%Title: A unimodular demand type which is not a basis change of substitutes™
Y%Last Edit:27/8/15

%For further details, please contact:

% Timothy O0"Connor, timothy.oconnor@economics.ox.ac.uk

% Elizabeth Baldwin, e.c.baldwin@lse.ac.uk

%Introduction

%This program checks whether or not there exists a basis change for a
%SPECIFIC 4x9 matrix whose resulting basis change will have max 1 positive and
%max 1 negative entry in each column. As this is for a specific 4x9 matrix,
%this program is NOT immediately generalizable for any 4x9 matrix.

%We start by initiliazin% all of our variables (1) before finding all
%possible combinations of the Tirst four columns of our 4x9 matrix with
%<=2 nonzero entries in (2) and (3). We throw out from consideration any
%matrix who would not have the first four columns being invertible (4). (b)
%takes the invertible matrices and fills out the rest of the columns.
%(6),(7), and (8) will filter based on if a matrix generates >2 NZ entries
%in the later part of the matrix. (9) throws out any collection of columns
%that were originally invertible which are no longer invertible. (10) will
%then check to see if the last group of candidate matrices can have at most
%1l positive and at most 1 negative entry in each column.

%Notation:

%A = 4x4 matrix that features the First four columns of the matrix in question

%Dt = full matrix whose columns are the vectors of the demand tgpe

%P = basis change on Dt, so that P.Dt is the matrix that would have at most one positive and at
most one negative entry in each column.

%The unimodular demand type, Dt, that we are investigating is given by:

a=[1,0,0,0];a=a";

b=]0,1,0,0];b=b";

c=[0,0,1,0];c=c";

d=[1,0,0,1];d=d";

A=[a,b,c,d];
Dt=[A,d-a+b,d-a+c,d+b,d+c,d-a+b+c];

%% 1. Initialization of the variables/matrices

%We start by creating the ﬁossible basis change matrix P by producing symbolic variables

%that are constrained to the reals.

syms pl_1 real pl 2 real pl_3 real pl 4 real p2_1 real p2_2 real p2_3 real p2_4 real p3_1 real p3_2
real p3_3 real p3 4 real p4_1 real p4_2 real p4_3 real p4_4 real

p=[pl_1,p1 2,p1l 3,pl 4;p2_1,p2 2,p2 3,p2_4;p3_1,p3_2,p3 _3,p3 4;p4 1,p4 2,p4_3,p4_4];

%% 2. Initialization of set of matrices with number of nonzero entries <=2

% We gather all possible ways a 4x4 matrix can have at most 2 nonzero entries in each column

% Once we have found them, we will then assume this matrix has the form "PA" and set the remaining
entries of PA to zero.

perms=nchoosek(4,2);%Total number of ways to have 2 Nonzero (NZ) entries in a column
perms_1l=nchoosek(4,1);%Total number of wags to have 1 NZ entry in a colum
perm_point=nchoosek((1:4),2);%List of combinations for the 2 NZ selections
perml_point=nchoosek((1:4),1);%List of combinations for the 1 NZ selection
max_perms=perms™4+perms_1l*perms"3*4+6*perms”2*perms_1"2+4*perms*perms_173+perms_174;%total amount
of combinations

max_matrix_collection=zeros(4,4,max_perms);%Preallocating space

%We collect all the possible matrices with 2 nonzero entries in each column
%sgch that we cycle through perm_point for each column
n=1;
for i=l:perms
i_p=perm_point(i,:);
for j=1:perms
] p:Eerm_point(j,:);
for k=1:perms
K p:ﬁerm_point(k,:);
for h=1:perms
h_p=perm_point(h,:);
bTank_z=zeros(4,4);
blank_z(i_p,1)=1;%We input 1 as these will be the locations that are NZ
blank_z(j_p,2)=1;
blank_z(k_p,3)=1;
blank z(h p,4)=1;

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

max_matrix_collection(:,:,n)=blank _z;%Collect the matrix
n=n+1;
end
end
end
end

%Now we collect all the combinations with 3 columns having 2 nonzero
%entries and 1 column having 1 nonzero entry

%4th column has 1 nonzero
for i= 1 perms
i_p=perm_point(i,:);
ff J=1:perms
%_p Eerm _point(j,:);
1:perms
Eerm _point(k,:);
or 1:perms_1
Eerml point(h);
Tank_z=zeros(4,4 “%reset
blank z(i_p,1)=1;
blank_z p,2 =1;
blank_ z(k p,3)=1;
blank_z(h_p,4)=1;
max_matrix_colle
n=n+1;

étlon(:,:,n):blank_z;

end
end
end
end
%3rd column has 1 nonzero
for i=1l:perms
i_p=perm_point(i,:);
for 1—1 perms
Eerm _point(j,:);
1:perms_1
ﬁerml point(k);
1:perms
Eerm _point(h,:);
Tank_z=zeros(4, 4) hreset
blank z(i_p,1)=1;
blank z(j _p,2 l,
blank z _p,3 =1;
blank_z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;
end
end
end
end
%2nd column has 1 nonzero
for i=l:perms
i p= perm_ point(i,:);
for 1—1 perms_1
Eerml point(j);
1:perms
pzﬁerm _point(k,:);
=1:perms
h =Eerm _point(h,:);
Tank_z=zeros(4, 4) hreset
blank z(i_p,1)=1;
blank z(j_p.,2 =1:
blank_z _p,3 =1;
blank_z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;
end
end
end
end
%1st column has 1 nonzero
for i=l:perms_1
perml point(i);
1 l perms
Eerm _point(J,:);
1:perms
ﬁerm _point(k,:);
1 sperms
erm_point(h,:);
bTan z=zeros(4, 4) %reset
blank z(i p,1)=1

-W-n

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

blank_ z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;

end

blank_z(j_p,2)=1;
blank_z(k p,3)=1;

end
end
end

%Now we collect all the combinations with 2 columns having 2 nonzero
%entries and 2 columnns having 1 nonzero entry

%lst and 2nd have 1 nonzero
for | 1l:perms_1
p= perml point(i);%lst column has 1
f6r 1 1 perms_1
Eerml point(j);%2nd column has 1
l:perms
p:ﬁerm_p0|nt(k,:);
=1:perms
Eerm point(h,:);
bTank z= zeros(4 4) %reset
blank_z(i_p,1
blank_z '_p 2 :1,
blank_z p,3 =1;
blank_z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;
end

end
end
end
%lst and 3rd have 1 nonzero
for i=1:perms_1
i perml point(i);
ff' 1 1 perms
Eerm point(jJ,:);
or =l:perms_1 _
K p:ﬁerml_p0|nt(k);
or h=1l:perms
Eerm point(h,:);
bTank z= zeros(4 4) %reset
blank_z(i_p,1
blank_z '_p 2 :1,
blank_z p,3 =1;
blank_z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;
end

end
end
end
%lst and 4th have 1 nonzero
for i=l:perms_1
ip= perml point(i);
for j=l:perms i
p= Eerm point(J,:);
1:perms
Rerm_point(k,:);
f6r =1:perms_1
—Eerml point(h);
bTank z= zeros(4 4) :%reset
blank_z(i_p,1)=1;
blank_z '_p,2 =1;
blank_z(k p,3)=1;
blank_z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;
end

i
1p

end
end
end
%2nd and 3rd have 1 nonzero
for i=l:perms
i p= perm_ point(i,:);
for 1 1 perms_1
Eerml point(j);
=l:perms_1
K p:ﬁerml_point(k);
=l1:perms

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

h p Eerm _point(h,:);

bTank_z=zeros(4, 4) Y%reset
blank_z(i_p,1)=1;

blank_z p,2 =1;

blank z(k p,3)=1;

blank_z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank z;

end
end
end
end
%2nd and 4th have 1 nonzero
for i=1l:perms
i_p=perm_point(i,:);
for j=l:perms_1
%_p Eerml point(j);
1:perms
Eerm _point(k,:);
or 1:perms_1
Eerml point(h);
Tank_z=zeros(4,4 “%reset
blank_z i_p,1)=1;
blank_z p,2 =1;
blank_z(k p,3)=1;
blank_z(h_p,4)=1;
max_matrix_colle
n=n+1;

lection(:,:,n)=blank_z;
end
end
end
end
%3rd and 4th have 1 nonzero
for | 1:perms
p=perm_ point(i,:);
frr 1—1 perms
Eerm _point(j,:);
1:perms_1
ﬁerml point(k);
l:perms_1
Eerml point(h);
Tank_z=zeros(4,4 %reset

blank z(i_p,1)=1;
blank z(j _p,2 =1:
h”

blank z p,3 =1;
blank z(h p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;
end
end

end
end

%And now we collect all the combinations with 3 columns having 1 nonzero
%and one column having 2 nonzero entries

%4th has 2 nonzero
for i=l:perms_1
i p= perml point(i);
for 1—1 perms_1
Eerml point(j);
1:-perms_1
ﬁerml point(k);
1 iperms
erm_point(h, :
bTan z=zeros(4,)% %reset

blank_z(i_p,1)=1;
blank_z(j_p.2)=1:
h

blank_z _p,3 =1;
blank_ z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;
end
end

end
end
%3rd has 2 nonzero
for i=1:perms_1
| p= perml point(i);
for j=l:perms
J p= perm point(J,:);

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

for k=1:perms_1 _
p:ﬁerml_p0|nt(k);

=1l:perms_1

Eerml point(h);
bTank z= zeros(4 4) :%reset
blank_z(i_p,1)=1;
blank_z '_p,2 =1:
blank_z(k_p,3)=1;
blank_z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;

end

end
end
end
%2nd _has 2 nonzero
for | 1l:perms_1
p= perml point(i);
f6r 1 1 perms_1
Eerml point(j);
l:perms
K p:ﬁerm_p0|nt(k,:);
=1l:perms_1
Eerml point(h);
bTank z= zeros(4 4 “%reset
blank_z(i_p,1
blank_z '_p 2)=
blank_z(k_p,3
_p,4
o]

blank_z(h_p,
max_matrix_c
n=n+1;

end

1
1;
1;
e

1 étlon(:,:,n):blank_z;

end
end
end
%lst has 2 nonzero
for i=l:perms
ip= perm_ point(i,:);
for 1 1 perms_1
Eerml point(j);
or =1l:perms_1
K p:ﬁerml_point(k);
=1l:perms_1
Eerml point(h);
bTank z= zeros(4 4 “%reset
blank z(i_p,1
blank_z '_p 2)=
blank_z(k p,3
_p,4
o]

blank_z(h_p,
max_matrix_c
n=n+1;

end

1
1;
1;
e

1 étlon(:,:,n):blank_z;

end
end
end

%Now collect with all four having 1 NZ
for i= 1 perms_1
i_p=perm_point(i);
f_ 1 l perms_1
Eerml point(j);
f6r 1l:perms_1
Eerml point(k);
or 1:perms_1
Eerml point(h);
Tank_z=zeros(4,4 “%reset
blank z(i_p,1)=1;
blank_z(j_p,2 =1;
blank z _p,3 =1;
blank_z(h_p,4)=1;
max_matrix_collection(:,:,n)=blank_z;
n=n+1;
end
end
end
end

%And now we have _all of the matrices.) o
%Let us now put it into our actual format (with the pi_j©s)

%% 3. Now we take the set of matrices and express it in "PA" matrix form.

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

%Preallocate _space for the_combinations of "PA"™ - Warning, this_is where the
%computing time starts to increase as we loop over symbolic variables
A_combos= sym(zeros(4,4,max_perms));

%This gets us our "PA"™ matrix for all the combinations of columns with <=2
%nonzero entries
for n=1:max_perms
for i=1:4
for j=1:4
1T(max_matrix_collection(i,
A_combos (T, j,n)=dot(p(i
else
A_combos(i,j,n)=0;

)==D)%IF this entry is NZ, then input the correct pi_j value

J.n
»2)LAL)));

end
end
end
end
%This makes sure that the approprlate substitutions are in place. If pi_1
%is equal to zero and if pi_l1+pi_4 is NZ then we should just have pi_4 by itself

for n=1:max_perms
for i=1:4
for j=1:3
1f A combos(i,j,n)==0
g A_combos(:, :,n)=subs(A_combos(:,:,n),p(i,j),0);
en
end
end
end

%% 4. Now we Filter all the "PA" matrices that would not be invertible

%Preallocating space Tor our invertible collection
count=0;
for n=1:max_perms
it rank(A_combos(:,:,n))==
count=count+1;

end
end
inv_A _combos= sym(zeros(4,4,count));
count=0;
for n=1:max_perms
it rank(A_combos(:,:,n))==4%1F this matrix is invertible, we add it to our list
count=count+1;
inv_A combos(:,:,count)=A_combos(:,:,n);
end
end

%% 5. Now we Fill out our collection to include columns 5:9. That is, we now work with the
collection of matrices of the form "P.Dt".
full_combos=sym(zeros(4,9,count));
for n=1:count
%From our orlglnal matrix, if our fi

rs our columns are: a,b,c,d, then:
c5=inv_A combos(:,4,n)-inv_A combos(:

f
n)+inv_A_combos(:,2,n);%column five is d-atb
c6=inv_A_combos :,4,n -inv_A_combos n)+inv_A_combos(:,3,n);%column six is d-a+c
c7=inv_A_combos(:,4,n)+inv_A_ combos n
c8=inv_A_combos(:,4,n)+inv_A_combos n
c9=inv_A combos(:,4,n)-inv_A_combos n
a+b+c
fiIIing:Ec5,06,c7,08,09];
full_combos(:, :,n)=[inv_A_combos(:,:,n),filling];

;%c7 is d+b
;%08 is d+c i i
+inv_A combos(:,2,n)+inv_A combos(:,3,n);%c9 is d-

end
%% 6. Now we check the amount of NZ entries in each column.
alive=0;%new count of matrices that "survive" the filter

%We take our set and Filter out the matrices with greater than

%2 NZ entries within a column. One important thing to note that if we have
%pi_j, for j=1,2,3, by itself in an entrﬁ we know that it is NZ. However,
%this is not necessarlly the case if we have pi_4 by itself. If all that we
%know is that pi_l1+pi_4 is NZ, this does not tell us whether or not pi_4 is
%zero. Therefore, w en we count the number of NZ entries in each column we
%can add to our count if we have a pi_j, j—=4, by itself, and pi_4 will
%only increase our count if pi_1 is zero.

% It is much faster to First count how many matrices will remain after this

% step, preallocate the required space, and then collect those matrices. Here
% we perform that first count.

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

for k=1:count
flag=0;%Will flag on if we have more than two nonzero entries in a column. We will then not add
that matrix to our next list.
for j=5:9
22 =0; %ﬁ zountlng term for the number of nonzero entries
or 1
str=char(full_combos l’ﬂ k));%We string the entry
_ len=length(str);%Find the ength of the string so that we can see what the last
character is
if len<6&&len>1%Provided that the entry is not just a "0"->length==1, or an additive
entry->length>5
if str(len)~="4"%1f we have a pi_j by itself and j~:4, we know it is a NZ entry
nz=nz+1;
elseif full combos(l ,J,K)==Ffull_combos(i,4,k)%IF pi_4 is the only entry in the 4th
column, then pi_1=0 and so pi_4 is NZ
nz=nz+1;
end
elseif_len>6%We know look for a double that we know would be NZ. The only double that
we would know is NZ would be the double found in the fourth column (pi_1+pi_4)
it full_combos(i,]j,k)==Full_combos(i,4,k)

nz=nz+1;
end
end
end
if nz>2
flag=1;

end
|f full combos(_,% k%——[o ;0;0;0]%After step five of filling out the rest of the columns,
there may be a column wit 1 zeros
flag=1;
end
end
if flag==0%1f we do not have an columns with >2 NZ entries then we increase our count.
alive=alive+l;

end

end

%Now that we have the count, preallocate, then write in data - this next part is the same loop as
above, we just write in the data now.

first_filter_num=alive;

first_fiIter:sym(zeros(4,9,first_fiIter_num));

alive=0;
for k=1:count
flag=0;
for j=5:9
nz=0;
for 1=1:4
str=char(full_combos(i,j,.k));
len=length(str);
it len<6&&len>2
if str(len)~="4"
nz=nz+1;
elseif full_combos(i,j,k)==Full_combos(i,4,k)
nz=nz+1;
end
elseif len>6
if full_combos(i,j,k)==Ffull_combos(i,4,k)
nz=nz+1;
end
end
end
it nz>2
flag=1;
|f full combos(.,J k)==[0;0;0;0]
flag=1
end
end
if flag==

alive=alive+l;
girst_filter(:,:,alive):full_combos(:,:,k);
en
end

%% 7. Now subtitute for the matrices with >2 entries when 2 are for sure NZ

%1f a column has for sure 2 nonzero entries and then other entries that are

%not formally set to zero, we can now formally set to zero the other

%entries. For example, the entries in a column are:

%[pl 2+pl 4,p2_1,p3_3,p4 2+p2_4]. As the second and third entry are for

%sure NZ we can formally set to zero the values of the first and fourth entry (throughout

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

%the entire matrix). Our column is then: [0,p2_1,p3 3,0].

for k=1:first_filter_num
for j=5:9
nz=0;
flag=0;
for i=1:4
str:char(first_filter(i,j,k%);%As before, we string the entries and inspect the last
character. ITf we have pi_4, then it will only be for sure NZ it we know that pi_1 is zero
len=len thgstr);%Store the location of the last character
it _len<6&&len>1%I1f the length is greater than 1 such that it is not "0" and less than 6
such that it is a single element (pi_j or -pi_j)
if str(len)~="4"
nz=nz+1;
elseif First_filter(i,j,k)==First_filter(i,4,k)%Else if pi_4 is by itself in the
fourth column:
nz=nz+1;
end
elseif len>6%We know look for a double that we know would be NZ. The only double that
we would know is NZ would be the double found in the fourth column (pi_1+pi_4)
if first_filter(i,j,k)==First_Ffilter(i,4,k)
nz=nz+1;
end
end
end
it nz==2
flag=1;

en
if flag==1
%1T we have two nonzero entries in this column, we will not go
%back and formally set to zero any entries that we did not
%formally know if they were NZ or not
for i=1:4
str=char(first_filter(i,j,k));
len=length(str);
if len>6 && first_filter(i,j,k%~:first filter(i,4,k)%IT this entry is a double and
it is NOT the double whose formal value we could know (ie, not pi_l+pi_4)
first_filter(:,:,k):subs(first_filter(:,:,kE,Tirst filter(i,j,.k),0);%Then we
formally set this entry to zero and we make this substitution t
elseif len<6 &&len>1 && str(len)=="4" &&
first_filter(i,j,k%~:first_filter(i,4,k)%lf the entry is pi_4 where we did not know whether it was
NZ prior. This would be the case i1f we onlg know that pi_1l+pi_4 is NZ
i first_filtergz,:,k):su s(first_filter(:,:,k),first_filter(i,j,k),0);%Then we
formally set set pé_4 to zero and we make this substitution throughout the entire matrix
en
end

roughout the entire matrix

end
end
end

%% 8. Now we Filter again based on >2 NZ

%After our substitutions made in 7, we once again Filter based on a count
%?f thg NZ entries in each column. This step Is identical to step 6.
alive=0;
for k=1:first_filter_num
flag=0;
for j=5:9
nz=0;
for 1=1:4
str=char(first_filter(i,j,k));
len=length(str);
if len<6&&len>2
if str(len)~="4"
nz=nz+1;
elseif First _filter(i,j,.k)==First_filter(i,4,k)
nz=nz+1;
end
elseif len>6
if first_filter(i,j.k)==First_Ffilter(i,4,k)
nz=nz+1;
end
end
end
if nz>2
flag=1;
end
end
if flag==
alive=alive+l;
end

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

end
second_Tfilter_num=alive;)
second_filter=sym(zeros(4,9,second_filter_num));

alive=0;
for k=1:first_filter_num
Tlag=0;
for j=5:9
nz=0;
for 1=1:4
str=char(first_filter(i,j,k));
len=length(str);
if len<6&&len>2
if str(len)~="4"
nz=nz+1;
elseif First_filter(i,j,k)==First_filter(i,4,k)
nz=nz+1;
end
elseif len>6
if first_filter(i,j,k)==First_filter(i,4,k)
nz=nz+1;
end
end
end
if nz>2
flag=1;
end
end
if flag==
alive=alive+l;
gecond_filter(:,:,alive):first_filter(:,:,k);
en
end

%% 9. Now Filter on Invertible grounds

%From this set, we know that every invertible subset of the original 9

%vectors (the columns of Dt) must also be invertible after Dt has been acted on by P. This is
because the product of two iInvertible matrices is

%invertible.

possib=nchoosek(9, 4& ;%The amount of ways that one can make a 4x4 matrix from 9 columns
pOSS|bOI|st—nchoose (1:9,4);%The combinations of columns to make a 4x4 matrix

count=0;

for n=1:possib
check=Dt(:,possib_lis
if rank(check)——4% T
count=count+1;

st(n,:));

it is invertible we increase our count
end

end

inv_num=count;
inv_list= zeros(lnv num,4);%Preallocate the space for the lists of combinations of columns that are
invertible.
count=0;
for n;l ogszb b1 "))

chec T 0SsSi ist(n, ;

if rank(chegk)

count=count+1;
g inv_list(count,:):possib_list(n,:);%Stores the combination of columns that are invertible

en

end

%Now that we know which combinations of columns are invertible in our
%original matrix, we check to see if the SAME _combination of columns is
%invertible within our list of candidate matrices.

count=0;
for kzl:second_filter_num
Tlag=0;

for c=1:inv_num
bTat second_Tfilter(:,inv_list(c,:),k);%Selects the combination of columns that should be
invertible
if ri?k(mat)~:4%lf this is not invertible, we flag.
ag=1;
end

end
it flag==0%I1f each combination is invertible, we add it to our count
count=count+1;
end
end

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

third_filter_num=count;
third_filter=sym(zeros(4,9,third_filter_num));%Preallocate our space and run the loop once more to
store the information
count=0;
for k=1:second_fTilter_num
flag=0;
for c=1:inv_num
mat=second_filter(:,inv_list(c,:),k);
it rank(mat)~=4
flag=1;
end
end
it flag==
count=count+1;
q third_filter(:,:,count)=second_filter(:,:,k);
en
end

%% 10. And now we filter among the combinations that cannot have at most 1 positive and at most 1
negative value in each column

%The general idea is that we will go through each column and make a
%"'relationship”™ between pairs of entries in each column. For instance,

%if one column is ¥0,p2_2,0,p4_4]', we know that p2_2 and p4_4 must have
%opposite signs (iT one is positive, the other is negative). ITf the column
%was rather EO,EZ_Z,O,—p4_4 , we would then know that p2_2 and p4_4 have the
%same sign (both are positive or both are negative).

%We build these relationships for each column and see If there is a contradiction.
%For example, imagine that our 4x9 matrix includes the following column vectors:
%

% 0,p2_2,0,p4 47" (€D
% 0,0,p3_3,p4 _4]" (@)
% 0,p2_2,p3 3,0]" (©))

%

%From (1) we know that p2_2 and p4_4 are of Oﬁposite sign. From (2) we know that
%p3_3 and p4_4 are of opposite sign. We then have a contradiction in (3) as

%(3) says that p2 2 and p3_3 are of opposite sign, and yet (1) and (2) combined

%say that p2_2 and p3_3 must be of the same sign. This sort of contradiction provides
%the foundation for our final filter.

%We First make sure that there are 2 entries in each column that are not formally zero. We
%do not in fact need two non-formally zero entries in each column, but a
%"relationship” can only be formed when there are two non-formally zero entries. It could
%be the case that there are 3 symbolic zeros, but as it so happens, after
%all of the Ffiltering it is the case that we have exactly two entries that
%are formally zero. We show this here:
check=0;
for n=1:third_filter_num
for j=1:9
nz_num=length(find(third_filter(:,j,n)));%counts the zeros in the column
if nz_num~=2%If we do not have two entries formally set to zero:
check=check+1;
end
end
end

%As one can see, check==0 such that we have exactly two non-formally zero entries
%in each column.

%A second check that we will have to make (to ensure that the next loop is
%specified correctly) is to make sure that we do not have pi_4"s alone in a
%column where we do not know whether or not it is NZ. As we add
%relationships based on having the _same or opposite sign, we want to make
%sure that we do not make a comparison with pi_4 when 1t may be zero.
%Therefore:
check2=0;
for k=1:third_filter_num
Tlag=0;
for j=5:9
for i=1:4 i) o)))
str=char(third_filter(i,j,n));%As before, we string the entries and inspect the last
character.)
len=length(str);%Store the location of the last character
_iT_len<6&&len>1%1f the length is greater than 1 such that it is not 0" and less than 6
such that it is a single element (pi_J or -pi_j)
if str(len)=="4"
if third_filter(i,j,n)~=third_Ffilter(i,4,n)%Such that whether pi_4=0 is then

flag=1;

unknown

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

end

end
end
end
end
if flag==1
check2=check2+1;
end

end
%As we can see, check2==0. Therefore, we do not have_any indeterminate
%pi_4"s. All the pi_4"s that are alone in a column will be definitively NZ.

for n=1:third_filter_num
%We First build our collection of same/opposite relations between our
%individual elements. "Opps"™ is a list of element pairs that we know
%are opposite sign from each other. "Same" is a list of element pairs
%that we know have the same si?n- Note that we only add single element
%relations. We shall skip doubles as we will have enough information
%From the single element pairs.

flag=0;%Will flag on if we have a contradiction
opps_n=0;%The count of opposite relations
same_n=0;%The count of same relations
for j=1:9
indx=Find(third_filter(:,j,n)~=0);%We Ffind all of our nonzero entries
stri=char(third_filter(indx(1l),j,n));%We string each entry
str2=char(third_filter(indx(2),j,n));
it length(strl)+length(str2)==9 %With a length of nine, we know that only one of the
entries has a negative sign in front
SAVE Si same_n=same_n+1;%As one has a negative sign, we know that the elements must share the
sign

same(same_n, :)=[third_filter(indx(1),j,n),third_filter(indx(2),j,n)];%We add this
relation to our SAME Tist
elseif length(strl)+length(str2)==8]|length(strl)+length(str2)==10
%1f the length is 8, neither element has a negative sign. If it
%is 10, the¥ both have a negative sign. Either way, we know
%that the elements then must be of OPPOSITE sign
opps_n=opps_n+1;
q opps(opps_n, :)=[third_filter(indx(1),j,n),third filter(indx(2),j,n)];
en
end
%Now we clean so that we do not get negative signs in front of elements
for i=l:same_n
for jzl:ﬁ kechar(G
negcheck=char(same(i,j));
if Iength(negc?eck)::

same(1, j -D*same(i,j);
end
end
end
for i=l:opps_n
for jzl:ﬁ kechar(G
negcheck=char(opps(i,j));
if length(negcheck)==5
opps(¥,§)=(-1)*opps(i,j);
end
end
end

%Now we do a First check to see whether or not there will be any
%contradictions directly
Flip=[opps(:,2),o0pps(:,1)];%also check the flip as pl 1, pl_2 would be the same as p2_1, pl_1
check=intersect(same,opps, "rows");
check2=intersect(same,flip, "rows™);
it ~isempty(check)|]|~isempty(check?2)
%1f the intersection of the same and opposite relation is non-empty
%such that a pair of elements is said to have both the same and
%opposite sign, we know this matrix fails.
g flag=1;%And then we will skip the next loop and move on to the next matrix.
en

%We will now add to our list of same/opposites via transitivity
loop_count=1;
%The loop_count will count the number of times that we cycle through
%our same and opposite lists, addin? new relationship via transitivity.
%We have an arbitrary limit on the loop count so that we do not loop
%indefinitely iT there was some error prior.
while flag==0&&loop_count<5

for izl:lengthgo?ps -1

%As we wil ook at occurences of a selected element later in

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

%the same and opposite lists, we do not look for more
%occurences when we are at the end of the list.
for j=1:2
search=opps(i,
%*Search® is the flrst element and we will look for more
%occurences of this element down the list in opposite and
%same. "Pairing” is the element that we know has an
%gp905|te relationship with "search”.
1T]
pairing=opps(i,2);
else
q pairing=opps(i,1l);
en
| newopps=opps((i+1):length(opps),1:2);%Searches down the list from where we are
currently
[r,cl=Find(newopps==search);%returns index within the opposite to build up same, as
the opposite of opposites is the same
[r1,cl]=Ffind(same==search);%returns index within same to build up opps, as the
opposite of same |s opposite.

~|semﬁty§r)%|f we find an entry down the opposite list such that "search® is
located somewhere down t ist

new_rels=sym(zeros(length(r),2));%Then the new relations that we make will be
added to same.
for b=1:length(r)%As we may have more than occurence of the "search® element
if c(b) =2%1Ff "search® is in the second column, make the new relationship
with the element in the first column

new rels(b 1:2)= [palrln% ,hewopps(r(b), 1&] ;%stores the new relationshi
else%lf "search” is in the Tirst column, the new relationship with the
element in the second column
q new_rels(b,1:2)=[pairing,newopps(r(b),2)];
en
end
i same=[same;new_rels];%As the opposite of opposite is same, we add to our same
Ist.
end
if ~|sempt¥(rl)%if we find an entrg)down the same list...

new s=sym(zeros(length(r),2));%Then the new relations that we make will be
added to opposite.

for b=1:len th(rl)
if cl(b)=

new rels(b 1:2)=[pairing,same(rl(b),1)];%stores the new relationship
new_rels(b,1:2)=[pairing,same(rl(b),2)];

else

end
end
opps=[opps;new_rels];%As the opposite sign of the same sign is opposite, we add
to our opposite list.
end
end
end
Tlip=[opps(:,2),0pps(: 1)] %We fllp the list again before checking intersections
check—lntersect(same opps "rows)
check2-|ntersect(same fllp, rows”
if ~|sempty(check)||~|sem ty(chec 2)
%1f the intersection of the same and opposite relation is non-empty
%such that a pair of elements is said to have both the same and
%oppgiltelslgn we know this matrix fails.
ag=1;
end
loop_count=loop_count+1;
end

it flag==0%if we looped through 5 times and still were not able to find a contradiction..
candidate _matrix=n;
disp("Error: Matrix #n was not thrown out of consideration® D)
%Therefore, if there is a prlnted message, we know that we were
q %unable to throw out the n"th matrix in third | filter.
en
end

http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m[25/05/2016 13:36:09]

	elizabeth-baldwin.me.uk
	http://elizabeth-baldwin.me.uk/papers/BasesCompilation.m

