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Abstract

We consider situations in which a significant proportion of obser-

vations in a time series are zero, but the remaining observations are

positive and measured on a continuous scale. We propose a new dy-

namic model in which the conditional distribution of the observations

is constructed by shifting a distribution for non-zero observations to

the left and censoring negative values. The key to generalizing the

censoring approach to the dynamic case is to have (the logarithm of)

the location/scale parameter driven by a filter that depends on the

score of the conditional distribution. An exponential link function
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means that seasonal effects can be incorporated into the model and

this is done by means of a cubic spline (which can potentially be time-

varying). The model is fitted to daily rainfall in northern Australia

and compared with a dynamic zero-augmented model.

KEYWORDS: Censored distributions; dynamic conditional score

model; generalized beta distribution; rainfall; seasonality, zero aug-

mented model.

JEL: C22

1 Introduction

Situations arise in which time series observations cannot be negative, but a

significant proportion of them are identically zero (or have been set to zero

because they fall below a certain threshold). The remaining observations

are positive and measured on a continuous scale. The usual way of dealing

with non-negative observations is to fit a location/scale model. When the

occurence of zeroes is too frequent to be compatible with such a distribution,

there are two ways of dealing with the problem. The first is by shifting a con-

tinuous location/scale distribution to the left and censoring all the negative

observations so that they are assigned a value of zero. The second is by the

introduction of a binary mechanism which assigns probabilities to zero and

positive observations and then draws positive observations from a continuous

location/scale distribution. Hautsch et al (2014) - hereafter HMS - adopt this

zero-augmented approach for modeling high frequency stock returns.
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The key to generalizing the censoring approach to the dynamic case is

to set up an observation driven model in which (the logarithm of) the lo-

cation/scale parameter driven by a filter that depends on the score of the

conditional distribution. It can also be used to modify, and we think im-

prove, the zero-augmented approach. However, the censoring model is our

main focus because the model is a new one, with a potentially wide range of

applications, and its properties are of considerable interest. The score has

the important feature of automatically solving the problem of how to weight

the zeroes. (It is not correct to assign them a weight of zero or treat them

as missing because they are not independent of positive observations.) Fur-

thermore for a fat-tailed distribution, such as generalized beta distribution of

the second kind (GB2), the form of the score for location/scale is such that

extreme observations are downweighted. Hence the path of the filter is not

adversely affected by outliers. Such score-driven models, known as Dynamic

Conditional Score (DCS) or Generalized Autoregressive Score (GAS) models,

have already proved to be highly effective in a wide range of situations; see,

for example, Harvey (2013) and Creal et al (2011, 2015).

One reason for setting up a dynamic equation for the logarithm of the

location/scale parameter is to ensure that it remains positive. This is of con-

siderable importance in our example, which concerns daily rainfall data with

a strong seasonal pattern that we capture by a cubic spline. More generally

it allows explanatory variables to be included in the model without the risk

of predicting negative values. However, a second reason for modeling the

3



logarithm of location/scale is that the theoretical properties of the model

may be derived more easily. The score has the convenient property of having

a zero mean and for many continuous (uncensored) distributions its distribu-

tion has a known form. For example the score for a GB2 distribution follows

a beta distribution (of the first kind).

In an observation-driven model the one-step ahead distribution, and hence

the likelihood function, is available by construction. Corresponding parameter-

driven models, based on unobserved components, can also be set up but their

statistical treatment requires computationally intensive techniques, such as

MCMC or particle filtering; see the comments in Allik et al (2016), where

the practical importance of simple recursive techniques is stressed.

The censoring approach is closely connected to the dynamic Tobit model,

where location changes over time. In the Tobit case, the underlying variable

may be defined over the range −∞ to ∞ and is subject to censoring below

a certain value, which is usually known (and could be zero). A number of

researchers, including Zeger and Brookmayer (1986) and Park et al (2007),

have addressed this problem for autoregressive and autoregressive moving

average (ARMA) models when the underlying (uncensored) observations are

Gaussian. Allik et al (2016) generalize to state space models. Our approach

could be adapted to such situations by letting the conditional distribution

be generalized-t; see McDonald and Newey (1988) and Harvey and Lange

(2016). The generalized-t is derived from the GB2 and it includes Student’s

t and the general error distribution (GED) as special cases. The normal
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distribution is, of course, a limiting case of Student’s t and a special case of

GED.

The plan of the paper is as follows. Section 2 examines the score for

a censored distribution, with particular reference to GB2 and generalized

gamma distributions. The score is then brought into a dynamic censored

model in Section 3 and into a dynamic zero-augmented model in Section 4.

Models are fitted to daily data on rainfall in northern Australia in Section 5.

Diagnostics are discussed and it is shown how the full multi-step predictive

distribution can be estimated by simulation. Although such pure time series

models cannot outperform a short-term weather forecast, they may be useful

for describing and simulating weather patterns. They may also be extended

to include explanatory variables, such as air pressure, and so may have a role

to play in improving the quality of weather forecasts.

2 Shifting and Censoring

Let xt be a continuous non-negative variable with scale ϕ = exp(λ) and

probability density function (PDF) fx and define a new variable as

yt =

 xt − c, xt > c > 0

0, xt ≤ c
(1)
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where c is a constant. The original distribution is therefore shifted to the

left1 and negative values are censored with Pr(yt = 0) = Fx(c), where Fx is

again the cumulative density function (CDF) of xt. In this case c is treated

as though it were an unknown shape parameter. When c is fixed, Pr(yt = 0)

will tend to decrease as λ gets bigger.

More generally let c(λ) = exp(α0 + α1λ), where α0 and α1 are parame-

ters. The value of Fx depends on the standardized variable, xt exp(−λ), so

c(λ) exp(−λ) = exp(α0+(α1−1)λ). Thus Pr(yt = 0)→ 0 as λ→∞ provided

α1 < 1. As a rule, α1 will be negative.

Let I(y > 0) be an indicator that is zero when y = 0 and one when y > 0.

The distribution of yt is a discrete-continuous mixture with a point mass at

zero, that is

ln f(yt;λ,θ, c) = I(yt > 0) ln fx(yt + c) + (1− I(yt > 0)) lnFx(c), (2)

where θ is a vector of shape parameters and c does not depend on λ. The

corresponding score with respect to λ is

∂ ln f(yt)

∂λ
= I(yt > 0)

∂ ln fx(yt + c)

∂λ
+ (1− I(yt > 0))

∂ lnFx(c)

∂λ
. (3)

When the score of the uncensored distribution is monotonically increas-

1Letting c be negative shifts the distribution to the right. Such distributions are not
uncommon in statistics; an application in hydrology can be found in Ahmad et al (1988).
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ing,
∂ ln fx(0)

∂λ
≤ ∂ lnFx(c)

∂λ
≤ ∂ ln fx(c)

∂λ
; (4)

see Appendix A. In words, the weight attached to a zero observation lies

between the weight given to a very small positive observation and the weight

given to zero in an uncensored model.

2.1 GB2 distribution

The generalized beta distribution of the second kind, denoted GB2, contains

a wide range of distributions for non-negative variables as special cases; see

Kleiber and Kotz (2003). The GB2 distribution has PDF

fx(x) =
υ(x/ϕ)υξ−1

ϕB(ξ, ς) [(x/ϕ)υ + 1]
ξ+ς

, x ≥ 0, ϕ, υ, ξ, ς > 0, (5)

where ϕ is the scale parameter, υ, ξ and ς are shape parameters and B(ξ, ς)

is the beta function. An exponential link function will be used for the scale

parameter, so ϕ = exp(λ). In uncensored models this leads to explicit ex-

pressions for the unconditional moments and the information matrix when

scale is time-varying; see Harvey (2013, ch 5).

The CDF of xt, F (xt; υ, ξ, ς), is a (regularized) incomplete beta function,

β(zt; ξ, ς) = B(zt; ξ, ς)/B(ξ, ς),

where B(zt; ξ, ς) is the incomplete beta function and zt = (xte
−λ)υ; see
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Kleiber and Kotz (2003, p 184). The incomplete beta function can be writ-

ten in closed form when ς and/or ξ is one. Note that in many packages, the

argument in β(.; ξ, ς) is zt/(1 + zt) rather than zt.

The tail index is η = υς. The lower this index, the fatter the tail. The

m − th moment of a distribution only exists for m < η. It can be more

convenient to replace the parameter ς by the tail index. Redefining scale by

replacing ϕ by ϕη1/υ then gives a reparameterized GB2 with PDF

f(y) =
υ(y/ϕ)υξ−1

ϕηξB(ξ, η/υ) [(y/ϕ)υ /η + 1]
ξ+η/υ

, ϕ, υ, ξ, η > 0. (6)

The generalized gamma (GG) is a limiting case of (6), obtained by letting

the inverse tail index η = 1/η → 0; see Kleiber and Kotz (2003, p.187) and

Harvey and Lange (2016). The incomplete beta functions are replaced by

incomplete gamma functions. Note that the η parametization with 0 ≤ η ≤ 1

tends to be more computationally stable.

The practical relevance of the shifted GB2 can be seen by considering the

density at the origin, that is when y = 0 and x = c. Only when υξ = 1, is

fx(0) positive and finite, taking the value fx(0) = υ/(ϕB(ξ, ς)); this is the

mode, ie fx(0) > fx(x) for x > 0. For υξ > 1, fx(0) = 0 and for υξ < 1,

fx(0) =∞. In a shifted distribution the ordinate of the continuous part of the

y distribution is positive and finite at the origin (for c > 0). The potential

importance of having a distribution with this property is clear from Figure

1, which shows the histogram of days with positive rainfall in Darwin in

8



January; the percentage of days with no rainfall was 26.1% (81 in total).

The IBM graph of Figure 2 in HMS (2014, p 95) also displays a histogram

where the continuous part of the distribution appears to be positive and finite

at the origin.

[Figure 1 about here.]

Remark 1 The F-distribution is a special case of GB2 when υ = 1 and

the degrees of freedom, ν1 and ν2, are the same in the numerator and the

denominator. However, even when these restrictions do not hold, the theory

for a censored F-distribution is similar to that of a GB2; for example the

incomplete beta function for F (ν1, ν2) is B(zc; ν1/2, ν2/2).

2.2 Likelihood and score

The first term in (2), the continuous part, is

ln fx(yt + c) = ln υ − υξλ+ (υξ − 1) ln(yt + c)− (ξ + ς) ln({(yt + c)e−λ}υ + 1)− lnB(ξ, ς)

= ln υ − υξλ+ (υξ − 1) lnxt − (ξ + ς) ln((xte
−λ)υ + 1)− lnB(ξ, ς).

The score with respect to λ is

∂ ln f(yt)

∂λ
= I(yt > 0)[υ(ξ + ς)bt − υξ]− (1− I(yt > 0))

υbξc(1− bc)ς
B(zc; ξ, ς)

, (7)
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where

bt = bt(ξ, ς) =
(xte

−λ)υ

(xte−λ)υ + 1
=

zt
zt + 1

, bc ≤ bt(ξ, ς) ≤ 1. (8)

The expression for the second term comes about because Fx(xt) = β(zt; ξ, ς),

which is also the CDF of bt(ξ, ς), a beta distribution of the first kind. Thus

∂ lnFx
∂λ

=
∂ ln β(z; ξ, ς)

∂b

∂b

∂λ
=

1

β(ξ, ς)

∂β(ξ, ς)

∂b

∂b

∂z

∂z

∂λ
(9)

=
−υ

β(zc; ξ, ς)
fbbc(1− bc) =

−υbξc(1− bc)ς
β(zc; ξ, ς)B(ξ, ς)

≤ 0

where fb is the PDF of the beta(ξ, ς) distribution and bc is bt defined with

xt = c.

Confirmation that the expectation of the score is zero is given in Appendix

A. It is also shown that the variance of the score is

E

(
∂ ln f(yt)

∂λ

)2
=

υ2b2ξc (1− bc)2ς
B(zc; ξ, ς)B(ξ, ς)

+ υ2
(ξ + ς)(ξ + 1)ξ

(ξ + ς + 1)
(1− β(zc; ξ + 2, ς))

−2υ2ξ2(1− β(zc; ξ + 1, ς)) + υ2ξ2(1− β(zc; ξ, ς)) (10)

Thus the variance depends on λ, which is not the case in the model without

censoring.

Remark 2 The result in (4) implies (when multiplied by minus one) that

υξ − υ(ξ + ς)
(ce−λ)υ

(ce−λ)υ + 1
≤ 1

B(zc; ξ, ς)

υ(ce−λ)υξ

((ce−λ)υ + 1)ξ+ς
≤ υξ.
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The second inequality is consistent with 26.5.4 in Abramovitz and Stegun

(1964, p 944).

As in an uncensored fat-tailed distribution, the score is bounded as yt →

∞; it tends towards the tail index υς. On the other hand, as yt → 0 it tends

to υ(ξ + ς)(ce−λ)υ/((ce−λ)υ + 1)− υξ and when yt = 0 it is

−1

B(zc; ξ, ς)

υ(ce−λ)υξ

((ce−λ)υ + 1)ξ+ς
.

When ξ and/or ς is unity the incomplete beta function is available in

closed form and the score is easier to compute. For ς = 1, the Dagum

distribution, B(bc; ξ, 1) = bξcB(ξ, 1) = bξc/ξ, whereas for ξ = 1, the Burr

distribution, B(bc; 1, ς) = (1 − (1 − bc)ς)B(1, ς) = (1 − (1 − bc)ς)/ς; see also

Kleiber and Kotz (2003, p. 198, 213). For the log-logistic distribution, when

ξ = ς = 1, bt(1, 1) is uniform and so β(bt; ξ, ς) = bt. The score is just

∂ ln f(yt)

∂λ
= I(yt > 0)

υ((yt + c)e−λ)υ − υ
((yt + c)e−λ)υ + 1

− (1− I(yt > 0))
υ

(ce−λ)υ + 1
.

Figure 2 shows the score for the log-logistic distribution with υ = 2, unit

scale, that is λ = 0, and c set to 0.5. The value of the score at the origin is

−1.6.

[Figure 2 about here.]
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The score for the more general formulation, c(λ) = exp(α0 + α1λ), has

∂ lnFx
∂λ

=
υ(α1 − 1)bξ(1− b)ς

B(zc; ξ, ς)
(11)

because zt = (eα0+(α1−1)λ)υ.

2.3 Generalized gamma

The generalized gamma (GG) distribution is

f(y;ϕ, γ, υ) =
υ

eλΓ(γ)

( y
eλ

)υγ−1
exp

(
−(ye−λ)υ

)
, 0 ≤ y <∞,

with γ, υ > 0 and −∞ < λ < ∞. The gamma distribution is obtained by

setting υ = 1, whereas the Weibull sets γ = 1. The exponential distribution

sets υ = γ = 1. The CDF of the GG is the regularized incomplete gamma

function, γ(z; γ). If γ →∞ in the GG then we get the lognormal distribution,

provided additional conditions are put on the other parameters; see Kleiber

and Kotz (2003, p.149).

Remark 3 A slightly different form of the GG is obtained by letting the

inverse tail index in the GB2 of (6) go to zero.

The score for the censored GG distribution is

∂ ln f(yt)

∂λ
= −(1− I(yt > 0))

υzγc exp(zc)

Γ(zc; γ)
+ I(yt > 0)(((yt + c)e−λ)υ − υγ),
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where Γ(zt; γ) = γ(z; γ)Γ(γ) is the incomplete gamma function and zt = gt =

(xte
−λ)υ is distributed as gamma(υ, γ), with PDF fg at the true parameter

values. The first term follows because at xt = c

∂ lnFx
∂λ

=
fg,c

γ(zc; γ)
υ(ce−λ)υ. (12)

Remark 4 For the Weibull distribution, direct evaluation of the derivative

of lnFx is possible because Fx = 1− exp(−xυe−λυ). Thus

∂ ln f(yt)

∂λ
= −(1−I(yt > 0))

υcυe−υλ exp
(
−cυe−υλ

)
1− exp (−cυe−υλ) +I(yt > 0)υ((yt+c)

υe−λυ−1).

The exponential distribution is a special case in which υ = 1.

3 Dynamic model for the censored distribu-

tion model

In a parameter-driven model, dynamics would be introduced into λ by letting

it follow a stochastic process. In other words it is an unobserved component.

Estimation then requires a computer-intensive approach, such as MCMC. By

contrast the DCS model is observation-driven, with the predictive distribu-

tion defined conditional on a filtered value of λ, denoted λt|t−1.

The DCS model for observations generated by the shifted location/scale

model, (1) with xt = εt exp(λt|t−1), is easily implemented. The dynamic
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equation for the logarithm of location/scale is driven by the score, ∂ ln f(yt |

Yt−1;θ, c)/∂λt|t−1, and it is straightforward to add explanatory variables, con-

tained in a vector zt. Thus

λt|t−1 = ω + λ†t|t−1 + z′tβ (13)

with

λ†t+1|t = φλ†t|t−1 + κut, (14)

where ut denotes the conditional score and β denotes a vector of parameters.

Clearly λ†t|t−1 is stationary when |φ| < 1. For a GB2 the score is defined as

in (7). The dynamics can be extended by adding lags of λ†t|t−1 and/or ut.

The variance of the score depends on λt|t−1, unlike in the location/scale

model without censoring. Here there is the question as to whether to rede-

fine ut as the score divided by the information quantity, (10), or its square

root; see Creal et al (2013). In our application, ut is taken to be the raw

score. Whichever course of action is taken, the fact remains that the u′ts are

not identically distributed. This point needs to be borne in mind for the

development of an asymptotic theory for the ML estimator.

The one-step ahead predictive distribution gives the probability of a zero.

The conditional mean and quantiles can also be found. The τ−th conditional

quantile is defined as Pr(yT+1 ≥ qτ | YT ). Hence qτ = F−1x (τ)−c for τ > Fx(c)

(that is y > 0). For a GB2, F−1x (τ) is the inverse regularized incomplete beta

function; see Abramovitz and Stegun (1964, p 944-5). When ξ and/or ς
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is one, the quantile function is relatively simple. For example, for a Burr

distribution, F−1(τ) = expλtpt−1[(1− τ)−1/ς − 1]1/υ.

The conditional mean is

E(yT+1 | YT ) =

∫ ∞
0

yfx(y + c)dy =

∫ ∞
c

xfx(x)dx

and for a GB2

E(yT+1 | YT ) = exp(λT+1|T )
Γ(ξ + 1/υ)Γ(ς − 1/υ)

Γ(ξ)Γ(ς)
(1−β(zc; ξ+1/υ, ς−1/υ)).

When c = 0 there is no censoring, β(zc; ξ + 1/υ, ς − 1/υ) = 0 giving the

formula in Kleiber and Kotz (2003, p 188). For the GG distribution

E(yT+1 | YT ) = exp(λT+1|T )
Γ(γ + 1/υ)

Γ(γ)
(1− γ(zc; γ + 1/υ)).

Multi-step forecasts can be made by simulation. Values of λT+`|T are

obtained by simulating beta variates, and hence the score, ` times. A value

of yT+` is then simulated, again from a beta (which converts into GB2). This

process is then repeated to build up a predictive distribution for yT+`.

4 Zero-augmented distributions

A zero-augmented point-mass mixture distribution assumes that positive ob-

servations occur with probability π and zeroes occur with probability 1− π.
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The positive observations are drawn from a continuous distribution. For the

t− th observation

ln f(yt; π) = I(yt > 0) lnπ + I(yt > 0) ln f(yt) + (1− I(yt > 0)) ln(1− π).

The extra parameter is now π, 0 ≤ π ≤ 1, rather than c. HRS (2014, p 96-7)

adopt this formulation with a GB2 distribution (which they call generalized

F ) for non-zero observations. Their concern is with trading volume and so

I(.) is a ‘trade indicator’and π denotes the ‘trading probability’.

The difference between the zero-augmented and censored distributions is

illustrated in Figure 3. The continuous part of the zero-augmented distri-

bution is the original PDF multiplied by π and the probability of a zero is

1 − π. By contrast, in the case of censoring, the original distribution - for

x - is shifted to the left by c units and the area below the curve and to

the left of the vertical axis is the probability of a zero observation. If the

scale is changed the probability of a zero in the censored distribution changes

accordingly.

[Figure 3 about here.]

When υξ > 1 for GB2, f(0) = 0 and the issue then is whether it is

plausible to have zeroes occuring when the probability of values close to zero

is very small. On the other hand, when υξ < 1, f(0) = ∞ which is also

unappealing. When υξ = 1 the zero ordinate is positive and finite but this
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has the limitation that it is the mode: thus it cuts out distributions where

the continuous part is away from zero.

The introduction of dynamics for π typically involves involves a logistic

transformation. When πt depends on λt|t−1,

πt|t−1 =
exp(δ0 + δ1λt|t−1)

1 + exp(δ0 + δ1λt|t−1)
. (15)

Thus the π parameter is replaced by two new parameters, δ0 and δ1. We

expect δ1 to be positive because as location/scale increases, the probability

of a zero, 1− πt|t−1, is likely to fall.

Remark 5 Another possibility considered by HMS (2014, p 106-10) is a

dynamic equation for ln(πt|t−1/(1 − πt|t−1)), which is unconnected with the

equation for λt|t−1; compare the related autologistic model of Rydberg and

Shephard (2003). This model is a plausible one for capturing a trading prob-

ability but it is less appealing for modeling rainfall.

The score, which drives the dynamics for λt|t−1 in (14), is

∂ ln f(yt)

∂λt|t−1
= I(yt > 0)

[
(1− πt|t−1)δ1 +

∂ ln f(yt)

∂λt|t−1

]
− (1− I(yt > 0))πt|t−1δ1.
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For GB2,

∂ ln f(yt)

∂λt|t−1
= I(yt > 0)[(1−πt|t−1)δ1+υ(ξ+ ς)bt−υξ− (1−I(yt > 0))πt|t−1δ1,

(16)

with x = y in (8).

When δ1 = 0, so πt|t−1 is constant, the score wrt λt|t−1 is zero2 for yt = 0.

This makes sense because the probability of a zero does not depend on λt|t−1.

In contrast, HMS (2014, p 101) follow researchers in the MEM literature,

such as Bauwens et al (2004), and adopt a model in which κut in (14) is

replaced by

κI(yt > 0) ln(yt/ exp(λt|t−1)) + κ0(1− I(yt > 0)) (17)

so there is an additional parameter, κ0, for zero observations. Note also that

whereas the score is bounded for a fat-tailed distribution, as in (16), the

response in (17) is unbounded.

Remark 6 From the properties of an exponential GB2 (EGB2) distribution,

E[ln(yt/ exp(λt|t−1))] = υ−1π[ψ(ξ)−ψ(ς)], where ψ is the digamma function.

Thus the (conditional) expectation of (17) is κυ−1π[ψ(ξ)− ψ(ς)] + κ0(1− π)

rather than zero, as for the score.

Remark 7 A zero-augmented censored distribution may be constructed to

2It is assumed that the probability of a zero from the continuous distribution is effec-
tively zero.
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give

ln f(yt; c, π) = (1− I(yt > 0)) ln{πFx(c) + 1− π}+ I(yt > 0) lnπ

+I(yt > 0) ln fx(yt + c).

Here Pr(yt = 0) = πFx(c) + 1 − π which becomes Fx(c) when π = 1 (pure

censoring) and 1 − π when c = 0 (pure zero-augmention). When π = 0,

positive observations cannot occur, so it is effectively ruled out, that is 0 <

π ≤ 1. Given a suffi ciently large sample, fitting the zero-augmented censored

model could be the starting point. The censored and zero-augmented models

then emerge as special cases.

5 Daily Rainfall in Northern Australia

Daily rainfall as recorded by the Bureau of Meteorology of the Australian

Government (http://www.bom.gov.au/climate/data/) is the total amount,

in millimeters (mm), of precipitation that reaches the ground (in a rain

gauge) in the 24 hours preceding 9am of each day. Our chosen locations

(identified by the associated station number in brackets) are Darwin Air-

port, Darwin, Northern Territory (014015) and Kuranda Railway Station,

Cairns, Queensland (031036). The sample period is a 10-year window from 1

January 2006 to 31 December 2015, which includes3 3652 days and two leap

3There were a few missing observations; ee http://www.bom.gov.au/climate/cdo/about/about-
rain-data.shtml. These were replaced by the average of the two adjacent observations.
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years. As can be seen from Table 1, it fails to rain on more than half the

days, but when there is rainfall it can be very heavy. The occasional day of

very heavy rain is apparent in Figure 1 and the case for using a fat-tailed

distribution is a strong one.

[Table 1 about here.]

Figure 4 shows the strong seasonal pattern in rainfall; it tends to be dry

during the (Australian) winter, with a high proportion of days when it fails

to rain. Figure 5 indicates that the volume of rain is inversely related to the

probability of no rain.

[Figure 4 about here.]

[Figure 5 about here.]

Figure 6 shows the empirical distribution of non-zero observations in No-

vember in Darwin. The rainfall for January, shown earlier in Figure 1, is much

higher. The hope is that when the time-varying location/scale changes, the

shape of the censored distribution will adapt appropriately.

[Figure 6 about here.]
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5.1 Model

The dynamic censored model has a conditional GB2 distribution in the form

(6) and with scale dependent censoring, that is c(λ) = exp(α0 + α1λ). Thus

the score is

∂ ln f(yt)

∂λ
= I(yt > 0)[υ(ξ + ς)bt − υξ]− (1− I(yt > 0))

υ(α1 − 1)bξ(1− b)ς
B(zc; ξ, ς)

where zt = (eα0+(α1−1)λ)υ. The dynamic equation for the logarithm of loca-

tion/scale is as in (13) with explanatory variables used to model the seasonal

pattern, γt, as a deterministic cubic spline function, as in Harvey and Koop-

man (1992) and Ito (2016). We assume that one seasonal cycle is complete

in 365 days, that the pattern of seasonality is fixed and that continuity is

maintained from the end of one year to the beginning of the next. A little

experimentation indicated that the pattern was well captured by placing the

knots of the spline on the 50th day, the 100th day, the 160th day, the 240th

day, and the 300th day of the calendar year. It was also found that the GB2

worked best when parameterized in terms of η and it is these results that are

reported.

The zero-augmented model is also based on the GB2, but with a logis-

tic link function, as in (15). The seasonal is modeled by a spline as in the

censored model. Table 2 shows goodness of fit statistics, with AIC denoting

Akaike Information Criterion and BIC denoting Bayes (Schwartz) Informa-

tion Criterion. For Darwin the censored model gives the best fit whereas for
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Cairns the zero-aumented model is better. Table 3 gives the ML estimates for

the preferred models. The first column of numbers is for the censored model

with α1 = 0 and the third column of numbers is for the zero-aumented model

with δ1 = 0. In both cases the unrestricted model gives the better fit. LR

tests4 lead to the same conclusion. For Darwin, the LR statistic for the

restricted and unrestricted censored models is 17.8 and for Cairns the LR

statistic for the zero-augmented models is 413.8.

[Table 2 about here.]

The unrestricted models reported in Table 2 were also fitted without the

dynamics of (14). The fit of the dynamic models was much better than the fit

of the corresponding static models. For the censored model fitted to Darwin,

the static AIC and BICs were 3.24 and 3.27 respectively ( as opposed to 3.17

and 3.20). For the zero-augmented model fitted to Cairns the static AIC and

BICs were 4.18 and 4.22. respectively.

[Table 3 about here.]

Table 3 shows the estimated parameter values of the preferred model

specifications. The parameters of the spline component were estimated si-

multaneously with these parameters, but they are omitted from the table.

4For large sample sizes, Terasvirta and Mellin (1986) argue that the BIC (SIC) can
give a better indication of statistical significance than a standard test at a conventional
level of significance.
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The value of φ̂ indicates that the non-periodic component, λ†t|t−1, is com-

fortably stationary. A negative α1 means that the probability of no rain

increases when heavy rain is unlikely. Although ξ close to one, the null hy-

pothesis that the distribution is Burr is rejected by an LR test at the 5%

level of significance - the statistic is 4.09 with a p−value of 0.04. The esti-

mated tail-indices are small, reflecting the fatness of the tails apparent in the

histograms of Figures 1 and 6.

5.2 Diagnostics

The PITs (probability integral transforms) for the positive observations are

PITy>0(yt; ct|t−1, λt|t−1) =
Fx(yte

−λt|t−1 + ct|t−1e
−λt|t−1)− Fx(ct|t−1e−λt|t−1)

1− Fx(ct|t−1e−λt|t−1)

for the censored model. For the zero-augmented model the PITs are as

above but multiplied by πt|t−1. The GB2 distribution appears to capture the

empirical distribution of the data reasonably well in both cases. Figure 7

plots the empirical CDF against the PITs for Darwin.

[Figure 7 about here.]

The correlogram of scores for Darwin is shown in Figure 8. The use of

scores for model checking follows from the principles underlying Lagrange
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multiplier tests5. There is no indication of significant residual serial correla-

tion. The diagnostics for Cairns were also satisfactory.

[Figure 8 about here.]

The probability of the next observation being non-zero is given by Fx(ct|t−1e−λt|t−1).

Figure 9 shows the estimated dynamic probability of no rain tomorrow in

2011; compare Figure 5. The small circles mark days with more than 100mm

of rain. Such days roughly coincide with a high probability of rain. As with

the scores, the correlogram of the binary variables, shown in Figure 10, gives

no indication of serial correlation.

[Figure 9 about here.]

[Figure 10 about here.]

5.3 Out-Of-Sample Performance

The out-of-sample period is from 1 January 2016 to 31 August 2016, which

is 244 days. The correlogram of post-sample scores in Figure 11 shows no

serial correlation. The same is true for the binary variables (not shown).

5Tests against time-variation that has not been captured by the model can, in principle,
be constructed using score-based (Lagrange multiplier) tests. Such tests have been shown
to be very effective; see Harvey (2013, section 2.5), Harvey and Thiele (2016) and Calvori
et al (2016). When the focus of attention is on λ in a location/scale model, score tests
differ from tests based on the raw residuals; see, for example, HMS (2014, p 95-6). LM
test statistics have not been computed here but the residual correlogram shown here is
informative and re-assuring.
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The post-sample goodness of fit can be assessed by the predictive likeli-

hood, that is the sum of the logarithms of the log-likelihoods. We can also

look at the ability of the model to forecast the binary outcome of whether or

not it rains tomorrow. The overall forecasting performance may be measured

by the Brier probability score

PS = {Fx(ct|t−1e−λt|t−1)− (1− I(yt > 0)}2; (18)

see Gneiting and Ranjan (2011, p 412). Table 4 gives the average predictive

likelihood and the Brier probability score, computed using a uniform weight-

ing scheme. The associated t-statistics are for comparing one-step ahead

density forecasts. The t-statistics are negative and statistically significantly

showing that the dynamic model specification is preferred.

[Table 4 about here.]

[Figure 11 about here.]

Finally the viability of obtaining multi-step ahead density forecasts by

simulation is illustrated in Figure 12. This shows the median and the 75%

quantile for Darwin obtained at the start of 2016.

[Figure 12 about here.]
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6 Conclusion

Two ways of constructing a point-mass distribution were considered. One,

which is new, deals with zeroes by shifting a continuous distribution for

non-negative variables to the left and then censoring it at zero. The other

augments the continuous distribution with a binary mechanism for zeroes and

positive observations. In the dynamic case, the scale changes and is driven

by the score. The scale in turn feeds into a mechanism that determines the

degree of censoring or the probability of a zero. The application to daily

rainfall illustrates the use of these models and shows that both are viable.

The censored distribution model appears to be better for the Darwin data

whereas for Cairns the zero-augmented model is superior.

The data are highly seasonal and a large part of the change in scale

is determined by a seasonal pattern that is parsimoniously modeled by a

cubic spline. The seasonal pattern was assumed to be fixed, but for a longer

time series it might be possible to capture a changing seasonal pattern, as

in Proietti and Hillebrand (2017). Ito (2016) shows how dynamics may be

introduced into the seasonal spline. Another unexplored issue concerns the

use the use of periodic models, where parameters are different in different

seasons; see Hipel andMcLeod (1994). The parameters in periodic models are

typically the dynamic parameters, such as φ and κ, but shape parameters may

also change as distributions change with the seasons. For daily data a viable

way of including such effects would be to relate the dynamic and/or shape
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parameters to the seasonal variation captured by the spline. For example,

we might use a logistic transformation for the autoregressive parameter. We

did not investigate periodic models given our relatively short time series, but

it may be a topic for future research.

The model may be extended by including explanatory variables other than

seasonals. For example, rainfall depends on air pressure and hence predicted

air pressure could be used in conjunction with our models to forecast the

probability of rain and give a distribution of rainfall.

Finally it should be noted that our treatment of dynamics for a censored

distribution has a wide range of applications in economics and finance.

APPENDIX

A Score inequality

The result is proven by noting that the expectation of the score is zero. In

the censored model

E

[
∂ ln f(yt)

∂λ

]
= Fx(c)

∂ lnFx(c)

∂λ
+

∫ ∞
c

∂ ln fx
∂λ

fxdx = 0,

whereas in the uncensored case

∫ c

0

∂ ln fx
∂λ

fxdx+

∫ ∞
c

∂ ln fx
∂λ

fxdx = 0
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Thus ∫ c

0

∂ ln fx
∂λ

fxdx = Fx(c)
∂ lnFx(c)

∂λ

Because the score is monotonically increasing

∂ ln fx(0)

∂λ

∫ c

0

fxdx ≤
∫ c

0

∂ ln fx
∂λ

fxdx ≤
∂ ln fx(c)

∂λ

∫ c

0

fxdx

and (4) follows.

B Expectation and variance of score of a cen-

sored GB2

E
∂ ln f(yt)

∂λ
= −Fx(c)

υbξc(1− bc)ς
β(zc; ξ, ς)B(ξ, ς)

+

∫ 1

bc

[υ(ξ + ς)bt − υξ]fbdbt

= −υb
ξ
c(1− bc)ς
B(ξ, ς)

+

∫ 1

bc

[υ(ξ + ς)bt]fbdbt − υξ(1− β(zc; ξ, ς))

= −υb
ξ
c(1− bc)ς
B(ξ, ς)

+ υ(ξ + ς)
B(ξ + 1, ς)

B(ξ, ς)
(1− β(zc; ξ + 1, ς))− υξ(1− β(zc; ξ, ς))

= −υb
ξ
c(1− bc)ς
B(ξ, ς)

+ υξ(1− β(zc; ξ + 1, ς)− υξ(1− β(zc; ξ, ς))

= −υb
ξ
c(1− bc)ς
B(ξ, ς)

+ υξ(β(zc; ξ, ς)− β(zc; ξ + 1, ς))
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Note that zc = (ce−λ)υ and bc = zc/(zc + 1). Then, using (26.5.16) in

Abramovitz and Stegun (1964, p 944),

β(zc; ξ, ς)− β(zc; ξ + 1, ς) =
1

ξB(ξ, ς)
bξc(1− bc)ς .

As regards the variance of the score

E

(
∂ ln f(yt)

∂λ

)2
=

υ2b2ξc (1− bc)2ς
β(zc; ξ, ς)B2(ξ, ς)

+

∫ 1

bc

[υ(ξ + ς)bt − υξ]2fbdbt

=
υ2b2ξc (1− bc)2ς
B(zc; ξ, ς)B(ξ, ς)

+ υ2(ξ + ς)2
B(ξ + 2, ς)

B(ξ, ς)
(1− β(zc; ξ + 2, ς))

−2υ2(ξ + ς)ξ
B(ξ + 1, ς)

B(ξ, ς)
(1− β(zc; ξ + 1, ς)) + υ2ξ2(1− β(zc; ξ, ς))

which then gives (10).
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TABLES

Town Fraction of zeroes 75%-quantile Mean Max.

Darwin 0.665 1.8 5.2 367.6

Cairns 0.594 4.0 6.9 381.0
Table 1: Sample statistics of rainfall, in millimeters, for the period 1

January 2006 and 31 December 2015.
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Censor Zero-augmented

α1 = 0 α1 6= 0 δ1 = 0 δ1 6= 0

Darwin AIC 3.175 3.170 3.206 3.172

BIC 3.204 3.199 3.235 3.200

Cairns AIC 3.955 3.951 4.059 3.945

BIC 3.984 3.980 4.088 3.974
Table 2 Goodness of fit statistics
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Location Darwin Cairns

Model Censored Zero-aug.

Estimate S.E. Estimate S.E.

ω 0.43 0.55 0.54 0.13

φ 0.68 0.05 0.59 0.02

κ 0.41 0.06 0.29 0.04

δ0 - - -1.59 0.42

δ1 - - 2.34 0.18

α0 1.51 0.25 - -

α1 -0.38 0.20 - -

ν 0.63 0.09 0.81 0.03

ξ 1.75 0.15 3.12 0.04

η 0.31 0.16 0.44 0.10

η 3.26 2.29

ln L -5767.9 -7183.3
Table 3 ML estimates of preferred models with GB2 as in the inverse tail

index parameterization of (6).
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Town Darwin Cairns

Model Censored Zero-aug.

Static Dynamic Static Dynamic

Predictive likelihood 1.23 1.21 2.15 1.96

t-stat -3.70 -9.39

Brier PS 0.884 0.876 0.86 0.78

t-stat -2.66 -10.28
Table 4 Average predictive likelihood and Brier probability scores, together

with the associated t-statistics for comparing one-step ahead density

forecasts.
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Figure 1: Daily rainfall in Darwin in December. Positive observations only
arranged in bins of width 1mm
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Figure 2: Log-logistic score with υ = 2 and c = 0.5.
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Figure 3: Log-logistic (thin line) with unit scale and υ = 2. Censored with
c = 1 is thick line. Thin dash is censored with scale of 4. Thick dash is
distribution for positive observations for point-mass mixture with π = 0.5.

39



0 100 200 300
Days of year

0

10

20

30

40

50

60

Av
er

ag
e 

da
ily

 ra
in

fa
ll 

(m
m

)

Figure 4: Average daily rainfall in Darwin throughout the year, for 1 January
2006 to 31 December 2015.
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Figure 5: Darwin: Number of days in the sample period with no rain.
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Figure 6: Daily rainfall in Darwin in November. Positive observations only
arranged in bins of width 1mm
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Figure 7: PITs for Darwin
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Figure 8: Correlogram of scores from dynamic model fitted to Darwin
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Figure 9: Estimated probability of no rain next day in Darwin in 2011.
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Figure 10: Correlogram of binary variables from dynamic model fitted to
Darwin
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Figure 11: Correlogram of out of sample scores for dynamic model fitted to
Darwin
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Figure 12: Multi-step predictive density for Darwin at the start of 2016.
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