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Summary: It has long been known that maximum likelihood estimation
in a Poisson model reproduces the chain-ladder technique. We revisit this
model. A new canonical parametrisation is proposed to circumvent the inher-
ent identification problem in the parametrisation. The maximum likelihood
estimators for the canonical parameter are simple, interpretable and easy
to derive. The boundary problem where all observations in one particular
development year or on particular underwriting year is zero is also analysed.
Keywords: Boundary problem, canonical parameter, chain-ladder, identi-
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1 Introduction

The chain-ladder technique is the main tool when reserving in general in-
surance. Kremer (1985) and Mack (1991) have shown that the standard
chain-ladder technique is reproduced through maximum likelihood estima-
tion in a Poisson model; see also the discussion of Mack and Venter (2000),
Verrall and England (2000). An early contribution to working out what
stochastic models might be consistent with chain ladder estimates was made
by Hachemeister and Stanard (1975). In this paper we study the Poisson
model in further detail. We propose a new canonical parametrisation that
gets around the over-parametrisation build into the previous formulations
and analyse the model using exponential family techniques.

The choice of parametrisation might seem unimportant at first sight, any
identifiable choice of parametrisation will eventually lead to the same model.
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While this argument is true for considerations within sample, it is not true
once extrapolations are made beyond the observed development horizon. A
related issue is that when inspecting the development of parameters visually
conclusions about the level of the parameters will depend on the choice of
parametrisation. The aim of this paper is to clarify the underlying parametri-
sation of the chain-ladder model. The suggested parametrisation provides a
consistent framework for predicting outstanding liabilities when we have not
seen a complete run-off on our data yet. In this case, one has to extrapolate
parameters from the development direction into the future and it becomes
absolutely essential that the choice of parametrisation and its relationship
to the extrapolation at hand is fully understood, see Kuang, Nielsen and
Nielsen (2008b) for a related case. In future work we intend to make further
contributions in this direction.

The maximum likelihood estimator for the canonical parameter of the
classical chain-ladder model turns out to have a simple, interpretable and
explicit expresion that is easy to write down and that can be linked to the
classical empirical development factors in a straight forward way. Based on
these findings, we are also able to identify exactly what the classical devel-
opment factors are estimating in terms of the parameters of the underlying
mathematical statistical model.

We also characterise boundary situations for the maximum likelihood
problem. These arise when all observations in one particular development
year or one particular underwriting year are zero. It is a well known and
non-trivial estimation problem of the theory of exponential families to find
a proper solution to the estimation problem in such cases. We discuss in
what sense the classic chain-ladder method can be viewed as a maximum
likelihood estimator in boundary situations.

There are several advantages of addressing the over-parametrisation at
the outset and translating the classical chain-ladder approach in terms of
classical mathematical statistics and exponential families. First, we can take
advantage of the general insights of the field of mathematical statistics. Sec-
ondly, the derivation of the maximum likelihood estimators is simple and
largely avoiding the recursive arguments in many earlier proofs. Thirdly, the
general approach of stating the underlying statistical model, addressing the
identification issues surrounding the parameters and then estimating through
the maximum likelihood approach might prove to be very useful in our at-
tempts to get beyond the approach of classical chain-ladder without losing
the well known advantages of this approach .
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In Section 2 we identify what we call the canonical parameters of the
chain-ladder method. In Section 3 we make a likelihood analysis of the Pois-
son model exploiting the canonical parametrisation. The boundary problem
is discussed in Section 4. Proofs are given in an Appendix.

2 Parametrizing the chain-ladder technique

The chain-ladder technique has been described in numerous papers. We will
follow the exposition of England and Verrall (2002), albeit with a slightly dif-
ferent notation. We first go through the classical chain-ladder approach and
then we identify what we call the canonical parametrisation of the underlying
mathematical statistical model. Among a wide class of different parametri-
sations we choose a parametrisation which is a maximal invariant, following
a group theoretic terminology. When later formulating the statistical model
this also turns out to be the natural parameter of a full exponential family.
The end result is that the main ingredients in the parametrisation involve
the growth of the parameters on a log scale as these growth rates always are
fully identified. It should not be the levels of the log parameters. These are
only identified up to an additive level parameter.

Consider a standard incremental insurance run-off triangle of dimension
k. Each entry is denoted Yij so that i is the accident year index and j is the
development year index. Collectively, we have the data Y = {Yij,∀(i, j) ∈
I}, where I is the triangular index set

I = {(i, j) : i and j belong to (1, . . . , k) with i+ j − 1 = 1, . . . , k}. (1)

From this the cumulative claims arise as Zij =
∑j

`=1 Yi`.
The chain-ladder technique derives the development factors

Fj =

∑k+1−j
i=1

∑j
`=1 Yi`∑k+1−j

i=1

∑j−1
`=1 Yi`

=

∑k+1−j
i=1 Zij∑k+1−j

i=1 Zi,j−1

for j = 2, . . . k. (2)

These are then used to forecast future values of cumulative claims in the
lower triangle where i, j ≤ k through

Z̃i,k−i+1+h = Zi,k−i+1

h∏
m=1

Fk−i+1+m. (3)
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In the stochastic formulation of the chain-ladder then Yij is thought of as
a stochastic variable with expectation

E(Yij) = AiBjD for i, j = 1, . . . k,

giving parameters A1, . . . , Ak, B1, . . . , Bk and D. The intrinsic over-parame-
trisation in this formulation is solved in various ways in the literature. Kre-
mer (1985, p. 130), Mack (1991) and England and Verrall (2002) identify
by
∑k

j=1Bj = D = 1. When analysing the chain-ladder-type model based
on a log normal distribution Kremer (1982, 1985, p. 138) and Verrall (1994)
have

∑k
i=1Ai =

∑k
j=1Bj = 1. England and Verrall (2002) also uses the

identification A1 = B1 = 1.
To get around the intrinsic over-parametrisation we follow the approach

of Kuang, Nielsen and Nielsen (2008a) and develop a canonical parametri-
sation which leans naturally to the maximum likelihood estimation and the
development factors. This is done on a log linear scale so

log{E(Yij)} = µij = αi + βj + δ, (4)

where αi = logAi, βj = logBj and δ = logD. In this log formulation the
parameter vector is therefore

θ = (α1, . . . , αk, β1, . . . , βk, δ) ∈ R2k+1.

The identification problem is that constants can be added and subtracted
to the elements of θ without changing µij. This can be understood through
the terminology of an invariance property. This lead us to consider the
invariance property of the parameter µij with respect to the group of trans-
formations given by

g :

 αi

βj

δ

 7→

 αi + a
βj + b

δ − a− b

 , (5)

which holds simultaneously for all i and j and where a, b are arbitrary con-
stants. Every choice of parameter θ will lead us to a particular distribution.
However, there are different such choices, θ1 and θ2 say, that lead to the
same distribution. The problems of extrapolations and visual inspection of
parameters enter when our analysis of θ1 lead us to a different conclusion
than our analysis of θ2 even though both these two parameters represent
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the same underlying distribution. We are therefore looking for a canonical
parameter which holds simultaneously for all i and j and where a, b will re-
veal themselves as arbitrary constants unimportant for the analysis at hand.
Cox & Hinkley (1974, §5.3) and Eaton (2007, §7.2) give an overview of the
invariance terminology.

In the following we will work out an invariant parametrisation ξ. Look
first at the parameter αi. This can be rewritten as αi = α1 +(αi−α1). Using
telescopic sums this turns into αi = α1 +

∑i
`=2 ∆α`, where ∆α` = α` − α`−1

is the growth rate from α`−1 to α`. Doing the same for the parameter βj,
noting µ11 = α1 + β1 + δ, and inserting in the equation (4) gives

µij = µ11 +
i∑

`=2

∆α` +

j∑
`=2

∆β`. (6)

The parameters µij can therefore be expressed in terms of a parameter vector
ξ ∈ R2k−1 where

ξ = (µ11,∆α2, . . . ,∆αk,∆β2, . . . ,∆βk)
′ . (7)

The interpretation of ξ derives from (6) so that µ11 determines the level,
while the differenced parameters determine non-constant effects. Note that
ξ is a vector of length 2k− 1. Two elements shorter than the lengh 2k + 1of
the vector θ. Getting the parameter space down to its fundamental 2k − 1
elements have the advantage that all the parameters vary freely. Therefore
the interpretation of the canonical parameters is more straight forward than
the interpretation of the classical parameters of the chain-ladder model where
the model is overparametrized and one can not interpretate each parameter
component independently of the other parameter components of which it
depends.

The parameter ξ is a function of θ and it is invariant to g such that
ξ(θ) = ξ{g(θ)}. Therefore, one single ξ catches the entire linear space of
possible values of θ leading to the same model. It is simpler to deal with
one single parameter ξ consisting of real numbers than to deal with a space
of parameters θ leading to the same model. Below we will see, that it is
also simpler to carry through the maximum likelihood analyses with the
parametrisation ξ as starting point

Theorem 1 below shows that ξ gives a unique parametrisation of the
parameters µij and that ξ therefore is a maximal invariant. This is our
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theoretical reason for calling it a canonical parameter of the chain ladder
model. This contrasts to the classical chain-ladder identification schemes
discussed above, which are not invariant to g because they fix the level of
the parameters.

Theorem 1 Let µ = {µij; (i, j) ∈ I}, where µij satisfies (4) and I is given
by (1). The parametrisation ξ given by (7) satisfies

(i) ξ is a function of θ,

(ii) µ is a function of ξ, because of (6).

The parametrisation of µ by ξ is exactly identified in that ξ† 6= ξ‡ implies
µ(ξ†) 6= µ(ξ‡).

Parameters αi, βj, δ can be constructed from (5) and (6) to satisfy arbi-
trary identification schemes. For instance, consider the identification of Kre-
mer (1985) where

∑k
j=1Bj = D = 1 corresponding to log

∑k
j=1 exp(βj) =

δ = 0. For a given canonical parameter ξ Kremer’s parameter arises by chos-
ing αi =

∑i
`=2 ∆α` + µ11 +ψ and βj =

∑j
`=2 ∆β` −ψ as well as δ = 0 where

ψ = log{1 +
∑k

j=2 exp (
∑j

`=2 ∆β`)}. This is checked in two steps: Insert the
expressions for αi, βj and δ in (4) to recognise (6); and recognise that ψ is
constructed so the βjs satisfy the desired constraint.

3 The Poisson model and its analysis

As statistical model assume that Yij are independent for i, j varying in the
triangular index set, I, that Yij is Poisson distributed so

P(Yij = y) =
exp(µijy)

y!
exp{− exp(µij)}.

and that µij is defined in terms of the canonical parameter ξ ∈ R2k−1 through
(6), (7). In the current work, the aim of the model is the fundamental one
of predicting the lower triangle entries. We do not consider extrapolation
of development factors out of sample or other extensions of classical chain-
ladder applications in this paper. The canonical parametrisation approach
and its maximum likelihood analysis, however, appears to be a useful starting
point when we in the future want to go beyond the classical applications of
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the classical chain-ladder model; see for instance Kuang, Nielsen and Nielsen
(2008a,b) for a discussion of the parametrisation of an extended chain-ladder
model including calendar effects.

The simple chain-ladder prediction of the lower triangle entries will work
well when those entries are also Poisson distributed. The Poisson assumption
is, however, not essential. It is well-known that the chain-ladder technique
applies beyond the case where observations are Poisson distributed, let alone
non-negative integers. In such situations the Poisson likelihood function is
of course still well-defined as a criterion function or quasi likelihood. The
estimators and the predictions of the lower triangle make sense also in this
case. However, when the underlying data are not Poisson distributed care
should be taken when assessing the uncertainty of the estimates of the lower
triangle. Some kind of bootstrap approach to assess uncertainty might be
appropriate in this case, see England and Verrall (1999).

The log likelihood function of the statistical model based on the Poisson
distribution is given by

log L(ξ;Y ) =
∑
i,j∈I

{µijYij − exp(µij)− log(Yij!)}. (8)

To express the maximum likelihood estimators some further notation is nee-
ded. Denote row and column sums as

Ri =
k+1−i∑
j=1

Yij, Cj =

k+1−j∑
i=1

Yij,

so Ri = Zi,k+1−i and define the rectangular sums

Si =
i∑

`=1

k−i∑
j=1

Y`j =
i∑

`=1

R` −
k∑

j=k−i+1

Cj for i = 1, . . . , k − 1.

Introduce column and row development factors

Fj =

∑k+1−j
i=1

∑j
`=1 Yi`∑k+1−j

i=1

∑j−1
`=1 Yi`

=
Sk+1−j + Cj

Sk+1−j

for j = 2, . . . , k, (9)

Gi =

∑k+1−i
j=1

∑i
`=1 Y`j∑k+1−i

j=1

∑i−1
`=1 Y`j

=
Si−1 +Ri

Si−1

for i = 2, . . . , k, (10)
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where Fj was previously defined in (2).
Combine the expression for the log likelihood in (8) with (6) to get

log L(ξ;Y ) = µ11

∑
i,j∈I

Yij +
k∑

i=2

Ri

i∑
`=2

∆α` +
k∑

j=2

Cj

j∑
`=2

∆β`

−
∑
i,j∈I

exp(µij)−
∑
i,j∈I

log(Yij!). (11)

This shows that the model is contained within the exponential family with
minimal sufficient statistic T = (

∑
i,j∈I Yij, R2, . . . , Rk, C2, . . . , Ck)

′ and nat-
ural parameter µ11, α2−α1, . . . , αk−α1, β2−β1, . . . , βk−β1, which is a linear
transformation of ξ. Since the natural parameter space, R2k−1, is unrestricted
and open the exponential family is regular, see Barndorff-Nielsen (1978, p.
116). As the random variables are discrete boundary outcomes may arise in
which the likelihood function does not have a maximum. We therefore need
to study the the convex support of the sufficient statistic T . This has the
following property.

Theorem 2 Consider the Poisson model over the upper triangle I. The
convex support of the sufficient statistic T is closed. The following conditions
are equivalent:

(i) T is interior to its convex support;

(ii) S1, . . . , Sk−1, R2, . . . , Rk, C2, . . . , Ck are positive;

(iii) F2, . . . , Fk, G2, . . . , Gk are larger than one and finite;

(iv) R1, . . . , Rk are positive and F2, . . . , Fk are larger than one and finite;

(v) C1, . . . , Ck are positive and G2, . . . , Gk are larger than one and finite.

It is illustrative to give examples of outcomes of reserving data not in-
cluded in the interior of the convex support of T . If the first column is zero
then Sk−1 is zero. If another column is zero. If all of the triangle except the
last diagonal is zero then all Sj are zero and the development factors not
defined.

It is interesting to note that Theorem 2 also is informative about the
situation where the data are not non-negative integers so the Poisson as-
sumption is clearly violated. In that situation, as long as the data belong to
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the interior of the convex support of T then the likelihood equations, which
are now quasi likelihood equations, have a unique solution.

The maximum likelihood estimator for the canonical parameter can now
be found.

Theorem 3 Consider the Poisson model over the upper triangle I with
canonical parametrisation, ξ. The maximum likelihood estimator for ξ is
unique if and only if T is interior to its convex support. It is given by

∆α̂i = ∆logRi + logFk+2−i for i = 2, . . . , k,

∆β̂j = ∆logCj + logGk+2−j for j = 2, . . . , k,

µ̂11 = logR1 −
k∑

l=2

logFl = logC1−
k∑

l=2

logGl.

Moreover, the development factors, Fj = Φ̂j and Gi = Γ̂i say, are maximum
likelihood estimators for the parameters, for i, j > 1,

Φj =

∑j
`=1 exp(

∑`
h=2 ∆βh)∑j−1

`=1 exp(
∑`

h=2 ∆βh)
, Γi =

∑i
`=1 exp(

∑`
h=2 ∆αh)∑i−1

`=1 exp(
∑`

h=2 ∆αh)
(12)

The estimators for ∆αi and ∆βj have rather simple expressions. These
expressions can be interpreted as follows. If the claims Yij had been observed
for the full square 1 ≤ i, j ≤ k then the maximum likelihood estimators for
∆αi and ∆βj would have been ∆Ri and ∆Cj, which could be seen by a mod-
ification of the proof of Theorem 3. For the triangular data the estimators
involve a correction in terms of the development factor. In the case of, for in-
stance, ∆βj, the correction involves the row-wise development factor Gk+2−j,
so the the column-wise development factor Fj is not directly involved.

With Theorems 2 and 3 at hand we can give a clear mathematical descrip-
tion and interpretation of what it is that the development factors really are
estimating. For a long period of time these development factors have been
considered as useful estimators, but they have not clearly been interpretated
as estimators of parameters of a mathematical statistical model. But this is
indeed what they are!

One can even consider the underlying parameters of the development fac-
tors to be an alternative invariant parametrisation. This parametrisation can
be constructed from the development parameters Φj and Γi as an alternative
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to the canonical parameter ξ. Insert the notation αi = logAi and βj = logBj

in (12) and note, for instance, exp(
∑j

`=2 ∆β`) = Bj/B1. This results in

Φj =

∑j
`=1B`/B1∑j−1
`=1 B`/B1

, Γi =

∑i
`=1A`/A1∑i−1
`=1A`/A1

for i, j > 1. (13)

Although the terms B1 and A1 cancel out they are kept in as the parameters
B` and A` are not invariant to the group g in (5), whereas B`/B1 and A`/A1

are invariant which serves to show that Φj and Γi are also invariant to the
group g.

Due to the expression (14) below there is a non-linear, one-one relation
between the canonical parameter ξ and the parameter

ζ = (µ11,Φ2, . . . ,Φk,Γ2, . . . ,Γk)
′ ∈ R× (1,∞)2k−2.

Thus, the parameter ζ is also maximal invariant function of θ under g and
(
∑

i,j∈I Yij, G2, . . . , Gk, F2, . . . , Fk) is a also minimal sufficient statistic, albeit
not a natural statistic of an exponential family because of its non-linear
relation with T .

The statistic R1, . . . , Rk, F2, . . . , Fk is another candidate for a minimal
sufficient statistic, albeit not a natural statistic of an exponential family
either. To argue that there is a one-one relation between this statistic and T
extract Cj from the expression (9) for Fj recursively for j = k, . . . , 2.

The development parameter Φj has previously been studied in the lit-
erature. A theorem of Verrall (1991, p. 493) gives a expression for Φj in
terms of βj = log(Bj) corresponding to (13). Conversely, Ai and Bj can be
expressed in terms of Γi and Φj as

Ai

A1

= (Γi − 1)
i−1∏
`=2

Γ`,
Bj

B1

= (Φj − 1)

j−1∏
`=2

Φ`, for i, j > 1, (14)

with the convention that empty products are unity. This is proved by insert-
ing the expressions of (13) on the right hand side. An alternative expression
for Bj arises by noting that (13) implies

∑k
`=1B`/B1 =

∏k
`=2 Φ`. Inserting

this in (14) gives

Bj∑k
`=1B`

=
Φj − 1∏k

`=j Φ`

for j = 2, . . . , k.
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Choosing the identification
∑k

j=1Bj = 1 in this expression gives the result
of Kremer (1985, p. 133).

A simple expression for the predictions of the model can be constructed.
Use the expression for µij in (6) and insert the maximum likelihood estimators
for µ11 and

∑i
`=2 ∆α` reported in Theorem 3 to get, for j = 1,

Ỹi1 = exp(µ̂i1) =

(
R1∏k
`=2 F`

)(
Ri

R1

i∏
`=2

Fk+2−`

)
=

Ri∏k+1−i
`=2 F`

. (15)

In particular Ỹk1 = Rk = Yk1. To get an expression for the predictor for
j > 1 combine this with the expression for

∑j
`=2 ∆β` = log(Bj/B1) in (14)

to get

Ỹij = exp(µ̂ij) = Ri(Fj − 1)

∏j−1
`=2 F`∏k+1−i

`=2 F`

for j > 1, (16)

For the lower triangle, so k − i+ 1 < j ≤ k, this expression reduces to

Ỹij = Ri(Fj − 1)

j−1∏
`=k+2−i

F`. (17)

This expression matches the reserve forecast in (3) since Ri = Zi,k−i+1 and
it was previously given by Mack (1991, p. 97). We also give a simplified
expression for the prediction for the upper triangle, so 1 < j ≤ k + 1 − i.
This could be used for checking the specification of the Poisson model for
instance through residuals. For the upper triangle the prediction is, for j > 1,

Ỹij = Ri(Fj − 1)
k+1−i∏

`=j

1

F`

. (18)

4 Boundary outcomes

In applications the boundary outcomes frequently arise in which case the
run-off triangle has one zero column or zero row. In those cases one of the
development factors will be one (or infinite) so the sufficient statistic T is on
the boundary of its convex support according to Theorem 2. This implies
that estimation cannot be done through Theorem 3. Two principled options
are then available: either to look for different data or to look for a different
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statistical model. In the insurance context the latter will typically be ap-
propriate. By formulating a different statistical model it is possible to show
that the default option of simply using the chain-ladder technique regard-
less of the boundary issue actually can be viewed as a maximum likelihood
approach.

Due to the symmetry of the model in rows and columns it suffices to
consider the case where all incremental observations in a given development
year, j† > 1 say, are zero, that is Cj† = 0. The default solution of using
the chain-ladder technique evolves around the development factors. The
development factors Fj and Gi are defined as in (9) and (10), noting that
Cj† = 0 results in Fj† = 1. The traditional chain-ladder prediction in this
case is the same as in (16). We will formulate a statistical model in which
this is the maximum likelihood solution.

The solution proposed here could be extrapolated to cases of multiple
zero columns and/or zero rows. An exception is when the first column or
the first row is zero. In the case C1 = 0 one could consider the triangle as
commencing at column 2. This results in a full triangle of dimension k − 1
which could be analysed the usual way. A consequence is, of course, that no
chain-ladder-based predictions can be made for row k, since the development
factor F2 is not available.

Now, since Cj† = 0, it could be reasonable to assume E(Yij†) = 0 for all
1 ≤ i ≤ k + 1 − j†. This assumption has the particular consequence that
when forecasting the reserve then all increments in developmental year j†

will be zero, that is Ỹij† = 0. The assumption should therefore be considered
carefully against any contextual information in relation to the data. Let I/j†

denote the subset of I in which column j† is excluded.
A Poisson model over I/j† is defined through independent Poisson dis-

tributed variables with log expectation µij defined by (4) as before. The
modified canonical parameter is

ξ/j† = (µ11,∆α2, . . . ,∆αk,∆β2, . . . ,∆βj†−1,∆2βj†+1,∆βj†+2, . . . ,∆βk),

using the definition ∆2βj†+1 = ∆βj†+1 +∆βj† = βj†+1−βj†−1. The likelihood
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function (11) is modified as

log L(ξ/j† ;Y/j†) = µ11

∑
i,j∈I

/j†

Yij +
k∑

i=2

Ri

i∑
`=2

∆α` +

j†−1∑
j=2

Cj

j∑
`=2

∆β`

+
k∑

j=j†+1

Cj(

j†−1∑
`=2

∆β` + ∆2βj†+1 +

j∑
`=j†+2

∆β`)

−
∑

i,j∈I
/j†

exp(µij)−
∑

i,j∈I
/j†

log(Yij!). (19)

Just as before, this is an exponential family with minimal sufficient statistic
T/j† = (

∑
i,j∈I

/j†
Yij, R1, . . . , Rk, C1, . . . , Cj†−1, Cj†+1, . . . , Ck), and the natu-

ral parameter is a linear transformation of ξ/j† . The convex support of T/j†

can be characterised as before.

Theorem 4 Consider the Poisson model over the upper triangle I. The
convex support of the sufficient statistic T is closed. T is interior to its
convex support if and only if F2, . . . , Fj†−1, Fj†+1, . . . , Fk, G2, . . . , Gk are all
larger than one and finite.

The maximum likelihood estimators can now be found with the conven-
tion that Fj† = 1

Theorem 5 Consider the Poisson model over I/j† with canonical parameter,
ξ/j†. The maximum likelihood estimator for ξ/j† is unique if and only if T/j†

is interior to its convex support. It is given by

∆α̂i = ∆logRi + logFk+2−i,

∆β̂j = ∆logCj + logGk+2−j for j 6= j†, j† + 1,

∆2β̂j†+1 = ∆2 logCj†+1 + logGk+2−j†+1 + logGk+2−j† ,

µ̂11 = logR1 −
k∑

l=2

logFl = logC1 −
k∑

l=2

logGl.

The maximum likelihood estimator for exp(µij) is given by (15), (16).

It is interesting to note that Fj† = 1 implies that ∆αk+2−j† is estimated
simply by ∆ logRk+2−j† . The interpretation is that since the rows k+ 1− j†
and k+ 2− j† both have length j†− 1 due to the missing column there is no
need to correct ∆ logRk+2−j† with a development factor.
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Appendix: Proofs of Theorems

Proof of Theorem 1. This is done by induction using formula (6), mim-
icking the proof of Kuang, Nielsen, Nielsen (2008a, Theorem 1).

As a preliminary step, if k = 1 then ξ = µ11 and the statement is true.
To initialize the argument let k = 2. If µ†11 6= µ‡11 the statement holds. If

µ†11 = µ‡11, but ∆α†
2 6= ∆α‡

2 or ∆β†2 6= ∆β‡2 then µ†21 6= µ‡21 or µ†12 6= µ‡12 by
formula (6).

For the induction step consider µ1,j. Assume that µ†11 = µ‡11 and ∆β†` =

∆β‡` for ` < j but ∆β†j 6= ∆β‡j . Then µ†1j 6= µ‡1j by formula (6). If ∆β†` = ∆β‡`
for all ` ≤ k apply the same argument for µi,1.

Proof of Theorem 2. Characterizing convex support of T . Let Y =
{Yij, for i, j ∈ I} denote the original data triangle so Y ∈ Rn, where
n = k(k + 1)/2. The convex support of Y is the set CY = {Y ∈ Rn so Yij ≥
0 for all i, j ∈ I}. The set CY is a convex polyhedral cone (Rockafellar, 1970,
p. 170). Since T is a linear transformation of Y then its convex support,
CT say, is a closed polyhedral convex set (Rockafellar, 1970, Theorems 19.1,
19.3). The relative interior of CY maps into the relative interior of CT (Rock-
afellar, 1970, Theorem 6.6). Some boundary points of CY map into boundary
points of CT whereas other map into interior points of CT . The issue is to
characterize which are which.

Argue that (ii) implies (i). Suppose T ′ is the point implied by (ii). Since
the relative interior of CY maps into the relative interior of CT it suffices to
construct a Y ′ ∈ ri(CY ) that maps into T ′. First, for j = 1 then, by (15), (9),

Y ′
i1 =

Ri∏k+1−i
`=2 F`

= Ri

k+1−i∏
`=2

Sk+1−`

Sk+1−` + C`

,

which is positive by assumption (ii). Next, for j > 1 then, by (18), (9), the

14



prediction for the upper triangle is

Y ′
ij = Ri

Fj − 1∏k+1−i
`=j F`

= Ri
Cj

Sk+1−j

k+1−i∏
`=j

Sk+1−` + C`

Sk+1−`

,

which is also positive by assumption (ii).
Argue that (i) implies (ii). Suppose (ii) is not satisfied and let T ′ be the

point implied by (ii). It can be argued that T ′ is a boundary point of CT

using Rockafellar (1970, Corollary 11.6.2). The idea is to construct a linear
function h(T ) that achieves its maximum over CT at T ′.

Suppose for instance that Ri = 0 for some i. Let h(T ) = −e′T , where e
is the vector taking the value one for element k − 2 + i and zero otherwise.
Then h(T ) ≤ 0 for all points T (Y ) where Y ∈ CY with maximum h(T ′) = 0
at T ′.

A similar argument can be made if Cj = 0 for some j.

Finally, suppose Si = 0 for some i. Since
∑

i,j∈I Yij = Si +
∑k

`=i+1Ri +∑k
`=k+1−iC` then

∑
i,j∈I Yij ≥

∑k
`=i+1Ri +

∑k
`=k+1−iC` with equality if and

only if Si = 0. Thus, let h(T ) = −e′T , where e is a vector taking the value
one in the first coordinate and minus one in the coordinates corresponding
to Ri+1, . . . , Rk and Ck+1−i, . . . , Ck. Apply the argument above.

Argue that (ii) implies (iii). The definitions of Fj and Gi in (9) and (10)
imply that

Fj = 1 + Cj/Sk+1−j, Gi = 1 +Ri/Si−1.

Thus, if (ii) holds so Cj, Sk+1−j, Ri and Si−1 are all positive then Fj and Gi

are larger than one and finite.
Argue that (iii) implies (ii). The above expressions for Fj and Gi imply

Cj = (Fj − 1)Sk+1−j, Ri = (Gi − 1)Si−1.

Thus, if (iii) holds so Fj and Gi are finite then their denominators Sk+1−j

and Si−1 are positive. Since Fj and Gi are also larger than one then Cj,
Sk+1−j, Ri and Si−1 are all positive.

Argue that (ii) implies (iv). This holds since R1 = S1 + Ck and Fj =
1 + Cj/Sk+1−j.

Argue that (iv) implies (i). Argue in the same ways as (ii) implies (i),
noting that Y ′

i1 = Ri

∏k+1−i
`=2 F−1

` and Y ′
ij = Ri(Fj − 1)

∏k+1−i
`=j F−1

` are both
positive when (iv) is satisfied.
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Argue that (v) is an equivalent expression. Same as (iv) as the chain
ladder model is symmetric in rows and columns.

Proof of Theorem 3. First, for a full exponential family the maximum
likelihood estimator is unique if and only if the natural statistic is interior to
its convex support (Barndorff-Nielsen, 1978, Theorem 9.13).

Secondly, since the exponential family is regular the 2k−1 likelihood equa-
tions are T = ET (Barndorff-Nielsen, 1978, Corollary 9.6). Since

∑
i,j∈I Yij =∑k

i=1Ri =
∑k

j=1Cj this in turn implies the equations

Ri = ERi, Cj = ECj, for i, j = 1, . . . k. (20)

Estimating the development factors. The development factor Fj can be
written in terms of the minimal sufficient statistic as

Fj =

∑k+1−j
i=1 Ri −

∑k
`=j+1C`∑k+1−j

i=1 Ri −
∑k

`=j C`

.

Therefore, by the likelihood equations Fj is maximum likelihood estimator
for the parameter

Φj =

∑k+1−j
i=1 ERi −

∑k
`=j+1 EC`∑k+1−j

i=1 ERi −
∑k

`=j EC`

=

∑k+1−j
i=1

∑j
`=1 EYi`∑k+1−j

i=1

∑j−1
`=1 EYi`

.

Insert that EYij = exp(µij) with µij = µ11 +
∑i

`=2 ∆α` +
∑j

`=2 ∆β`. Note
that the expression factorise into µ11, ∆αi and ∆βj terms, of which the µ11

and ∆αi terms cancel so

Φj =

∑j
m=1 exp(

∑m
`=2 ∆β`)∑j−1

m=1 exp(
∑m

`=2 ∆β`)
.

The expression for Gi and Γi arise similarly.
Estimating the difference parameters The equations (20) also imply that

∆ logRi = ∆ log ERi, where

∆ log ERi = log{
k+1−i∑
j=1

exp(µ11 +
i∑

`=2

∆α` +

j∑
`=2

∆β`)}

− log{
k+2−i∑
j=1

exp(µ11 +
i−1∑
`=2

∆α` +

j∑
`=2

∆β`)},
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which in turn reduces to

∆ log ERi = ∆αi − log Φk+2−i.

Equating ERi = Ri and Φk+2−i = Fk+2−i implies the desired expression for
the maximum likelihood estimator for ∆αi. The ∆βj terms are dealt with
similarly.

Estimating the level. The first expression for µ̂11 arises from the likelihood
equation for Rk = Yk1. This is

log(Rk) = log(ERk) = µ11 +
k∑

`=2

∆α`.

Insert, the estimators for ∆α` to get the desired expression.
The second expression arises in a similar way from the likelihood equation

Ck = ECk.

Proof of Theorem 4. Mimick the proof of Theorem 2.

Proof of Theorem 5. Mimick the proof of Theorem 3. Even though terms
involving column j† need to be handled with care, the result falls out as
desired.
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