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1 Introduction

The chain-ladder method is one of the main tools for reserving in general insurance. It
evolves around development factors which are ratios of arithmetic averages of claims in
the current development period relative to claims in the previous period. We will call
this method the arithmetic chain-ladder. Kremer (1985), Mack (1991), Mack and Venter
(2000), Verrall and England (2000) and recently Kuang, Nielsen and Nielsen (2009) and
Taylor (2011) have discussed how the arithmetic chain-ladder technique arises through
maximum likelihood estimation in a Poisson model.

A long-standing alternative to the arithmetic chain-ladder is a reserving model in-
volving the same parametrisation but for log-normal distributed variables. Kremer
(1982), Verrall (1991, 1994) and Doray (1996) have discussed the log-normal model and
noted that maximum likelihood estimation is done by linear regression. Mack (1994)
mentions the model and refers to it as the ‘log-linear cross-classified claims reserving
method’. These papers exploit that the least square theory gives a general matrix ex-
pression for the estimator of the parameter vector. However, in contrast to the standard
arithmetic chain-ladder it appears that there are no explicit expressions available for
estimators of individuals parameters. The main contribution of the paper is to present
closed form expressions for estimators for individual parameters. The derivations and
the results have similarities to the contribution of Kuang, Nielsen and Nielsen(2009) for
the standard arithmetic chain-ladder. Therefore, the exact differences of the arithmetic
and the geometric chain-ladders are now fully transparent. As a part of the analysis we
derive log development factors which play a similar role to the traditional development
factors in the arithmetic chain-ladder model. These log development factors are differ-
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ences of logs of geometric averages. We will therefore refer to the log-normal reserving
model as the geometric chain-ladder model. We present two additional results. The
first result is a simple expression for the variance of the estimators. The second result
is an invariance of the estimators to exposure factors.

Choosing between an arithmetic and a geometric chain-ladder will depend on the
data at hand. The two methods will typically give approximately the same point fore-
casts and differences arises in relation to distribution forecasts. The two main types
of data are triangles with counts and amounts of claims, respectively. For count tri-
angles the Poisson-based arithmetic model is often appropriate. For amount triangles
the residuals have much larger variances than warranted by the Poisson assumption. In
the context of the arithmetic model the problem can be addressed by introducing an
over-dispersion parameter. The bootstrap method of England (2002) can take the over-
dispersion into account, but as the over-dispersed Poisson model does not have a clear
distributional basis simulation is not so easy. A more elaborate approach is to model
the count and amount data jointly as in the double chain-ladder of Mart́ınez-Miranda,
Nielsen and Verrall (2012). In contrast, the geometric chain-ladder is naturally heavy-
tailed so that it is easy to simulate from the model. A more subtle difference is that in
the (over-dispersed) arithmetic model the mean-variance ratio is constant accross the
cells of the triangle, whereas in the geometric model the mean-standard deviation ratio
is constant accross cells. It would seem desirable to develop methods choosing between
these models on that basis, but we leave this to future work. While we are not particu-
larly wedded to one distribution over the other, the main point of the paper is to show
that a similar set of analytic results and methods are available for the arithmetic and
the geometric model.

A number of extensions of the geometric chain-ladder have found their way into the
literature and applications. An example is the log normal model of Hertig (1985) in
which the variance parameter depends on the development year. Another example is
the inclusion of calendar effects as suggested by Zehnwirth (1994) and later analysed by
Kuang, Nielsen and Nielsen (2008a,b, 2011). For a recent practical study involving a
log-normal model see Rehmann and Klugman (2009).

A consequence of working on the log scale as compared to the original scale of
observed claim sizes might be an extra level of bias. While the geometric chain-ladder
produces unbiased estimators on the log scale the unbiasedness is lost when moving to
the original scale. Verrall (1991) and Doray (1996) discussed how to use Finney’s result
to get unbiased estimators. For the arithmetic chain-ladder Mack (1991) has shown that
the development factors are unbiased in a conditional model taking the observations for
the first development year as given; see also England and Verrall (2002) and Taylor (2003,
2011) for further discussion. This unbiasedness property falls away in an unconditional
Poisson model. Rather than discussing these bias issues the purpose of our current work
is to identify the closed form expressions of the maximum likelihood estimators in the
geometric chain-ladder model. By comparing the closed form solutions of the maximum
likelihood estimators for arithmetic chain-ladder on the usual scale, see Kuang, Nielsen
and Nielsen (2009), and the closed form solutions of the geometric chain-ladder on the log
scale of this paper, it becomes visually very clear what the difference is between working
on the original scale and the log-scale. While the original scale operates with standard
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arithmetic means, the log-scale operates with geometrical means. An additional feature
of the log-normal model is that sampling distribution for the individual estimators and
the development factor are readily available.

2 Comparing the arithmetic and geometric models

In the following we compare the arithmetic model based on a Poisson distributional
assumption and the geometric model based on a log normal distributional assumption.
The starting point is the well-known development factors for the arithmetic model.
Subsequently, the underlying statistical model for the arithmetic model is discussed
and compared to the geometric model. Finally, we introduce the new log development
factors, which are based on geometric averages rather than arithmetic averages.

2.1 The arithmetic development factors

Consider a standard incremental insurance run-off triangle of dimension k. Each entry
is denoted Yij so that i is the accident year index and j is the development year index.
Collectively, we have data Y = {Yij, ∀(i, j) ∈ I}, where I is the triangular index set

I = {(i, j) : i and j belong to (1, . . . , k) with i+ j − 1 = 1, . . . , k}. (2.1)

The standard chain-ladder technique evolves around arithmetic averages of incre-
mental claims. That is, cumulative claims are computed as Zij =

∑j
�=1 Yi�. From this

the development factors are computed as

Fj =

∑k+1−j
i=1

∑j
�=1 Yi�∑k+1−j

i=1

∑j−1
�=1 Yi�

=

∑k+1−j
i=1 Zij∑k+1−j

i=1 Zi,j−1

for j = 2, . . . k. (2.2)

We will call these the arithmetic development factors. Here we follow the usual nomen-
clature and denote statistics by roman letters, unless they are estimators for some pa-
rameters. In that case we use a greek letter for the parameter, for which a decoration
with a hat indicates the corresponding maximum likelihood estimator. Decorations with
a tilde indicates a statistic serves as a predictor or a forecast.

The arithmetic development factors are used to forecast future values of claims in
the lower triangle J = {i, j ≤ k : i+ j − 1 > k} through

Ỹ a
ij = Zi,k−i+1(Fj − 1)

j−1∏
�=k+2−i

F�. (2.3)

The full reserve for accident year i is forecast by the sum of such forecasts and satisfies

Z̃a
i,k − Zi,k−i+1 =

k∑
�=k+2−i

Ỹ a
i� = Zi,k−i+1{(

k∏
�=k+2−i

F�)− 1}. (2.4)
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2.2 Statistical models

From a statistical view point it is natural to ask whether the arithmetic chain-ladder
forecasts arise through maximum likelihood analysis of some statistical model. Indeed,
this is the case in the model where Yij are independent Poisson(μij)-distributed so that

logP (Yij = x) = μijx− exp(μij)− log(x!) for x ∈ N0,

and where the μij is the log expectation which is parametrised as

log{E(Yij)} = μij = αi + βj + δ. (2.5)

This has been discussed in for instance Kremer (1985), Mack (1991) and Kuang, Nielsen
and Nielsen (2009). In the latter paper maximum likelihood estimators are found for
the parameters Δαi = αi − αi−1, Δβj = βj − βj−1, and μ11 = α1 + β1 + δ. It is also
shown that the arithmetic development factor Fj is maximum likelihood estimator for
the parameter

Φj =

∑j
�=1 exp(

∑�
h=2Δβh)∑j−1

�=1 exp(
∑�

h=2Δβh)
for j = 2, . . . , k.

Another role for the arithmetic development factor appears in the maximum likelihood
estimation of Δαi = αi − αi−1 as a correction term to the row sums Ri = Zi,k+1−i:

Δ̂αi = Δ logRi + logFk+2−i. (2.6)

An advantage of formulating a statistical model is that it gives a framework for al-
tering the method for reserving. This can be done by changing the parametrisation,
the distributional assumption or the independence assumption. As an example, the
parametrisation (2.5) could be changed to include additional components such as a
calendar effect. This has been explored for instance in Zehnwirth (1994) and Kuang,
Nielsen and Nielsen (2008a,b,2011). Another example is to change the underlying dis-
tribution from a Poisson distribution to a log normal distribution which is what we will
explore here. In each case maximum likelihood estimators can be computed numerically.
The purpose of the present paper is to show that the basic log-normal model can be
analysed in the same way as the Poisson model, although the resulting formulas are
geometric rather than arithmetic in nature.

When formulating the log-normal model it is convenient to introduce notation for the
(natural) logarithm of the observations, that is yij = log Yij, noting that the logarithmic
transformation requires all observations to be positive. This is restrictive compared
to the arithmetic chain-ladder, which only requires that row and columns are non-
negative, see (2.6). Collectively, we have the logarithmic data y = {yij, ∀(i, j) ∈ I}. The
statistical model now assumes that yij = log Yij are independent N(μij , σ

2)-distributed
with log density

log fyij (x) = −1

2
log(2πσ2)− 1

2σ2
(x− μij)

2

where the expectation of the logarithmic data is parametrised as

E(yij) = E{log(Yij)} = μij = αi + βj + δ. (2.7)

4



The difference between the two parametrisations (2.5), (2.7) is therefore whether μij

represents the log of the expectation of Yij or the expectation of the log of Yij.
In practice, the choice between the (over-dispersed) Poisson model and the log-

normal model can to some extent be guided by the variance-mean ratio, which is constant
accross cells in the Poisson model

VarPoisson(Yij)

EPoisson(Yij)
=

exp(μij)

exp(μij)
= 1, (2.8)

whereas the log normal model has constant standard deviation-mean ratio accross cells

SdvLogNormal(Yij)

ELogNormal(Yij)
=

[{exp(σ2)− 1} exp(2μij + σ2)]1/2

exp(μij + σ2/2)
= {exp(σ2)− 1}1/2. (2.9)

As a consequence, for the log normal model, the variance-mean ratio will be larger for
cells with large mean than for cells with a low mean. Now, suppose some knowledge
of the variance-mean ratio of the underlying individual claims was available. If this is
constant across cells a Poisson model should be favoured, whereas if it is declining with
declining aggregate mean then a log normal model should be favoured.

2.3 Reserving in the log-normal model

The reserves for the log-normal model can be expressed in terms of the maximum likeli-
hood estimator. These arise from the least squares regression of the logarithmic data on
a design matrix derived from (2.7). The generic expression for least squares estimators
then applies as pointed out by Kremer (1982), Verrall (1991, 1994) and Doray (1996).
The generic expression is not so informative about how the reserve is formed. We will
show that the maximum likelihood estimators for the individual parameters of the log-
normal model resemble those of the Poisson model. In principle, this could be derived
directly from the generic least squares estimator, but it turns out to be convenient to use
a proof resembling that for Poisson model given in Kuang, Nielsen and Nielsen (2009).

Theorem 3.1 below shows that the maximum likelihood estimators are conveniently
written in terms of expressions of the form

fj =

∑k+1−j
i=1

∑j
�=1 log Yi�

j(k + 1− j)
−
∑k+1−j

i=1

∑j−1
�=1 log Yi�

(j − 1)(k + 1− j)
for j = 2, . . . k. (2.10)

This resembles the log of the classical arithmetic development factor, logFj, from (2.2),
except that geometric averages are used instead of arithmetic averages. We will call fj a
log geometric development factor. The formulas for Fj and fj both compare an average
over a (k+1− j)× j-array with an average of a smaller (k+1− j)× (j − 1)-sub-array,
but there are some subtle differences. First, fj corrects for the number of summands,
whereas Fj does not. Moreover, the reference point for Fj is 1, that is logFj = 0, when
the jth column of observations consists of zeros so that there is no development. This
is a boundary outcome, because Poisson-distributed variates are non-negative. Kuang,
Nielsen and Nielsen (2009) discuss this boundary outcome in some detail. The reference
point for fj is correspondingly 0, but this occurs when the geometric average of the jth
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column equals the geometric average of the sub-array. In the common situation where
claims fall with the development year then fj will be negative.

In parallel with the reserving formulas for the classical Poisson model, the log geo-
metric development factors lead to new explicit formulas for reserving in the log-normal
model as explored in §4. In particular, the log future claims with indices i, j in the lower
triangle, i, j ≤ k, i+ j − 1 > k, are forecasted by

ỹij =
k+1−i∑
�=1

log Yi� + jfj +

j−1∑
�=k+2−i

f�. (2.11)

The median of the claim on the original scale can be forecast by Ỹij = exp(ỹij).
Verrall (1991) and Doray (1996) discuss how to use Finney’s result to get unbiased
estimators for both Yij and for the total outstanding reserve. Simple analytic expressions
for these unbiased estimators do not seem to exist.

3 Likelihood analysis

The likelihood for the log normal model for the triangle Y is analysed. This is the same
as a normal likelihood for the log data y. At first the parametrisation is discussed. Then
the new expressions for the maximum likelihood estimators are presented.

As mentioned above the statistical model assumes that the log observations yij =
log Yij are independent, normal N(μij, σ

2)-distributed, where μij was given in (2.7). The
normality assumption can be checked in various ways. One method would be to use a
quantile-quantile plot of the residuals against the fitted normal distribution as mentioned
by Rehman and Klugman (2010). Another method would be to consider how much the
standardised third and fourth moment of the residuals deviate from the normal values.
The latter method is easier to implement, but the methods could be used side by side
as they convey different distributional information.

The geometric chain-ladder model based on the log-normal distribution has a para-
metrisation resembling that of the arithmetic chain-ladder model based on the Poisson
distribution. It therefore has the same over-parametrisation problem which can be ad-
dressed by using the canonical parametrisation explored in Kuang, Nielsen and Nielsen
(2008a,b, 2009). The identification problem is that a constant can be added and sub-
tracted to the αs and the βs, respectively, without changing the overall parameter μij in
(2.7). Using telescopic sums we can write αi = α1 +

∑i
�=2Δα�, where Δα� = α� − α�−1

is the growth rate from α�−1 to α�. Doing the same for the parameter βj , noting
μ11 = α1 + β1 + δ, and inserting in equation (2.7) gives

μij = μ11 +
i∑

�=2

Δα� +

j∑
�=2

Δβ�. (3.12)

The parameters μij can therefore be expressed in terms of a parameter

ξ = (μ11,Δα2, . . . ,Δαk,Δβ2, . . . ,Δβk)
′ ∈ R2k−1. (3.13)
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Kuang, Nielsen and Nielsen (2009, Theorem 1) show that the parameter vector ξ gives
a unique parametrisation of the parameters μij.

In the implementation it is convenient to write μij in terms of a design matrix.
The triangular arrangement of the data does not lend itself well to computation. The
triangular data array therefore needs to be ordered as a vector of dimension k(k+1)/2.
The ordering does not matter as long as the parameters μij are stacked in a vector
μ in the same order. The stacked vector μ can then be written in terms of a design
matrix X with n = k(k + 1)/2 rows and q = 2k − 1 columns. It is convenient to let
the rows of the design matrix X be indexed by i, j to reflect how the rows relate to the
original triangular arrangement of the data. Therefore, the formula (3.12) implies that
μij = X ′

ijξ where Xij is a q-vector given by

Xij = {1, 1(2≤i), . . . , 1(k≤i), 1(2≤j), . . . , 1(k≤j)}′, (3.14)

where the indicator function 1(h≤�) takes the value unity if h ≤ � and zero otherwise.
As statistical model we therefore assume that yij = log Yij are independent for i, j

varying in the triangular index set I and normal N(μij, σ
2)-distributed, and that μij =

X ′
ijξ is defined in terms of the canonical parameter ξ ∈ R2k−1 through (3.12), (3.13),

(3.14).
It is worth noting that the geometric chain-ladder as set out here can be extended

to include calendar effects as done by Zehnwirth (1994). Recently, Kuang, Nielsen and
Nielsen (2008a,b, 2011) have discussed how to construct a unique parametrisation in
that situation and how to forecast the outstanding reserve in the context of structural
breaks in the calendar effect.

The geometric chain-ladder model is a regression model. The maximum likelihood
estimator for the parameter vector ξ is then obtained by least squares regression. Kremer
(1982) and Verrall (1991, 1994) give the following generic matrix expression for the
estimator, see also Hendry and Nielsen (2007, §8). Stack the data yij = log Yij as a
n-vector y. An n × q design matrix X is constructed by stacking the row vectors X ′

ij

conformably. The least squares estimator of ξ is then ξ̂ = (X ′X)−1X ′y.
Many computer packages allow the user to enter the data vector y and the design

matrix X and perform a least squares regression. Alternatively, the expression ξ̂ =
(X ′X)−1X ′y can be coded with little effort. These expressions do, however, not give
much information about the estimators for the individual components of ξ. We therefore
make a more detailed analysis.

The log likelihood function of the geometric chain-ladder model based on normally
distributed logged data is given by

log L(ξ, σ2;y) = −n

2
log(2πσ2)− 1

2σ2

∑
i,j∈I

(yij − μij)
2. (3.15)

Some further notation is needed to express the maximum likelihood estimators. Intro-
duce geometric averages of row and column sums as

ri =

∑k+1−i
j=1 yij

k + 1− i
, cj =

∑k+1−j
i=1 yij

k + 1− j
,
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along with the log geometric column and row development factors

fj =

∑k+1−j
i=1

∑j
�=1 yi�

j(k + 1− j)
−
∑k+1−j

i=1

∑j−1
�=1 yi�

(j − 1)(k + 1− j)
for j = 2, . . . , k, (3.16)

gi =

∑k+1−i
j=1

∑i
�=1 y�j

(k + 1− i)i
−
∑k+1−i

j=1

∑i−1
�=1 y�j

(k + 1− i)(i− 1)
for i = 2, . . . , k. (3.17)

The maximum likelihood estimator for the canonical parameter can now be found. The
proof is left to the Appendix.

Theorem 3.1 Consider the geometric chain-ladder model over the upper triangle I with
canonical parameter ξ for the mean and variance σ2. The maximum likelihood estimator
for ξ, σ2 is unique. It is given by

Δα̂i = Δri + fk+2−i for i = 2, . . . , k, (3.18)

Δβ̂j = Δcj + gk+2−j for j = 2, . . . , k, (3.19)

μ̂11 = r1 −
k∑

�=2

f� = c1 −
k∑

�=2

g�, (3.20)

σ̂2 =
2

k(k + 1)

∑
i,j∈I

(yij − μ̂ij)
2, (3.21)

where the estimator for the mean-values is μ̂ij = μ̂11+
∑i

�=2Δα̂�+
∑j

�=2Δβ̂�. Moreover,
the log geometric development factors, fj = ϕ̂j and gi = γ̂i say, are maximum likelihood
estimators for the parameters, for i, j > 1,

ϕj =
1

j

j∑
�=2

�∑
m=2

Δβm − 1

j − 1

j−1∑
�=2

�∑
m=2

Δβm, (3.22)

γi =
1

i

i∑
�=2

�∑
m=2

Δαm − 1

i− 1

i−1∑
�=2

�∑
m=2

Δαm. (3.23)

The estimators for Δαi and Δβj have rather simple expressions. The expressions can
be viewed as geometric versions of the estimators for standard arithmetic chain-ladder,
see (2.6). The geometric estimators can be interpreted as follows. If the claims yij had
been observed for the full square 1 ≤ i, j ≤ k then the model would amount to a model
for two-sided analysis of variance and the maximum likelihood estimators for Δαi and
Δβj would have been Δri and Δcj . For the triangular data the estimators involve a
correction in terms of the development factor.

It is convenient to note how the parameters, αi − α1 and βj − β1 can be expressed
in terms of the geometric development parameters γi and ϕj .

Theorem 3.2 It holds αj − α1 = jγj +
∑j−1

m=2 γm and βj − β1 = jϕj +
∑j−1

m=2 ϕm.
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4 Predicting the reserve

In practice predictions of the reserve are most easily done through the formula ỹij =

X ′
ij ξ̂, which can be coded with little effort. Once again, this formula does not reveal

much about the structure of the prediction and how the predictions (2.3), (2.4) for
the arithmetic chain-ladder are changed when moving to the geometric chain-ladder.
Simple expressions for the predictions from the geometric chain-ladder model can be
constructed.

As a start consider the predictions for the log values yij. Combine the expressions
in Theorem 3.1 with the expression for μij in (3.12) to get, for j = 1, the predictor

ỹi1 = (r1 −
k∑

�=2

f�) + (ri − r1 +

i∑
�=2

fk+2−�) = ri −
k+1−i∑
�=2

f� for j = 1, (4.24)

with the convention that the empty sum is zero. In particular ỹk1 = rk = yk1 correspond-
ing to the ‘corner solution’ for the standard arithmetic chain-ladder. This expression is
a geometric version of the corresponding arithmetic prediction of Ri/

∏k+1−i
�=2 F�, where

Ri = Zi,k+1−i, see Kuang, Nielsen and Nielsen (2009, equation 15).
To get an expression for the predictor for j > 1 combine this with an expression for∑j

�=2Δβ� = βj − β1 in Theorem 3.2 and the estimator for ϕj in Theorem 3.1 to get

ỹij = μ̂ij = ri −
k+1−i∑
�=2

f� + jfj +

j−1∑
�=2

f� for j > 1. (4.25)

The connection between this expression and the corresponding arithmetic prediction
Ri(Fj−1)(

∏j−1
�=2 F�)/(

∏k+1−i
�=2 F�) is more tenuous because the term Fj−1 does not easily

translate into a geometric version, see Kuang, Nielsen and Nielsen (2009, equation 16).
For the lower triangle the expression (4.25) reduces to

ỹij = ri + jfj +

j−1∑
�=k+2−i

f� for k − i+ 1 < j ≤ k, (4.26)

whereas for the upper triangle the prediction is

ỹij = ri + jfj −
k+1−i∑
�=j

f� for 1 < j ≤ k − i+ 1. (4.27)

In applications it is of interest to make predictions on the original scale. Taking
exponential, exp(ỹij), yields the same median as Yij. The expectation of a single entry
on the original scale is E(Yij) = exp(μij + σ2/2). The maximum likelihood estimator of
this expectation is found by inserting the estimators for μij, σ

2 giving

Ỹij = exp(ỹij + σ̂2/2) = exp{μ̂11 + (α̂i − α̂1) + (β̂j − β̂1) + σ̂2/2}. (4.28)
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Likewise the maximum likelihood estimator of the full reserve is

k∑
i=2

k∑
j=k+2−i

Ỹij = exp(σ̂2/2)
k∑

i=2

k∑
j=k+2−i

exp(ỹij) (4.29)

= exp(μ̂11 + σ̂2/2)
k∑

i=2

k∑
j=k+2−i

exp{(α̂i − α̂1) + (β̂j − β̂1)}.

While these predictions on the original scale are biased, Verrall (1991) and Doray (1996)
have discussed how to use Finney’s result to get unbiased predictors of Yij as well as of
the full reserve. Simple analytic expressions for these predictors do not seem to exist.
An alternative approach would be to use simulation to find the predictive distribution.

5 Distribution of estimator

Regression theory shows that ξ̂ = (X ′X)−1X ′y is normally N{ξ, σ2(X ′X)−1} distributed,
whereas σ2 = σ2n−1y′{In−X(X ′X)−1X ′}y is independent thereof and χ2

df/n-distributed
with n = k(k+1)/2 and df = n− (2k− 1) = (k− 2)(k− 1)/2. It turns out that simple
expressions can be derived for the diagonal elements of the matrix (X ′X)−1 and hence

for the variances of the components of ξ̂. Thereby some analytic insight can be gained in
the estimation uncertainty for the geometric chain-ladder model. Indeed a clear pattern
emerges for the uncertainty of the estimators.

It should be noted that in a stochastic reserving exercise the forecast errors need to
be considered. If the estimation error is to be taken into account in the forecast error
calculation, this is easily computed directly from (X ′X)−1.

Theorem 5.3 The estimators have variances, for �+ 1 = 2, . . . k,

var(μ̂11) =
2σ2

k

(
k − 1

k
+

1

k + 1

k∑
�=1

1

�

)
, (5.30)

var(Δα̂�+1) = var(Δβ̂�+1) (5.31)

= σ2

{
1

k − �
+

1

k + 1− �
+

1

(k − �)(k + 1− �)�

}
, (5.32)

var(f�+1) = var(g�+1) =
σ2

(k − �)�(�+ 1)
. (5.33)

The proof is given in the Appendix. It can be extended to considering the variance of
μ̂ij, but that result does not appear to be particularly illuminating. The result would
of course show that μ̂1k and μ̂k1 have variance σ2 reflecting that the ‘corner solution’
properties ỹ1k = y1k and ỹk1 = yk1.

A first implication arises for large triangles, that is for large k. In that case
∑k

�=1 �
−1

is of order log k. As a consequence the variance of μ̂11 will have leading term 2σ2/k. In
other words the variance of μ̂11 is more or less the innovation variance σ2 divided by the
number of observations.
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The expression for var(Δα̂�) is increasing in �, which is proved in detail in the ap-
pendix. It follows that the accident parameters Δα� and corresponding development
parameters Δβ� are more imprecisely estimated nearer the corners of the reserve trian-
gle. This is exactly what one would have expected. In particular for large triangles, so
k is large, then var(Δα̂2) and var(Δα̂k) have leading terms 2σ2/k and (3/2)σ2. Thus
the quality of the estimators for Δαk and Δβk remains relatively poor even in large
triangles.

6 Exposure

Often information about exposure is available, that is information about the size of
the portfolio for a given accident year. Typically claim observations are divided by
the exposure factor before the analysis. The resulting reserves are then scaled up with
the exposure factor, as in Taylor and Ashe (1983), Renshaw (1989), Wright (1990),
Verrall (1991, 1994) and Zehnwirth (1994, §12.3). The next theorem shows that for the
geometric chain-ladder the same reserve would actually be achieved if the exposure were
ignored. This result contrasts with the usual arithmetic chain-ladder where correction
for exposure alters the reserve. In particular, when the geometric development factors
are the same when computed from the original data and from exposure corrected data.
This is not the case for the usual arithmetic development factors.

The proof of the result exploits the logarithmic transformation. That is, on the
original scale the claims numbers Yij are corrected for the exposure Hi by the scaling
Yij/Hi. On the logarithmic scale yij = log Yij this corresponds to the linear translation
into log(Yij/Hi) = yij − logHi. In the log normal model this corresponds to translating
the accident year effect αi into αi − logHi. The linearity properties of least squares
estimation then imply that the geometric chain-ladder delivers the same reserve when
exposure is ignored altogether and when exposure is taken out before estimation and
then put back in again. The details of the proof are in the Appendix.

Theorem 6.4 Consider a run-off triangle Y = {Yij, ∀i, j ∈ I} with exposure factors
Hi, i = 1, . . . , k. The following two calculations result in the same prediction of Yij for
1 ≤ i, j ≤ k.

1. Apply the geometric chain-ladder to Y. That is, log transform the data Y, estimate
and predict as outlined in §3, §4.

2. Construct YH = {Yij/Hi, ∀i, j ∈ I} which is the triangle of claims divided by
exposure. Apply the geometric chain-ladder. That is, log transform the data YH ,
estimate and predict as outlined in §3, §4. Multiply the reserve by Hi.

The variance estimator σ̂2 is the same when computed from the log transformations of
Y and of YH .

The proof given in the appendix exploits a general feature of least squares regres-
sion. It can be applied also for extensions of the model to situations where closed form
estimators are not readily available, such as when including a calendar effect, see also

11



Kuang, Nielsen and Nielsen (2011). As an alternative proof the closed form expressions
found above can be used. By inspection of the expression (2.10) for the log column
development factor fj this is seen to be invariant to exposure. Inserting this in the for-
mula (2.11) shows that the forecast for the exposure corrected data is ỹHij = ỹij − logHi.
Adding in the log exposure gives the forecast based on the original scale. Likewise, the
residuals from the exposure corrected data are of the form (yij − logHi)− ỹHij = yij − ỹij
which results in the same variance estimator for both data sets. Therefore the invariance
to exposure extends to distribution forecasts because the variance estimator is invariant
to the exposure.

7 Empirical illustration

To illustrate the results consider a run-off triangle from motor third party liability.
The data originate from the general insurer RSA and were also used in for instance
Miranda-Mart́ınez, Nielsen, Nielsen and Verrall (2011). At first the proposed estimators
and predictions are computed and compared with the corresponding estimators and
predictions from the usual arithmetic chain-ladder. Subsequently, distribution forecasts
are presented.

7.1 Motor data and model fit

i vs. j 1 2 3 4 5 6 7 8 9 10
1 451288 339519 333371 144988 93243 45511 25217 20406 31482 1729

(-0.2) (-1.0) (1.9) (0.3) (-0.1) (-0.4) (-1.4) (-0.3) (1.2) (0)
2 448627 512882 168467 130674 56044 33397 56071 26522 14346 1560

(0.1) (0.9) (-0.2) (0.3) (-1.6) (-1.1) ( 1.9) (1.0) (-1.2) 1.08
3 693574 497737 202272 120753 125046 37154 27608 17864 21916 1694

(1.4) (0.5) (0.2) (-0.3) ( 1.1) (-1.1) (-1.0) (-0.7) 1.25 1.20
4 652043 546406 244474 200896 106802 106753 63688 31799 32050 2477

(-0.2) (-0.6) (-0.5) (0.2) (-0.9) (1.4) (0.6) 0.86 0.97 0.93
5 566082 503970 217838 145181 165519 91313 48907 29002 29231 2259

(-0.4) (-0.5) (-0.6) (-0.7) (1.0) (1.2) 0.95 0.85 0.96 0.92
6 606606 562543 227374 153551 132743 62736 46382 27505 27722 2143

(0.1) (0.0) (-0.3) (-0.3) (0.4) 1.10 1.04 0.93 1.05 1.01
7 536976 472525 154205 150564 96137 51088 37771 22398 22575 1745

(0.4) (0.2) (-0.9) (0.4) 1.07 1.14 1.07 0.97 1.08 1.04
8 554833 590880 300964 176229 126009 66963 49507 29358 29589 2287

(-0.5) (-0.0) (0.5) 0.96 1.00 1.07 1.01 0.91 1.01 0.98
9 537238 701111 261229 176067 125893 66902 49461 29331 29562 2285

(-0.6) (0.6) 1.03 1.00 1.05 1.11 1.05 0.94 1.06 1.02
10 684944 637250 281207 189532 135521 72018 53244 31574 31823 2460

(0) 1.01 1.02 1.00 1.04 1.11 1.04 0.94 1.05 1.01

Table 7.1: chain-ladder analysis of motor data. Roman figures are data. Figures in
parentheses are standardised residuals. Italic figures are forecasts from a median forecast
from a geometric chain-ladder. Bold figures is the ratio of an arithmetic chain-ladder
and the median forecast from a geometric chain-ladder.
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Table 7.1 reports the motor data triangle shown with roman figures. The table also
reports, in parantheses, standardised residuals of the form (yij − μ̂ij)/s, where s2 is the
degrees of freedom corrected residual variance. These residuals can be calculated either
using the standard least squares formula or from new explicit formulas of the individual
estimators given in Theorem 3.1. A detailed discussion of the estimates follows in §7.2.

A consequence of Theorem 3.1 is that the corners, Yk1 and Y1k, of the run-off triangle
have perfect fit, just as for the usual geometric chain-ladder. The corresponding residuals
are therefore equal to zero. Indeed, for the geometric chain-ladder the formula (4.24)
gives the prediction

Ỹk1 = exp(ỹk1) = exp(μ̂11 +

k∑
i=2

Δα̂i) = exp(rk) = Yk1.

For the corresponding formula for the arithmetic chain-ladder, see for instance Kuang,
Nielsen and Nielsen (2009, equation 15).

A formal cumulant based test for normality does not indicate any deviation from
normality. The residuals in Table 7.1 do, however, indicate one potential model mis-
specification in that all the large standardised residuals, those larger than 1 in absolute
value, say, are to be found for the first 5 accident years. At the same time the largest
outstanding liabilities are likely to be found for the recent accident years. If it is the
case that the variance drops then forecasts confidence bands are therefore likely to be
too wide. This effect could be investigated by the approach of Hertig (1985), but as this
would leave the presented analytic framework we will not pursue this here.

7.2 Estimates and predictions

Arithmetic CL Geometric CL

j Δ̂α Δ̂β F G Δ̂α Δ̂β f g
2 -0.03 -0.07 1.937 1.97 -0.10 -0.07 -0.04 -0.051
3 0.19 -0.80 1.217 1.60 0.08 -0.82 -0.28 0.010
4 0.12 -0.42 1.117 1.42 0.38 -0.39 -0.24 0.100
5 -0.10 -0.29 1.078 1.27 -0.09 -0.34 -0.21 0.042
6 0.04 -0.57 1.041 1.22 -0.05 -0.63 -0.25 0.019
7 -0.17 -0.36 1.027 1.15 -0.21 -0.30 -0.22 -0.016
8 0.21 -0.63 1.014 1.16 0.27 -0.52 -0.23 0.022
9 0.04 0.12 1.016 1.15 -0.00 0.01 -0.18 0.017
10 0.07 -2.60 1.001 1.14 0.07 -2.56 -0.40 0.021

μ̂11 = 13.071 μ̂11 = 13.085
σ̂2 = 0.049, s2 = 0.075

Table 7.2: Chain-ladder analysis of motor data. Columns 2-5 use a standard arithmetic
chain-ladder. Columns 6-9 use a geometric chain-ladder.

Table 7.2 presents the estimates for the geometric chain-ladder and for the standard
arithmetic chain-ladder. These are computed using the new Theorem 3.1 and the cor-

13



responding Theorem 3 of Kuang, Nielsen and Nielsen (2009). The estimates for Δα
and Δβ could of course also be computed using a (generalized) linear model regression
package, with a design matrix constructed from formula (3.14).

The estimates for Δα and Δβ are very similar for the arithmetic and the geometric
chain-ladder. The arithmetic and geometric nature of the calculations of for instance
the Δ̂αis as seen from (2.6) and (3.18) do, however, give some minor differences, that
in turn translate into different predictions. There does not seem to be a general rule for
ordering of the estimators coming from the formulas in (2.6) and (3.18).

Table 7.1 also reports predictions from the geometric and the arithmetic chain-
ladders. Figures in italic are median predictions from the geometric chain-ladder,
Ỹij = exp(μ̃ij) say. Figures in bold are ratios of predictions from the geometric and
the arithmetic chain-ladder, Ỹ a

ij/Ỹij = exp(μ̃a
ij − μ̃ij) say. Thus, these ratios are larger

than one when the arithmetic chain-ladder has the larger forecast. For instance, for
rows 2, 3 these ratios are larger than one. This relates to differences in the estimates
of Δα for the two methods as reported in Table 7.2. Indeed partial sums of the type
α̂i − α̂1 =

∑i
�=2Δα� are larger for the arithmetic chain-ladder for i = 2, 3. For rows 4,

5 the situation is the other way around.
Table 7.2 also gives information on the development factors. Actuaries are used

to manipulating the development factors F� for the arithmetic chain-ladder. It is less
obvious how the arithmetic development factors f� should be manipulated. Their in-
terpretation arises through (3.23) showing that, for instance, fj estimates a weighted
average of Δβ1, . . . ,Δβj. However, the development factors for the two models have
one thing in common, which is that they are the appropriate corrections to differences
of row sums, such as ri − ri−1, through formulas like (3.18).

The final piece of information in Table 7.2 is the variance estimate σ2 for the geomet-
ric chain-ladder. Here, σ̂2 is the maximum likelihood estimator, found by dividing the
sum of squared residuals with the number of cells, n = k(k + 1)/2 = 55, while s2 is the
degrees of freedom corrected estimator, found by dividing by df = (k−2)(k−1)/2 = 36.
The variance estimate is used if a prediction of the mean of Yij is preferred to a median
prediction. Formula (4.28) shows that this would involve multiplication of the predic-
tions indicated with italic in Table 7.1 by exp(σ̂2/2) ≈ 1 + σ̂2/2. This means adding
3.8% or 2.5% to the predictions depending on the use of a degrees of freedom correc-
tion or not. This will give a corresponding reduction in the relative predictions or the
arithmetic and geometric chain-ladder. Note, that the anchoring at the corner points
Yk1 and Y1k will now disappear.

7.3 Distribution forecasts

In practice it is desirable to supplement the point forecasts presented in Table 7.1 with
distribution forecasts. This can be done through a relatively simple simulation exercise.

For a single entry in the lower triangle the distribution forecast can be done ana-
lytically due to the log normality underpinning the model. The process error and the
estimation error are independent normal and therefore, following, Doray (1996), the

forecast error of the log point forecast μ̃ij = Xij ξ̂ is

yij − μ̃ij
D
= N[0, σ2{1 +X ′

ij(X
′X)−1Xij}],
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noting that X is the design matrix for the observations in the upper triangle. Inserting
the degrees of freedom corrected variance estimator s2 results in errors that follow a tdf -
distribution scaled by {1+X ′

ij(X
′X)−1Xij}1/2. When converting to the original scale by

Yij = exp(yij) the analytical simplicity is lost, although explicit formulas can be found
as discussed by Verrall (1991) and Doray (1996).

For a distribution forecast for the overall reserve, possibly broken down by calendar
year, we propose a simulation study of the following type.

Algorithm 1 Simulation of reserve.
1. draw independent, standard normal process errors εp,i,j,r for each i, j;
2. draw estimation error εξ,r from a N{0, (X ′X)−1} distribution;
3. draw squared scale error ε2s,r from nχ2

df/df distribution;

4. compute total reserve Rr =
∑

i,j exp{X ′
ij ξ̂ + σ̂εs,r(εξ,r + εp,i,j,r)};

5. repeat steps 1–5 for r = 1, . . . , Rep and get the empirical distribution.

Table 7.3 shows the outcome from simulating the forecast distribution. The results
are broken down by accident year, development year, and calendar year by varying the
summation in item 4 of the algorithm. Columns 5-7 show the pure process error, setting
the estimation error to zero in item 2 and the squared scale error to unity in item 3 of
the algorithm. Columns 8-10 show the process error combined with the estimation error,
while the squared scale error is set to unity. Inclusion of the squared scale error only
had a minor effect. In both cases the maximum likelihood estimator for the variance is
used.

For reference, it would be useful to present distribution forecasts for the arithmetic
chain-ladder. It is not so clear how to do this because of the underlying Poisson model
is over-dispersed. As a compromise we use the bootstrap method of England (2002).
columns 2-4 show the outcome from the implementation in R Development Core Team
(2006) package Chain Ladder 0.1.5-0 by Gesmann, Zhang, and Murphy (2011). This
method has a tendency to generate negative reserves at the longest developments even
though the underlying model does not permit this.

When comparing the arithmetic based bootstrap values with the geometric based
simulations it is useful to recall that the Poisson distribution has constant variance-
mean ratio whereas the log normal distribution has constant standard deviation-mean
ratio, see (2.8) and (2.9). Accordingly, we observe a tendency to smaller variance for
the bootstrap values than for the simulated log normal values for sums that include the
lower left corner of the lower triangle and vice versa for the right hand part of the lower
triangle.

For this triangle an additional variance issue is observed. In §7.1 it was suggested
that the variance is possibly lower for the second half of accident years than for the
first half of accident years. If this could be confirmed by the substantial context it
would seem sensible to shrink the forecast distribution towards the pure process error.
Indeed, Algorithm 1 could easily be adapted by adjusting the value of σ̂. An alternative
solution would be to alter the model so as to allow different variances for the two blocks
of accident years along the lines of Hertig (1985). The resulting likelihood could still be
estimated numerically.
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Year Bootstrap LogN: process LogN: full
1% 50% 99% 1% 50% 99% 1% 50% 99%

Accident years
2 -17 0.38 31 0.9 1.6 2.6 0.7 1.6 3.4
3 -6.3 25 103 15 24 38 13 24 44
4 5.5 56 157 47 67 96 42 68 110
5 28 97 219 82 111 151 73 112 171
6 73 169 318 129 169 223 114 170 255
7 125 245 419 182 236 310 159 237 360
8 290 471 719 381 488 637 324 491 752
9 508 756 1091 594 754 970 472 757 1212
10 996 1440 2145 1132 1456 1926 797 1463 2743

Development years
2 398 631 977 380 636 1066 296 636 1386
3 349 550 819 380 549 795 325 554 947
4 328 529 795 406 551 743 355 555 875
5 297 496 772 381 493 639 332 498 756
6 170 345 596 258 326 412 224 329 487
7 112 284 547 235 291 360 199 294 432
8 24 174 431 168 205 250 139 207 309
9 9.1 221 600 190 229 276 147 231 363
10 -91 7.7 193 16 19 23 11 19 35

Calendar years
11 1023 1347 1763 1040 1355 1818 951 1367 2143
12 524 750 1040 591 756 985 544 764 1134
13 307 484 718 377 487 641 344 493 749
14 176 314 501 237 309 412 212 313 489
15 81 180 330 135 179 238 120 181 284
16 35 110 239 85 116 158 74 117 192
17 6.2 59 163 45 64 92 38 65 115
18 -5.3 31 119 21 34 56 16 34 77
19 -23 0.011 40 1.5 2.5 4.1 1.0 2.5 6.2

Total Reserve
2563 3303 4239 2916 3324 3848 2514 3362 4785

Table 7.3: Distribution forecasts by accident year, development year, calendar year and
for full reserve: Column 2-4 use the Bootstrap method of England (2001), see also
England and Verrall (2002), as implemented by Gesmann (2009) using a seed of unity
and 39999 bootstrap replications; Column 5-10 use simulation of log Normal distribution
based on 39999 replications. Column 5-7 have process error only; Column 8-10 have
process error combined with estimation error for mean.

8 Conclusion

The geometric chain-ladder is often used in practice, although not as commonly as
the arithmetic chain-ladder. Both methods can be implemented as generalized linear
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models. However, one of the attractions of the arithmetic chain-ladder is the analytic
expressions for estimators and forecasts in terms of development factors. The main
contribution of this paper is to present similar analytic expressions for the geometric
chain-ladder. The results and the derivation resemble the contribution of Kuang, Nielsen
and Nielsen (2009) for the standard arithmetic case. Therefore, the exact difference of
the poisson model and the lognormal model are now fully transparent. Additionally,
some analytic expressions were derived for the distribution of the estimators and it was
shown how inclusion of exposure affects the geometric chain-ladder.

The point forecasts are broadly similar for the two chain-ladder models although
minor difference appears in the way they weigh the information from different accident
years. When it comes to distribution forecasting there are some methodological differ-
ences. The arithmetic chain-ladder is essentially based on a Poisson distribution. In
practice, one often finds a considerable over-dispersion. As a consequence one does not
really have a model for the variation in the data. This means that it is hard to test
the distributional validity of the model and distribution forecasting is made on shaky
ground. In contrast, the log normal model underlying the geometric chain-ladder is
much more reasonable than a Poisson distribution, so one can directly test the distribu-
tional validity and make distribution forecasts. One consequence is that it is easier to
think about improving the geometric chain-ladder if the residuals suggest a systematic
deviation from the model. One such example was briefly discussed in the empirical
illustration. Thus, the geometric chain-ladder may have an edge from a viewpoint of
distribution forecasting.

The substantive interpretation of the geometric chain-ladder is less clear. The re-
serving triangle is formed by aggregation over a large number of policies. While the
aggregated distribution may be well approximated by a log normal distribution it is
not obvious how a log normal distribution could arise through aggregation. An over-
dispersed Poisson distribution can, however, be motivated in terms of a compound
Poisson aggregation mechanism. When faced with additional data, for instance from
a triangle of counts of reported claims, it may be easier to generalise a micro foun-
dation of this type, see for instance Mart́ınez-Miranda, Nielsen, Nielsen and Verrall
(2011), Mart́ınez-Miranda, Nielsen and Verrall (2012), Mart́ınez-Miranda, Nielsen and
Wüthrich (2012).
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A Appendix: Proofs of Theorems

Proof of Theorem 3.1. It is convenient to introduce row and column sums

r̆i =
k+1−i∑
j=1

yij = (k + 1− i)ri, c̆j =

k+1−j∑
i=1

yij = (k + 1− j)cj . (A.34)
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The likelihood (3.15) can then be rewritten as

log L(ξ, σ2; y) = −k(k + 1)

4
log(2πσ2)− 1

2σ2

∑
i,j∈I

μ2
ij

− 1

2σ2

∑
i,j∈I

y2ij +
μ11

σ2

∑
i,j∈I

yij +
1

σ2

k∑
i=2

(αi − α1)r̆i +
1

σ2

k∑
j=2

(βj − β1)c̆j .

Thus, the model is a full exponential family with minimal sufficient statistic

T = (
∑
i,j∈I

y2ij,
∑
i,j∈I

yij, r̆2, . . . , r̆k, c̆2, . . . , c̆k).

For a full exponential family the maximum likelihood estimator is unique if and only if
the natural statistic is interior to its convex support (Barndorff-Nielsen, 1978, Theorem
9.13). For a regression model this happens with probability one when dim(y) = k(k +
1)/2 is larger than dim(ξ) = 2k − 1, that is for k ≥ 3.

Since the exponential family is regular the 2k likelihood equations are T = ET
(Barndorff-Nielsen, 1978, Corollary 9.6). Since

∑
i,j∈I yij =

∑k
i=1 r̆i =

∑k
j=1 c̆j this in

turn implies the equations

r̆i = Er̆i, c̆j = Ec̆j , for i, j = 1, . . . k. (A.35)

Estimating the development parameters. The log development factor fj as defined in
(2.10) can be written in terms of the minimal sufficient statistics r̆i, c̆j as follows. The
numerator of, for instance, the first term in fj is the sum over the first j columns of the
first k + 1− j rows of yi� = log Yi�. This is the same as the sum over the first k + 1− j
rows of yi� minus the sum over the last columns sums indexed j+1, . . . , k, that is, using
the definitions in (A.34),

k+1−j∑
i=1

j∑
�=1

yi� =

k+1−j∑
i=1

k+1−i∑
�=1

yi� −
k∑

�=j+1

k+1−�∑
i=1

yi� =

k+1−j∑
i=1

r̆i −
k∑

�=j+1

c̆j .

A similar manipulation of the numerator of the second term in fj gives

fj =

∑k+1−j
i=1 r̆i −

∑k
�=j+1 c̆�

j(k + 1− j)
−
∑k+1−j

i=1 r̆i −
∑k

�=j c̆�

(j − 1)(k + 1− j)
.

The likelihood equations (A.35) therefore imply that fj is maximum likelihood estimator
for the parameter

ϕj =

∑k+1−j
i=1 Er̆i −

∑k
�=j+1 Ec̆�

j(k + 1− j)
−
∑k+1−j

i=1 Er̆i −
∑k

�=j Ec̆�

(j − 1)(k + 1− j)

A similar manipulation to that done for fj then shows that

ϕj =

∑k+1−j
i=1

∑j
�=1 Eyi�

j(k + 1− j)
−
∑k+1−j

i=1

∑j−1
�=1 Eyi�

(j − 1)(k + 1− j)
.

18



Insert that

Eyi� = μi� = μ11 +

i∑
m=2

Δαm +

�∑
m=2

Δβm, (A.36)

noting that the μ11 and Δαm terms cancel so

ϕj =
1

j

j∑
�=2

�∑
m=2

Δβm − 1

j − 1

j−1∑
�=2

�∑
m=2

Δβm. (A.37)

The expressions for gi and γi arise similarly.
Estimating the difference parameters. The argument proceeds in a similar fashion as

above. Due to equation (A.34) then Δri is a function of the minimal sufficient statistic.
Indeed Δri = ri − ri−1 = r̆i/(k + 1 − i) − r̆i−1/(k + 2 − i). Thus the equations (A.35)
imply that Δri = ΔEri. Note that

ΔEri =
1

k + 1− i

k+1−i∑
�=1

Eyi� − 1

k + 2− i

k+2−i∑
�=1

Eyi�,

and insert the expression for Eyi� in (A.36) to get

ΔEri =
1

k + 1− i

k+1−i∑
j=1

(μ11 +

i∑
�=2

Δα� +

j∑
�=2

Δβ�)

− 1

k + 2− i

k+2−i∑
j=1

(μ11 +

i−1∑
�=2

Δα� +

j∑
�=2

Δβ�).

The terms involving μ11, Δα2, . . . ,Δαi−1 cancel so this reduces to

ΔEri = Δαi +
1

k + 1− i

k+1−i∑
j=2

j∑
�=2

Δβ� − 1

k + 2− i

k+2−i∑
j=2

j∑
�=2

Δβ�.

Using the expression in (A.37) this reduces to

ΔEri = Δαi − ϕk+2−i.

Equating Eri = ri and ϕk+2−i = fk+2−i implies the desired expression for the maximum
likelihood estimator for Δαi. The Δβj terms are dealt with similarly.

Estimating the level. The first expression for μ̂11 arises from the likelihood equation
for rk = yk1. This is

rk = Erk = μ11 +
k∑

�=2

Δα�.

Insert, the estimators for Δα� to get the desired expression. The second expression
arises in a similar way from the likelihood equation ck = Eck.
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Proof of Theorem 3.2. The two expressions are proved in the same way. Consider
therefore the second expression linking βs and ϕs. Recall the expression for ϕj in (3.23).

Multiply by j and replace �− 1 by
∑�

m=2 1 to get

jϕj =
1

j − 1

j∑
�=2

Δβ�

�∑
m=2

1.

Interchange sums to get

jϕj =
1

j − 1

j∑
m=2

j∑
�=m

Δβ� =
1

j − 1

j∑
m=2

{(βj − β1)− (βm−1 − β1)}.

= (βj − β1)− 1

j − 1

j−1∑
m=2

(βm − β1).

Formulated in terms of matrices:⎛⎜⎜⎜⎝
2 0 · · · 0

0 3
. . .

...
...

. . .
. . . 0

0 · · · 0 k

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ϕ2

ϕ3
...
ϕk

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 · · · 0

−1
2

1
. . .

...
...

. . .
. . . 0

− 1
k−1

· · · − 1
k−1

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

β2 − β1

β3 − β1
...

βk − β1

⎞⎟⎟⎟⎠
Inverting the matrix on the right hand side gives⎛⎜⎜⎜⎝

β2 − β1

β3 − β1
...

βk − β1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 · · · 0
1
2

1
. . .

...
...

. . .
. . . 0

1
2

· · · 1
k−1

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

2 0 · · · 0

0 3
. . .

...
...

. . .
. . . 0

0 · · · 0 k

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ϕ2

ϕ3
...
ϕk

⎞⎟⎟⎟⎠ .

Multiplying the two matrices on the right gives the desired result.

Proof of Theorem 5.3. Derivation of var(μ̂11). The variance is given in terms of the
top left element of (X ′X)−1, that is the element e′1(X

′X)−1e1 where e1 = (1, 0)′ is a
unit vector of length 2k − 1. Now, the unit vector e1 can also be written as e1 = X ′y̆11

where y̆11 = (1, 0)′ is a unit vector of length k(k + 1)/2. Therefore it holds that

e′1(X
′X)−1e1 = e′1(X

′X)−1X ′y̆11.

Here (X ′X)−1X ′y̆11 is the least squares estimator from regressing the auxiliary data
vector y̆11 on X. Closed form expressions for the elements of this least squares estimator
were found in Theorem 3.1. In particular, inserting the auxiliary data y̆11 instead of the
original data y gives development factors

fj =
1

j(k + 1− j)
− 1

(j − 1)(k + 1− j)
,
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and hence, through the expression for μ̂11, that

e′1(X
′X)−1e1 = e′1(X

′X)−1X ′y̆11

=
1

k
−

k∑
�=2

{
1

�(k + 1− �)
− 1

(�− 1)(k + 1− �)

}
.

To simplify the sum note that for instance

1

�(k + 1− �)
=

1

k + 1

(
1

�
+

1

k + 1− �

)
. (A.38)

Introducing the function Ck =
∑k

�=1(1/�) then

e′1(X
′X)−1e1 =

1

k
− 1

k + 1
(2Ck − 1− 1

k
) +

2

k
(Ck − 1

k
).

This in turn reduces to 2(k − 1)/k2 + 2Ck/{k(k + 1)} as desired.
Derivation of var(Δα̂i). The variance is given in terms of the ith diagonal element

of (X ′X)−1. Let ei = (0i−1, 1, 02k−i−1)
′ be the ith unit vector of length 2k − 1. Then

ei = Xi1−Xi−1,1 = X ′(y̆i1−y̆i−1,1), where y̆ij takes the value unity for element (i, j) and
zero otherwise. Thus, evaluate the expression for Δα̂i in Theorem 3.1 at the data point
y̆i1 − y̆i−1,1. Now, Δri = 1/(k + 1 − i) and fk+2−i = 0 when evaluated at y̆i1, whereas
Δri = −1/(k + 2− i) and fk+2−i = −1/{(k + 2− i)(i− 1)} − (−1)/{(k + 1− i)(i− 1)}
when evaluated at y̆i−1,1. In combination it holds

e′i(X
′X)−1ei =

1

k + 1− i
− −1

k + 2− i

− −1

(k + 2− i)(i− 1)
− 1

(k + 1− i)(i− 1)
, (A.39)

which reduces to the desired expression.
Derivation of var(fj). Use the expression (2.10). This shows that fj is the differences

of two averages of terms log Yi� that are independent normal with variance σ2. The
variances of the two terms are therefore σ2 divided by the number of elements. To find
the covariance write the numerator of the first term as the numerator of the second term
plus a component that is independent of the second term. In combination it follows that

var(fj) =
σ2

(k + 1− j)j
+

σ2

(k + 1− j)(j − 1)
− 2σ2

(k + 1− j)j
,

which reduces to the desired expression.
Derivation of var(Δ̂βi) and var(gj). Similar arguments as for var(Δ̂αi) and var(fj).

Proof of Theorem 6.4. The geometric chain-ladder is estimated by least squares
regression of the logged data y on the design matrix X giving the estimator ξ̂. The
data corrected for log exposure, hi = logHi, is given by y† = y − Xξ† where ξ† =
(h1,Δh2, . . . ,Δhk, 0, . . . , 0)

′. Due to the linear nature of the least squares estimator the

regression of y† on X gives ξ̂ − ξ†. Due to the formula (3.12) the forecast of yij based
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on the exposure corrected data is X ′
ij(ξ̂ − ξ†) = X ′

ij ξ̂ − hi = μ̂ij − hi. When adding hi

this gives the same forecast as for the original data.
For the variance estimator note y = y† +Xξ† so y and y† yield the same residuals

when regressing on X. The variance estimators are then identical.

Proof of var(Δα̂�) is increasing in � = 2, . . . , k for each k. Let σ2 = 1 without loss
of generality. It has to be argued that

d� = var(Δα̂�+1)− var(Δα̂�)

is positive for � = 2, . . . , k − 1. Insert the expression for the variances to get

d� =
1

k − �
+

1

k + 1− �
+

1

(k − �)(k + 1− �)�

− 1

k + 1− �
− 1

k + 2− �
− 1

(k + 1− �)(k + 2− �)(�− 1)

Note that the 1/(k + 1− �)-terms cancel. Multiply d� by the positive term (k − �)(k +
1− �)(k + 2− �) to get

d�,k = (k − �)(k + 1− �)(k + 2− �)d�

= (k + 2− �){(k + 1− �) +
1

�
} − (k − �){(k + 1− �) +

1

�− 1
}.

This expression reduces to

d�,k = 2(k + 1− �) +
(k + 2− �)(�− 1)− (k − �)�

�(�− 1)

= (k + 1− �){2− 1

�(�− 1)
}+ 2�− 1

�(�− 1)
,

which is positive for � = 2, . . . , k − 1.
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