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Abstract: I examine the effect of labor income taxation in life-cycle models where work 

experience builds human capital. In this case, the wage no longer equals the opportunity cost 

of time – which is, instead, the wage plus returns to work experience. This has a number of 

interesting consequences. First, the data appear consistent with much larger labor supply 

elasticities than most prior work suggests. Second, again contrary to conventional wisdom, 

permanent tax changes can have larger effects on current labor supply than temporary tax 

changes. Third, human capital amplifies the labor supply response to permanent tax changes 

in the long-run, as a permanent tax reduces the rate of human capital accumulation (reducing 

worker productivity). Fourth, for plausible parameter values, welfare losses from proportional 

income taxation are likely to be much larger than conventional wisdom suggests.  
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I. Introduction 

 This paper examines the effects of income taxation in a life-cycle model where work 

experience builds human capital. In such a model, the wage no longer equals the opportunity 

cost of time. This has important implications for how workers respond to tax changes, and for 

how we ought to estimate labor supply elasticities. For instance, contrary to conventional 

wisdom, permanent tax changes can have larger effects on current labor supply than 

transitory ones. Thus, the Frisch (or transitory) elasticity may not be an upper bound on the 

Hicks and Marshallian. Furthermore, the human capital mechanism can greatly amplify the 

effect of permanent tax changes over time. As a result, studies that focus on short-run effects 

of tax reforms may greatly understate long-run labor supply elasticities.          

Of course, Imai and Keane (2004) already studied introduction of human capital into 

the standard life-cycle model of MaCurdy (1981). They showed that ignoring human capital 

leads to severe downward bias in estimates of the intertemporal elasticity of substitution. But 

Imai-Keane failed to examine effects of permanent tax changes – i.e., Hicks and Marshallian 

elasticities. These are more relevant for tax policy. Here, I show how ignoring human capital 

can also lead one to understate elasticities with respect to permanent tax changes. 

I will examine the implications of human capital for permanent and transitory taxes 

using both the Imai-Keane model and a simple two-period model. The former exercise has 

the advantage of “realism” – i.e., the Imai-Keane model provides a good fit to complete life-

cycle paths of wages, hours and assets, so its’ quantitative predictions about tax effects have 

some credibility. The two-period model has the virtue that it delivers intuitive analytical 

expressions for elasticities.
 
This enhances our intuition for what drives the results, such as the 

conditions for permanent tax changes to have larger current effects than transitory changes.
1
 

Using the simple model, I show that permanent tax changes have larger current effects 

than transitory changes under a condition that requires the returns to work experience to be 

sufficiently large relative to the size of the income effect. In a calibrated version of the simple 

two-period model, I show this does in fact occur for plausible parameter values. 

Simulations of the Imai-Keane model imply that compensated permanent tax changes 

do have larger effects on current labor supply than transitory changes, but only for young 

workers (under 35) and older workers (over 50). This is consistent with the theory, as returns 

to experience are large for the young, while income effects are small for the old.   

                                                 
1
 The Imai-Keane model is rather complex, allowing for a very flexible human capital production function, 

wage uncertainty, taste shocks, a 45-period working life, a bequest motive, etc. These are all needed to provide a 

good fit to life-cycle wage, hours and asset paths. But this complexity precludes obtaining analytical results, and 

may make the intuition behind some results less clear.   
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One key experiment sheds light on the dynamics of tax effects: I use the Imai-Keane 

model to simulate a permanent tax increase that takes effect at age 25 and lasts for the whole 

working life (i.e., to age 65). Interestingly, the compensated elasticity grows from only 0.54 

at age 25 to 4.0 at age 60. Thus, the human capital mechanism amplifies effects of permanent 

tax changes over time (i.e., higher taxes reduce current labor supply, leading to lower wages 

next period, etc.). If tax effects grow substantially over time, looking at short run effects of 

tax reforms may lead us to greatly understate labor supply elasticities in the long run.  

Averaged over the whole life, the Hicks elasticity implied by the Imai-Keane model is 

a substantial 1.32. This, combined with the negative effect on human capital accumulation, 

generates substantial efficiency losses from distortionary proportional income taxation.  

These findings are in sharp contrast to the consensus of the prior literature, which is 

based mostly on static models or dynamic models that include savings but not human capital. 

The consensus is summed up nicely in the survey by Saez, Slemrod and Giertz (2011), who 

state: “… optimal progressivity of the tax-transfer system, as well as the optimal size of the 

public sector, depend (inversely) on the compensated elasticity of labor supply …. With some 

exceptions, the profession has settled on a value for this elasticity close to zero… In models 

with only a labor-leisure choice, this implies that the efficiency cost of taxing labor income 

… is bound to be low as well.”
2
 The results presented here challenge this consensus by 

showing that, once we consider human capital, the data appear consistent with higher labor 

supply elasticities, and larger welfare losses from taxation, than is widely supposed. 

To proceed, Section II presents a simple two-period version of the basic life-cycle 

model of labor supply and savings (MaCurdy (1981)). Section III discusses extension of the 

model to include human capital. Sections IV and V present simulations of both the two-

period model and the Imai-Keane model, to see how the introduction of human capital alters 

the impact of tax changes. Section VI presents welfare calculations. Section VII concludes.    

 
II. A Simple Life-Cycle Model without Human Capital 

 I start by presenting a simple model of life-cycle labor supply of the type that has 

strongly influenced economists’ thinking on the subject since the pioneering work by 

MaCurdy (1981). In order to clarify the key points, it is useful to consider only two periods, 

and to abstract from wage uncertainty. The period utility function is given by: 

                                                 
2
 As Ballard and Fullerton (1992) note, if a wage tax is used to finance compensating lump sum transfers (as in 

the Harberger approach), the welfare cost depends only on the compensated elasticity. But if it is used to finance 

a public good (that has no impact on labor supply) it is the uncompensated elasticity that matters. Saez (2001) 

presents optimal tax rate formulas for a Mirrlees (1971) model (with both transfers and government spending on 

a public good) and shows that, in general, both elasticities matter for optimal tax rates (see, e.g., his equation 9).    
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Here Ct is consumption in period t and ht is hours of labor supplied in period t. The present 

value of lifetime utility is given by: 
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Here w1 and w2 are wage rates in periods 1 and 2, while τ1 and τ2 are tax rates on earnings. 

Agents can borrow/lend across periods at interest rate r. The quantity b is net borrowing at 

t=1, and b(1+r) is repaid at t=2. Parameter ρ is the discount factor. (I assume there is no 

exogenous non-labor income. This simplifies the analysis while not changing the results).   

 In the standard life cycle model, there is no human capital accumulation via returns to 

work experience. That is, hours of work in period 1 do not affect the wage rate in period 2, 

and a worker simply treats the wage path {w1, w2} as exogenously given. Thus, the first order 

conditions for his/her optimization problem are simply: 
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Equation (5) can be written as  1 2[ ] (1 )C C r
     – i.e., set b to equate the ratio of the 

marginal utility of consumption across the two periods to ρ(1+r). Using (5), divide (4) by (3) 

and take logs to obtain MaCurdy’s equation for hours changes as a function of wage changes: 
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From (6) we obtain: 
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Thus, the intertemporal (or Frisch) elasticity of substitution, the rate at which a worker shifts 

hours of work from period 1 to period 2 as the relative wage increases in period 2, is simply 

1/γ. The elasticity with respect to a change in the tax ratio (1-τ2)/(1-τ1) is identical. 
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While the Frisch elasticity is useful for predicting effects of transitory tax changes, the 

Hicks (compensated) and Marshallian (uncompensated) are relevant for predicting effects of 

permanent tax changes. In the life-cycle model (with no exogenous non-labor income) the 

Marshallian elasticity is (1 ) ( )    while the Hicks is1 ( )  . Thus, as long as η < 0, 

we have the famous relationship 1  > 1 ( )  > (1 ) ( )    . That is, the Frisch exceeds 

the Hicks which exceeds the Marshallian. The implication is that transitory tax changes will 

have larger (current) effects than permanent ones. [However, as we’ll see, the Frisch does not 

give the exact effect of transitory taxes, as these may still have small income effects].   

 I’ll now derive the exact elasticities with respect to permanent and transitory tax 

changes. In what follows I assume ρ(1+r)=1, so that (5) requires the consumer to equate the 

marginal utility of consumption in both periods. As the simple model in (1) has time invariant 

preferences, this is equivalent to equalizing consumption across periods. None of the key 

points I wish to make hinge on this assumption, and it simplifies the analysis considerably.    

From (3) we have that: 

 

(8) 1
1 1

1

(1 )
h

w
C






     

 
where C1=w1h1+b is consumption in period 1. This is the familiar within-period optimality 

condition equating the marginal rate of substitution (MRS) between consumption and leisure 

to the opportunity cost of time, which is just the after tax wage rate. Given ρ(1+r)=1, we have 

C1=C2=C, and C is just the present value of earnings times the factor (1+r)/(2+r): 

 

(9) 1 1 1 2 2 2{ (1 ) (1 ) (1 ) }/(2 )C w h r w h r        

 
Now we use equation (6) in levels, with ρ(1+r)=1, to substitute out for h2 in (9), obtaining: 
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Here C

*
 contains all the factors that govern lifetime wealth. We can now write (8) as: 

 

(11)  *
1 1 1

1
ln ln (1 ) ln lnh w C  

 
   


 

  
 We are now in a position to consider effects of permanent vs. temporary changes in 

tax rates. I’ll start with uncompensated effects. Via some tedious algebra applied to (10)-(11) 

we can obtain the effect of an uncompensated tax reduction in period 1: 
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Note that the first term on the right is the Marshallian elasticity. The second term is positive 

because η<0, so the elasticity with respect to a temporary tax change exceeds the Marshallian. 

If w1=w2 and τ1=τ2 then the second term in (12) takes on a simple form: 
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 Now consider a permanent tax change. We assume that τ1 = τ2 = τ, and look at the 

effect of a change in (1- τ). With τ1 = τ2 = τ equation (10) becomes: 
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And we can rewrite (11) as: 
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It is then clear that: 
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which is just the Marshallian elasticity. So, comparing (13) and (15), we have the well-known 

result that the uncompensated labor supply elasticity with respect to a temporary tax change 

is greater than that with respect to a permanent change in the standard life-cycle model. This 

is because the transitory tax has a smaller income effect, as captured by the 2
nd

 term in (13).
3
 

Now consider compensated tax changes. We can show that the compensated elasticity 

with respect to a transitory tax change (see equation (39) below) is given by: 

 

(16) 1

1

ln 1 1 1 1

ln(1 ) 2 2
compensated

h r

r r   

 
 

    
 

 
Note that this falls between the Frisch and Hicks elasticities. Of course, the effect of a 

                                                 
3
 Another interesting question is whether an uncompensated transitory tax change has a larger effect than a 

compensated permanent change. This is ambiguous, as it depends on the size of income vs. inter-temporal 

substitution effects, and on the duration of the tax increase. In our case, equation (13) will exceed the Hicks 

elasticity if (1+γ)/γ(2+r) > 1, or equivalently if 0 < γ < (1+r)
-1

. So, as we’ll see in the simulations, the outcome 

will depend on calibrated parameter vales. 
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compensated permanent tax change is the Hicks elasticity itself. Thus, we have the basic 

result that a compensated transitory tax change must have a larger (current) effect than a 

compensated permanent tax change. Of course, this is due to intertemporal substitution.     

 That transitory changes in taxes or wages should have greater effects on labor supply 

than permanent changes is firmly entrenched as the conventional wisdom in the profession.   

But in the next Section I show how introduction of human capital into the standard life-cycle 

labor supply model undermines this conventional wisdom, so that permanent tax changes can 

have larger effects than temporary changes (for a range of reasonable parameter values).   

 
III. Incorporating Human Capital in the Life-Cycle Model 

III.A. A Life-Cycle Model with Human Capital and Borrowing Constraints      

 I will begin by introducing human capital into a simple model with no borrowing or 

lending. This makes the impact of human capital on labor supply decisions clear. Assume that 

the wage in period 2, rather than being exogenously fixed, is an increasing function of hours 

of work in period 1. For convenience, here I assume the simple functional form: 

  

(17) 2 1 1(1 )w w h   

 
where α is the percentage growth in the wage per unit of work. Given a two period model 

with each period corresponding to 20 years, it is plausible in light of existing estimates that 

αh1, the percent growth in the wage over 20 years, is on the order of 1/3 to 1/2.
4
 Note that we 

could approximate (17) by 2 1 1ln lnW W h  . Thus, it is similar to a conventional log wage 

function, but without the usual quadratic in hours. I introduce that in the simulation section, 

but for purposes of obtaining analytical results (17) is much more convenient. 

In a model with human capital but no borrowing/lending, equation (2) is replaced by: 

  

(18) 

1 11 1
1 1 1 1 1 1 2 2 2[ (1 )] [ (1 ) (1 )]
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V

    
  

   

      
    

     

 

and the first order conditions (3)-(5) are replaced by: 

(19)    1 1 1 1 1 1 1 2 2 1 2 21
1
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(20)  1 1 2 2 1 1 2 2
2

(1 ) (1 ) (1 )(1 ) 0
V

w h h w h h
h

     


      


 

                                                 
4
 For instance, using the PSID, Geweke and Keane (2000) estimate that for men with a high school degree, 

average earnings growth from age 25 to 45 is 33% (most of which is due to wage growth). For men with a 

college degree the estimate is 52%. They also find that earnings growth essentially ceases after about age 45. 
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It is useful to rewrite (19) in the form: 

 

(21)  1 2
1 1 1 2 2
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where C1=w1h1(1-τ1) and C2=w1(1+αh1)h2(1-τ2) are consumption at t=1 and 2.  

One main point of this paper can be seen simply by comparing (8) and (21). Each 

equates the MRS to the opportunity cost of time. In the standard life-cycle model (8) this is 

just the after tax wage rate w1(1-τ1). But in the human capital model, the opportunity cost of 

time also includes a human capital investment component, which is  1 2 22 1[ ] (1 )C C w h    .  

To understand this extra term, note that dw2/dw1 = w1α is the effect of an additional 

hour of work a t=1 on the wage at t=2. This is multiplied by h2(1-τ2) to obtain the increment 

to after-tax earnings. It is also discounted back to t=1, and multiplied by the ratio of marginal 

utilities of consumption across periods (these may differ as there is no borrowing). 

A key point that emerges from (21) is that a temporary tax change in period 1 affects 

only (1- τ1), and hence it only affects the first component of the opportunity cost of time (the 

current wage rate). In contrast, a permanent tax change affects both (1- τ1) and (1-τ2), thus 

shifting both components of the opportunity cost of time (OCT). Thus, a permanent tax 

increase has a larger effect on the OCT than a temporary one.  

In other words, the expectation of a lower future tax rate (at t=2) increases the return 

to human capital investment at t=1. This creates an extra incentive to work at t=1, in addition 

to that created by the lower tax at t=1 itself. Notably, this extra work incentive would be even 

greater in a model with multiple periods, as the future is then longer relative to the present. 

We now derive elasticites with respect to uncompensated transitory and permanent 

tax cuts. To solve the model for h1 we use (20) to solve for h2 and substitute this into (19). 

This gives the following implicit function for h1: 

 

(22)    
21 1 (1 ) ( )(1 ) ( ) (1 2 ) ( )

1 1 1 1 1 2 1(1 ) (1 ) (1 )h w h w h
                
               

 
As it is not possible to isolate h1 in (22), we must totally differentiate to obtain the elasticity 

of hours in period 1 with respect to a transitory tax change – i.e., a change in (1-τ1): 

 

 (23) 
0 3 2
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where Γ0 ≡ (1+η)(1+γ)/(γ-η), Γ1 ≡ (1+2η+γη)/(γ-η), Γ2 ≡ (1+3η+γη-γ)/(γ-η), Γ3 ≡ (1+η)/(γ-η).    
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Now consider the effect of a permanent tax increase. To simplify the analysis I will 

assume that τ1 = τ2 = τ. This modifies (22) so that τ replaces that τ1 and τ2. As a result, when 

we totally differentiate (22) with respect to (1-τ) we get: 
 

(24)  

31

0 32

(1 )(1 )

1
1 1 1 1

1

1 2
1 1 1 1 1 1

(1 )(1 )
(1 )[ (1 )] [ (1 )] (1 )
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w h w h
h

h w h w h

 

   

  

 
     

 

       

 

 

 

 
    

 


       
 

 
Of course (23) and (24) both simplify to the Marshallian elasticity (1+η)/(γ-η) in the case of 

no human capital (α=0), as then we have a static model. Also, the denominators of (23) and 

(24) are identical.
5
 The only difference between the two equations is an additional term in the 

numerator of (24) that captures an extra human capital effect of a permanent tax – i.e., a tax 

cut at t=2, by increasing the fraction of his/her earnings a worker can keep at t=2, increases 

the return to human capital investment (and so the opportunity cost of time) at t=1. Of course, 

the permanent tax also has an extra income effect – i.e., the worker knows he/she will receive 

a higher after-tax wage at t=2 even holding current hours fixed. 

The sign of the extra term in the numerator of (24) depends on that of (1+η)/(γ-η), the 

Marshallian elasticity itself. If the Marshallian elasticity is positive then a permanent tax cut 

has a larger positive effect on current labor supply than a transitory tax cut. If the Marshallian 

elasticity is negative, a permanent tax cut has a larger negative effect.  

For compensated elasticities, the effect of permanent tax cuts must be positive and 

greater than that of transitory. This is because compensation eliminates the negative income 

effect of the t=2 tax cut on the incentive to invest in human capital at t=1.
6
  

In summary, in a standard MaCurdy (1981)-style life-cycle model with borrowing but 

no human capital, the response to a temporary tax change is greater than to a permanent tax 

change – due to the income effect. But in the polar case of human capital but no borrowing, 

permanent taxes have a larger effect. In the next Section I present a model with both human 

capital and borrowing. Not surprisingly, whether permanent or temporary tax cuts have a 

larger effect will depend on the relative strength of the human capital and income effects. 

                                                 
5
 The addition of human capital adds a third term to the denominator of both (23) and (24). The fact that changes 

in hours at t=1 alter the wage at t=2 creates an incentive to invest, but also generates an income effect. Thus, the 

sign of the new term is ambiguous. It depends on Γ1 = (1+2η+γη). For -1 < η < -.5 the transitory elasticity in (23) 

will actually be less than the Marshallian. This is possible because the transitory tax hits only a part of the OCT 

(i.e., the wage but not the human capital investment return). But if -.5 < η < 0 then, for plausible values of γ, the 

substitution effect is strong enough so that the transitory elasticity (23) is larger than the Marshallian. Of course, 

these considerations have no bearing on the relative size of the permanent and transitory elasticities in (23) vs. 

(24), as that depends only on the ratio of the numerators of the two equations. 
6
 Indeed, this result only requires that compensation be adequate to hold consumption fixed at t=2, negating the 

income effect of the tax at t=2. Compensation at t=1 only affects the denominators of (23)-(24), not their ratio.  
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III.B. A Life-Cycle Model with both Human Capital and Saving/Borrowing  

In a model with both human capital and borrowing/saving equation (2) is replaced by:  

 

(25) 
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and the first order conditions for the problem are: 
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As before, I assume ρ(1+r)=1 to simplify the analysis. In that case (26) can be rewritten: 

 

(29) 1
1 1 1 2 2(1 ) (1 )

h
w w h

C






       

 
It is useful to compare this to (8), the MRS condition for the model without human capital. 

Here the opportunity cost of time is augmented by the term ραw1h2(1-τ2), which captures the 

effect of an hour of work at t=1 on the present value of earnings at t=2.  

 Now, continuing to assume ρ(1+r)=1, we divide (27) by (26) and take logs to obtain: 

 

(30) 2 2 2

1 1 1 1 2 2

(1 )1
ln ln

(1 ) (1 )

h w
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This equation illustrates clearly why the conventional procedure of regressing hours growth 

on wage growth leads to underestimates of the Frisch elasticity (1/γ), and overestimates of the 

key utility function parameter γ. The effective wage rate at t=1 is understated by failure to 

account for the term ραw1h2(1-τ2) that appears in the denominator.  

We can get a better sense of the magnitude of the problem if we simplify by assuming   

τ1 = τ2 = τ. Then we can solve (30) for 1/γ and obtain: 

 

(31) 2 2 2 2
2

1 1 2 1 1

1
ln ln ln ln ln(1 )

(1 )

h w h w
h

h w h h w


 

        
             

        

 

 
Thus, wage growth from t=1 to t=2 must be adjusted downward by a factor of ραh2 percent to 
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correct for the missing human capital term. This adjustment gives a valid estimate of the 

growth of the opportunity cost of time (OCT).  

As I noted earlier, a reasonable estimate of αh1 is about 33%. A reasonable figure for 

hours growth over the first 20 years of the working life is roughly 20% (see, e.g., Imai and 

Keane (2004) or the descriptive regressions in Pencavel (1986)). So assume that h2 is 20% 

greater than h1. Then αh2 is roughly 40%. Let ρ = 1/(1.03)
20

 = 0.554. Then we obtain ραh2 = 

22%. Thus, while wage growth is 33%, the growth in the OCT is only 33% –22% = 11%.  

Hence, if we used observed wage growth to calculate the Frisch elasticity we would 

obtain (1/γ) = ln(1.20)/ln(1.33) ≈ .64. But the correct value based on equation (31) is (1/γ)= 

ln(1.20)/ln[1.33/1.22] ≈ 2.1. So, for reasonable parameter values, the downward bias in 

estimates of the Frisch elasticity due to ignoring human capital will tend to be substantial.  

Now consider the impact of uncompensated permanent vs. temporary tax changes in 

this model. First, solve (27) for h2 to obtain:  

 

(32)  
11

2 1 1 2(1 )(1 )h w h C
        

 
Substituting this into (26) we obtain an implicit function for h1:       

 

(33) 
(1 )1 1 (1 ) (1 )

1 1 1 21 1(1 ) (1 ) (1 )h w C w h C
                     

 
Unfortunately (33) involves C, which is given by equation (9). Using (32) to substitute for h2 

in (9), we obtain an implicit function for C: 

 

(34)  
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We are now in a position to calculate labor supply elasticities of h1 with respect to temporary 

tax changes, using the two-equation system (33)-(34). First, we implicitly differentiate (34) to 

obtain an expression for dC/d(1-τ1) that involves dh1/d(1-τ1). Then we implicitly differentiate 

(33) to obtain an expression for dh1/d(1-τ1) that involves dC/d(1-τ1). Finally, we substitute the 

former expression into the latter, group terms, and convert to elasticity form to obtain: 
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where: 

 1 1(1 )A w C     
(1 )1 1 (1 )

1 2 1(1 ) (1 )B w h C
       
     

1 1 1(1 )(1 )D w h r      
(1 )1 (1 )

1 2 1(1 ) (1 )E w h
     
     

 
The term B is the human capital affect that arises because an increase in h1 leads to a higher 

wage at t+2. It is identical to the second term on the right side of (33). The ( )/EC      

term is the usual income effect of the higher after-tax wage in period t=1. And the term 

1 1[(1 )/ ][ /(1 )]EC h h        is a special income effect that arises because an increase in 

h1 increases the wage rate at t=2. [Note that (35) reduces to (12) if we set α=0]. 

 We now look at the effect of a permanent tax increase by setting τ1 = τ2 = τ in (33) and 

(34), and following the same solution procedure as above. This leads to the result: 

 

(36)   
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It can be shown that this reduces to the Marshallian elasticity if we set α = 0. Compared to 

equation (35), equation (36) has two new terms, both of which appear in curly brackets in the 

numerator. The first is  (1 )B   , which is an additional human capital effect. It captures 

that a lower tax rate in period t=2 increases the return on human capital investment at t=1. 

The second is  ( ) (1 )EC      which captures an additional income effect (i.e., the lower 

tax in period 2 leads to higher lifetime income holding labor supply fixed).  

Whether a permanent or a temporary tax change has a larger effect on labor supply 

depends on which of these two effects dominates. A permanent tax change will have the 

larger effect if the following condition holds:  

 

 
1 1 1

B D EC A B EC

 

     


   

              
          
            

 

 
Some tedious algebra reveals that this condition is equivalent to a bound on the parameter α, 

which governs how work experience in period 1 affects the wage in period 2. The bound is: 
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(37) 
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Note that the numerator of (37) is obviously positive, as η<0, and the next two terms are the 

marginal utilities of leisure and consumption, respectively. But the sign of the denominator 

appears ambiguous, as the first term is positive while the second is negative. Appendix A 

shows that the denominator is positive under plausible conditions. 

 Thus, equation (37) gives a lower bound that the human capital effect α must exceed 

in order for (uncompensated) permanent tax changes to have larger effects than temporary tax 

changes in the model with human capital and saving. This lower bound is greater the stronger 

is the income effect. To see this, note that as η approaches -1 (i.e., income effects become 

stronger), the numerator of (37) increases while the denominator decreases. It is also obvious 

that when utility is linear in consumption (no income effects) (37) reduces to α > 0.   

 If we make the approximation that α
2
 ≈ 0, which is reasonable given that, as noted 

earlier, a plausible value for αh1 is about .33, we can obtain the more intuitive expression: 

 

(38) 1

1 1 1 2
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This makes clear that the bound for α gets higher as income effects grow stronger. In the 

simulations of Section IV.C we will see clearly how the lower bound for α increases in (-η). 

 From a different perspective, these results say human capital dampens the response to 

transitory tax changes. Intuitively, this occurs because, if human capital is more important, a 

temporary tax hits a smaller part of the OCT – i.e., it only hits the wage and not the human 

capital return – so it has less effect on current labor supply. Hence, the simulations in Section 

IV.C will show that (35) is strongly decreasing in α. In contrast, we’ll see that the effect of 

permanent taxes on current labor supply is little affected by α. This is because a permanent 

tax hits both current and future components of the OCT.
7
 So, for large enough α, the effect of 

a permanent tax will be greater than that of a transitory tax. 

 Now consider compensated elasticities.  First note there is no direct equivalent to the 

Slutsky equation in the dynamic case (i.e., as a value function rather than a utility function is 

being maximized). Thus, I have defined the compensated elasticity as the effect of a tax 

change holding the optimized value function fixed. In order to determine the amount of initial 

                                                 
7
 Mechanically, the human capital term B enters the numerator of (35) negatively, so the equation is decreasing 

in α. In contrast there are both positive and negative terms in B in equation (36), and these roughly cancel. 
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assets a consumer must be given to compensate for a tax change, I solve the equation: 
 

(39) 1 2 1 2
1 2 1 2 1 2

( , ,0) ( , ,0)
( , ,0) ( , , ) ( , ,0) ( )

( )

V V
V V A V u C A A

u C

   
     

 
        


    

 
where 1 and 2   denote the tax rates after the tax change. Giving people the initial asset level 

defined by A in (39) equates the initial value function 1 2( , ,0)V   and the post-tax change 

value function 1 2( , , )V A   to a high degree of accuracy. For small tax changes this procedure 

is approximately equal to redistributing the proceeds lump sum. 

 We have already seen that permanent tax cuts can have larger effects on current labor 

supply in the uncompensated case, so this must be true a fortiori in the compensated case – 

i.e., compensation works to counteract the larger income effect of the permanent tax. Hence, I 

will not derive the result analytically. The simulations in Section IV show quantitatively how 

the bound that  must attain for permanent tax changes to have larger effects than transitory 

is smaller in the compensated case (i.e., smaller than the bound in (37)).  

 
IV. Simulations of the Two-Period Model 

IV.A. Two-Period Model Calibration    

To calibrate the two-period model, we may think of each period as 20 years out of a 

40-year working life (e.g., 25 to 44 and 45 to 64). I assume a real annual interest rate of 3%. 

As 1/(1+.03)
20

 = 0.554, this implies a 20 year interest rate of r = .806. Thus, I assume the 

discount factor is ρ = 1/(1+r) = 0.554. I set the tax rates to τ1 = τ2 = .40 in the baseline model.  

I will examine how the model behaves for a range of values of the key utility function 

parameters η and γ. Two (of the very few) studies that estimate life-cycle models with both 

savings and human capital, and that also assume CRRA utility, are Keane and Wolpin (2001) 

and Imai and Keane (2004). They estimate η ≈ -.5 and η ≈ -.75, respectively.
8
 Goeree, Holt 

and Palfrey (2003) present experimental evidence, as well as evidence from field auction 

data, in favor of η ≈ -.4 to -.5. Bajari and Hortacsu (2005) estimate η ≈ -.75 from auction data. 

Thus, I primarily use values of -.50 and -.75 for η.
9
 I will also consider the η = -1.0 case that 

is widely used in macro models (i.e., U=log(C) so income and substitution effects cancel). 

                                                 
8
 The only other study I am aware of with human capital, saving and CRRA utility is Van der Klauuw and 

Wolpin (2008). They obtain η ≈ -1.60, which is much lower than the values I assume. This may be because they 

look at people at or near retirement, while Keane and Wolpin (2001) and Imai and Keane (2004) use data on 

young men. Shaw (1989) was the first to estimate a dynamic model with both human capital and saving. But she 

used translog utility, so the estimates are not useful for calibrating (1). 
9
 These values of η imply less curvature in consumption (more intertemporal substitution) than much of the prior 

literature on consumption Euler equations. Keane and Wolpin (2001, p. 1078) argue that prior work gave down-

ward biased estimates of η because it ignored liquidity constraints. Without liquidity constraints one needs η<<0 

to explain why youth with steep age-earnings profiles don’t borrow heavily in anticipation of earnings growth.  
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Of course, the value of γ is the subject of controversy. Most estimates of the Frisch 

elasticity (1/γ) are quite small (see Keane (2011)). Two rare exceptions are French (2005), 

who obtains 1.33 for 60 year olds in the PSID, and Heckman and MaCurdy (1982) who 

obtain 2.3 for married women in the PSID. But most estimates are in the 0 to .50 range. At 

the same time, many macro economists have argued that values of 2 or greater are needed to 

explain business cycle fluctuations using standard models (see Prescott (1986, 2006)).  

Imai and Keane (2004) is a major exception to the prior literature, as they estimate 

that γ ≈ .25. They were first to estimate the Frisch elasticity in a model that includes human 

capital. And they argue, for reasons similar to those discussed here, that failure to account for 

human capital led prior work to severely understate (1/γ).
10

 Keane and Rogerson (2010) 

discuss a variety of other mechanisms that may have caused past work to understate (1/γ). 

Given the controversy over γ, I examine the behavior of the model for a wide range of 

values. Specifically, I look at γ = {0, 0.25, 0.50, 1, 2, 4}. But I often focus on γ = 0.50, which 

I consider plausible in light of Imai and Keane (2004) and Keane and Rogerson (2010).  

The β is just a scaling parameter that depends on the units for hours and consumption, 

and has no bearing on the substantive behavior of the model. Thus, in each simulation, I set β 

so optimal hours are 100 in the model without human capital (α=0). The initial wage w1 is 

also set to 100. These values were chosen purely for ease of interpreting the results.  

Finally, consider the wage function. In contrast to the simple function assumed for 

analytical convenience in Section III (equation 17), here I assume the more realistic: 
 

(40)  2
2 1 1 1exp( 100 )w w h h      

 

This is similar to a standard Mincer log earnings function  2
2 1 1 1ln ln 100w w h h      , 

where w1 is the initial skill endowment, and there is a quadratic in hours (experience). But I 

also include a depreciation term δ, which causes earnings to fall if the person does not work 

sufficient hours in period one (Keane and Wolpin (1997) find depreciation is important).   

Given that β is chosen so hours will be close to 100 in period one, we can think of 

h=100 as corresponding (roughly) to full-time work and h=50 to part-time work.
11

 I decided 

to calibrate the model so that: (i) a person must work at least part-time at t=1 for the wage not 

to fall at t=2, and (ii) the return to additional work falls to zero at 200 units of work. Given 

                                                 
10

 It is notable that French (2005), who also obtained a high value of (1/γ), did so for 60 year olds. As both Shaw 

(1989) and Imai and Keane (2004) note, human capital investment is less important for people late in the life-

cycle. For them, the wage is close to the OCT, so the bias from ignoring human capital will be much less severe.  
11

 Actually, agents will typically supply somewhat more than 100 units of labor when α>0, due to the incentives 

to acquire human capital.  
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these constraints, the wage function reduces to: 
        

(41)  2
2 1 1 1

175
exp 100

4 4
w w h h


 
 

   
 

 

 
Thus, the single parameter α determines how work experience maps into human 

capital. I calibrate α so it is roughly consistent with the 33% to 50% wage growth for men 

that occurs from age 25 to age 45. As we’ll see below, this requires α in the .008 to .010 

range.  However, I will also consider a range of other α values, to learn how the behavior of 

the model changes when human capital is more or less important.  

IV.B. Baseline Simulation of the Two-Period Model       

 Table 1 reports baseline simulations of models with η = -.75 and η = -.50. It reports 

units of work in periods 1 and 2, as well as the wage rate in period 2. As the wage at t=1 is 

normalized to 100, one can read the amount of wage growth directly from the table. Results 

are reported for values of α ranging from 0 to .012. Recall that β is normalized in all models 

so h = 100 in the α=0 case. Thus, the overall level of hours rises as we move down the rows 

of the table and the return to human capital investment increases.    

 I first look at how the models capture wage growth. Consider models with η = -.50.   

At α = .008, wage growth ranges from 31% when γ = 4 to 46% when γ = 0, including 39% at 

my preferred value of γ = .50. These are solidly in the range of values that Geweke-Keane 

obtained from the PSID. At α = .010, wage growth ranges from 41% when γ = 4 to 66% when 

γ = 0, including 54% at my preferred value of γ = .50. This brings us to the upper end of the 

range of values that Geweke-Keane estimated. Based on these simulation results, I conclude 

that values of α in the .008 to .010 range are reasonable (at least for η = -.50).
12

 

A notable feature of Table 1 is that wage growth is not very sensitive to the value of 

η. Thus, α = .008 to .010 is also a reasonable range when η = -.75.   

 Next consider how the models capture hours growth. Like wages, hours have a hump 

shape over the life cycle; but hours grow less rapidly at young ages. For instance, as Imai and 

Keane (2004) note, for men in the NLSY79, average annual hours increase 12% from age 25 

to age 35. Descriptive hours regressions in Pencavel (1986) show a similar pattern. For the 

1956-65 birth cohort (males and females), McGrattan and Rogerson (1998) use U.S. Census 

data to project average weekly hours of 30.8, 34.5, 34.2 and 18.6 at ages 25-34, 35-44, 45-54 

and 55-64 (see their Table 10). Note that hours grow by 12% from the first interval (25-35) to 

the second (35-44). They then plateau before falling by 47% at ages 55-64.  

                                                 
12

 With α = .007, wage growth from t=1 to t=2 is 32% at my preferred value of γ = .50. This is plausible, but a 

bit low compared to the 33% to 52% values that Geweke and Keane (2000) estimated from the PSID. 
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Of course, a two-period model cannot capture the inverted-U shape of hours, as one 

would need at least three periods to capture both the growth at young ages and the decline at 

ages 55-64.
13

 Thus, I calibrate the two-period model to capture the modest hours growth of 

roughly 10% to 15% that occurs over the life-cycle from youth to middle age.  

In Table 1 we see that the model with α = .008, η = -.50, and γ = .50 (which I view as 

plausible values) gives an increase in work units from 121 at t=1 to 133 at t=2, meaning that 

hours growth is 10%. Thus, this model can be viewed as successfully capturing the modest 

growth in hours that we see for workers from their 20s to their 40s.  

Most other specifications in Table 1 also appear reasonable, but a few can be ruled 

out. In particular, for α in the plausible .008 to .010 range, we see that models with γ = 0 

generate implausibly large increases in labor supply (e.g., 69% in the α = .008, η = -.50 case). 

Finally, I repeated the experiments described below in 3 and 4-period models, letting 

 increase in the last period to replicate the hours decline at ages 55-64. The results are quite 

similar (available on request). Furthermore, Section V simulates taxes in the full Imai-Keane 

(2004) model, which provides a good fit to hours, wages and assets over the whole life cycle 

(ages 20-65). The multi-period model gives new insights, but does not alter the key results.                

IV.C. Effects of Taxes in the Two-Period Model 

 In this Section I use the simple two period model of Section III to simulate effects of 

temporary and permanent tax changes. All simulations assume that taxes have no effect on 

pre-tax wages. This is restrictive, but consistent with widely used macro models that assume 

a constant-returns-to-scale Cobb-Douglas production technology. 

Tables 2 presents results for η = -.75 (the Imai-Keane estimate). The left panel shows 

elasticities with respect to temporary tax changes at t=1. The right panel shows elasticities 

with respect to permanent tax changes (i.e., changes that apply in both periods). The first four 

rows show results for α = 0, the case of no human capital accumulation. Lower rows show 

results for progressively higher values of α. The columns correspond to different values of γ. 

Consider first the case of α = 0 and γ = .50, which is a common value in calibrating 

real business cycle models. Then, the Marshallian elasticity is (1+η)/(γ-η) = 0.20, the Hicks 

(compensated) elasticity is 1/(γ-η) = 0.80, and the Frisch elasticity is 1/γ = 2.0. As we see in 

the first three rows of Table 2, the theoretical values of these elasticities correspond closely 

to the numerical values obtained by simulating the model. Slight differences arise only 

because we are taking finite difference derivatives (i.e., we increase (1-τ) by 1%).  

                                                 
13

 Also, to capture the ≈50% decline in average hours that occurs at ages 55-64, one would want to take account 

factors like declining tastes for work, health issues, pensions, etc.. The 2-period model abstracts from these 

issues, which are often captured by an age varying  in multi-period labor supply models (see Keane (2011)). 
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The Hicks and Marshall elasticities appear in the right panel of Table 2, as they are 

responses to permanent tax changes. The Frisch elasticity does not properly belong in either 

panel, as it measures hours growth in response to wage growth,
14

 which is not identical to the 

response to a transitory tax change. The Frisch appears in the left panel only for convenience.        

 A key point is that elasticities with respect to transitory wage/tax changes at t=1do not 

correspond to any of the usual Marshall, Hicks of Frisch concepts. For example, we can use 

equation (13) to obtain the theoretical value of the uncompensated labor supply elasticity 

with respect to a temporary tax change at t=1 in the model with no human capital:  
  

 1

1

ln 1 .75 ( .75) 1 .50 1
0.20 0.64 0.84

ln(1 ) 0.50 .75 .50 ( .75) .50 2 .806

h



     
              

 

 
This aligns closely with the value of 0.835 obtained in the simulation. This uncompensated 

elasticity actually exceeds the Hicks (0.80) for reasons discussed earlier (see footnote 3). 

Finally, Table 2 also reports a compensated elasticity with respect to a temporary tax cut of 

1.222. This is also close to the theoretical value from equation (16), which is 1.228. 

 As expected, without human capital, the uncompensated and compensated elasticities 

with respect to transitory tax cuts greatly exceed those with respect to permanent tax cuts 

(e.g., 0.835 vs. 0.199 and 1.222 vs. 0.792, respectively, in the γ = .50 and η = -.75 case). 

IV.C.1. The Effect of Small Returns to Work Experience on Frisch Elasticity estimates 

 The second panel of Table 2 presents results when the human capital effect is set at 

the very low level of α = .001. Strikingly, even this small value renders the conventional 

method of estimating the Frisch elasticity – i.e., taking the ratio of hours growth to wage 

growth – completely unreliable.
15

 For instance, with γ = 0.50 and tax rates fixed, the wage 

increases by 3.25% from t=1 to t=2. At the same time, hours increase from 101.43 to 102.16, 

or 0.72%. Taking the ratio, we would infer a Frisch elasticity of only (1/γ)=0.72/3.25= 0.221, 

compared to the true value of (1/γ) = 2.0. [Note: Here I define the “correct” Frisch elasticity 

as the response of hours to changes in the opportunity cost of time, as in (31)].   

 One might surmise that the conventional method of calculating the Frisch elasticity is 

severely downward biased because the wage change from t=1 to t=2 in the baseline model 

(with a fixed tax rate of 40%) is entirely endogenous. It results entirely from human capital 

                                                 
14

 For example, in the =0 panel of Table 2, in the γ = .50 case, the Frisch elasticity is reported as 2.01beacuse 

the wage grows by 1% between t=1 and t=2 and hours grow by 2.01%. 
15

 Of course, econometric studies that estimate the Frisch elasticity by regressing hours changes on wage 

changes use more complex IV techniques, designed to deal with measurement error in wages, heterogeneity in 

tastes for work, and unanticipated wage changes. We do not have any of those problems here, so the appropriate 

estimator boils down to just taking the ratio of the percentage hours change to the percentage wage change.     
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investment. There is no source of exogenous variation in the after-tax wage, such as an 

exogenous tax change or a change in the rental rate on human capital (e.g., a labor demand 

shift). One might further surmise that if the data contained an event such as a temporary tax 

cut that shifted the wage path exogenously, one could infer γ more reliably. 

 Surprisingly, this intuition is fundamentally flawed. The row labelled “Frisch–tax” in 

Table 2 reports Frisch elasticities calculated in the conventional manner in a regime with a 

temporary 1% tax cut in t=1. Looking at the γ = 0.50 case, we see the estimate is -.478, which 

is not even the correct sign. Why? The tax cut causes labor supply to increase in period 1, 

which, in turn, increases the wage in period 2. But despite the wage increase, labor supply 

actually declines in period 2. This is because (i) the tax cut is removed, and (ii) the human 

capital investment part of the OCT is removed. Thus, although the wage is higher at t=2, the 

opportunity cost of time is lower. This illustrates well the important distinction between the 

wage and the opportunity cost of time in a model with human capital.  

 Another way to look at this is that a strictly exogenous shift in the wage path cannot 

exist in a model with human capital. For instance, a higher after-tax wage at t=1 increases 

hours, but this raises the wage at t=2 via the human capital effect. So a t=1 tax cut does not 

cause an exogenous change in the wage profile: the wage at t=2 is altered by the behavioral 

response. This has fundamental implications for estimation of wage elasticities. If experience 

alters wages, methods that rely on exogenous wage variation will not work. One must model 

the joint wage/labor supply process, and determine how labor supply responds to the OCT. 

IV.C.2. Tax Effects with Plausible Returns to Work Experience (α = .008 to .010) 

 Now consider the case of α = .008. If we continue to focus on η = -.75 and γ = 0.50, 

then the baseline model (i.e. no tax change) generates 35.24% wage growth from t=1 to t=2 

(see Table 1). As I noted in Section IV.B, this is roughly consistent with observations. Labor 

supply grows by 6.23%. So by conventional methods, we would estimate a Frisch elasticity 

of only 6.23/35.25 = 0.177. If, instead of the baseline, we use the data that includes a tax cut 

at t=1, we would obtain 0.198.
16

 In either case, the estimate is far too small (as 1/γ = 2.0). 

Now consider labor supply elasticities with respect to transitory (t=1) tax cuts. These 

are reported in the left panel of Table 2. The first thing to note is that both uncompensated 

and compensated elasticities drop substantially when human capital is included in the model. 

For example, they fall from .835 and 1.222 in the no human capital case to .312 and .606 in 

                                                 
16

 Recall that for α = .001 conventional methods produced very different Frisch estimates depending on whether 

the data contain a tax change. But for larger values like α = .008 the estimates are quite close (although far too 

small in any case). This is because at larger values of α wage growth from period t=1 to t=2 is much greater, and 

this insures that the OCT does increase (despite the tax rate increase and human capital return drop) at t=2. 
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the α=.008 case (i.e., by more than a factor of two). As I noted in Section III.B, it is intuitive 

that human capital dampens labor supply responses to temporary tax cuts: if human capital is 

more important, a temporary tax hits a smaller part of the OCT. 

Next, compare responses to temporary vs. permanent tax rate changes. When α=.008 

and γ = 0.50, the uncompensated elasticity of labor supply at t=1 with respect to a temporary 

tax cut at t=1 is 0.312, while that with respect to a permanent tax cut is 0.176. This seems 

consistent with the conventional wisdom that temporary tax changes have larger effects than 

permanent ones. However, the compensated elasticity of labor supply at t=1 with respect to a 

temporary tax cut is 0.606, while that with respect to a permanent tax cut is greater, 0.698. 

So, at least for compensated tax changes, we see it is indeed possible for permanent changes 

to have larger effects than transitory changes at plausible parameter values. In the next 

section, we’ll see this can be true for uncompensated elasticities as well (see Table 3).   

Finally, in Table 2 we also see that the Frisch elasticity – as conventionally measured 

– is 3 to 4 times smaller than compensated elasticities for both permanent and temporary tax 

changes. This illustrates another key point: the generally low estimates of the Frisch elasticity 

in the literature should not be viewed as an upper bound on compensated elasticities.
17

       

IV.C.2. The Case of η = -.50 (the Keane-Wolpin (2001) estimate) 

Next I turn to Table 3, which gives results for models with η = -.5 (the Keane-Wolpin 

(2001) estimate). Focus again on the γ = 0.50 case. In the model without human capital (α=0), 

the uncompensated elasticity with respect to a temporary tax cut at t=1 is, as expected, almost 

exactly twice as large as that with respect to a permanent tax cut (1.03 vs. 0.50).
18

 But with 

plausible returns to work experience (α = .008), the uncompensated elasticity with respect to 

a permanent tax cut is greater than that with respect to a temporary tax cut (0.445 vs. 0.420). 

If we move to the α=.010 case, which is towards the higher end of the plausible range, the 

difference grows even larger (0.424 vs. 0.327).
19

 

Recall that in Table 2, where η = -.75, we found that permanent tax cuts could have 

larger effects than transitory in the compensated case. Here, with η = -.50, we see this can 

also happen in the uncompensated case. This is consistent with the theory in Section III. 

                                                 
17

 In fact, the Frisch elasticities do not even give upper bounds for uncompensated elasticities. E.g., in the 

α=.008, γ = 0.50 case the two methods of calculating the Frisch elasticity produce values of 0.177 and 0.198, 

while the uncompensated elasticity for a t=1 tax cut is 0.312. 

18
 Recall from equation (13) that 1

1

ln 1 .50 ( .50) 1 .50 1
0.50 0.53 1.03

ln(1 ) 0.50 .50 .50 ( .50) .50 2 .806

h



     
              

.  

19
 Of course, if uncompensated elasticites of permanent tax cuts exceed those of transitory then this must be true 

a fortiori for compensated elasticities. For instance, in the α = .008 and γ = 0.50 case the compensated elasticity 

with respect to a permanent tax cut is 0.884, while that with respect to a temporary tax cut is only 0.661. 
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Recall from equation (37) that the hurdle the human capital effect (α) must exceed for 

permanent tax cuts to have larger uncompensated effects is increasing in (-η). This hurdle 

was not met in Table 2, but it is met in Table 3 (where (-η) is smaller).  

These results illustrate a key point: for plausible parameter values – indeed for what I 

have argued in Section IV.A are the preferred range of values for α, η and γ – labor supply 

effects of permanent tax cuts can exceed those of temporary tax cuts in the life-cycle model 

with human capital. Consistent with the theory section, this is more likely if income effects 

are weaker (and hence more likely for compensated elasticities). 

 Finally, note that in the α=.008 case the conventional method of calculating the Frisch 

elasticity produces values of .304 and .256 (if the data do or do not contain a temporary tax 

cut, respectively). These estimates, typical of the low values in prior empirical work, imply 

values of γ of 3.3 to 3.9. Yet we know the true value is γ=0.50. Strikingly, these conventional 

Frisch elasticity estimates are even smaller than the uncompensated elasticity with respect to 

a permanent tax cut (.445) and much smaller than the compensated elasticity (.884).  

This illustrates another important point: The low estimates of the Frisch elasticity 

obtained in prior literature are consistent not only with large values of (1/γ), but also with 

quite large values for compensated and even uncompensated elasticities. Hence, existing 

estimates of the Frisch elasticity that ignore human capital should not be viewed as upper 

bounds on either of these elasticities.      

IV.C.3. The Case of Log Utility (Income and Substitution Effects Cancel) 

The previous two sub-sections presented results for calibrated values for η such that 

substitution effects dominate income effects (η>-1). Those values (i.e., η=-0.5 and -.75) were 

chosen based on results in Imai and Keane (2004), Keane and Wolpin (2001) and several 

other micro data studies. But macro models often assume log(C) utility to generate balanced 

growth paths. Thus, it is also interesting to consider the case of η=-1.  

To conserve space I only give an overview of the results. If γ=0.5 wage growth is 

33%, 45% and 59% in the α=0.008, 0.010 and 0.012 cases, and hours growth is 4% to 5%. So 

these cases all generate plausible wage and hours patterns. Note that, with log utility, larger 

values of the human capital effect (up to  = 0.012) become plausible.   

Of course, the uncompensated elasticity with respect to permanent tax cuts is always 

zero, as income and substitution effects cancel. The uncompensated elasticities of t=1 labor 

supply with respect to transitory (t=1) tax cuts are 0.24, 0.18 and 0.13 in the α=0.008, 0.010 

and 0.012 cases, respectively. So, exactly as expected, with log utility transitory tax cuts must 

have larger effects than permanent tax cuts in the uncompensated case. 
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But in the compensated case this outcome is reversed. Compensated elasticities of t=1 

labor supply with respect to transitory tax cuts are 0.56, 0.48 and 0.42 for the α=0.008, 0.010 

and 0.012 cases, respectively. But for permanent tax cuts the figures are 0.57, 0.56 and 0.55. 

A similar pattern holds for all γ in the 0.25 to 4 range.
20

 Thus, for plausible human capital 

effects, and for all plausible γ, permanent tax effects are larger than transitory tax effects. 

IV.C.4. Results for the Model with Liquidity Constraints  

Finally I consider the model with borrowing constraints (Section III.A). I focus on the 

η = -.50 case.
21

 As we saw in Section III.A, in a model with human capital but no borrowing, 

the uncompensated labor supply elasticity with respect to permanent tax changes must exceed 

that for temporary changes. So the issue is only one of magnitudes:  

For instance, in the α = .008 and γ = 0.5 case, the uncompensated elasticity with 

respect to a temporary tax cut is 0.345 while that with respect to a permanent tax cut is 0.469. 

Similarly, the compensated elasticity with respect to a temporary tax change is 0.687 while 

that with respect to a permanent tax change is 0.958. (The method of compensation in this 

case is discussed in Appendix B). While both uncompensated and compensated elasticities 

with respect to permanent tax changes always exceed those for temporary tax changes, the 

size of the difference grows with the importance of human capital effects.  

Recall that, in the model with borrowing (Table 3) it was necessary to have α ≥ .006 

in order for compensated elasticities with respect to permanent tax cuts to exceed those for 

temporary tax cuts, and to have α ≥ .008 to get this outcome for uncompensated elasticities. 

With borrowing constraints, we see that any positive α generates this outcome. Models with 

and without borrowing constraints are polar cases, with the “truth” presumably somewhere in 

between. If borrowing constraints are important, more modest returns to experience will be 

sufficient for permanent tax changes to have larger effects than temporary ones.
22
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 For example, if γ=2.0, which conforms closely with conventional wisdom, the compensated elasticity of t=1 

labor supply with respect to transitory tax cuts is 0.27, 0.24 and 0.22 for the α=0.008, 0.010 and 0.012 cases, 

respectively. But for permanent tax cuts these figures are 0.32, 0.31 and 0.31. Thus, the permanent tax effects 

are 20% to 40% greater than transitory effects.  
21

 I focus on this case because Keane and Wolpin (2001) estimated the only life-cycle model I am aware of with 

both human capital and liquidity constraints, and they obtained η = -.50. Note that they estimated the extent of 

liquidity constraints, and their estimates implied rather tight limits on uncollateralized borrowing. 
22

 We can also ask what borrowing constraints imply about the Frisch elasticity. Of course with no borrowing or 

lending the inter-temporal substitution mechanism is completely shut down. If taxes are temporarily low at t=1, 

one can’t heed the advice “when the sun shineth make hay” (Heywood (1547)) and save part of the earnings for 

t=2. Hence, the Frisch elasticity properly defined does not exist. It still makes sense, however, to ask what one 

would obtain for the Frisch elasticity (and what one would infer about γ) if one applied conventional methods in 

an environment with liquidity constraints (Domeij and Floden (2006) ask a similar question). Of course, for the 

case of no human capital (α = 0) one just obtains the Marshallian elasticity. But when human capital is included 

one typically obtains negative values. For example, if α=.008 and γ=0.5 the Frisch elasticity appears to be -.189. 

The estimate is negative because the OCT falls over time while the wage increases. 
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V. Simulations of the Imai-Keane Model (Short vs. Long Run Tax Effects) 

 Next I use the Imai and Keane (2004) model to simulate effects of various types of tax 

changes. To my knowledge, this is the only micro model that attempts to fit asset, hours and 

wage data over the whole working life.
23

 Because it generates life-cycle paths from age 20 to 

65, it can be used to simulate the long-run effects of permanent tax changes. This was not 

possible in the simple 2-period model of Sections III-IV. The basic setup is as follows:  

 The Imai-Keane model assumes the same utility function as MaCurdy (1981). There 

are annual decision periods from age 20 to 65. At age 65 agents must retire, and there is a 

terminal value function that depends on assets (to generate a motive for retirement savings). 

The model contains a complex human capital production function that generalizes the simple 

2-period model in several ways. In particular, it accommodates complimentarity between the 

stock of human capital and hours of work in the production of skill. Such complimentarity is 

quite evident in the data. Production function parameters are also allowed to vary in a flexible 

way with education and age. Wages are stochastic, and wage shocks exhibit persistence over 

time. Agents can borrow/lend across periods, and there are age varying tastes. 

The model is fit to white males from the NLSY79 born in 1958-65 and followed from 

age 20 to 36. Imai and Keane (2004) document that the model produces a good in-sample fit 

to assets, hours and wages, both in terms of typical age profiles and dynamics/transition rates 

(e.g., it captures observed persistence in individual wages quite accurately). It also generates 

reasonable out-of-sample forecasts past age 36. For instance, the model accurately predicts 

the substantial fall in hours at older ages – e.g., it predicts an hours decline from ages 45-54 

to 55-64 of 53%.
24

 This is close to the 47% figure for this cohort projected by McGrattan and 

Rogerson (1998).
25

 Also, when simulated data from the Imai-Keane model is used to estimate 

conventional labor supply functions, it gives conventional (i.e., small) wage elasticities.  

As the Imai-Keane model provides a good fit to wage, hours and asset patterns – both 

in and out-of-sample – it seems credible to use it to predict labor supply responses. It is 

important to note, however, that this exercise compliments, but does not substitute for, the 

results from the simple 2-period model: For example, say we find permanent tax cuts have 

larger effects than transitory in the Imai-Keane model. As the model is complex, the intuition 
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 Two other papers that fit assets, hours and wages are Van der Klauuw and Wolpin (2008) and Keane and 

Wolpin (2001). The former simulates behavior of older workers, while the later focuses on youth.   
24

 A limitation of the Imai-Keane model is it assumes interior solutions for hours, so it cannot generate complete 

retirement prior to age 65. But this limitation should not be exaggerated. In the 2008 CPS, 70% of men aged 55-

64 still worked, and 52% of men aged 62-64 still worked (see Purcell (2009)).   
25

 Overall, the Imai-Keane model predicts average weekly hours (for white males) of 44.4, 48.9, 43.4 and 19.9 at 

ages 25-34, 35-44, 45-54 and 55-64. This is similar to what McGrattan and Rogerson (1998) project for all men 

in this cohort (see their Table 8), but the Imai-Keane hours profile is shifted up due to exclusion of minorities.  
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for why this occurs would not be as transparent as in the simple model. As we’ll see, results 

from the 2-period model are in fact quite useful for understanding what drives several of the 

results in the multi-period model.            

To proceed, Table 4 reports simulated effects of permanent and transitory tax 

increases, using the Imai-Keane model. The effects of transitory tax increases were already 

reported in Imai and Keane (2004). But the permanent tax simulations, which are more 

relevant for evaluating long-run changes in tax policy, are new. 

More specifically, Table 4 reports effects of 5% tax increases. In the column labelled 

“transitory,” the tax increase applies for one year at the indicated age. For example, at age 20, 

a temporary 5% tax increase reduces hours by 1.5%. This implies an elasticity of only 0.30. 

This is far smaller than one might expect, given that Imai-Keane estimate (1/γ) = 3.8. But we 

see that effects of transitory taxes grow substantially with age. For instance, at age 60, a 5% 

tax increase reduces hours by 8.6%, implying an elasticity of 1.7.  

The intuition for these two results is clear from our earlier discussion of the 2-period 

model, particularly equation (29). Transitory taxes have relatively small effects at young ages 

because they only affect a part of the OCT (i.e., the current after-tax wage, and not the return 

to human capital investment). But, as workers age, the current wage makes up a larger share 

of the OCT, so the elasticity with respect to transitory taxes increases. Thus, the human 

capital mechanism dampens the response to transitory taxes, especially for young workers. 

The last two columns of Table 4 report effects of permanent 5% tax increases, both 

uncompensated and compensated. The tax increase occurs (unexpectedly) at the indicated age 

and lasts until age 65. The Table reports only the effect on current labor supply in the year the 

tax increase is first implemented. Note that compensated effects are much larger than 

uncompensated – implying that income effects are important – except at older ages. 

The key result in Table 4 is that, for younger workers, (compensated) permanent tax 

increases have larger effects on current labor supply than do transitory tax increases. For 

instance, consider a 5% tax increase that takes place at age 25. If it is transitory, hours fall by 

1.8%. But if it is permanent and proceeds are distributed lump sum, hours fall by 2.7%. So at 

age 25, the permanent tax effect is 50% greater. By the mid-30s permanent and transitory tax 

effects are roughly equal. Only in the 40s do transitory tax effects become somewhat larger.     

 These results are again consistent with intuition from the simple 2-period model. 

Permanent tax cuts can have larger effects on current hours than transitory tax cuts because 

they hit both the wage and human capital terms in (29), while a transitory tax only hits the 

current wage. But as workers age the returns to work experience fall. Eventually, the human 
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capital effect is too small relative to the income effect (i.e., the bound in (37) is no longer 

satisfied) and transitory taxes begin to have a larger current effect than permanent taxes.     

Another interesting aspect of Table 4 is that, starting at age 50, both compensated and 

uncompensated effects of permanent tax changes on current labor supply begin to grow quite 

rapidly. For instance, for workers aged 20 to 40, compensated effects of a 5% permanent tax 

increase are only -2.3 to -3.2%. But at ages 55 to 60 these effects grow to -7.2% and -10.5%. 

Uncompensated effects grow even more dramatically, from -0.7% at age 40 to -9.4% at 60.   

This pattern emerges because, as one nears the terminal period, income effects of 

permanent taxes become negligible. Indeed, at age 60, compensated and uncompensated 

elasticities of permanent tax changes slightly exceed that with respect to transitory changes 

(i.e., 2.1 and 1.9 vs. 1.7). Thus, even though the human capital effect is weak at age 60, it 

exceeds the even weaker income effect. [Note that uncompensated permanent tax effects 

never exceed transitory effects at younger ages; this outcome is theoretically possible, but the 

income effect is too strong for it to occur in practice].
26

 

So far, I have only discussed effects of tax changes on current period hours. Table 5 

examines the long-run impact of permanent tax increases. The Table considers a permanent 

(compensated) 5% tax increase that takes effect at either age 25, 30 or 35, and that remains in 

effect for the rest of a worker’s life. I report how this alters a person’s labor supply at 5-year 

intervals from age 25 to 65. For instance, say a 5% tax increase goes into effect unexpectedly 

when the worker is 25. Then, at age 25, his labor supply is reduced by 2.7%. But, at age 45 

his hours are reduced by 5.1%, and at age 60 the reduction is 19.3%.   

 The effect of a permanent tax change grows with age for two reasons: First, as I’ve 

already noted, as workers get older, the after-tax wage makes up a larger fraction of the OCT, 

so a given tax has a larger direct effect. Second, a permanent tax hike produces a “snowball” 

effect: If a worker reduces his labor supply at time t, he will have less human capital at time 

t+1. This causes him to work even less at time t+1, leading to a lower wage at t+2, etc..  

This “snowball” effect of taxes on pre-tax wages is also shown in Table 5. At first, tax 

effects on human capital are small, but they grow substantially with age. For instance, if a 5% 

tax increase is instituted when a worker is 25, then by age 40 his wage is reduced by 1.0%, 

but by age 55 his wage is reduced by 3.6%, and by age 65 the reduction is 11.6%. So in the 

long-run a permanent tax reduces the rate of human capital accumulation. This lowering of 

pre-tax wages creates an additional work disincentive, beyond the direct effect of the tax.  

                                                 
26

 I have also calculated compensated elasticities with respect to transitory tax changes. Because income effects 

of transitory tax changes are minor, the differences from the figures in Table 4 are negligible.  
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Thus, we see that the human capital mechanism amplifies the effect of permanent tax 

changes in the long run. This result has important implications for the growing literature that 

attempts to estimate labor supply elasticities by looking at responses to major tax reforms 

(see Saez et al (2011) or Keane (2011) for reviews). This literature adopts a difference-in-

difference approach and generally focuses on short-run responses. The results presented here 

suggest that a short-run focus may cause one to seriously understate responses to tax reforms.      

With this issue in mind, I examine how a permanent tax increase affects labor supply 

over the entire working life. That is, I simulate the impact of a permanent 5% tax hike that 

starts at age 20 and lasts through age 65. If the revenue is thrown away, average hours (from 

age 20 to 65) drop by 2%. If the revenue is redistributed lump sum, average hours drop 6.6%. 

These figures imply uncompensated and compensated elasticities with respect to permanent 

tax changes of 0.4 and 1.3, respectively. These values are much larger than the 0.14 and 0.64 

values one would obtain if one only looked at short run impacts at age 20 (see Table 4). 

Notably, the compensated elasticity implied by the Imai-Keane parameter estimates in 

a model without human capital (a la MaCurdy (1981)) is 1/(γ-η) = 1/(.262+.736) ≈ 1.0. Thus, 

the human capital mechanism and the “snowball” effect on wages in the multi-period model 

combine to amplify the compensated elasticity by 30% (from 1.0 to 1.3). This is in sharp 

contrast to the dampening of the transitory elasticity that we discussed earlier.  

 
VI. Human Capital and the Welfare Losses from Taxation 

 Here I return to the simple 2-period model of Section IV to consider how introducing 

human capital in the life-cycle model affects welfare losses from labor income taxation. I will 

assume a flat rate income tax equal to τ in both periods. To discuss optimal taxation it is 

necessary to specify that the government provides a public good from which workers derive 

utility.
27

 Let the quantity of the public good be denoted by P, and assume the government 

provides the same level of P in each period. Then the government budget constraint is: 
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Next we modify the value function in equation (25) to include a public good: 
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Here the term λf(P) is the utility workers derive from the public good. I’ll consider specific 
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 As we have a representative agent model, the redistributive motive for taxation that is central to work in the 

tradition of Mirrlees (1971) and Sheshinski (1972) is not relevant here.   
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functional forms below. Given (43), the worker’s first order conditions are: 
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where, given the wage equation (41) we have 2 1 1/ /200dw dh h   , and so: 
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There is also a first order condition describing the problem of the government: 
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As before I assume ρ(1+r)=1 in order to simplify the problem and focus on the key issues. In 

this case, and assuming no borrowing constraints, we have C1 = C2 = C. Then, (47) reduces to 

simply      ( ) 1 1 0f P P C C             , and, as ∂P/∂τ = -∂C/∂τ, we just have: 

 

(48) ( )f P C    

 
This says the benevolent government (or social planner) sets the tax rate so as to equate the 

marginal utility of private consumption to that of public good consumption.    

Equations (42)-(48) describe a social planner version of the model where the planner, 

in deciding on hours, considers how increased labor supply leads to increased provision of 

the public good. I also consider a “free rider” version of the model where there are many 

identical workers, and each assumes his/her own actions have a trivial impact on pubic good 

(i.e., dP/dh =0). Then the first term in equations (44)-(46) drops out.        

 To complete the model we must specify the functional form of f(P). The curvature of 

f(P) determines how the relative size of the public sector changes as workers grow wealthier. 

I consider three alternative forms: f(P) = log(P),  f(P) = 2P
.5

 and  f(P) = P. These correspond 

to cases where P/C declines, is stable or grows as C increases. One might try to calibrate f(P) 

by looking at how public spending evolves as countries become richer. But my main results 

are not very sensitive to this assumption – at least qualitatively – so I do not pursue this. 
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All models are calibrated with η = -.50 or η = -.75. The scaling parameter λ is set so 

the optimal tax rate is 40% when there is no human capital accumulation (i.e., when α = 0). 

Table 6 shows how optimal income tax rates vary with γ and α, for the η = -.50 case. Optimal 

tax rates are quite similar in the η = -.75 case, so I do not report them.  

In the left panel of Table 6, we have f(P) = log(P). Thus, utility has more curvature in 

the public good than the private good. Note that as α increases people become wealthier 

(because, ceteris paribus, their t=2 wage is higher). Thus, in the log(P) case, the optimal tax 

rate falls as α increases. For instance, if we increase α from 0 to .008, and adopt my preferred 

value of γ=.50, the optimal tax rate falls from 40% to 33.9% in the free rider model.  

  Next consider the case of f(P) = 2P
.5

. Here (48) is simply λP
-0.5

=C
-0.5

. As curvature of 

the utility function in the public and private goods is equal, the optimal rate is always 40%.
28

  

The right panel of Table 6 reports results for the case of f(P) = P. Here (48) reduces to 

λ = C
η
. So the government sets the tax rate to keep the marginal utility of private consumption 

constant. Hence, the optimal tax rate in increasing in α. For example, when α=.008 and γ=.50, 

the optimal tax rate is 51.9% in the free-rider version of the model.  

Next, Table 7 reports welfare costs of proportional income taxes, for different values 

of the utility (γ and η) and human capital (α) parameters. I report results for the free-rider 

version of the model only. To measure welfare loss, I must also solve a version of the model 

where a lump sum tax is used to finance the public good. The lump sum tax is set to the level 

that funds the same level of P as in the proportional tax version of the model.  

The first measure of welfare loss, denoted C
*
 in Table 7, is the extra consumption that 

must be given to workers in the proportional tax world to enable them to attain the same level 

of the optimized value function (see equation (39)) as in the lump-sum tax world, expressed 

as a fraction of consumption in the proportional tax world. The second measure, C
**

, is the 

loss in consumption in the lump-sum world that brings the worker down to the utility level of 

the proportional tax world, expressed as a fraction of consumption in the lump-sum world.           

Table 7 part A reports results for the f(P)=log(P) case. The left panel reports results 

for η = -.75 and the right panel reports results for η = -.50. Each panel gives results for γ equal 

to 0.50 or 4, and for α equal to 0 or 0.008.  

The most interesting comparison is between the “conventional” case of (α = 0, γ = 4), 

which coincides with the typical results from prior studies that estimate the Frisch elasticity 

ignoring human capital, and the setting (α = .008, γ = 0.5), which I argue is plausible once 
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 As C=I(1-τ) and P=Iτ, where I is (1+r)/(2+r) times the PV of lifetime income, we have P/C = τ/(1-τ). This 

implies λ
2
=τ/(1-τ) so τ= λ

2
 /(1+ λ

2
). Thus the optimal tax rate is a constant that only depends on λ.  
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one accounts for human capital. In the “conventional” setting, welfare losses are only 3 to 4% 

of consumption, regardless of the welfare measure. This is consistent with the conventional 

wisdom that welfare losses from taxation are small. But in the (α = .008, γ = 0.5) case the 

welfare losses are much larger, ranging from 8.3% to 11.4% of consumption.
29

 

By combining results from Tables 6 and 7, we can express these welfare losses as a 

fraction of revenue raised. This gives a more even comparison across scenarios that involve 

different tax rates. For the “conventional” (α = 0, γ = 4) case, taking b=C
*
 and using η = -.50, 

the welfare loss is only 5.8% of revenue. But for my preferred case of (α = .008, γ = 0.5) the 

loss is 21.5% of revenue.
30

 Thus, the welfare loss as a fraction of revenue is 4 times greater 

when we use parameter values that account for human capital.  

Next consider Part B of Table 7, which reports results for the case where f(P) = 2P
.5

. 

As noted earlier, if η = -.50 the optimal tax is always 40%, while if η = -.75 the optimal tax is 

slightly increasing in α.
31

 As before, in the “conventional” case (α = 0, γ = 4) welfare losses 

are only 3 to 4% of consumption. But with human capital (α = .008, γ = 0.5) welfare losses 

are much larger, ranging from 12 to 18% of consumption, depending on the measure used. 

Now consider welfare losses as a percent of revenue. For the “conventional” (α=0, 

γ=4) case we again have 5.8%. (As the tax rate is unchanged and α=0 there is no reason for 

results to change). For my preferred case of (α=.008, γ=0.5, η = -.50) we have 27.2%. So, 

using parameter values that account for human capital, we obtain a utility cost to consumers 

about 4.5 times greater than in the “conventional” case.   

 Finally, Part C of Table 7 reports results for f(P) = P. As we saw in Table 6, in this 

case the optimal tax rate rises substantially with α (as people become wealthier they demand 

more of the public good). For example, if γ=0.5 the optimal rate is 51.9% when α=.008. As 

tax rates are high, so are the welfare losses from income taxation. For example, if α = .008, 

η= -.75, γ = 1/2, the welfare loss is 19 to 28% of consumption, depending on the measure.  

We can again express the utility loss as a percent of revenue. For my preferred case of 

(α=.008, γ=0.5), and with η = -.5, we have 39.8%. This is 6.7 times greater than the cost 

calculated using “conventional” parameter values that ignore human capital.  
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 The results are not very sensitive to η: In the η = -.75 case welfare losses are again only 3% to 4% if α = 0, 

rising to 9% to 11% if α = .008. 
30

 We obtain these figures as follows: Letting R denote revenue, we have R = C ∙ τ/(1-τ), and letting W denote 

welfare loss, we have W = b ∙ C, where b is the percentage loss reported in Table 7. Thus, the welfare loss to 

workers as a fraction of revenue is W/R = b ∙ τ/(1-τ). In the “conventional” (α=0, γ=4) case, using η = -.50 and 

taking b=C
*
, we have W/R = (3.90) (1-.40)/(.40) = 5.8%. For my preferred case (α=.008, γ=0.5) we have W/R = 

(11.38)(1-.347)/(.347) = 21.5%. [It is appropriate to use b = C
*
 in these calculations, as R = C

*
 ∙ τ/(1-τ) is the 

actual revenue under the proportional tax]. 
31

 For example, when γ = 0.5 the optimal tax rate increases to 42.7% when α increases to .008. 
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In summary, while results of welfare calculations differ in detail for different choices 

of f(P), the basic pattern is similar: In a conventional parameterization of the life-cycle model 

that ignores human capital, welfare losses are only 3 to 4% of consumption and less than 6% 

of revenue raised. But if we use parameters that are plausible in a human capital version of 

the life-cycle model, welfare losses as a fraction of revenue are 4 to 7 times greater. 

    
VII. Conclusion 

If human capital is added to the standard life-cycle labor supply model, the wage no 

longer equals the opportunity cost of time (OCT). Rather, the OCT is the wage plus returns to 

work experience. This has important implications for how workers respond to taxes, and for 

proper estimation of labor supply elasticities. In fact, given human capital, the data appear 

consistent with much larger labor supply elasticities than conventional wisdom suggests.    

Another key implication is that the human capital mechanism dampens responses to 

transitory tax changes. This is because a transitory tax only affects one part of the OCT, the 

current after-tax wage, while leaving the return to human capital investment unaffected. 

In contrast, effects of permanent taxes on the OCT are amplified. This is because they 

alter both the current wage and the future return to human capital investment. As a result, it is 

possible for permanent taxes to have larger effects on current labor supply than transitory tax 

changes – contrary to conventional wisdom based on models without human capital.  

The condition for permanent taxes to have larger effects than transitory is that returns 

to work experience must be sufficiently large relative to income effects. In a simple 2-period 

model, I showed this can happen for plausible parameter values. Then, using the multi-period 

labor supply model of Imai and Keane (2004), which gives a good fit to life-cycle paths of 

wages, hours and assets, I found that permanent tax changes are likely to have larger effects 

than transitory for workers under 35 (for whom returns to work experience are large), and for 

workers over 50 (for whom income effects of permanent tax changes are small).    

As the Imai-Keane model generates complete life-cycle paths of worker behavior, it 

can also be used to simulate the long-run response to permanent changes in tax policy. The 

results indicate that human capital amplifies the response to permanent tax changes in the 

long-run. For example, consider a tax change that goes into effect at age 25 and lasts through 

age 65. The (compensated) elasticity of labor supply at age 25 is only 0.54. But the elasticity 

grows to 1.0 at age 45 and 3.9 at age 60.    

The effect of permanent tax changes grows over time because of a “snowball” effect 

on human capital investment: A permanent tax increase at t leads to less labor supply at t, 

which lowers wages at t+1, further reducing labor supply at t+1, etc.. In fact, in the previous 
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example, a 5% tax increase leads to a 7.5% reduction in human capital by age 60. This in turn 

causes labor supply to fall disproportionately at older ages.      

If the effects of permanent tax changes grow substantially over time, it has important 

implications for the literature that attempts to estimate labor supply elasticities by looking at 

responses to major tax reforms (see Saez et al (2011) or Keane (2011) for reviews). This 

literature generally focuses on short-run responses. But the results presented here suggest that 

a short-run focus may cause one to seriously understate responses to tax reforms. 

Another way to view this phenomenon is to note that the preference parameters in the 

Imai-Keane model imply a compensated (Hicks) elasticity of about 1.0 in a world with no 

human capital. But simulation of their model generates a compensated elasticity of only 0.54 

at age 25 rising to 3.9 at age 60, with an average over the whole working life of 1.30. Thus, 

the impact on lifetime hours is 30% greater than if the human capital mechanism were shut 

down. Thus, not only does human capital cause permanent taxes to have a larger effect in the 

long-run (i.e., at older ages), it also amplifies their total impact on lifetime hours. 

Another key result is that even a “small” return to work experience (in a sense made 

precise in the paper) can lead to severe downward bias in conventional methods of estimating 

the intertemporal (Frisch) elasticity – where, by “conventional,” I mean methods that ignore 

human capital. I showed that use of exogenous tax regime changes to identify labor supply 

elasticities does not resolve the problem of bias in conventional estimation methods, and can 

even make the bias greater.
32

  

I went on to use a simple 2-period model with a government provided public good to 

study welfare effects of proportional (i.e., flat-rate) income taxation. The most interesting 

comparison is between parameterizations consistent with: (i) estimates of “conventional” 

MaCurdy (1981)-style models that ignore human capital, and (ii) estimates of Imai and Keane 

(2004)-style models, which include human capital. As expected, the conventional models 

imply welfare losses from taxation that are less than 6% of revenue raised – consistent with 

the conventional wisdom (described in the introduction) that welfare costs of income taxation 

are small. But the human capital models imply welfare losses as a percent of revenue that are 

4 to 7 times greater (depending on details of the model). 

The large welfare costs of taxation found here arise for two reasons: The first and 

more obvious is that human capital models generate larger labor supply elasticities. The 

second and subtler reason involves dynamics: As I noted earlier, a permanent tax hike not 

                                                 
32

 The point is that tax changes change the incentives to acquire human capital. Thus, any change in the time 

path of after-tax wages induced by exogenous tax changes will nevertheless be endogenous – as the wage path is 

influenced by changes in human capital investment decisions. The only solution is to model the joint labor 

supply/human capital investment process, as in Heckman (1976) and Imai and Keane (2004). 
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only reduces labor supply, but also the rate of human capital accumulation, reducing worker 

productivity. This suggests that static models that focus on the effect of taxes holding work 

experience fixed are missing a key channel through which welfare costs of taxation arise.  

Three limitations of this paper are worth noting: First, the Imai-Keane model used 

here assumes interior solutions for hours. [This is also true of MaCurdy (1981) and most of 

the male labor supply literature]. The model correctly generates that average hours fall by 

about 50% from ages 45-54 to ages 55-64. But it cannot generate that roughly 30% of males 

aged 55-64 do not work (see Purcell (2009)). Instead, the model approximates this by having 

some workers reduce hours to low levels at ages 55-64. Also, the model imposes retirement 

at age 65, rather than treating it as a choice. It is not clear if these simplifications would affect 

the main results presented here, but building corner solutions into the model is an important 

avenue for future research. However, it is usually argued that corner solutions lead to higher 

labor supply elasticities (see below). And my results suggest tax increases have larger effects 

at older ages, so presumably they would generate more early retirement. Hence, it seems 

unlikely that including corners and/or retirement decisions would alter the main message of 

the paper – i.e., that labor supply elasticities are larger than conventional wisdom suggests.     

Second, the models presented here ignore schooling, and consider the behavior of 

workers conditional on their having entered the labor force. But as noted by Keane and 

Wolpin (2000, 2010), changes in the tax/transfer system that reduce rewards to working will 

also reduce educational attainment. So accounting for this additional channel would 

presumably magnify the long-run tax effects on human capital found here. 

Third, I assume a particular investment mechanism (learning-by-doing) while others 

may be operative – e.g., on-the-job training (OJT). But OJT models are similar to my model 

in key respects: The observed wage (i.e., earnings/hours) differs from the OCT (productivity) 

as only a fraction of work hours are spent in production. The rest is spent learning. Learning 

time falls with age, so wages grow more slowly than the OCT. This is the exact same problem 

that causes labor supply elasticities to be underestimated if we ignore learning-by-doing.  

This paper is part of an emerging literature exploring mechanisms that may have 

caused prior work to understate labor supply elasticities. Besides the human capital, other 

potentially important mechanisms include liquidity constraints (Domeij and Floden (2006)), 

uninsurable wage risk (Low and Maldoom (2004)), corner solutions (Rogerson and Wallenius 

(2007), French (2005), Kimmel and Kniesner (1998)) and fixed costs of adjustment (Chetty 

(2010)). An important task for future research is to assess the relevance of these mechanisms. 

Suffice it to say, while conventional wisdom says labor supply elasticities are small, more 

dissent from that position is emerging – see Keane and Rogerson (2010) for a detailed survey. 
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Appendix A: The Sign of the Denominator of Equation (37) 

We can show the denominator of (37) is positive as follows: Utilizing that ρ(1+r)=1, 

so that ρ(2+r)=(1+ρ), we see that, in order for the denominator to be positive, we must have: 

(A1) 
 1
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where in the second term on the right we have substituted ρ(1+r)=1. Of course we have that 

the present value of lifetime consumption equals that of lifetime income:  
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Thus, the term in the square brackets in (A2) is 1 2
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, which is lifetime 

income minus a part of period 2 earnings. So we can rewrite (A2) as: 
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As long as η > -1 (i.e., substitution effects dominate income effects) this inequality must hold. 

The right hand side takes on its greatest value when η = -1, and then (A4) just says that C is 

greater than a fraction of C. The case where this condition fails is actually uninteresting, 

because then the bound in (37) is negative, and it will be satisfied by any positive .  

 

Appendix B: Compensation in the Liquidity Constrained Model 

With liquidity constraints, we can no longer use (39) to determine how to compensate agents 

for a tax change, as now the marginal utility of consumption differs in the two periods. Thus, 

to compensate for a permanent tax change, I find the asset level A that solves: 

(B1) 
 

1 2 1 2
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and give the agent A(1+r)/(2+r) in each period. To compensate for a temporary tax change in 

period 1, I find the asset level A that solves: 
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and give the agent A in period 1.     
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Table 1: Baseline Simulation 
 

   = -.50 (Keane-Wolpin) = -.75 (Imai-Keane) 

  0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 

0 h1  100 100 100 100 100  100 100 100 100 100 

 h2  100 100 100 100 100  100 100 100 100 100 

 Wage(2)  100 100 100 100 100  100 100 100 100 100 

0.001 h1 101 103 102 101 101 100 99 102 101 101 101 100 

 h2 113 104 103 102 101 101 109 103 102 101 101 100 

 Wage(2) 103 103 103 103 103 103 103 103 103 103 103 103 

0.003 h1 109 109 107 105 103 102 104 105 105 103 102 101 

 h2 135 115 110 106 103 102 120 110 107 104 103 101 

 Wage(2) 111 111 111 111 110 110 111 111 111 110 110 110 

0.005 h1 120 116 112 108 105 103 110 109 108 106 104 102 

 h2 166 128 118 110 106 103 132 117 112 108 105 103 

 Wage(2) 122 121 120 119 118 118 120 120 119 119 118 118 

0.007 h1 133 124 118 112 107 104 116 114 112 109 106 103 

 h2 209 145 128 116 108 104 147 126 118 111 106 104 

 Wage(2) 137 134 132 129 127 126 131 130 129 128 127 126 

0.008 h1 140 128 121 114 108 105 120 117 114 110 107 104 

 h2 236 155 133 118 110 105 155 130 121 113 108 104 

 Wage(2) 146 141 139 135 133 131 138 137 135 133 132 130 

0.010 h1 152 138 128 119 111 106 127 122 118 113 109 105 

 h2 299 178 146 125 113 106 174 141 128 117 110 105 

 Wage(2) 166 159 154 149 144 141 154 151 149 145 142 140 

0.012 h1 162 147 136 124 114 107 135 128 123 117 111 106 

 h2 372 206 161 132 116 108 196 152 135 121 112 106 

 Wage(2) 188 180 174 165 157 152 173 168 165 160 155 151 
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Table 2: Labor Supply Responses to Tax Changes, Case of  = -.75 
 

  Tax reduction in period 1 Tax reduction in both periods 

    

 Elasticity 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 

0 Total  1.570 0.835 0.445 0.235 0.122  0.249 0.199 0.142 0.090 0.052 

 Compensated  2.059 1.222 0.721 0.410 0.223  0.990 0.792 0.566 0.361 0.209 

 Frisch  4.060 2.010 1.000 0.499 0.249       

 Frisch – tax  4.060 2.010 1.000 0.499 0.249       

0.001 Total 7.784 1.278 0.733 0.408 0.220 0.116 0.212 0.236 0.194 0.140 0.090 0.052 

 Compensated 8.192 1.731 1.104 0.675 0.392 0.215 0.841 0.935 0.770 0.558 0.358 0.208 

 Frisch 3.200 0.430 0.221 0.109 0.053 0.025       

 Frisch – tax -5.203 -0.839 -0.478 -0.263 -0.141 -0.074       

0.003 Total 2.267 0.891 0.572 0.341 0.192 0.103 0.223 0.220 0.186 0.137 0.089 0.052 

 Compensated 2.663 1.297 0.917 0.596 0.357 0.200 0.883 0.874 0.739 0.546 0.354 0.207 

 Frisch 1.404 0.390 0.208 0.099 0.045 0.020       

 Frisch – tax  0.814 0.197 0.086 0.027 0.003 -0.002       

0.005 Total 1.185 0.645 0.450 0.285 0.166 0.091 0.231 0.213 0.181 0.135 0.088 0.052 

 Compensated 1.571 1.020 0.773 0.528 0.326 0.185 0.913 0.843 0.719 0.538 0.352 0.206 

 Frisch 1.019 0.359 0.195 0.090 0.038 0.015       

 Frisch – tax  0.874 0.314 0.162 0.065 0.020 0.005       

0.007 Total 0.714 0.473 0.353 0.236 0.142 0.079 0.234 0.208 0.178 0.134 0.088 0.052 

 Compensated 1.079 0.820 0.657 0.469 0.297 0.171 0.920 0.822 0.705 0.532 0.350 0.206 

 Frisch 0.836 0.332 0.183 0.082 0.032 0.011       

 Frisch – tax  0.817 0.350 0.190 0.079 0.024 0.005       

0.008 Total 0.565 0.405 0.312 0.214 0.131 0.074 0.232 0.205 0.176 0.133 0.088 0.052 

 Compensated 0.913 0.738 0.606 0.441 0.283 0.164 0.911 0.811 0.698 0.530 0.350 0.206 

 Frisch 0.774 0.319 0.177 0.079 0.029 0.009       

 Frisch – tax  0.791 0.358 0.198 0.083 0.025 0.004       

0.010 Total 0.358 0.295 0.241 0.174 0.111 0.064 0.221 0.198 0.173 0.132 0.088 0.052 

 Compensated 0.663 0.597 0.515 0.391 0.257 0.151 0.865 0.783 0.683 0.525 0.349 0.206 

 Frisch 0.682 0.296 0.165 0.072 0.024 0.006       

 Frisch – tax  0.752 0.370 0.210 0.088 0.024 0.002       

0.012 Total 0.229 0.211 0.183 0.139 0.092 0.054 0.200 0.188 0.168 0.131 0.088 0.052 

 Compensated 0.479 0.478 0.434 0.344 0.233 0.139 0.784 0.741 0.663 0.520 0.349 0.207 

 Frisch 0.615 0.276 0.154 0.065 0.019 0.003       

 Frisch – tax  0.727 0.380 0.220 0.091 0.023 -0.001       

 

Note:  = -.75 is the Imai and Keane (2004) estimate. The “Total” elasticity is the uncompensated. The 

“Frisch” elasticity refers to the estimate obtained using the conventional method of regressing the log hours 

change on the log earnings change, using the simulated data. In the rows labelled simply “Frisch” the 

estimate is obtained from simulated data where the tax rate is equal in the two periods. In the rows labelled 

“Frisch – tax” the Frisch estimate is obtained using data that contain a tax cut at t=1. The figures in bold are 

obtained using values of the return to human capital investment in the plausible range (α = .008 to .010), and 

for my preferred value of γ=0.5.  
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Table 3: Labor Supply Responses to Tax Changes, Case of  = -.5 
 

  Tax reduction in period 1 Tax reduction in both periods 

    

 Elasticity 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 

0 Total  1.844 1.030 0.568 0.305 0.160  0.666 0.499 0.332 0.199 0.111 

 Compensated  2.279 1.353 0.783 0.434 0.231  1.326 0.994 0.663 0.398 0.221 

   4.060 2.010 1.000 0.499 0.249       

 Frisch – tax   4.060 2.010 1.000 0.499 0.249       

0.001 Total 7.854 1.518 0.915 0.526 0.289 0.153 0.650 0.634 0.487 0.329 0.198 0.110 

 Compensated 8.265 1.923 1.226 0.735 0.415 0.223 1.289 1.262 0.971 0.656 0.396 0.220 

  3.865 0.480 0.238 0.114 0.054 0.026       

 Frisch – tax  -3.734 -0.713 -0.431 -0.249 -0.138 -0.073       

0.003 Total 2.306 1.083 0.732 0.451 0.257 0.139 0.700 0.599 0.472 0.324 0.197 0.110 

 Compensated 2.703 1.447 1.022 0.651 0.379 0.207 1.384 1.191 0.940 0.646 0.393 0.220 

  2.064 0.503 0.251 0.112 0.048 0.021       

 Frisch – tax  1.502 0.346 0.147 0.046 0.009 -0.001       

0.005 Total 1.176 0.795 0.589 0.386 0.228 0.125 0.710 0.579 0.462 0.321 0.196 0.110 

 Compensated 1.541 1.127 0.861 0.578 0.347 0.192 1.399 1.149 0.920 0.640 0.392 0.220 

  1.686 0.509 0.256 0.110 0.043 0.016       

 Frisch – tax  1.438 0.493 0.242 0.092 0.028 0.006       

0.007 Total 0.654 0.583 0.472 0.329 0.202 0.113 0.641 0.552 0.452 0.319 0.196 0.110 

 Compensated 0.945 0.878 0.724 0.513 0.316 0.177 1.259 1.095 0.898 0.635 0.392 0.220 

  1.536 0.507 0.257 0.107 0.038 0.013       

 Frisch – tax  1.334 0.553 0.287 0.114 0.034 0.007       

0.008 Total 0.489 0.495 0.420 0.303 0.189 0.107 0.578 0.532 0.445 0.318 0.197 0.110 

 Compensated 0.732 0.768 0.661 0.482 0.302 0.171 1.134 1.054 0.884 0.633 0.392 0.220 

  1.500 0.505 0.256 0.105 0.036 0.011       

 Frisch – tax  1.297 0.574 0.304 0.121 0.036 0.007       

0.010 Total 0.275 0.349 0.327 0.254 0.165 0.095 0.436 0.475 0.424 0.315 0.197 0.111 

 Compensated 0.431 0.570 0.541 0.423 0.274 0.157 0.854 0.938 0.841 0.626 0.393 0.221 

  1.470 0.502 0.254 0.102 0.032 0.008       

 Frisch – tax  1.246 0.610 0.334 0.134 0.038 0.005       

0.012 Total 0.162 0.240 0.249 0.210 0.143 0.084 0.315 0.400 0.390 0.309 0.197 0.111 

 Compensated 0.255 0.407 0.431 0.367 0.248 0.144 0.618 0.789 0.774 0.614 0.393 0.222 

 Frisch 1.470 0.501 0.251 0.098 0.029 0.005       

 Frisch – tax  1.213 0.642 0.362 0.145 0.039 0.003       

 

Note:  = -.5 is the Keane and Wolpin (2001) estimate. The “Total” elasticity is the uncompensated. The 

“Frisch” elasticity refers to the estimate obtained using the conventional method of regressing the log hours 

change on the log earnings change, using the simulated data. In the rows labelled simply “Frisch” the 

estimate is obtained from simulated data where the tax rate is equal in the two periods. In the rows labelled 

“Frisch – tax” the Frisch estimate is obtained using data that contain a tax cut at t=1. The figures in bold are 

obtained using values of the return to human capital investment in the plausible range (α = .008 to .010), and 

for my preferred value of γ=0.5.
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Table 4: Labor Supply Responses to Different Types of Tax Increases 

in a Model with Human Capital (Imai-Keane) 
 

 Transitory Permanent (Unanticipated) 

Age  Uncompensated Compensated 

20 -1.5% -0.7% -3.2% 
25 -1.8% -0.6% -2.7% 
30 -2.2% -0.6% -2.4% 
35 -2.6% -0.5% -2.3% 

40 -3.2% -0.7% -2.3% 

45 -3.8% -1.0% -2.8% 

50 -4.7% -2.3% -4.2% 

55 -6.2% -5.3% -7.2% 
60 -8.7% -9.4% -10.5% 

 

Note: All figures are contemporaneous effects of a 5% tax increase. The “transitory” increase only applies 

for one year at the indicated age. The “permanent” tax increases take effect (unexpectedly) at the indicated 

age and last until age 65. In the “compensated” case the proceeds of the tax (in each year) are distributed 

back to agents in lump sum form. 

 

 

 

Table 5: Effects of Permanent Tax Increases on Labor Supply 

At Different Ages in a Model with Human Capital (Imai-Keane) 

 
Age Age 25  Age 30 (unexpected)  Age 35 (unexpected) 

 Hours Wage  Hours Wage  Hours Wage 

25 -2.7%        

30 -2.9% -0.4%  -2.4%     

35 -3.2% -0.7%  -2.7% -0.3%  -2.3%  

40 -3.8% -1.0%  -3.3% -0.6%  -2.7% -0.2% 

45 -5.1% -1.3%  -4.4% -0.9%  -3.8% -0.5% 

50 -7.9% -2.0%  -7.0% -1.4%  -6.2% -1.0% 

55 -13.3% -3.6%  -12.2% -2.9%  -11.0% -2.3% 

60 -19.3% -7.5%  -18.4% -6.6%  -17.4% -5.8% 

65 -29.2% -11.6%  -28.1% -10.7%  -26.9% -9.7% 

 

Note: The tax increase is 5%. It takes effect (unexpectedly) at the indicated age and lasts until age 65. The 

proceeds of the tax (in each year) are distributed back to agents in lump sum form. 
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Table 6: Optimal Tax Rates ( = -.5) 
 

  f(P) = log(P)  f(P) = P 

  α  α 

  0 0.007 0.008 0.010  0 0.007 0.008 0.010 

0.5 Social planner 0.400 0.368 0.362 0.349  0.400 0.646 0.680 0.746 

 Free-rider 0.400 0.348 0.339 0.320  0.400 0.503 0.519 0.550 
           

1 Social planner 0.400 0.375 0.370 0.361  0.400 0.548 0.571 0.616 

 Free-rider 0.400 0.363 0.357 0.344  0.400 0.489 0.503 0.530 
           

2 Social planner 0.400 0.380 0.377 0.369  0.400 0.498 0.513 0.543 

 Free-rider 0.400 0.374 0.370 0.360  0.400 0.476 0.487 0.510 
           

4 Social planner 0.400 0.383 0.381 0.375  0.400 0.473 0.484 0.506 

 Free-rider 0.400 0.380 0.377 0.371  0.400 0.465 0.475 0.494 
           

 

Note: The figures in bold correspond to the (α=0, γ=4) case, which conforms closely to the 

conventional wisdom for the value of γ in models without human capital, and the (α=.008, γ=0.5) 

case, which represents my preferred value based on estimates that account for human capital. These 

figures will be used later to calculate the welfare losses from taxation as a fraction of revenues.
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Table 7: Welfare Losses from Proportional Income Tax 

 
Case A: Utility from Public Good, f(P) = log(P) 
 

  = -.75 α = 0 α = .008    = -.50 α = 0 α = .008 
         
0.50 C* 11.25 11.42  0.50 C* 15.56 11.38 

 C** -9.26 -9.33   C** -10.74 -8.29 
         

4.0 C*  3.56 3.87  4.0 C*  3.90 3.88 

 C** -3.33 -3.60   C** -3.51 -3.48 

  


Case B: Utility from Public Good, f(P) = 2P

1/2 

 

  = -.75 α = 0 α = .008    = -.50 α = 0 α = .008 
         
0.50 C* 11.25  15.47  0.50 C* 15.56  18.11 

 C** -9.26 -12.06   C** -10.74 -11.98 
         

4.0 C*  3.56 4.59  4.0 C*  3.90 4.62 

 C** -3.33 -4.23   C** -3.51 -4.09 

 


Case C: Utility from Public Good, f(P) = P 
 

  = -.75 α = 0 α = .008    = -.50 α = 0 α = .008 
         
0.50 C* 11.25  27.57  0.50 C* 15.56  41.62 

 C** -9.26 -19.09   C** -10.74 -21.46 
         

4.0 C*  3.56 6.98  4.0 C*  3.90 7.88 

 C** -3.33 -6.24   C** -3.51 -6.62 

  
Note: C* = consumption gain needed to compensate for tax distortion  

(starting from proportional tax world) 

          C** = equivalent consumption loss (moving from lump sum tax to distorting tax world) 

  
 

 
 


