .042 .018 .057 .016 .044 .909 .916 .006 .010 .006 .010 .006 .011 .934 .945

2,000 .010 .019 .011 .021 .010 .019 .923 .932 .004 .006 .004 .006 .004 .007 .940 .948

NT = 50 NT = 100

100 .023 .163 .283 5.15 .026 .222 .786 .759 .022 .160 .078 5.81 .026 .222 .769 .718

250 .010 .028 .010 .026 .010 .037 .912 .897 .010 .021 .010 .026 .010 .032 .908 .877

500 .006 .011 .006 .011 .006 .014 .930 .926 .006 .010 .006 .011 .006 .014 .934 .926

1,000 .004 .007 .004 .007 .004 .008 .933 .936 .004 .007 .004 .007 .004 .007 .932 .938

2,000 .003 .004 .003 .005 .003 .005 .942 .952 .003 .004 .003 .004 .003 .004 .947 .950

Table 4: Monte Carlo simulation results: Monte Carlo standard deviation (σ̄α̂ and σ̄
β̂
), asymptotic standard

deviation (σ̂α̂ and σ̂
β̂
), root mean squared error (RMSE) and sample confidence interval (CI) statistics.

α = 0.05, β = 0.93. T and NT give the number of observations in each time-series and the number of series
in the cross-section, respectively. Based on 2, 500 replications. based on 2,500 replications.

small-T panels is investigated next.

3.3 Nuisance parameters and estimation error

As stressed previously, CL pools all information available in the panel to form a single likelihood

function. Therefore, one would intuitively expect CL to be successful even when T is small but

there are indications of significant bias when T < 250. Is this caused by the estimation of γi for

each model?

The sampling distributions of the estimators of θ for the cases with (CL1) and without (CL2)

nuisance parameter estimation are presented in Figure 1. The sample distribution graphs reveal

why CL performs worse when T is very small: sample distributions are not centered around α and

β, and there is high dispersion. Some improvement can be observed as T increases to 250. However,

β̂ is prone to exhibit some mild bias even when T is high. In accordance with observations in the

previous simulation study, while average bias decreases with T ; for a given T , an increase in NT

leads to higher precision.7

Looking at the sample distributions of estimators without nuisance parameter estimation (CL2),

it is encouraging that for both α̂ and β̂ the peak of the sample distributions is always either on or

very close to the real parameter value, even when T = 100. Similar to the previous simulations,

7However, here, high precision is not always a desirable property. In a slightly counter-intuitive way, although
higher NT increases estimator precision, it also make a biased estimator more precise, causing more harm than good.
As such, having a larger number of assets will be very useful when T is very large, ensuring that the estimator is
both unbiased and more efficient, in the sense of having a smaller asymptotic standard deviation. It must be noted
that increasing NT beyond a certain number of assets will not lead to any improvement in efficiency.
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larger T decreases bias while larger NT leads to higher precision. Clearly, nuisance parameter

estimation undermines the statistical properties of the GARCH panel model greatly when T is

small.

α β

0 0.05 0.1
0

20

40
T=100, N=1

 

 

0 0.05 0.1
0

10

20
T=100, N=10

0 0.05 0.1
0

20

40
T=100, N=50

0 0.05 0.1
0

20

40
T=100, N=100

0.02 0.04 0.06 0.08
5

10

15
T=250, N=1

0.02 0.04 0.06 0.08
0

20

40
T=250, N=10

0.02 0.04 0.06 0.08
0

20

40

T=250, N=50

0.02 0.04 0.06 0.08
0

20

40

T=250, N=100

0.04 0.06
0

10

20
T=500, N=1

0.04 0.06
0

20

40

T=500, N=10

0.04 0.06
0

50

100
T=500, N=50

0.04 0.06
0

50

100
T=500, N=100

0.04 0.05 0.06
10

20

30
T=1000, N=1

0.04 0.05 0.06
0

50

100
T=1000, N=10

0.04 0.05 0.06
0

50

100
T=1000, N=50

0.04 0.05 0.06
0

50

100
T=1000, N=100

0.05 0.06
0

20

40
T=2000, N=1

0.05 0.06
0

50

100
T=2000, N=10

0.05 0.06
0

100

200
T=2000, N=50

0.05 0.06
0

100

200
T=2000, N=100

0.8 0.9 1
0

20

40

T=100, N=1

 

 

CL1
CL2

0.8 0.9 1
0

10

20
T=100, N=10

0.8 0.9 1
0

10

20
T=100, N=50

0.8 0.9 1
0

10

20
T=100, N=100

0.8 0.9 1
0

5

10
T=250, N=1

0.8 0.9 1
0

20

40
T=250, N=10

0.8 0.9 1
0

20

40
T=250, N=50

0.8 0.9 1
0

20

40
T=250, N=100

0.9 0.95
0

10

20
T=500, N=1

0.9 0.95
0

20

40
T=500, N=10

0.9 0.95
0

20

40

T=500, N=50

0.9 0.95
0

20

40

T=500, N=100

0.92 0.94
0

10

20
T=1000, N=1

0.92 0.94
0

20

40

T=1000, N=10

0.92 0.94
0

50

100
T=1000, N=50

0.92 0.94
0

50

100
T=1000, N=100

0.91 0.92 0.93
10

20

30
T=2000, N=1

0.91 0.92 0.93
0

50

100
T=2000, N=10

0.91 0.92 0.93
0

50

100
T=2000, N=50

0.91 0.92 0.93
0

50

100
T=2000, N=100

Figure 1: Sample distribution graphs for α̂ (left) and β̂. α = 0.05, β = 0.93, based on 2,500 replications.
CL1 gives the sample distribution for the case with nuisance parameter estimation, whereas CL2 is the
sample distribution for the case where nuisance parameter estimation is by-passed. Values of α̂ and β̂ are
given in the horizontal axis, while respective frequencies are given in the vertical axis. The vertical lines are
drawn at the true value of each parameter.

It is also interesting that when QMLE is used (NT = 1), even when the true nuisance parameter

is known, the estimators are still performing poorly. While nuisance parameter estimation leads to a

significant bias, using true nuisance parameter causes very high dispersion. However, remembering

that the real issue with QMLE is that T is very small to adequately model conditional volatility,

it is obvious that knowledge of the true value of the nuisance parameter will not help.
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4 Empirical analysis

In this section, in addition to CL and QMLE, we also consider the MacGyver (MG) method

introduced by Engle (2009). This is another information pooling method based on “blending”

already available estimates of a parameter to obtain a new estimate of that parameter.

Let {θ̂k}K
k=1 be K different estimates of θ. These may be obtained by using different methods,

models or data sets. For the case at hand, NT estimates of θ can be obtained by employing

QMLE for each asset in the panel individually. These estimates are then combined using a “blend

function”, b (·), to obtain a final estimate of θ, θ̂MG = b
(
{θ̂k}K

k=1

)
. Engle (2009) suggests that

three obvious blend functions are the mean, median and the mean of a trimmed set where the

highest and lowest 5% of the estimates are eliminated. The latter two blending functions serve the

purpose of discarding outliers, which could otherwise introduce bias.

For the GARCH panel, {θ̂i} are estimated using two-step estimation. In the first step, {γi} are

obtained in the same way as for CL. In the second step, {θ̂i} are estimated using

θ̂i = arg max
θ∈Θ

1

T

T∑

t=1

log f(yit|Ft−1; θ, γ̂i).

It must be noted that there are several practical issues related to this method. First of all, when

the sample size is not large enough, in some cases optimisation may fail and simply yield the initial

values used for optimisation as the parameter estimates.8 Following Engle (2009), such cases are

discarded and not used in the blend function. Furthermore, when using the GARCH specification,

if α̂ is equal to zero, then β̂ is not identified. Therefore, β̂ has no interpretation in such a cases,

no matter what its value is. Consequently, this analysis also ignores sets of estimates where α̂ is

less than 0.0025.9 This particular choice of the cut-off value and the elimination of non-converging

cases reflect the ad-hoc nature of MG. Nevertheless, the aim of MG is not to have a set of very

good estimates, but rather to find a blend function that yields a good estimate out of a pool of a

large number of estimates.

Considering that both CL and MG are based on “pooling” information, an obvious comparison

of interest is that of CL against MG. MG can be considered as a step between CL and QMLE:

similar to CL, it is based on pooling information, while estimation essentially employs QMLE and

not CL.

Another intriguing analysis is the comparison of the information pooling methods to QMLE,

8The optimisation procedure used for this study starts at pre-specified starting values and searches for an optimum.
If optimisation fails to find an optimum, then the starting values are given as the parameter estimates.

9These issues do not occur rarely. In a simulation analysis not presented here, for 2,500 replications of a GARCH
process with 100 observations in each replication, in more than 1,400 replications estimators failed to converge while
around 100 replications produced α̂ = 0.
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as the assumption that all assets share a common set of parameters of interest is not necessary

for QMLE. CL and MG, on the other hand, crucially rely on this assumption, which is likely to be

violated. As far as empirical performance is concerned, what is also relevant is whether the gains

from using CL and MG are worth making this restrictive assumption, even when there may be no

apparent reason for it to hold.

Several points have to be mentioned. First of all, neither information pooling method is likely

to explain the data perfectly, even in large-T panels. To start with, there is no guarantee that

some or all of the data follows a GARCH process, although this model has been found to be very

successful in empirical analysis. Moreover, the assumption of a common set of parameters for all

assets is not likely to hold. Be that as it may, out of this arguably difficult situation, a highly

interesting question arises: despite these issues, can the CL and MG methods indeed attain better

forecasting performance through their data-pooling mechanism?

In light of these points, the questions of interest are whether pooling information in an asset

panel can improve forecasting performance in samples of any size and whether CL can have an

advantage over the other methods, especially in small-T samples, where QMLE is expected to per-

form poorly. The analysis is conducted using stock-market data from S&P100. A recent procedure

due to Giacomini and White (2006) that allows comparison of different methods (such as the CL

and MG methods) as opposed to different models (such as the GARCH and TARCH models) is

used to test equal predictive ability and choose between methods.

4.1 Methodology

In the analysis, two competing τ -period ahead forecasts obtained at time t, Ŷ1,t+τ and Ŷ2,t+τ ,

for a variable of interest, Yt+τ , are under scrutiny. Accuracy of forecasts are measured using loss

functions. “Loss”, in the forecast comparison sense, occurs due to the distance between the forecast

and the true value of the variable of interest. Therefore, the loss function provides a criterion to

assess how well Ŷt+τ predicts Yt+τ . Formally, the loss due to Ŷt+τ is defined as

Lt+τ

(
Yt+τ , Ŷt+τ

)
. (14)

Examples of loss functions used in the literature are many.10 A prominent example that will be

used in this study is the QLIKE loss function:

QLIKE : Lt+τ (Yt+τ , Ŷt+τ ) = log Ŷt+τ +
Yt+τ

Ŷt+τ

.

A suitable testing framework is due to Giacomini and White (2006) (GW). Unlike the widely

10See Patton (2008) for a more detailed study of implications of using different loss functions.
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used Diebold-Mariano-West (DMW) framework due to Diebold and Mariano (1995) and West

(1996), the GW test allows for the comparison of two different methods as opposed to two different

models. Then, the Null Hypothesis is,

H0 : E
[
Lt+τ (Yt+τ , ft(β̂1t)) − Lt+τ (Yt+τ , gt(β̂2t))|Gt

]
= 0, (15)

where Gt is an information set at time t and ft(·) and gt(·) are two (not necessarily different)

forecasting models. β̂1t and β̂2t are estimates of parameters of interest obtained by using two

different methods.

An important feature of volatility is that it is a latent variable and is never observed, even

ex-post. Therefore, a proxy should be used for forecast comparison. In this study the squared

return, r2t , is used as proxy, which is a common choice. It must however be noted that there is

now a growing literature suggesting that squared returns may lead to a wrong ranking of forecasts.

Instead, realised volatility is recommended as a better proxy.11 This is important for the choice of

the loss function. Hansen and Lunde (2006) show that the use of noisy proxies such as r2t may lead

to inconsistent ranking of volatility models, whereby the empirical ranking may not necessarily be

the same as the true ranking. Patton (2009) extends this analysis and focuses on loss functions

that are robust to the choice of the volatility proxy, in the sense that the empirical ranking implied

by those loss functions are the same independent of which proxy is used. He provides a family of

homogeneous and robust loss functions that contains QLIKE, as well. Furthermore, Patton and

Sheppard (2009) provide a Monte Carlo analysis to compare the power of different loss functions

from this family under the DMW framework using realised volatility as the proxy. Their results

indicate that the QLIKE function has the best power performance. Motivated by these results, we

employ QLIKE only due to space restrictions.

4.2 Empirical results

The empirical analysis is based on the daily returns for 94 stocks12 from S&P100 for the period

between 1 April 2000 to 12 January 2008. Data were obtained from DataStream. The analysis

considers three forecast horizons: one day, five days and ten days, where the latter two correspond

to one and two working weeks, respectively. To cover a variety of cases, combinations of different

11Very briefly, realised volatility is the sum of squared high-frequency intra-daily returns. It was formalised from
an econometric viewpoint by Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard
(2002). See Andersen and Benzoni (2009) for a recent survey.

12Data for six firms has been discarded as the stocks for these firms were not traded in part of the period considered
in the analysis. These firms are Covidien, Google, Kraft Foods, Mastercard, NYSE Euronext and Philip Morris
International.
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in- and out-of-sample sizes13 (n and m, respectively) are considered, which span a wide range of

possibilities. Seven different comparisons are analysed. Three of those (I, II and III) compare CL

to MG while the remaining ones (IV, V, VI and VII) compare the two pooling methods to QMLE.

A “test function” is required for the conditional GW test. We employ a test function which

consists of a constant and the previous period’s loss-difference.14 Namely, ht = (1,∆Lm,t−1+τ )′.

Possible time-independent difference in the predictive abilities of the two methods at any point in

time is reflected by the constant. Past comparisons of methods can also give an idea about their

relative future performances since a method that has been superior in the past is more likely to be

so in the future, as well. This is reflected by the past loss difference.

Lastly, all tests are conducted on an asset-by-asset basis; that is, comparison of predictive ability

is conducted for each asset individually, using estimators obtained by the three methods.15 The

test results are presented in Tables 5 to 10.

Both conditional and unconditional approaches exhibit similar patterns. An immediate obser-

vation is that CL performs distinctively better than both MG and QMLE when the in-sample size

is very small (m ≤ 250). Moreover, MG is also superior to QMLE in most of the cases when

m ≤ 250. This has two implications. First, in small-T panels where QMLE is expected to perform

poorly, information pooling methods deliver better forecasting performance, suggesting that they

provide better estimates in such cases. The second and more interesting implication is that CL

outperforms MG, again, in small-T panels. This can be explained by the fact that CL uses all

available information to obtain a single estimate while MG use information in a piece-wise fashion.

Thus, even though MG blends all estimates, it is nevertheless based on individual estimates that

are obtained by using limited information.

Considering larger samples, CL only rarely outperforms other methods. This can be related

to the incidental parameter issue, which is now more costly since QMLE starts delivering better

results as T increases. The performance of MG against QMLE, compared to that of CL against

QMLE, is also in support of this view since MG performs less poorly than CL against QMLE, when

there are sufficiently many observations (m ≥ 1, 000).

It must be noted that here, the assumption that all series share a common θ is almost certainly

violated. Therefore, as QMLE starts working properly with increasing number of observations,

it outperforms the information pooling methods. Moreover, as this paper uses real instead of

13In-sample corresponds to the part of data which is used for estimation of the parameters while the out-of-sample
is the portion of data that is being forecast.

14This is the same test function used by Giacomini and White (2006). It must be mentioned that the choice of a
test function could perhaps be a separate research topic as Giacomini and White (2006) explicitly mention both the
importance of choosing an appropriate test function and the possible issues due to choosing an irrelevant one.

15It can be an interesting idea to integrate the GW test into a pooling framework, where a single test for the whole
panel is conducted. This is left for future research.
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“tailored” data, estimation is always more problematic, putting QMLE at a higher disadvantage

when samples are not sufficiently large, making it easier for MG and CL to outperform QMLE.

This also explains why, in smaller samples, CL is superior to MG, which is essentially based on

QMLE.

Comparing the CL and QMLE methods at m ≤ 250, both the number of cases where equal

predictive ability is rejected and the ratio of rejections in favour of CL increase with the out-

of-sample size, n. This supports the validity of the test results, as Giacomini and White (2006)

mention that, based on their analysis their test has better size properties as n increases16.

Observing the changes due to the increase in the forecasting horizon from one day to two weeks

reveals that in all seven comparisons the number of rejections of equal predictive ability decreases.

This is more pronounced for the comparison between CL and MG where in some cases only a

handful of rejections remain. This is most likely due to the increase in volatility as the forecast

horizon increases. Nevertheless, the pattern of preference between two methods does not change

much and CL still performs better when both m is very low and n is very high. This issue is less

severe for the comparison of CL and MG to QMLE, and the GW test is still able to distinguish the

forecasting performances of different methods.

To summarise, information pooling methods perform well in small-T panels while they fail to

outperform QMLE in large-T panels. However it is encouraging to observe that even in samples

of size 500 or 1, 000, CL and MG still deliver superior performance in a few cases. Within the

information pooling methods, as expected, CL delivers satisfactory performance against MG in

smaller samples, despite the incidental parameter problem.

Empirical results support the view that assuming a common set of parameters is the cost of

using the information pooling methods. However, the analysis also strongly suggests that when the

sample consists of a small number of observations, these costs are outweighed by the advantages of

the information pooling mechanism and the problems faced by QMLE. On the other hand, when

the sample is sufficiently large for QMLE to work well, empirical results confirm that the loss of

using the MG and CL methods is very high.

5 Conclusion

This paper studied the theoretical and empirical properties of the composite likelihood (CL) method

on the special case of GARCH panels. The MacGyver (MG) method has also been included in the

empirical analysis as it is the only known alternative information pooling method.

16It must be noted that Giacomini and White (2006) use different loss functions and, of course, focus on an entirely
different case. However, this result is still not surprising since the asymptotic theory will be more relevant as n → ∞.
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Simulation and empirical analyses reveal that using the panel structure and CL instead of

employing QMLE on a single series delivers better results. Both methods suffer from the incidental

parameter problem when T is small, but the CL is much more accurate. These observations are

very encouraging as they imply that CL can successfully estimate conditional volatility using panels

where T is as low as 250. Furthermore, forecast comparison analysis demonstrates that even when

the assets are likely to be characterised by different parameter sets, both pooling methods perform

well against QMLE in small-T panels.

To conclude, the general message of this study is that the CL method has the potential to carry

volatility modelling into small-T GARCH panels, where QMLE remains ineffective.
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I II III IV V VI VII

CL vs MG-Mn CL vs MG-Md CL vs MG-Tr CL vs QMLE Mn vs QMLE Md vs QMLE Tr vs QMLE

T m Rej % Rej % Rej % Rej % Rej % Rej % Rej %

2,000 1,500 60 3.33 63 0.00 61 0.00 50 10.00 44 68.18 44 38.64 42 52.38

2,000 1,000 59 25.42 42 16.67 57 15.79 51 21.57 47 46.81 53 33.96 44 47.73

1,000 500 44 11.36 36 41.67 43 9.30 30 60.00 30 83.33 35 62.86 29 82.76

2,000 250 18 94.44 35 97.14 19 94.74 78 100.00 74 100.00 75 98.67 75 98.67

1,000 250 20 90.00 41 92.68 31 96.77 50 100.00 42 97.62 42 97.62 42 97.62

500 250 8 100.00 46 100.00 18 100.00 36 94.44 38 92.11 30 80.00 38 89.47

1,000 100 25 96.00 31 100.00 22 95.45 49 100.00 46 100.00 49 97.96 50 96.00

500 100 29 100.00 42 100.00 37 100.00 45 97.78 38 100.00 33 100.00 35 100.00

250 100 9 77.78 14 64.29 12 75.00 22 86.36 28 67.86 20 80.00 25 68.00

Table 5: Conditional test results for 1-Step forecasts. T is the total number of observations while m gives the in-sample size. Mn, Md and Tr stand for
‘mean’, ‘median’ and ‘trimmed’, respectively. The total number of assets is 94. For each comparison, ‘Rej’ gives the number of assets, for which the null
hypothesis of equal predictive ability is rejected. % gives the percentage of the cases where the first method is preferred to the second method. For example,
for comparison III, T=2000 and m=250, in 19 out of 94 comparisons, equal predictive ability is rejected and 94.74% of these rejections are in favour of the
first method, CL (or, equivalently, 5.26% of the rejections are in favour of the second method, MG-Tr).

I II III IV V VI VII

CL vs MG-Mn CL vs MG-Md CL vs MG-Tr CL vs QMLE Mn vs QMLE Md vs QMLE Tr vs QMLE

T m Rej % Rej % Rej % Rej % Rej % Rej % Rej %

2,000 1,500 53 0.00 56 0.00 56 0.00 44 4.55 40 67.50 34 35.29 36 50.00

2,000 1,000 47 17.02 27 18.52 49 12.24 39 12.82 41 51.22 50 34.00 43 48.84

1,000 500 40 7.50 21 38.10 38 5.26 27 55.56 29 86.21 32 62.50 30 80.00

2,000 250 14 85.71 31 100.00 18 88.89 73 100.00 67 100.00 73 100.00 69 100.00

1,000 250 19 94.74 46 97.83 26 96.15 50 100.00 39 100.00 38 100.00 40 100.00

500 250 10 90.00 50 100.00 18 100.00 31 100.00 34 94.12 25 92.00 34 91.18

1,000 100 29 96.55 29 100.00 26 96.15 48 100.00 41 100.00 45 100.00 45 100.00

500 100 29 100.00 40 100.00 32 100.00 43 100.00 38 100.00 32 100.00 37 100.00

250 100 10 70.00 16 68.75 10 70.00 23 78.26 27 74.07 20 80.00 26 76.92

Table 6: Unconditional test results for 1-Step forecasts. See Table 5 for explanations.
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I II III IV V VI VII

CL vs MG-Mn CL vs MG-Md CL vs MG-Tr CL vs QMLE Mn vs QMLE Md vs QMLE Tr vs QMLE

T m Rej % Rej % Rej % Rej % Rej % Rej % Rej %

2,000 1,500 49 8.16 53 1.89 50 2.00 45 6.67 39 53.85 42 28.57 37 37.84

2,000 1,000 60 41.67 47 31.91 61 29.51 49 14.29 52 36.54 57 28.07 54 38.89

1,000 500 44 9.09 22 13.64 46 6.52 30 50.00 27 70.37 31 51.61 30 70.00

2,000 250 22 72.73 16 62.50 15 60.00 68 98.53 65 100.00 72 98.61 66 98.48

1,000 250 8 37.50 21 85.71 6 66.67 38 92.11 38 94.74 38 94.74 40 90.00

500 250 3 0.00 29 100.00 3 33.33 23 91.30 26 84.62 22 81.82 25 88.00

1,000 100 4 50.00 11 90.91 3 33.33 47 93.62 48 95.83 51 88.24 49 95.92

500 100 4 50.00 19 100.00 9 77.78 30 100.00 28 100.00 24 91.67 29 96.55

250 100 2 0.00 5 20.00 2 0.00 9 77.78 9 66.67 8 87.50 10 70.00

Table 7: Conditional test results for 5-Step forecasts. See Table 5 for explanations.

I II III IV V VI VII

CL vs MG-Mn CL vs MG-Md CL vs MG-Tr CL vs QMLE Mn vs QMLE Md vs QMLE Tr vs QMLE

T m Rej % Rej % Rej % Rej % Rej % Rej % Rej %

2,000 1,500 49 2.04 54 0.00 52 0.00 45 4.44 39 51.28 40 25.00 34 38.24

2,000 1,000 49 34.69 34 26.47 47 21.28 43 6.98 43 34.88 49 26.53 46 36.96

1,000 500 48 12.50 22 31.82 44 6.82 30 46.67 32 62.50 35 45.71 27 66.67

2,000 250 7 85.71 9 77.78 5 100.00 56 100.00 54 100.00 60 100.00 57 100.00

1,000 250 5 40.00 20 100.00 3 100.00 30 100.00 30 100.00 29 96.55 29 100.00

500 250 5 0.00 40 100.00 1 100.00 28 85.71 32 81.25 30 70.00 31 80.65

1,000 100 0 n/a 11 100.00 3 100.00 39 100.00 40 100.00 38 100.00 41 100.00

500 100 4 50.00 28 100.00 12 83.33 32 96.88 29 96.55 28 89.29 29 96.55

250 100 3 33.33 9 44.44 5 20.00 21 57.14 18 66.67 19 63.16 18 61.11

Table 8: Unconditional test results for 5-Step forecasts. See Table 5 for explanations.
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I II III IV V VI VII

CL vs MG-Mn CL vs MG-Md CL vs MG-Tr CL vs QMLE Mn vs QMLE Md vs QMLE Tr vs QMLE

T m Rej % Rej % Rej % Rej % Rej % Rej % Rej %

2,000 1,500 41 19.51 38 2.63 40 10.00 43 9.30 29 41.38 31 22.58 28 35.71

2,000 1,000 51 58.82 41 34.15 50 42.00 44 11.36 53 28.30 50 24.00 54 29.63

1,000 500 27 11.11 16 12.50 26 7.69 26 46.15 23 65.22 24 50.00 22 63.64

2,000 250 29 93.10 13 69.23 23 86.96 55 96.36 57 89.47 58 93.10 57 92.98

1,000 250 6 33.33 15 93.33 3 33.33 21 90.48 21 90.48 22 100.00 21 90.48

500 250 1 0.00 15 100.00 3 66.67 12 100.00 13 100.00 8 100.00 11 100.00

1,000 100 1 0.00 7 85.71 3 66.67 36 94.44 41 87.80 42 88.10 41 90.24

500 100 1 100.00 10 90.00 1 100.00 20 75.00 21 71.43 16 75.00 19 73.68

250 100 0 n/a 3 33.33 0 n/a 1 100.00 1 100.00 2 100.00 1 100.00

Table 9: Conditional test results for 10-Step forecasts. See Table 5 for explanations.

I II III IV V VI VII

CL vs MG-Mn CL vs MG-Md CL vs MG-Tr CL vs QMLE Mn vs QMLE Md vs QMLE Tr vs QMLE

T m Rej % Rej % Rej % Rej % Rej % Rej % Rej %

2,000 1,500 45 6.67 53 0.00 49 0.00 49 6.12 36 41.67 41 21.95 33 33.33

2,000 1,000 50 48.00 36 36.11 48 33.33 46 8.70 49 28.57 49 14.29 49 28.57

1,000 500 46 17.39 24 20.83 48 12.50 36 27.78 32 50.00 38 34.21 32 46.88

2,000 250 16 100.00 5 80.00 10 100.00 48 100.00 46 100.00 50 100.00 47 100.00

1,000 250 7 14.29 14 92.86 2 100.00 24 100.00 23 100.00 23 100.00 23 100.00

500 250 6 0.00 26 100.00 4 100.00 25 76.00 29 68.97 28 60.71 29 68.97

1,000 100 2 0.00 11 90.91 3 33.33 35 100.00 35 100.00 34 100.00 35 100.00

500 100 4 75.00 20 100.00 5 80.00 27 88.89 29 82.76 24 79.17 27 88.89

250 100 2 50.00 7 85.71 3 33.33 23 34.78 26 30.77 23 26.09 25 32.00

Table 10: Unconditional test results for 10-Step forecasts. See Table 5 for explanations.
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