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Abstract: The apc package includes functions for age-period-cohort analysis based on
the canonical parametrisation of Kuang et al. (2008). The package includes functions for
organizing the data, descriptive plots, a deviance table, estimation of (sub-models of) the
age-period-cohort model, a plot for specification testing, plots of estimated parameters,
and sub-sample analysis.

1 Introduction

Age-period-cohort models are extensively used in actuarial sciences, demography, epi-
demiology and social sciences. They have an identification problem in that the predictor
is defined from time effects for age, period and cohort, but these time effects cannot be
fully recovered from the predictor. The apc package, see Nielsen (2014a), implements
the solution proposed by Kuang et al. (2008), which is to abandon the time effects and
reparametrise the predictor in terms of freely varying parameters.

The age-period-cohort model has three time scales: age i, period j and cohort k.
These are linked through the identity i+k = j−1. The data are two dimensional arrays
of responses and doses indexed by two of the three time scales. The statistical model is
a generalized linear model with a predictor of the form

µik = αi + βj + γk + δ, (1.1)

The levels and linear slopes of the individual age, αi, period, βj and cohort time effects,
γk, are not identifiable. The problem is discussed for instance by Clayton and Schifflers
(1987a,b), Holford (1985), O’Brien (2011), Luo (2013), while Nielsen and Nielsen (2014)
describe the problem algebraically.

The identification problem is addressed by reparametrising the model along the lines
of Kuang et al. (2008), see also Nielsen (2014b). This exploits that the second differences
of the time effects are identified and that the predictor itself is also identifiable. As an
example, define the second difference of the age effect by ∆2αi = ∆αi − ∆αi−1 where
∆αi = αi−αi−1. In an age-cohort coordinate system it is identifiable from the predictor
through

∆2αi = µik − µi−1,k+1 − µi−1,k + µi−2,k+1. (1.2)

Kuang et al. (2008) show that the predictor satisfies the representation

µik = µ11 + (i− 1)(µ21 − µ11) + (k − 1)(µ12 − µ11)

+
i∑

t=3

t∑
s=3

∆2αs +

j∑
t=3

t∑
s=3

∆2βs +
k∑

t=3

t∑
s=3

∆2γs, (1.3)
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when the data is organized in an age-cohort rectangle where i = 1, . . . , I and k =
1, . . . ,K so that j = 1, . . . , J with J = I +K − 1. The parameter

ξ = (µ11, µ12, µ21,∆
2α3, . . . ,∆

2αI ,∆
2β3, . . . ,∆

2βJ ,∆
2γ3, . . . ,∆

2γK)′ (1.4)

is freely varying. It is identified since different values ξ† 6= ξ‡ implies different predictors
µ† 6= µ‡. In the context of an exponential family ξ is then the canonical parameter and
family is regular. In other words the identification problem is addressed by working
with the canonical parameter ξ instead of the time effects αi, βj , γk, δ. We can therefore
consider any inference on the time effects that can be expressed in terms of the canonical
parameter. Nielsen (2014b) generalizes this representation to a large class of data arrays.

The package epi has a series of functions for demographic and epidemiological analy-
sis as well as some functions for age-period-cohort analysis. There are two major differ-
ences between the packages apc and epi. First, apc uses the canonical parametrization
of Kuang et al. (2008), whereas epi does not. Secondly, age-period-cohort data come
in matrix formats and have to be vectorized before fitting the generalized linear model.
The package apc takes data in a variety of matrix formats and vectorizes internally,
while epi takes vectorized data in a data frame format.

2 The apc package

The package includes functions for organizing the data, descriptive plots, a deviance
table, estimation of (sub-models of) the age-period-cohort model, a plot for specification
testing, plots of estimated parameters, and sub-sample analysis. These are described in
turn.

The data example for this analysis is a data set for annual mesothelioma deaths in
the UK taken from Mart́ınez Miranda et al. (2014). It is though that most mesothelioma
deaths are caused by exposure to asbestos. The data set has counts of male deaths by
age 25–89 and by 1967–2007. There is no direct measure for the exposure to asbestos.

2.1 Organizing the data

Age-period-cohort data may include doses and responses or just responses. They come
in different types of data arrays. apc allows for the six matrix formats arising from the
choice of two indices from the age, period, and cohort time scales, as well as a triangular
format for chain-ladder analysis. All these are special cases of a generalized trapezoid
format. A special data format apc.data.list is used to keep track of the data format
and the time scales. An artificial response-only data set organized in age-period format
can be coded as follows

> library(apc)

> m.data <- matrix(data=seq(12),nrow=3,ncol=4)

> data.artificial <- apc.data.list(m.data,"AP",age1=25,per1=1990,unit=5)

> data.artificial$response

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12
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The function apc.data.list assigns ten objects to the variable data.artificial. The
first argument defines the response data, while the second argument signifies that the
response matrix is rectangular with coordinates in age-period format. The remaining
arguments are optional. In this case information about the times scales have been given.
This shows that the real time scales are 25, 30, 35 for age and 1990, 1995, 2000, 2005 for
period, which in turn implies that the cohorts are 1955, 1970, · · · , 1980. When reporting
estimators apc will keep track of these real time scales. No dose data are defined, so
data.artificial$dose will be NA.

A variety of data from the literature are pre-coded including the asbestos data from
Mart́ınez Miranda et al. (2014). The available information for that data set is exactly
as in the previous example: a data matrix for responses in age-period format, though
much larger, along with information about the time scales. It can be called through

> data.asbestos <- data.asbestos()
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Data sums by age/period/cohort index

Figure 1: Data sums by age, by period and by cohort.

2.2 Descriptive plots

apc has a variety of plots for descriptive analysis. These include plots of sums of the
data by age, period or cohort to get an idea of the aggregate development. Plots of the
data matrix against two of the three time indices to spot patterns in the data. Sparcity
plots that indicate if some entries in the data matrix are very small. For instance, there
are very few mesothelioma deaths for young people. These plots can be called and
manipulated individually or they can be called with a single command.

> apc.plot.data.all(data.asbestos)

Figure 1 show the plots of data sums. The responses are seen to be sparse for young
people and for old and recent cohorts. The sparcity plot, which is not reported here,
illustrates this in more detail.
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2.3 Deviance analysis

At this point the distribution is chosen. Currently four distributions are implemented: A
Poisson response model, a Poisson dose-response model, a logistic dose-response model,
and a Gaussian model giving least squares regression. The sampling theory for the
two Poisson models is described in Mart́ınez Miranda et al. (2014), Nielsen (2014b),
respectively.

The age-period-cohort model has a variety of interesting sub-models. These arise
by setting some of the coordinates of the canonical parameter ξ to zero. An age-cohort
model ”AC” arises by setting the period double-differences to zero, so ∆2βj = 0 for
j = 1, . . . , J . The drift models of Clayton and Schifflers (1987a,b) arise by setting two
sets of double-differences to zero. An age-drift model ”Ad” arises as a sub-model of
”AC” by setting ∆2γk = 0 for j = 1, . . . ,K. For instance, an age model ”A” arises as a
sub-model of ”Ad” by setting the cohort slope to zero. A pure trend model ”t” arises
as a sub-model of ”Ad” by setting ∆2αi = 0 for i = 1, . . . , I. A deviance table gives an
overview of the relative performance of the different models. For the mesothelioma data
we get the following output.

> apc.fit.table(data.asbestos,"poisson.response")

-2logL df.residual prob(>chi_sq) LR.vs.APC df.vs.APC prob(>chi_sq) aic

APC 2384.923 2457 0.848 NA NA NA 10805.81

AP 5336.034 2560 0.000 2951.111 103 0.000 13550.92

AC 2441.728 2496 0.778 56.805 39 0.033 10784.61

PC 8265.746 2520 0.000 5880.823 63 0.000 16560.63

Ad 5912.422 2599 0.000 3527.499 142 0.000 14049.31

Pd 23461.384 2623 0.000 21076.461 166 0.000 31550.27

Cd 8494.658 2559 0.000 6109.735 102 0.000 16711.54

A 21948.036 2600 0.000 19563.113 143 0.000 30082.92

P 34391.044 2624 0.000 32006.121 167 0.000 42477.93

C 28415.983 2560 0.000 26031.060 103 0.000 36630.87

t 24037.772 2662 0.000 21652.849 205 0.000 32048.66

tA 40073.386 2663 0.000 37688.463 206 0.000 48082.27

tP 34967.432 2663 0.000 32582.509 206 0.000 42976.32

tC 50558.531 2663 0.000 48173.607 206 0.000 58567.42

1 51003.046 2664 0.000 48618.123 207 0.000 59009.93

The first column in the table has the heading -2logL, noting that the deviance equals
minus twice the log likelihood for Poisson and logistic models, but not for Gaussian
models. The deviance table indicates that the reduction worth considering is an age-
cohort model, which is denoted ”AC”. Moreover, the quality of the unrestricted model
is quite good, with a deviance smaller than the degrees of freedom. Nielsen (2014b)
gives a detailed discussion of the interpretation of the sub-models.

2.4 Estimation of a particular model

We can look a bit closer at a particular sub-model. For instance, in the case of the
asbestos data the unrestricted age-period-cohort model is estimated as follows. The
canonical parameter has 208 parameters, so only a few of the estimates are reported
here.
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> fit.apc<- apc.fit.model(data.asbestos,"poisson.response","APC")

> fit.apc$coefficients.canonical[1:8,]

Estimate Std. Error z value Pr(>|z|)

level 1.041126756 NA NA NA

age slope 0.379386996 0.1115535 3.400941274 0.0006715425

cohort slope 0.358297074 0.1125026 3.184789061 0.0014485956

DD_age_27 1.029446394 1.6467618 0.625133761 0.5318832712

DD_age_28 0.065309039 1.4311381 0.045634337 0.9636017004

DD_age_29 -1.097279478 1.1180554 -0.981417831 0.3263867366

DD_age_30 0.414467808 1.1902557 0.348217448 0.7276768856

DD_age_31 0.003217972 1.2247555 0.002627441 0.9979036081

No standard errors are reported for the level. This is because a multinomial sampling
scheme conditioning on level is used in the case of the Poisson response model. Note
that the names for the parameters utilize the information about the real time scales
coded through apc.data.list().

2.5 A probability transform plot for the fit

The quality of the fit can be illustrated using a probability transform plot. Using the
estimates it plots probability transforms of responses given the fitted value. In other
words, do the actual observations seem probably given the estimated model. The plot
is given in the original coordinate system. Colours and symbols are used to indicate
whether responses are central to the fitted distribution or in the tails of the fitted
distribution. The intention of the plot is to reveal if there are particularly many extreme
observations given the fit and if they form a particular pattern.

For the asbestos data the probability transform plot is coded as

> apc.plot.fit.pt(fit.apc)

Figure 2 shows the result. For instance, all red point triangles indicates observations in
the extreme 1 % of the distribution. Since they are all point down they are in lower end
of the distribution. The number of red triangles is not particular large given the number
of observations, n = 2665, but, they form a pattern among the most recent cohorts.
Therefore, a recursive analysis is performed below.

2.6 Plots of the estimates

Figure 3 shows plots of the estimates generated by the code

> apc.plot.fit(fit.apc)

The object fit.apc includes information about which sub-model has been estimated.
This is used to address the identification issues, which vary according to which compo-
nents are present in a given sub-model, see Nielsen (2014b) for further details.

Figure 3 (a)-(c) shows the estimated second difference parameters ∆2αi, ∆2βj , ∆2γk.
The estimates are plotted with pointwise confidence bands centered around zero. The
age double differences are noisy for young ages while the cohort double differences are
noisy for young and old cohorts. This is due to the sparcity of observations for those
age and cohort groups. This calls for a sub-sample analysis, which is described below.
For further discussion see Mart́ınez Miranda et al. (2014).
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Figure 2: Probability transform plot of age-period-cohort fit to asbestos data.

Given the original model formulation in (1.1) it is of interest to represent the time
effects for age, period and cohort somehow. The representation (1.3) implies that these
time effects are given as double sums of double differences combined with an ad hoc cho-
sen linear trend, see see Clayton and Schifflers (1987b) for an illustration. Figure 3(g)-(i)
shows double sums of double difference combined with a linear trend chosen so that the
series start and end in zero. The idea is to give a good visual impression of variation
over and above a linear trend and at the same time preserving the degrees of freedom
in panels (a)-(c). Figure 3(d)-(f) indicates the linear plane arising from the particular
identification choice. Nielsen (2014b) discusses these choices in further detail.

2.7 Sub-sample analysis

The asbestos data is sparse for low ages and for old and young cohorts. A recursive
analysis can be used to check how sensitive the above analysis is to this. The idea is to
cut parts of observations away and redo the analysis. This is done through

> data.asbestos.subset <- apc.data.list.subset(data.asbestos,10,0,0,0,3,16)

which cuts the lower 10 age groups, the lower 3 cohort groups and the upper 16 groups.
The subset of the data is no longer a rectangle in the age-period coordinate system, but
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Figure 3: Plots of the fitted values.

rather a rectangle with some corners cut off. This is called a generalized trapezoid in
Kuang et al. (2008). The above analysis can now be redone.

Instead of cutting the oldest cohorts one could cut the oldest periods. Doing that
implies that both the minimum period and minimum cohort change. This has impli-
cations for which double difference parameters are eliminated and which three points
should be used to measure the linear plane. This is taken into acoount, but a warning
is issued.

> data.asbestos.subset <- apc.data.list.subset(data.asbestos,10,0,3,0,0,16)

[1] "apc.data.list.subset WARNING:"

[1] "cuts in argument are:"

[1] 10 0 3 0 0 16

[1] "have been modified to:"

[1] 10 0 3 0 3 16
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3 Summary

This article describes the apc package for age-period-cohort modelling. It implements
the canonical parametrisation of Kuang et al. (2008). The package includes functions for
organizing the data, a descriptive plot, a deviance table, estimation of sub-models of the
age-period-cohort model, a plot for specification testing, plots of estimated parameters,
and sub-sample analysis.
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