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Abstract

We show that the cumulated sum of squares statistic has a standard Brownian bridge-
type asymptotic distribution in non-linear regression models with (possibly) non-stationary
regressors. This contrasts with cumulated sum statistics which have been previously studied
and whose asymptotic distribution has been shown to depend on the functional form and the
stochastic properties, such as persistence and stationarity, of the regressors. A recursive version
of the test is also considered. A local power analysis is provided and through simulations we
show that the test has good size and power properties across a variety of situations.

Keywords: Cumulated sum of squares, Non-linear Least Squares, Non-stationarity, Speci�-
cation tests.
JEL classi�cation: C01; C22.

1 Introduction

Non-linear models with non-stationary regressors are gaining increasing attention. In particular,
parametric models of the form

yt = g(xt; �) + "t; (1.1)

where xt is a vector of possibly non-stationary regressors are of interest for economists and econo-
metricians. The econometrics literature on non-linear models with non-stationary regressors has
progressively advanced during the last two decades. Speci�cally, asymptotic theory, estimation
methods and testing procedures have been developed �see for instance Park and Phillips (1999,
2001), Pötscher (2004), de Jong (2004), de Jong and Wang (2005), Berkes and Horváth (2006),
Karlsen, Myklebust, and Tjøstheim (2007), Schienle (2008), Kasparis (2008, 2011), de Jong and
Hu (2011), Christopeit (2009), Wang and Phillips (2009, 2012), Choi and Saikkonen (2010), Kris-
tensen and Rahbek (2010), Chan and Wang (2015).

We analyze the cumulated sum of squared residuals test for model (1.1) and show that it has
the usual asymptotic distribution when the model is correctly speci�ed. Thus, the test is valid
for linear and non-linear models with stationary and non-stationary regressors and it is therefore
robust to a wide range of speci�cations and regressors. Speci�cation tests based on the cumulated
sum of residuals have a long tradition in econometrics going back to Brown, Durbin and Evans
(1975). Even though these tests were originally designed to test for structural changes, they can be
used more generally to test for the validity of a particular model. For example, Xiao and Phillips
(2002) studied the cumulated sum of residuals statistic to test for cointegration. In the context of
non-linear and non-stationary regressors Kasparis (2008) and Choi and Saikkonen (2010) propose
tests which are based on the cumulated sum of residuals. Given the non-stationary nature of
the regressors in this framework, the asymptotic distribution of these tests depends on nuisance
quantities coming from the estimation error and the stochastic properties of the regressors. The
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problem is easily illustrated by considering a simple linear regression model �although the same issue
is present when dealing with important classes of non-linear transformations, such as homogenous
functions, of non-stationary processes. Thus, let yt = �xt + "t, where "t are independent standard
normal innovations. Let �̂n denote the full sample least squares estimator while "̂s;n = ys � �̂nxs
are the residuals for s = 1; : : : ; n. Under correct speci�cation we get for the sum of residuals that

1p
n

tX
s=1

"̂s;n =
1p
n

tX
s=1

"s � (�̂n � �)
1p
n

tX
s=1

xs:

When xt is stationary with zero mean the second term on the right hand side vanishes so that a
Brownian motion theory can be applied to the residual sums. However, when xt is a random walk
we �nd that the second term converges to a Dickey-Fuller-type distribution that will contribute
to the overall asymptotic distribution. The problem extends to non-linear regressions with ho-
mogenous functions. To overcome this di¢ culty Kasparis (2008) uses modi�ed residuals combined
with simulations for each speci�cation while Choi and Saikkonen (2010) propose a test involving
resampling techniques. This complicates the implementation as well as the theoretical analysis of
such tests.

In this paper, we show that the cumulated sum of squared residuals statistic, under quite
general assumptions, converges to a well de�ned distribution �the supremum of the absolute value
of a Brownian Bridge for which critical values are readily available. Hence, the limiting distribution
of the test statistic does not depend on the estimation error and is robust to the persistence and
stationarity properties of the regressors. To illustrate this consider the simple linear model from
above. Under correct speci�cation we get for the sum of squared residuals that
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both when xt is stationary and when it is a random walk. Thus, a Brownian Bridge result fol-
lows under a martingale di¤erence assumption for "t. The Brownian bridge asymptotic result has
previosuly been derived in a linear model framework with stationary regressors by for instance
Brown, Durbin and Evans (1975), McCabe and Harrison (1980), Ploberger and Krämer (1986),
Deng and Perron (2008b) and for non-stationary regressors by Lee, Na and Na (2003) and Nielsen
and Sohkanen (2011). Here we show that the Brownian Bridge result extends to non-linear models
with non-stationary regressors. This illustrates the robustness of the test to functional form and
the type regressors. The proof exploits the results for self-normalized martingales by Lai and Wei
(1982).

We also consider a recursive version of the test. For this test the parameter � is estimated
recursively, so that for the sub-sample of the �rst t observations we get an estimator �̂t and residuals
"̂s;t = ys � �̂txs for s = 1; : : : ; t: Under correct speci�cation we can show that the recursive sum of
squared recursive residuals has the same expansion as before
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This again applies to the case when xt is stationary and when it is a random walk in linear and non-
linear regression frameworks. To analyse this statistic one needs to understand the �̂t estimators
as a sequence. Deng and Perron (2008b) considered a linear model and required a strong mixing
property of the product xt"t; which rules out non-stationary regressors. Nielsen and Sohkanen
(2011) observed that if �̂n is strongly consistent, then the sequence �̂t is uniformly convergent in
probability by Egorov�s theorem. This allows to analyze the recursive test for general regressors.
To show that this is applicable in practice we provide some examples of non-linear models with
strongly consistent estimators.

The innovations "t are martingale di¤erence sequences so that the model (1.1) is a conditional
mean model. A common alternative modeling approach is to allow "t to follow a general linear
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process. The standard Brownian Bridge result would still follow under an appropriate standariza-
tion of the test. However, it is di¢ cult to control size of residual based speci�cation tests under the
linear process assumption since the autocorrelation structure can be arbitrarily close to a random
walk behaviour, see for instance Xiao and Phillips (2002), Kasparis (2008), Choi and Saikkonen
(2010), or Pitarakis (2017). When following the conditional mean approach, as here, the temporal
dependence has to be modelled and any unmodelled autocorrelation or correlation between "t and
xt will be regarded as misspeci�cation. The test will not be consistent against such alternatives
so we will need to complement the test with tests for temporal dependence just as in linear time
series analysis. In choosing the conditional mean approach we follow the recommendation of Deng
and Perron (2008a, p. 229). They compare CUSQn (cumulated sum of squared residuals) and
CUSUMn (cumulated sum of residuals) tests in the presence of shifts and recommend to model
the dynamics and apply the CUSQn test.

We provide three examples of models covered by the analysis. First, we analyze the autoregres-
sive distributed lag model. This is a linear model with non-stationary regressors previously analysed
by Nielsen and Sohkanen (2011). Second, we consider separable models of the type yt = �g(xt)+ "t
with a random walk regressor. Third, we consider the model yt = (xt + �)2 + "t suggested by
Wu (1981). This is a toy model that illustrates some of the complexities in analyzing models that
are non-linear in parameters. Wu considered a linear trend regressor so that xt = t; while Park
and Phillips (2001) and Wang (2015) considered a random walk regressor. These authors assumed
a compact parameter space. We provide a global analysis without assuming compactness of the
parameter space. The model has the interesting feature that it can have two local minimizers so
that one minimizer is consistent while the other minimizer diverges. We give conditions that ensure
that the consistent minimizer is the global minimizer. In practice one will typically use an iterative
algorithm that may �nd a local minimizer. The possibility of a diverging minimizer indicates that
an assumption of a compact parameter space can be severely misleading in practice.

The local power of the test to detect functional form misspeci�cations is investigated for a
separable model involving homogeneous functions. This complements the results on consistency
against �xed alternatives given by for instance Xiao and Phillips (2002) and Kasparis (2008) for
the cumulated sum of residuals test and by Deng and Perron (2008a) and Pitarakis (2017) for
the cumulated sum of squared residuals test. Finally, the �nite sample performance of the test is
studied through several Monte Carlo experiments. These simulations reveal that the test has good
properties in terms of size and power.

The paper is organized as follows. In Section 2, the model and test statistics are put forward.
Section 3 builds up a general framework under which the Brownian bridge result is obtained. Then,
Section 4 shows that the assumptions in Section 3 are satis�ed in various models of interest. In
Section 5 the local power of the test to detect functional form misspeci�cations is analyzed. In
Section 6 the performance of the test in terms of size and power is investigated through Monte Carlo
experiments. Section 7 contains some concluding remarks. The proofs follow in an Appendix.

2 Model and statistics

Consider data (y1; x1); : : : ; (yn; xn) where yt is a scalar, xt is a p-vector and the maintained non-
linear regression model is

yt = g(xt; �) + "t t = 1; : : : ; n; (2.1)

where the functional form of g is known, the innovations "t are martingale di¤erence sequence with
respect to a �ltration Ft, with zero mean, variance �2, and fourth moment '2 = E"4t � (E"2t )2;
while xt is Ft�1-adapted. The parameter � is a q-vector varying in a parameter space � � Rq.
Detailed assumptions follow in the next section.

The departures from model (2.1) we have in mind are of the form

yt = g(xt; �) + vt with vt = "t + h(zt); (2.2)
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where the term h(zt) refers to the misspeci�ed part of the model for some unknown function h.
Hence, our null hypothesis is  = 0. A formal local power analysis will be carried out in Section 5.
Until then we will work under the maintained model with  = 0:

The non-linear least squares estimator �̂n of � is the minimizer of the least squares criterion

Qn(�) =
nX
t=1

fyt � g(xt; �)g2: (2.3)

The least squares residuals based on the full sample estimation are then "̂t;n = yt � g(xt; �̂n):
The cumulated sum of squares statistic is de�ned as

CUSQn =
1

'̂n
max
1�t�n

����� 1pn
 

tX
s=1

"̂2s;n �
t

n

nX
s=1

"̂2s;n

!����� ; (2.4)

where the standard deviation estimator can be chosen as, for instance,

'̂2n =
1

n

nX
t=1

"̂4t;n �
 
1

n

nX
t=1

"̂2t;n

!2
: (2.5)

We will argue that under quite general assumptions, under the null hypothesis of  = 0,

CUSQn
D! sup
0�u�1

��B0u�� ; (2.6)

where B0u is a standard Brownian bridge. Billingsley (1999, pp. 101�104) gives an analytic ex-
pression for the distribution function. In particular, the 90%, 95%, 99% quantiles are 1.22, 1.36,
1.63; see Smirnov (1948). Edgerton and Wells (1994) developed response surfaces for �nite sample
quantiles. For the 95% critical value this is

1:358� 0:670n�1=2 � 0:886n�1: (2.7)

We also consider a recursive cumulated sum of squares statistic. Estimating model (2.1) re-
cursively for expanding samples (y1; x1); : : : ; (yt; xt) gives estimators �̂t for n0 � t � n where n0
is chosen so large that

Pn0
t=1f _g(xt; �0)gf _g(xt; �0)g0 is invertible and _g(xt; �) = @g(xt; �)=@� is a q-

vector. From the recursive estimators �̂t, we compute recursive residuals "̂s;t = ys � g(xs; �̂t) for
s = 1; : : : ; t. The recursive cumulative sum of squares test statistic is then de�ned as

RCUSQn =
1

'̂n
max
n0�t�n

����� 1pn
 

tX
s=1

"̂2s;t �
t

n

nX
s=1

"̂2s;n

!����� : (2.8)

If the sequence of estimators �̂t converges strongly, we can show that also

RCUSQn
D! sup
0�u�1

��B0u�� : (2.9)

Thus, the same limiting distribution applies as in (2.6). Sohkanen (2011) developed a response
surface for the �nite sample 95% critical value of RCUSQn, which is

1:358(1� 0:68n�1=2 + 3:13n�1 � 33:9n�3=2 + 93:9n�2): (2.10)

3 Main results

We show that the above convergence results apply under very mild assumptions. First we consider
the CUSQn statistic and then we consider the recursive statistic RCUSQn: Finally, we present
some stronger assumptions that may be easier to check in applications.
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3.1 The statistic CUSQn

We start by describing the assumptions before stating the theorems. In Section 4 we discuss how
to check these assumptions in particular models.

The �rst assumption is a martingale di¤erence condition on the innovations "t: In other words,
the temporal dependence has to be modelled. Since the test is based on the square residuals a
fourth moment assumption is needed when estimating the variance of the squared residuals, which
is used to standardize the statistic.

Assumption 3.1 Suppose ("t;Ft) is a martingale di¤erence sequence with respect to a �ltration
Ft; that is, "t is Ft-adapted and E("tjFt�1) = 0 a:s:; so that
(a) E("2t jFt�1) = �2 > 0 a:s:;
(b) E("4t � �4jFt�1) = '2 <1 a:s:;
(c) suptE(j"tj jFt�1) <1 a:s: for some  > 4:

The next assumption relates to the asymptotic behaviour of �̂n. We introduce a normalization
N�1
n;�0

that allows us to consider both stationary and non-stationary regressors. In many situations

of interest it is known that N�1
n;�0
(�̂ � �0) converges in distribution, where the notation �0 empha-

sizes the choice of parameter under which we evaluate the distributions. The normalization N�1
n;�0

can be chosen in many ways. In linear models we have N�1
n;�0

= n1=2 for stationary regressors,

N�1
n;�0

= n for random walk or near unit root regressors, while in more general cointegrated models

N�1
n;�0

may be block diagonal with di¤erent normalizations in di¤erent blocks. In non-linear mod-
els with non-stationary regressors the normalization depends on the type of regression function
under consideration and may also depend on the parameter �0. We may also choose a stochastic
normalization, for instance N�1

n;�0
= (

Pn
t=1 xtx

0
t)
1=2 in the linear model, so that N�1

n;�0
(�̂ � �0) is

self-normalized, see Section 4.1, 4.2, 4.4 for examples. In any case the normalization cannot grow
faster than at a polynomial rate which rules out explosive regressors.

Assumption 3.2 Let Nn;�0 be a normalization matrix, possibly stochastic, depending on n and �0:
Suppose inf(n : Nn;�0 is invertible) < 1 a:s: with the convention that the empty set has in�nite
in�mum. Suppose also that N�1

n;�0
= O(n`) a:s: for some ` > 0:

In the subsequent theory it su¢ ces that the normalized statistic N�1
n;�0
(�̂��0) is oP(n�) for some

0 < � < 1=4. As an example consider a linear regression so that g(xt; �) = �xt with stationary
regressor xt: In this case n1=2(�̂ � �0) = OP(1), but it su¢ ces to know that n1=2(�̂ � �0) = oP(n

�):
The condition gives some freedom, for instance, when dealing with the slowly varying functions that
often appear in non-linear analysis, see for instance Phillips (2007). Moreover, in some situations
Assumption 3.3 can be established directly by the strong martingale bound of Lai and Wei (1982)
presented as Lemma A.7 in the Appendix.

Assumption 3.3 Suppose N�1
n;�0
(�̂n � �0) = oP(n�) for some 0 < � < 1=4:

The next assumption concerns the smoothness of the regression function. It involves normalized
sums of the �rst two derivatives of the known function g with respect to �: These are the q-vector
_g(xt; �) = @g(xt; �)=@� and the q � q square matrix �g(xt; �) = @g(xt; �)=@�@�

0. We will need a
matrix norm. In the proof we use the spectral norm, but at this point any equivalent matrix norm
can be used. In Assumption 3.9 below we introduce slightly stronger conditions that may be easier
to check in situations where the non-linear function g is known to satisfy Lipschitz conditions.

Assumption 3.4 Suppose xt is Ft�1-measurable and g(xt; �) is twice �-di¤erentiable. Let 0 < � <
1=4 be the consistency rate in Assumption 3.3 and let �; � > 0: Suppose
(a) sup�:jjN�1

n;�0
(���0)jj�n��

Pn
t=1fg(xt; �)� g(xt; �0)g2 = oP(n1=2);

(b) sup�:jjN�1
n;�0

(���0)jj�n��
Pn

t=1fg(xt; �)� g(xt; �0)g4 = oP(n);
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(c)
Pn

t=1 jjN 0
n;�0

_g(xt; �0)jj2 = oP(n1�2���);
(d) sup�:jjN�1

n;�0
(���0)jj�n��

Pn
t=1 jjN 0

n;�0
�g(xt; �)Nn;�0 jj2 = oP(n�4�).

Finally, we need invertibility of the matrix of squared �rst �-derivatives of g.

Assumption 3.5 Suppose inf[n :
Pn

t=1f _g(xt; �0)gf _g(xt; �0)g0 is invertible] <1 a:s: with the con-
vention that the empty set has in�nite in�mum.

We can now show the main result for cumulated sums of squares statistics.

Theorem 3.6 If Assumptions 3.1, 3.2, 3.3, 3.4, 3.5 are satis�ed then CUSQn
D! sup0�u�1

��B0u�� :
The key argument in the proof is to show that n�1=2

Pn
s=1("̂

2
s;n�"2s) vanishes. For this we apply

a martingale decomposition. Noting that "̂s;n � "s = �rg(xs; �̂n) = �fg(xs; �̂n) � g(xs; �0)g and
expanding ("�r)2 � "2 = �2"r+r2 we write

n�1=2
nX
s=1

("̂2s;n � "2s) = �2n�1=2
nX
s=1

"srg(xs; �̂n) + n�1=2
nX
s=1

frg(xs; �̂n)g2: (3.1)

Due to Assumption 3.3 the rescaled estimator #̂n = N�1
n;�0
(�̂n � �0) varies in the region jj#̂njj � �n�

with large probability. Thus, it su¢ ces to replace #̂n with a deterministic value # and show that
the sums in (3.1) vanish uniformly over the local region. These sums are a martingale and its
compensator. Now, the compensator vanishes under Assumption 3.4(a). Jennrich (1969, Theorem
6), for instance, uses a similar argument when proving consistency of non-linear least squares, with
the di¤erence that he takes supremum over a non-vanishing set. In the proof the main bulk of
the work is to show that the martingale part vanishes under Assumption 3.4(c; d): For this we
modify Lai and Wei (1982, Lemma 1) in Lemma A.8. Finally, Assumption 3.4(b) is used to show
consistency of the fourth moment estimator '̂2n:

3.2 The statistic RCUSQn

For the recursive cumulated sum of squares statistic the estimator of � is computed recursively,
namely �̂t. Thus, we require uniformity properties over t for the sequence of recursive estima-
tors. We follow Nielsen and Sohkanen (2011) and require strong consistency of �̂n and get that
the sequence �̂t is uniformly convergent in probability by Egorov�s Theorem, see Davidson (1994,
Theorem 18.4). Thus, we will need a strong version of Assumption 3.3. Likewise we will need a
strong version of Assumption 3.4(a; c; d).

Assumption 3.7 Suppose Assumptions 3.3, 3.4(a; c; d) hold a:s: for some 0 < � < 1=4:

Theorem 3.8 If Assumptions 3.1, 3.2, 3.4(b), 3.5, 3.7 are satis�ed then RCUSQn
D! sup0�u�1

��B0u�� :
3.3 Some stronger, su¢ cient assumptions

In many applications we can replace Assumption 3.4 with a set of slightly stronger assumptions
formulated in a weak convergence mode and therefore aimed at the non-recursive test. These
are useful when working with a fairly generally formulated model satisfying Lipschitz conditions
and where weak consistency is often assumed. For the recursive test we would need almost sure
properties. Proving those would typically require a more tightly formulated model, in which case
one can just as well work with Assumption 3.4.

Assumption 3.9 Suppose xt is Ft�1-measurable and g(xt; �) is twice �-di¤erentiable. Let 0 < � <
1=4 be the consistency rate in Assumption 3.3 and let � > 0: Suppose, for k = 2; 4;
(a)

Pn
t=1 jjN 0

n;�0
_g(xt; �0)jjk = oP(nk=4�k�);

(b)
Pn

t=1 sup�:jjN�1
n;�0

(���0)jj�n�� jjN
0
n;�0

�g(xt; �)Nn;�0 jjk = oPfn(k�2)=2�2k�g:
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Since 0 < � < 1=4 it su¢ ces that the rates in (a) and (b) are OP(1) and OP(n�1); respectively.

Theorem 3.10 Assumption 3.9 implies Assumption 3.4.

4 Analysis of some particular models

We illustrate the practical use of the general assumptions through particular models that have been
discussed in the literature. We �rst consider the autoregressive distributed lag model. We then
turn to separable non-linear models with random walk regressors considering models that are linear
in parameters. Finally, as an example of a model that is not linear in parameters we consider Wu�s
(1981) power-curve model.

4.1 Autoregressive distributed lag model

We consider an autoregressive distributed lag model involving time series that are stationary or
integrated. This is a linear model so estimation reduces to ordinary least squares. It provides a
relatively simple setting for appreciating the n� rate appearing in the consistency Assumption 3.3
as well as the bene�ts of choosing a stochastic normalization matrix Nn. Thus this linear model
serves as a �rst illustration of the developed theory, noting that it has been previously studied by
Nielsen and Sohkanen (2011).

Consider data yt; zt; where zt has dimension m; and the autoregressive distributed lag model

yt =

kX
j=1

�jyt�j +
kX
j=1

�0jzt�j + � + "t: (4.1)

Thus, in terms of the notation in equation (2.1) we have a regressor xt = (yt�1; z0t�1; : : : ; yt�k; z
0
t�k; 1)

0

of dimension p = k(m+ 1) + 1 and a parameter � = (�1; �01; :::; �k; �
0
k; �)

0 of dimension q = p esti-
mated by the ordinary least squares estimator �̂n.

In order to characterize the asymptotic distribution of the test statistic we specify a joint model
for the time series xt = (yt; z0t)

0: Suppose xt satis�es the vector autoregression

xt =

kX
j=1

Ajxt�j + �+ �t; (4.2)

so that model (4.1) is the �rst equation of the vector autoregression (4.2). Note that xt =
(x0t�1; :::;x

0
t�k; 1)

0. The vector autoregression xt has companion form xt+1 = Bxt + !t where

B =

0BBBBB@
A1 � � � Ak�1 Ak �
I � � � 0 0 0
...

. . .
...

...
...

0 � � � I 0 0
0 � � � 0 0 1

1CCCCCA ; !t =

0BBBBB@
�t
0
...
0
0

1CCCCCA :

The companion matrix B has a unit root corresponding to the constant term. If the remaining
eigenvalues of B have absolute value less than unity then xt can be given a stationary initial
distribution. The random walk case arises when B has more than one unit root. We need the
following assumption.

Assumption 4.1 The vector xt satis�es (4.2) so that
(a) all linear combinations of �t satisfy the martingale Assumption 3.1;
(b) the companion matrix B has eigenvalues so that max jeigen(B)j � 1.
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We choose a stochastic normalization matrixN�1
n = (

Pn
t=1 xtx

0
t)
1=2 so thatNnN

0
n = (

Pn
t=1 xtx

0
t)
�1:

This yields the self-normalized least squares statistic N�1
n (�̂n � �0) = (

Pn
t=1 xtx

0
t)
�1=2Pn

t=1 xt"t.
When "t is a martingale di¤erence sequence it can be shown that N�1

n (�̂n � �0) = Of(log n)1=2g
a:s: by appealing to Lai and Wei (1982, Lemma 1), see also Lemma A.8 in the Appendix. Thus,
N�1
n (�̂n � �0) = o(n�) a:s: for any � > 0 as required in Assumption 3.7 since log n is dominated by

n� for any � > 0.

Theorem 4.2 Consider model (4.1) with � 2 � = Rp and Assumption 4.1. Then CUSQn and
RCUSQn converge in distribution to sup0�u�1 jB0uj:

The CUSQ and RCUSQ tests have been previously studied for this model in Nielsen and
Sohkanen (2011). Their result also allows contemporaneous regressors zt as well as explosive roots
for the companion vector.

4.2 Separable models with homogenous functions

As a �rst non-linear model we consider the separable model

yt = �g(xt) + "t t = 1; : : : ; n; (4.3)

where g is a known scalar function, so that non-linear least squares for � simpli�es to ordinary least
squares. Moreover, g is continuous and homogenous, so that g(xt=n1=2) = g(xt)=g(n

1=2). Polyno-
mial regressions are a classical example of such functions. The more general class of asymptotically
homogeneous functions discussed in Park and Phillips (1999) will be explored in the next section.
We consider the random walk type regressor. We explore the robustness of the results to other
types of regressors through simulation in Section 6. Our assumptions are as follows.

Assumption 4.3 The regressor satis�es xt =
Pt�1

s=1 �s+�
0xt�1 where �t is an Ft-martingale di¤er-

ence sequence satisfying Assumption 3.1(a; c) with �2� = E(�2t jFt�1) and for some  > 2: Moreover,
� 2 Rm+1 and xt is a vector autoregressive process of the form (4.2) satisfying Assumption 4.1 so
that the companion matrix B has eigenvalues so that max jeigen(B)j < 1:

Assumption 4.4 The function g is continuous and satis�es
(i) g(x=n1=2) = g(x)=g(n1=2) and jg(x)j � C(1 + jxj`) for some �nite C; ` > 0;
(ii) n0 = inf[n :

Pn
t=1fg(xt)g2 is invertible] <1 a:s:

Once again, we choose a stochastic normalization matrix Nn = [
Pn

t=1fg(xt)g2]�1=2: We can
then prove, �rst, almost sure consistency and subsequently that Theorems 3.6, 3.8 apply.

Theorem 4.5 Consider model (4.3) with � 2 � = R and suppose that Assumptions 3.1, 4.3, 4.4
hold. Then N�1

n (�̂n � �0) = of(log n)2g = o(n�) a:s: for all � > 0:

Theorem 4.6 Consider model (4.3) with � 2 � = R and suppose that Assumptions 3.1, 4.3, 4.4
hold. Then CUSQn and RCUSQn converge in distribution to sup0�u�1 jB0uj:

4.3 Separable models with asymptotically homogeneous functions

We now consider the separable model yt = �g(xt) + "t as in (4.3) under a more general class of
functions g: Park and Phillips (1999) introduced a class of asymptotically homogenous functions,
say T , which is dominated by a locally integrable function, say H, see De�nition 4.8 below. They
develop a limit theory for sums

Pn
t=1 T (xt) when T is asymptotically homogeneous and the dom-

inating function, H, satis�es some additional regularity conditions. Pötscher (2004) developed a
more general theory for locally integrable functions H and showed that sums n�1

Pn
t=1H(n

�1=2xt)
converge without additional regularity conditions for H. He suggested that a theory for asymptot-
ically homogeneous functions could be developed along the lines of Park and Phillips (1999) where
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the dominating function is just locally integrable. We formalize this suggestion and use that to
analyze the CUSQn test. We note that when analyzing the CUSQn statistic we do not need a
full limit theory for the estimator. We only need a weak consistency bound to �̂n � � as required
in Assumption 3.3. By focusing on separable functions we can use Lai and Wei (1982, Lemma
1) combined with Pötscher�s results to establish a su¢ cient weak consistency bound to �̂n � � for
regressions with asymptotically homogeneous functions. Analyzing the recursive RCUSQn statis-
tic requires almost sure bounds to sums of asymptotically homogeneous functions which are not
available at present, hence we focus on the CUSQn statistic in this sub-section.

Pötscher (2004) de�nes locally integrable functions as follows.

De�nition 4.7 Let H be a real-valued Borel-measurable function on R: We say that H is locally
integrable if and only if Z K

�K
jH(x)jdx <1 for all 0 < K <1:

The class of locally integrable functions includes locally bounded functions in the sense that
supjxj�K jH(x)j <1 for all 0 < K <1: Pötscher (2004, Remarks 2.1, 2.5) points out that locally
unbounded functions like log jxj can be dealt with by considering functions H on the extended real
line.

Park and Phillips (1999, De�nition 4.2) de�ne the class of asymptotically homogeneous functions
as follows �we minimally adapt their de�nition to our setup in relation to a normalization.

De�nition 4.8 Let T : R 7! R: We say that T is asymptotically homogeneous if and only if

T (�x) = v(�)H(x) +R(x; �) for � > 0;

where H(x) is locally integrable and v(�) is a normalization in the sense that is v(�) is positive,
non-decreasing and lim�!1 ��`v(�) ! 0 for some ` > 0: The remainder R satis�es jR(x; �)j �
a(�)P (x) where a(�) is a normalization so that sup�!1 a(�)=v(�) = 0 and P (x) is locally inte-
grable.

Before proceeding we need the following technical Assumption 2.2 from Pötscher (2004).

Assumption 4.9 Let xt satisfy Assumption 4.3. For every n 2 N the distribution of n�1=2xn
possesses a density, hn say, with respect to the Lebesgue measure on R: The density hn is uniformly
bounded, that is supn2N supx2R jhn(x)j <1:

We can then generalize Theorem 2.1 of Pötscher (2004) as follows.

Theorem 4.10 Suppose Assumptions 4.3, 4.9 are satis�ed. Then n�1=2x[un], where [un] denotes
the integer part of un, converges weakly to ��Wu on the D[0; 1] where W is a standard Brownian
motion. If T : R 7! R is asymptotically homogeneous in the sense of De�nition 4.8, then

fnv(n1=2)g�1
nX
t=1

T (xt)
D!
Z 1

0
H(��Wu)du:

To analyze the CUSQn statistic we make the following assumption on the square of the function
g. In contrast to Park and Phillips (1999), no regularity conditions on the function g itself are
required as we do not need a full asymptotic theory for the least squares estimator.

Assumption 4.11 Suppose g2(x) is asymptotically homogeneous in the sense of De�nition 4.8.
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We note that asymptotic homogeneity of g will not in general imply asymptotic homogeneity
of g2: For instance, if g(x) = jxj�1=2 then g is locally integrable, but g2 is not locally integrable. If
we had assumed that g is locally bounded then g2 would also be locally bounded and hence locally
integrable.

Finally, as in previous sections, the following technical assumption is needed.

Assumption 4.12 n0 = inf[n :
Pn

t=1fg(xt)g2 is invertible] <1 a:s:

Theorem 4.13 Consider model (4.3) with � 2 � = R and where Assumptions 3.1, 4.3, 4.9, 4.11,
4.12 hold. Let N�1

n =
Pn

t=1fg(xt)g2. Then N�1
n (�̂n � �0) = oP(n�) for all � > 0:

Theorem 4.14 Consider model (4.3) with � 2 � = R and where Assumptions 3.1, 4.3, 4.9, 4.11,
4.12 hold. Then CUSQn converges in distribution to sup0�u�1 jB0uj:

4.4 Power curve model

A further development in the literature is to consider non-separable functions g(xt; �) as proposed
by Park and Phillips (2001) and subsequently analyzed by for instance Chan and Wang (2015).
Their results for the estimator �̂n require a compact parameter space or equivalently an assumption
that �̂n is bounded in probability. This assumption is clearly non-trivial. We illustrate this fact by
analyzing the following model

yt = (xt + �)
2 + "t; (4.4)

where � 2 � = R and xt is either stationary, a random walk or a deterministic power function.
When proving consistency of �̂n for a particular value �0 we work with the normalization N�1

n;�0
=

f
Pn

t=1(xt + �0)
2g1=2:

Model (4.4) was previously considered by Wu (1981) in the linear trend case xt = t, while Park
and Phillips (2001) or Wang (2015) considered the random walk case. These authors assumed a
compact parameter space when analyzing the properties of the non-linear least squares estimator.
Compactness is not so attractive in this case since the objective function is quartic and can have
two local minimizers. As we will show, a second local minimizer is not always present. When it
is present it can even be diverging. We analyze the objective function and its minimizers in detail
in Theorem A.17 in the Appendix. There we show that, asymptotically, the global minimizer is
unique. Here, we concentrate on the asymptotic properties of this unique global minimizer and the
statistics CUSQn and RCUSQn.

Since model (4.4) is non-linear in parameters, in this section, we consider the non-linear least
squares estimator �̂n = argmin�2RQn(�) where Qn(�) =

Pn
t=1fyt � (xt + �)2g2: In the case of a

stationary or deterministic power function regressor we can show strong consistency of the global
minimizer, �̂n, and hence we can analyze the recursive test.

Assumption 4.15 Suppose xt = t� for � > 0 or xt is stationary, autoregressive and Ft�1-adapted
with Ext = �x and Vxt = �2x and Ex

4
t <1:

Theorem 4.16 Consider model (4.4) with � 2 � = R and Assumptions 3.1, 4.15. Then the global
minimizer satis�es

f
Pn

t=1(xt + �0)
2g1=2(�̂n � �0)

a:s:
=

Pn
t=1(xt + �0)"t

2f
Pn

t=1(xt + �0)
2g1=2

+ o(1)
a:s:
= of(log n)2g:

Theorem 4.17 Consider model (4.4) with � 2 � = R and Assumptions 3.1, 4.15. Then CUSQn
and RCUSQn converge in distribution to sup0�u�1 jB0uj:

For a random walk regressor we can only show weak consistency of the global minimizer, �̂n,
and hence we only analyze the non-recursive test.
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Theorem 4.18 Consider model (4.4) with � 2 � = R and Assumptions 3.1, 4.3. Then the global
minimizer satis�es

f
Pn

t=1(xt + �0)
2g1=2(�̂n � �0) =

Pn
t=1(xt + �0)"t

2f
Pn

t=1(xt + �0)
2g1=2

+ oP(1) = oPf(log n)2g:

Theorem 4.19 Consider model (4.4) with � 2 � = R and Assumptions 3.1, 4.3. Then CUSQn
converges in distribution to sup0�u�1 jB0uj:

5 Local power analysis

We analyze the local power of the CUSQn statistic under the type of departure from the null
described in equation (2.2) where yt = g(xt; �) + vt and vt = "t + h(zt) with  = 0 under the
null. This alternative is linear in the parameter  and we match that with a non-linear function
g(xt; �) = �g(xt) that is separable as in (4.3). We choose both g and h to be homogenous and
consider a regressor xt and an unmodelled variable zt that are both of random walk type. For the
local power analysis we choose a drifting sequence for  approaching zero. We will also argue that
the test is consistent, that is, the power approaches unity in large samples for �xed  alternatives.
Simulations in the next section will show that the CUSQn test also has power in more general
settings regarding the regression function.

In the local power analysis we need to normalize the parameter  to give a non-trivial drift.
Since h is homogenous we have h(zt=n1=2) = h(zt)=h(n

1=2): In addition we need an n1=4 factor so
that the local parameter is de�ned through  = �=fn1=4h(n1=2)g: That is, we analyze

yt = �g(xt) + vt where vt = "t +
�

n1=4h(n1=2)
h(zt): (5.1)

Such processes satisfy model (4.3) when � = 0: For the local analysis we need the following as-
sumption.

Assumption 5.1 (a) The functions g and h are continuous and homogenous so that g(xt=
p
n) =

g(xt)=g(
p
n) and h(zt=

p
n) = h(zt)=h(

p
n).

(b) The regressors xt; zt satisfy random walk assumptions as outlined in Assumption 4.3.

Consider the partial sum process n�1=2f
P[nu]

t=1 ("
2
t � �2); x[nu]; z[nu]g0 for 0 � u � 1, where [nu]

denotes the integer part of nu: This process converges weakly to the Brownian motion (B;Wx;Wz)
0.

De�ne the process

Lu =
Z u

0
fh(Wz;s)�

R 1
0 h(Wz;r)g(Wx;r)drR 1

0 g
2(Wx;r)dr

g(Wx;s)g2ds

and the bridge process L�u = Lu � uL1. We then have the following local power result.

Theorem 5.2 Consider data generating processes (5.1) with � 2 R and Assumptions 3.1, 5.1.
Then

CUSQn
D! '�1 sup

0�u�1
jB�u + �2L�uj:

Theorem 5.2 allows us to trace the local power of the test as a function of �: For � = 0 we
recognize the null limiting distribution. The parameter � measures departures from that null. For
large � the term �2L�u dominates which gives the local power.

The test will also be consistent. For this argument we consider data generating processes
satisfying

yt = �g(xt) + vt where vt = "t + h(zt); (5.2)
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as in model (2.2) with �xed alternatives determined by . If � in (5.1) is replaced by �n =
n1=4h(n1=2) then we get processes of the form (5.2). For a general non-decreasing sequence �n > 0
then CUSQn diverges at a rate of min(�2n; n

1=2); see Remark A.1 in the appendix. In particular
in the �xed alternative case where �n = n1=4h(n1=2); with non-decreasing h(n1=2); then CUSQn
diverges at a rate of min(�2n; n

1=2) = n1=2 in line with the results found in previous studies. These
include the Xiao and Phillips (2002) and Kasparis (2008) analyses of the cumulated sum statistic
with non-linearity and non-stationarity and the Deng and Perron (2008a) analysis of the CUSQn
statistic for stationary variables with structural breaks in the conditional mean.

The CUSQn statistic will have non-trivial power to detect misspeci�cations that are of a dif-
ferent nature than the ones considered in Theorem 5.2. This point is analyzed by simulation in the
next section for a wide range of situations. Of particular interest is the case in which the misspec-
i�ed component is an omitted stationary autoregressive regressor, so that the power of the test is
driven by its long run variance �see for instance Deng and Perron (2008b) or Pitarakis (2017) for
a theoretical argument on this issue.

6 Finite sample performance

In this section, we study the �nite sample performance of the CUSQ test through simulation.
We use the exact asymptotic 95% critical value of 1.36 and 10000 replicas. When studying the
size of the test a correctly speci�ed model with iid innovations and a highly persistent regressor is
considered. For the power, and given the emphasis in previous sections, we focus here on functional
form misspeci�cations. Speci�cally, two sets of results are presented. First, we check size and power
for a set of models that are either linear or non-linear in parameters. Next, we consider a set of
models suggested by Kasparis (2008). For these we compare the power of the CUSQ test with
the power of the cumulated sum (CUSUM) test reported by Kasparis (2008). We �nd that the
two tests have power of similar magnitude, so there is no apparent advantage in using the more
complicated CUSUM test.

Table 1 contains the �rst set of data generating processes (DGPs). Four correctly speci�ed (CS)
DGPs and �ve misspeci�ed (M) DGPs are analyzed. The regressor xt is (fractionally) integrated
so that ��xt is iid N(0; 1) with xt = 0 for t � 0 and with � = 0:7, 1, 2. Table 3 contains a second
set of DGPs. Four correctly speci�ed (CS) DGPs and four misspeci�ed (M) DGPs are considered.
Speci�cally, in DGPs 1-4 of Table 3, where the model is correctly speci�ed, the regressor is a nearly
integrated process xt = (1 + c=n)xt�1 + ut; with ut iid N(0; 1) and for which we consider c = �5;
�20; �50 following Kasparis, Andreou and Phillips (2015). In DGPs 5-8 of Table 3, we consider
misspeci�cations where an autoregressive regressor zt = �zt�1 + �t with �t iid N(0; 1) and � = 0:7;
0:8; 0:9 has been omitted. The results are as follows.

Table 2, corresponding to DGPs 1-4 in Table 1, reports the size of the CUSQ test. The size
control is fairly uniform across the DGPs. This is in correspondence with the results for linear
autoregressions in Nielsen and Sohkanen (2011). The test is, however, slightly undersized in small
samples. Non-reported simulations indicate that the size distortion can be removed almost entirely
by applying the correction (2.7) due to Edgerton and Wells (1994). Notice from Table 4 that the
same features are obtained when the regressor is nearly integrated. All these results regarding the
size of the test provide clear evidence on the robustness of the procedure with respect to the degree
of persistence of the regressors as well as the form of the regression function.

Next, we turn to the power of the test. Table 2, corresponding to DGPs 5-9 in Table 1, reports
the power of the CUSQ test for a range of asymptotically homogenous functions. The power
increases with the sample size in all cases. This is in line with the power analysis for parameter
instabilities conducted by McCabe and Harrison (1980), Ploberger and Krämer (1990), Deng and
Perron (2008a), or Turner (2010). It is worth emphasizing that given the goodness-of-�t nature
of the CUSQ test, the statistic will have power to detect other types of departures from the
null hypothesis other than functional form misspeci�cation. From Table 5, corresponding to the
misspeci�ed models 5-8 in Table 3, it can be seen that the test has non-trivial power to detect
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autocorrelated residuals and, as expected, the stronger the autocorrelation, the higher the power
of the test. As for linear models, the test does not appear to be consistent in this case so it should
be combined with a test for temporal dependence of the residuals.

It is also worth mentioning that the CUSQ also has power to detect some misspeci�cations
involving integrable functions of persistent processes. As an example consider the data generating
process yt = �1=(1+ �2x

2
t )+ "t, while the regression model is polynomial. Simulations not reported

here show that power arises as long as the signal from the integrable function component �1=(1 +
�2x

2
t ) dominates the noise "t:
Next, we compare the power of the CUSQ test with the CUSUM test of Kasparis (2008).

Table 6 reports his ten DGPs. In all cases a linear model for yt and xt is �tted, which is therefore
misspeci�ed. The results are reported in Table 7. Kasparis�test uses a long run variance estimator
to standardize the statistic; hence, the power of the test depends on a bandwidth choice. Kasparis
reports power for di¤erent bandwidths and we report the highest of these. Table 7 shows that no
test dominates in all cases, but in large samples the CUSQn seems to dominate the CUSUM test.
We note that the CUSUM test involves nuisance terms depending on the functional form of the
model whereas the CUSQ has a Brownian bridge theory quite generally.

7 Concluding remarks

We have shown that by using the cumulated sum of squares residuals we get rid of the nuisance
quantities that show up in CUSUMn tests based on the cumulated sum of residuals in a non-
stationary context. In other words, the cumulated sum of squares statistics is a speci�cation test
robust to the non-stationarity and/or persistence properties of the regressors. Hence, the cumulated
sum of squares test statistic has a well de�ned limiting distribution, for which asymptotic critical
values and �nite sample corrections are readily available.

In terms of size, the CUSQn test using asymptotic critical values has a size that is nearly
uniform over a variety of models in small samples. The asymptotic critical values give a slightly
undersized test for small samples, but the size can be controlled nearly perfectly using the response
surface of Edgerton and Wells (1994) reported in (2.7). These results are in line with the size
control found previously for linear, non-stationary models by Nielsen and Sohkanen (2011).

The test has good power against a variety of non-linear misspeci�cations within a non-stationary
environment. In the formal power analysis we considered an alternative hypothesis with an un-
modelled non-linear function of a random walk type variable. We derived the local power function
and showed that the test is consistent for �xed alternatives. In the simulation study we compared
with the alternatives studied by Kasparis (2008) for his CUSUMn test. The alternatives include
logarithmic, threshold and polynomial alternatives involving random walks while the �tted model
is linear cointegration regression. We �nd a comparable power when (infeasibly) using the best of
his bandwidth choices. In large samples the CUSQn test appears to have more power than the
CUSUMn test.

The asymptotic properties of the CUSQn test are derived under the assumption of conditionally
homoskedastic martingale di¤erence errors. This assumes implicitly that any dynamics have been
modelled. Indeed, this is consistent with the recommendation of Deng and Perron (2008a) for
linear, stationary models. Thus, in practice we recommend to combine the CUSQn test with a
test for no residual autocorrelation. We are currently studying such a test in a non-linear, non-
stationary context. Once such a test is available it will be possible to investigate which alternatives
are best picked up by which test and to study the performance of a combined test.
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A Appendix: Proofs

A.1 High level result

We �rst prove a set of high level results for the CUSQn statistics where we make assumptions
directly on the squared residuals. When proving the main theorems, we then need to check those
assumptions.

The �rst result shows that the tied down cumulated sum of squared innovations converges to
a Brownian bridge. This follows from the standard functional central limit theorem for martingale
di¤erences, see for instance Brown (1971).

Lemma A.1 Suppose Assumption 3.1 is satis�ed. Recall E("2t jFt�1) = �2 and E("4t jFt�1) =
'2 + �4: Let B0u be a standard Brownian bridge. Then, as a process on D[0; 1], the space of right
continuous functions with left limits endowed with the Skorokhod metric,

1p
n

P[nu]
t=1

�
"2t �

1

n

Pn
t=1"

2
t

�
D! 'B0u u 2 [0; 1];

1

n

Pn
t=1"

4
t �

�
1

n

Pn
t=1"

2
t

�2
P! '2:

We would like to formulate similar results for the cumulated sum of squared residuals. This can
be done as long as the squares of residuals and innovations are close. We formulate this in terms
of auxillary assumptions.

Assumption A.2 max1�t�n
��n�1=2Pt

s=1("̂
2
s;n � "2s)

�� = oP(1):
Assumption A.3 n�1

Pn
t=1("̂

4
t � "4t ) = oP(1):

Assumption A.4 maxn0�t�n
��n�1=2Pt

s=1("̂
2
s;t � "2s)

�� = oP(1):
Lemma A.5 If Assumptions 3.1, A.2, A.3 are satis�ed then CUSQn

D! sup0�u�1
��B0u�� :

Lemma A.6 If Assumptions 3.1, A.3, A.4 are satis�ed then RCUSQn
D! sup0�u�1

��B0u�� :
Proof of Lemma A.5: The statistic of interest is CUSQn = max1�t�n jAntj='̂n, where

Ant = n�1=2
Pt

s=1

�
"̂2s;n � n�1

Pn
r=1"̂

2
r;n

�
:

Expand Ant = Bnt + Cnt; where

Bnt = n�1=2
Pt

s=1

�
"2s � n�1

Pn
r=1"

2
r

�
;

Cnt = n�1=2
Pt

s=1

��
"̂2s;n � "2s

�
� n�1

Pn
r=1

�
"̂2r;n � "2r

�	
:

By the triangle inequality and Assumption A.2 then

max
1�t�n

jCntj � 2 max
1�t�n

���n�1=2Pt
s=1

�
"̂2s;n � "2s

���� = oP(1): (A.1)

Introduce the total norm jjftjj1 = max1�t�n jftj: The triangle inequality shows jjAntjj1 � jjBntjj1+
jjCntjj1 as well as jjBntjj1 = jjAnt � Cntjj1 � jjAntjj1 + jjCntjj1 so that jjAntjj1 � jjBntjj1 �
jjCntjj1: In combination j(jjAntjj1 � jjBntjj1)j � jjCntjj1: Using (A.1) we get max1�t�n jAntj =
max1�t�n jBntj + oP(1): Thus, by Lemma A.1 and the Continuous Mapping Theorem applied to
the maximum, we have

max
1�t�n

jAntj
D! ' sup

0�u�1

��B0u�� :
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Consider now '̂2n = n�1
Pn

t=1"̂
4
t;n�(n�1

Pn
t=1"̂

2
t;n)

2: Further, n�1
Pn

t=1("̂
k
t;n�"kt ) = oP(1) for k = 2; 4

by Assumptions A.2, A.3. Therefore,

'̂2n = n�1
Pn

t=1"
4
t �

�
n�1

Pn
t=1"

2
t

�2
+ oP(1):

By Lemma A.1, under Assumption 3.1, we have '̂2n = '2 + oP(1): All together, CUSQn converges
in distribution to sup0�u�1

��B0u�� as desired. �

Proof of Lemma A.6: The proof is largely the same as that of Lemma A.5 but where the
maximum is taken over n0 � t � n and the sets Ant; Cnt are replaced by A�nt = n�1=2

Pt
s=1("̂

2
s;t �

n�1
Pn

r=1"̂
2
r;n) and C�nt = n�1=2

Pt
s=1f

�
"̂2s;t � "2s

�
� n�1

Pn
r=1

�
"̂2r;n � "2r

�
g: �

A.2 Some martingale results

In most places we use the spectral norm for matrices, so that for a matrix m then

kmk =
p
max eigen(m0m):

The spectral norm reduces to the Euclidean norm for vectors. It is compatible with the Euclidean
norm in the sense that jjmvjj = jjmjjjjvjj for a matrix m and a vector v: It satis�es the norm
inequality jjmnjj � jjmjjjjnjj for matrices m;n. It also satis�es, for a matrix m;

jjmjj = jjm0mjj1=2: (A.2)

To see this note jjmjj2 = max eigen(m0m): Here m0m is symmetric, positive semi-de�nite so m0m =
V �V 0 for a diagonal, semi-de�nite � and V V 0 = I: Thus max eigen(m0m) = max eigen(�) =
fmax eigen(�2)g1=2: Now fmax eigen(�2)g1=2 = fmax eigen(m0mm0m)g1=2 = jjm0mjj:

We quote a version of Lemma 1 of Lai and Wei (1982) and provide a triangular array modi�-
cation.

Lemma A.7 (Lai and Wei,1982, Lemma1) Let Ft be a �ltration so that the q� 1 vector wt is
Ft�1 adapted and the scalar mt is Ft adapted with E(mtjFt�1) = 0 and suptE(m2

t jFt�1) <1 a:s:
Suppose n0 = inffn :

Pn
t=1wtw

0
t is invertibleg <1 a:s: Then, for all & > 0 and n > n0;Pn

t=1mtw
0
t(
Pn

t=1wtw
0
t)
�1Pn

t=1wtmt
a:s:
= of(log jj

Pn
t=1wtw

0
tjj)1+&g+O(1):

Lemma A.8 Let Ft be a �ltration so that the q�1 vector wt is Ft�1 adapted and the scalar mt is Ft
adapted with E(mtjFt�1) = 0 and suptE(m2

t jFt�1) <1 a:s: Let Nn be a q�q normalization matrix,
possibly stochastic, where N�1

n = O(n`) a:s: for some ` > 0. Suppose n0 = inffn :
Pn

t=1wtw
0
t is

invertibleg <1 a:s: Then, for all & > 0,

max
n0�s�n

Ps
t=1N

0
nwtmt

 a:s:
= o(n&)

�
1 +

Pn
t=1N

0
nwtw

0
tNn

1=2+&� :
Proof of Lemma A.8: Introduce the notation

Swm;s =
Ps

t=1wtmt and Sww;s =
Ps

t=1wtw
0
t:

We want to prove that maxn0�s�n kN 0
nSwm;sk = o(n&)(1 + kN 0

nSww;nNnk1=2+&) a:s:
By construction Sww;s is positive semi-de�nite, while by assumption, Sww;s is invertible and

hence positive de�nite for s > n0. Because Sww;s is a positive de�nite and symmetric matrix, it

can be decomposed as Sww;s = RR0 so that S1=2ww;s = R and S�1=2ww;s = R�1. Therefore, using these

de�nitions, since N 0
nSwm;s = N 0

nS
1=2
ww;sS

�1=2
ww;sSwm;s we can write

N 0
nSwm;s = (N

0
nR)S

�1=2
ww;sSwm;s = (N

0
nRR

0Nn)
1=2S�1=2ww;sSwm;s = (N

0
nSww;sNn)

1=2S�1=2ww;sSwm;s:
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Then, by the norm inequality,

jjN 0
nSwm;sjj = jj(N 0

nSww;sNn)
1=2S�1=2ww;sSwm;sjj � jj(N 0

nSww;sNn)
1=2jjjjS�1=2ww;sSwm;sjj:

Using the identity (A.2) so that jjmjj = jjm0mjj1=2 and jjm1=2jj = jj(m1=2)0(m1=2)jj1=2 = jjmjj1=2 we
get

jjN 0
nSwm;sjj � jjN 0

nSww;sNnjj1=2jjS�1=2ww;sSwm;sjj = jjN 0
nSww;sNnjj1=2jjSmw;sS�1ww;sSwm;sjj1=2: (A.3)

Lemma A.7 with Assumption 3.1(a) shows that, for all &1 > 0 and n!1;

jjSmw;nS�1ww;nSwm;njj
a:s:
= of

�
log jjSww;njj2

�1+&1g+O(1): (A.4)

We now argue that this implies that, for all &2 > 0 and n!1;

max
n0�s�n

jjSmw;sS�1ww;sSwm;sjj
a:s:
= of

�
log jjSww;njj2

�1+&2g+O(1): (A.5)

We prove (A.4) implies (A.5). Recall that if a sequence xn on R is so that jxnj = o(1), then
max1�s�n jxsj = O(1): Now, let yn and zn be real sequences so that yn is positive and non-decreasing
and suppose that, for all &1 > 0;

zn = o(y
1+&1
n ) + O(1): (A.6)

We prove that, for all &2 > 0;
max
1�s�n

jzsj = o(y1+&2n ) + O(1): (A.7)

We distinguish between bounded and diverging sequences yn: If yn is bounded then (A.6) amounts
to zn = O(1) so that max1�s�n jzsj = O(1) as required in (A.7). If yn diverges then, for a given
&2; choose &1 < &2: Then (A.6) amounts to zn = o(y1+&1n ), that is xn = zn=y

1+&1
n = o(1) so that

max1�s�n jxsj = O(1): We also have that y1+&1n = o(y1+&2n ): Combining these �ndings and recalling
that ys is positive and non-decreasing, we get

max
1�s�n

jzsj = max
1�s�n

jzsj
y1+&1s

y1+&1s � max
1�s�n

jzsj
y1+&1s

max
1�s�n

y1+&1s

= ( max
1�s�n

jxsj)y1+&1n = O(1)o(y1+&2n ) = o(y1+&2n )

as required in (A.7). Thus to prove (A.4) implies (A.5) let zs = Smw;sS
�1
ww;sSwm;s and yn =

log jjSww;njj2 for each outcome in a set with probability one.
We now argue that (A.5) implies that, for all &3 > 0;

max
n0�s�n

jjSmw;sS�1ww;sSwm;sjj1=2
a:s:
= o (jjSww;njj&3) + O(1): (A.8)

Indeed, if jjSww;njj is bounded then the O(1) remainder term dominates. If jjSww;njj diverges we
exploit that polynomials dominate logarithms so that

�
log jjSww;njj2

�1+&2 = o (jjSww;njj&3) for any
&3 > 0:

We analyze the remainder term jjSww;njj&3 : Pre- and post-multiplying by NnN
�1
n ; using the

norm inequality and the assumption N�1
n = O(n`) a:s: shows

jjSww;njj&3 = jj(N 0
n)
�1N 0

nSww;nNnN
�1
n jj&3 a:s:= O(n2`&3)jjN 0

nSww;nNnjj&3 :

Let &4 = 2`&3 + &3: Then n2`&3 � n&4 while jjN 0
nSww;nNnjj&3 � 1 + jjN 0

nSww;nNnjj&4 so that

jjSww;njj&3
a:s:
= O(n&4)(1 + jjN 0

nSww;nNnjj&4):

Insert this in (A.8). Since O(1) = o(n&4) we get, for all &4 > 0;

max
n0�s�n

jjSmw;sS�1ww;sSwm;sjj1=2
a:s:
= o(n&4)(1 + jjN 0

nSww;nNnjj&4):
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Inserting this in (A.3) and noting jjSww;sjj is non-decreasing in s we get

max
n0�s�n

jjN 0
nSwm;sjj � max

n0�s�n
jjN 0

nSww;sNnjj1=2 max
n0�s�n

jjSmw;sS�1ww;sSwm;sjj1=2

a:s:
= jjN 0

nSww;nNnjj1=2o(n&4)(1 + jjN 0
nSww;nNnjj&4):

Noting that for x > 0 then x1=2(1 + x&4) � 2(1 + x1=2+&4) we get that

max
n0�s�n

jjN 0
nSwm;sjj

a:s:
= o(n&4)(1 + jjN 0

nSww;nNnjj1=2+&4)

as desired with & = &4: �

A.3 Proof of main results

The CUSQ statistic is a function of the estimators. In order to separate the randomness coming
from the error terms, "t, and from the estimators, �̂n, we will apply the following result.

Lemma A.9 Let �; � > 0: Suppose a compact set � and an n� > 0 exist so that P(j�̂nj 2 �) > 1��
for n > n�: Then, for any measurable, real sequence of functions Gn(:) and n > n�,

PfjGn(�̂n)j > �g � Pfsup
�2�

jGn(�)j > �g+ �:

Proof of Lemma A.9: For two events A;B we have P(A) � P(A \ B) + P(Bc). Thus,

PfjGn(�̂n)j > �g � PfjGn(�̂n)j > �; j�̂nj 2 �g+Pfj�̂nj 62 �g:

The �rst term is bounded by Pfsup�2� jGn(�)j > �g and the second term is small by assumption.
Hence, the desired statement follows. �

Proof of Theorem 3.6: We use Lemma A.5 and verify Assumptions A.2 and A.3.
Part I: Assumption A.2.

1. The problem. Let St;� = n�1=2fQt(�)�Qt(�0)g so that St;�̂n = n�1=2
Pt

s=1("̂
2
s;n � "2s): We show

that St;�̂n = oP(1) uniformly in 1 � t � n: From (3.1) we have St;� = �2 eSt;� + St;�; where
eSt;� = n�1=2

Pt
s=1"srgs(�); St;� = n�1=2

Pt
s=1frgs(�)g

2:

2. Expand the martingale eSt;�. We use a second order mean value result. To simplify the expression
we introduce the notation for the normalised parameter and estimator

#n = N�1
n;�0

(� � �0) ; #̂n = N�1
n;�0
(�̂n � �0);

noting that under Assumption 3.3 we have #̂n = oP(n�): We also let, for 1 � s � n;

hs;n(#n) = g(xs; �) = g(xs; �0 +Nn;�0#n);

so that hs;n(0) = g(xs; �0): The derivatives of hs;n with respect to #n can be expressed in terms of
derivates of g with respect to � as follows

_hs;n(#n) = N 0
n;�0 _g(xs; �);

�hs;n(#n) = N 0
n;�0�g(xs; �)Nn;�0 :

Let
r�hs;n(#n) = N 0

n;�0 f�g(xs; �)� �g(xs; �0)gNn;�0 :

With this notation we get, for instance, that

(� � �0)0 _g(xs; �0) = fN�1
n;�0
(� � �0)g0N 0

n;�0 _g(xs; �0) = #0n _hs;n(0):
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Overall, we can expand eSt;�̂n = n�1=2
Pt

s=1"srgs(�̂n) as

eSt;�̂n = n�1=2
Pt

s=1"s#̂
0
n
_hs;n(0) +

1

2
n�1=2

Pt
s=1"s#̂

0
n
�hs;n(#

�
t;n)#̂n; (A.9)

for an intermediate point #�t;n depending on the summation limit t and #̂n so jj#�t;njj � jj#̂njj =
oP(n

�): For simplicity we write (A.9) as eSt;�̂n = eSt;n;1 + eSt;n;2=2.
3. The martingale term eSt;n;1. The norm inequality gives

j eSt;n;1j � n�1=2jj#̂njjjj
Pt

s=1"s
_hs;n(0)jj:

Apply Lemma A.8 using Assumptions 3.1, 3.5 to get, for any & > 0,

max
1�t�n

jj
Pt

s=1"s
_hs;n(0)jj

a:s:
= o(n&)[1 + jj

Pn
s=1f _hs;n(0)gf _hs;n(0)g

0jj1=2+& ]:

Apply the triangle and norm inequalities to get, for any & > 0,

jj
Pn

s=1f _hs;n(0)gf _hs;n(0)g
0jj1=2+& � f

Pn
s=1jj _hs;n(0)jj

2g1=2+& ;

and in combination

max
1�t�n

j eSt;n;1j a:s:= n�1=2jj#̂njjo(n&)[1 + f
Pn

s=1jj _hs;n(0)jj
2g1=2+& ]: (A.10)

Now apply that jj#̂njj = oP(n�) by Assumption 3.3 while
Pn

s=1 jj _hs;n(0)jj2 = OP
�
n1�2���

�
for some

� > 0 by Assumption 3.4(c) where 0 < � < 1=4 to get

max
1�t�n

j eSt;n;1j = oP(n&n��1=2)[1 + OPfn(1�2���)(1=2+&)g] = oP(1)
when & > 0 is chosen so small that & � 1=2 � � and & + � � 1=2 + (1 � 2� � �)(1=2 + &) < 0: The
latter is equivalent to &(1� � � �=2) < �=4:
4. The term eSt;n;2. Apply the norm and triangle inequalities to get

j eSt;n;2j � jj#̂njj2n�1=2Pt
s=1j"sj jj�hs;n(#

�
t;n)jj:

Apply the Hölder inequality to get

j eSt;n;2j � jj#̂njj2(n�1Pt
s=1"

2
s)
1=2f

Pt
s=1jj�hs;n(#

�
t;n)jj2g1=2:

Assumption 3.3 shows #̂n = N�1
n;�0
(�̂n � �0) = oP(n

�): The martingale Law of Large Numbers

(Chow, 1965, Theorem 5) using Assumption 3.1 shows n�1
Pt

s=1"
2
s � n�1

Pn
s=1"

2
s
a:s:
= O(1): Finally,

the summands jj�hjj are non-negative so that

max
1�t�n

j eSt;n;2j = oP(n2�)fmax
1�t�n

Pn
s=1jj�hs;n(#

�
t;n)jj2g1=2:

To show that max1�t�n j eSt;n;2j = oP(1), it su¢ ces to show that
Dn(#̂n) = n4� max

1�t�n

Pn
s=1jj�hs;n(#

�
t;n)jj2 = OP(1):

The intermediate points #�t;n all lie on the line from the origin to #̂n, hence Dn(#̂n) is a function of
#̂n:
5. The term Dn(#̂n): Since jjn��#̂njj = oP(1) by Assumption 3.3 we get from Lemma A.9 that it
su¢ ces to replace n��#̂n by deterministic n��# varying in a compact region with high probability.
That is, we have that Dn(#̂n) = OP(1) if, for some � > 0; it is shown that supjjn��#jj��Dn(#) =
OP(1). The e¤ect of replacing n��#̂n by n��# on the intermediate points is captured as follows. For
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t = 1; : : : ; n, the original intermediate points #�t;n are on the line from the origin to #̂n and satisfy

jj#�t;njj � jj#̂njj: They are now replaced by intermediate points #�t;# on the line from the origin to #,
where the index n in #�t;n has been replaced by # in #

�
t;# to emphasize the dependence on the point

# replacing #̂n: The intermediate points #�t;# remain stochastic as they stem from the mean value
expansion in (A.9).

We now bound the function Dn(#) = n4�max1�t�n
Pn

s=1jj�hs;n(#�t;#)jj2 as follows. Since #�t;# lies
between zero and some point # so that jj#jj � �n�; then, for each t; we can boundPn

s=1jj�hs;n(#
�
t;#)jj2 � sup

jj#jj��n�

Pn
s=1jj�hs;n(#)jj

2:

The bound is uniform in t so that

Dn(#) � n4� sup
jj#jj��n�

Pn
s=1jj�hs;n(#)jj

2:

It is also uniform in jj#jj � �n� so that

sup
jjn��#jj��

Dn(#) � n4� sup
jj#jj��n�

Pn
s=1jj�hs;n(#)jj

2;

which is oP(1) by Assumption 3.4(d):
6. The compensator. The compensator term can be written as

St;� = n�1=2
Pt

s=1frgs(�)g
2 = n�1=2

Pt
s=1fg(xs; �0 +Nn;�0#)� g(xs; �0)g2 = St;�0+Nn;�0#: (A.11)

Since #̂n = N�1
n;�0
(�̂n � �0) = oP(n

�) then, by Lemma A.9 we get St;�̂n = St;�0+Nn;�0 #̂n = oP(1)

uniformly in t if An = supjj#jj��n� max1�t�n St;�0+Nn;�0# vanishes. Now, St;�0+Nn;�0# � Sn;�0+Nn;�0#
together with Assumption 3.4(a) ensures that An � supjj#jj��n� Sn;�0+Nn;�0# = oP(1).
Part II: Assumption A.3.
1. The problem. Let Vn;� = n�1

Pn
t=1[f"t � rgs(�)g4 � "4t ] where rgs(�) = g(xs; �) � g(xs; �0) as

before, so that Vn;�̂n = n�1
Pn

t=1("̂
4
t �"4t ): By Lemma A.9, using Assumption 3.3, it su¢ ces to show

that Vn;� = Vn;�0+Nn;�0# = oP(1) uniformly over jj#jj � �n� or equivalently jjN�1
n;�0
(� � �0)jj � �n�:

2. Some inequalities: By binomial expansion (" � r)4 � "4 = r4 � 4r3" + 6r2"2 � 4r"3: Thus,
the triangle and Hölder inequalities give

jVn;�j � n�1
Pn

t=1frgs(�)g
4 + 4[n�1

Pn
t=1frgs(�)g

4]3=4(n�1
Pn

t=1"
4
t )
1=4

+ 6[n�1
Pn

t=1frgs(�)g
4]1=2(n�1

Pn
t=1"

4
t )
1=2 + 4[n�1

Pn
t=1frgs(�)g

4]1=4(n�1
Pn

t=1"
4
t )
3=4:

Now, n�1
Pn

t=1"
4
t = OP(1) by the martingale Law of Large Numbers and Assumption 3.1(b) while

n�1
Pn

t=1frgs(�)g4 = oP(1) by Assumption 3.4(b). �

Proof of Theorem 3.8. We use Lemma A.6 and verify Assumptions A.3, A.4.
Part I: Assumption A.4: We show Bn = maxn0�t�n jn�1=2

Pt
s=1("̂

2
s;t � "2s)j = oP(1):

First, we turn the strong convergence properties in Assumption 3.7 into uniform properties
using Egorov�s theorem (Davidson 1994, Theorem 18.4). Choose �; �; ' > 0 small. The strong
convergence assumptions are that n��#̂n = n��N�1

n;�0
(�̂n � �0) = o(1) a:s: and

A�n = n�1=2 sup�:jjN�1
n;�0

(���0)jj�n��
Pn

s=1frg(xs; �)g
2 a:s:= o(1); (A.12)

C�n = n2�+��1
Pn

s=1jjN
0
n;�0 _g(xs; �0)jj

2 a:s:= o(1); (A.13)

D�n = n4� sup�:jjN�1
n;�0

(���0)jj�n��
Pn

s=1jj�hs;n(xs; �)jj
2 a:s:= o(1): (A.14)
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Egorov�s theorem implies that for all �; � > 0 there exists a t0 � n0 and a set 
� with probability
P(
�) � 1� � so that for t � t0 then t��jj#̂tjj; A�t ; C�t and D�t are all bounded by � on 
� : We will
consider small � > 0 so we can assume � < �:

Second, we want to show Bn = oP(1); that is for all � > 0 there exists n� so that for n � n�
then P(jBnj > �) < 2�: Now, bound the probability so that P(jBnj > �) � P(jBnj > �;
�) + P(


c
�).

The latter probability is small if � is small. Thus it su¢ ces to show Bn = oP(1) on 
� : We bound

Bn � n�1=2 max
n0�t<t0

j
Pt

s=1("̂
2
s;t � "2s)j+ max

t0�t�n
jn�1=2

Pt
s=1("̂

2
s;t � "2s)j:

Since t0 is �nite and the summands of the �rst sum only depend on t0 and not n, then the
normalization by n�1=2 ensures that �rst term is OP(n�1=2) and vanishes. We show that the
second term vanishes. For this we follow part I in the proof of Theorem 3.6 with a series of smaller
adjustments.
1. The problem. We now want to show St;�̂t = n�1=2

Pt
s=1("̂

2
s;t�"2s) = oP(1) uniformly in t0 � t � n:

2. Expand the martingale eSt;�̂t : With the notation in the proof of Theorem 3.6 we have

#t = N�1
t;�0
(� � �0); _hs;t(#t) = N 0

t;�0 _g(xs; �);
�hs;t(#t) = N 0

t;�0�g(xs; �)Nt;�0 : (A.15)

Thus we can expand eSt;�̂t = eSt;t;1 + eSt;t;2=2 as in (A.9) where
eSt;t;1 = n�1=2

Pt
s=1"s#̂

0
t
_hs;t(0); eSt;t;2 = n�1=2

Pt
s=1"s#̂

0
t
�hs;t(#

�
t;t)#̂t;

for an intermediate point #�t;t depending on the summation limit t and #̂t so jj#�t;tjj � jj#̂tjj:
3. The martingale term eSt;t;1. Here we will use the _g notation initially. Thus, let _gs = _g(xs; �0)
and write eSt;t;1 = n�1=2#̂0tN

0
t;�0

Pt
s=1 _gs"s: (A.16)

Apply Lemma A.8 with n = t to get, for all & > 0;

N 0
t;�0

Pt
s=1 _gs"s

a:s:
= o(t&)(1 + jj

Pt
s=1N

0
t;�0 _gs _g

0
sNt;�0 jj1=2+&): (A.17)

Recall that _hs(0) = N 0
t;�0
_g(xs; �0). Use the triangle and norm inequalities to get

Tt = jj
Pt

s=1N
0
t;�0 _gs _g

0
sNt;�0 jj = jj

Pt
s=1f _hs;t(0)gf _hs;t(0)g

0jj �
Pt

s=1jj _hs;t(0)jj
2:

Using the de�nitions of C� and _h in (A.13), (A.15), respectively, gives the further bound

Tt �
Pt

s=1jj _hs;t(0)jj
2 = t1�2���C�t � t1�2����:

Insert this in the expression (A.17) while noting that if a sequence xt satis�es xt = o(t&) then
maxt0�t�n jxtj = O(n&) so that

max
t0�t�n

jN 0
t;�0

Pt
s=1 _gs"sj

a:s:
= O(n&)f1 + (n1�2����)1=2+&g:

Insert this in the expression for eSt;t;1 in (A.16) along with the bound jj#̂tjj � t�� � n�� on 
� to
get, for all & > 0;

max
t0�t�n

j eSt;t;1j a:s:= �O(n�1=2+�+&)f1 + (n1�2����)1=2+&g = o(1);

since & > 0 can be chosen so small that �1=2 + � + & < 0 and � + & + (1� 2� � �)(1=2 + &) < 1=2
or equivalently 2&(1� � � �=2) < �=2:
4. The term eSt;t;2. Apply �rst the norm, triangle and Hölder inequalities to get

j eSt;t;2j � jj#̂tjj2(n�1Pt
s=1"

2
s)
1=2(

Pt
s=1jj�hs;t(#

�
t;t)jj2)1=2:
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On 
� then jj#̂tjj � �t�. The martingale Law of Large Numbers by Chow (1965, Theorem 5) using
Assumption 3.1 shows n�1

Pt
s=1"

2
s � n�1

Pn
s=1"

2
s = O(1) on a set 
a:s: with probability one. Note

P(
� \ 
ca:s:) � P(
ca:s:) = 0: Thus, on 
� \ 
a:s:; where P(
� \ 
a:s:) = P(
�), we have

max
t0�t�n

j eSt;t;2j = O(�2)D1=2n where Dn = max
t0�t�n

t4�
Pt

s=1jj�hs;t(#
�
t;t)jj2:

Since � can be chosen arbitrarily small then we get maxt0�t�n j eSt;t;2j = oP(1) on the general sample
space 
 if Dn = O(1) on 
� \ 
a:s: � 
� :
5. The term Dn: Since #�t;t is on the line from 0 to #̂t, we get jj#�t;tjj2 � jj#̂tjj2: On 
� we have
t��jj#̂tjj � � < � so we get, see (A.14),

Dn � max
t0�t�n

sup
jj#jj��t�

t4�
Pt

s=1jj�hs;t(#)jj
2 = max

t0�t�n
D�t � � = O(1):

6. The compensator. We showAn = maxn0�t�n St;�̂t = oP(1) on 
� ; where St;� = n�1=2
Pt

s=1frgs(�)g2:
Recall from (A.11) that St;� = St;�0+Nn;�0#. Since #̂t = N�1

t;�0
(�̂t� �); where t��jj#̂tjj � � < � on 
� ;

see (A.12), then on 
� ;

An � max
n0�t�n

sup
jj#jj��t�

St;�0+Nt;�0# = max
n0�t�n

sup
�:jjN�1

t;�0
(���0)jj��t�

St;� = max
n0�t�n

A�t � �:

Since � can be chosen arbitrarily small then An = oP(1):
Part II: Assumption A.3: Since the Assumptions of Theorem 3.8 imply those of Theorem 3.6

then Part II of the proof of Theorem 3.6 applies. �

Proof of Theorem 3.10. Assumption 3.4(c) follows from Assumption 3.9(a) with k = 2:
Assumption 3.4(d) is the same as Assumption 3.9(b) with k = 2.
Assumption 3.4(a; b). Recall the notation in item 3 in the proof of Theorem 3.6 and expand

g(xt; �)� g(xt; �0) = #0n _ht;n(0) +
1

2
#0n�ht;n(#

�
t;n)#n;

where #�t;n is an intermediate point depending on xt so jj#�t;njj � jj#njj: Raise this to the power
k = 2 or k = 4 and apply the inequality jx+ yjk � C(jxjk + jyjk) to see that

jg(xt; �)� g(xt; �0)jk � Cjj#njjkjj _ht;n(0)jjk + Cjj#njj2kjj�ht;n(#�t;n)jjk:

We want to show Assumption 3.4(a; b), hence, we only have to consider jj#njj � �n�. Also, since #t
is in the line between 0 and #n we have that jj�ht;n(#�t;n)jjk � supjj#jj��n� jj�ht;n(#)jjk: Then cumulate
to get

j
Pn

t=1fg(xt; �)� g(xt; �0)g
kj � C�kn�k

Pn
t=1jj _ht;n(0)jj

k + C�2kn2�k
Pn

t=1 sup
jj#jj��n�

jj�ht;n(#)jjk;

which is oP(n1=2) for k = 2 and oP(n) for k = 4 uniformly in � due to Assumption 3.9. �

A.4 Proof for autoregressive distributed lag model

We �rst appeal to the following result, that in turn builds on Lai and Wei (1982, 1985) recalling
that the normalization is chosen as Nn

�1 = (
Pn

t=1 xtx
0
t)
1=2.

Lemma A.10 (Nielsen 2005, Theorems 2.4, 7.1, Lemma 8.2) Consider model (4.1) with � 2
� = Rp and Assumptions 3.1, 4.1. Then
(i) N�1

n (�̂n � �0) = Of(log n)1=2g a:s:;
(ii) (NnN

0
n)
�1 =

Pn
t=1 xtx

0
t = O(n

2`) a:s: for some �nite ` > 0;
(iii) n0 = inf(n :

Pn
t=1 xtx

0
t is invertible) <1 a:s.
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The assumptions for the CUSQn and RCUSQn statistics are now easily demonstrated.

Proof of Theorem 4.2. We apply Theorems 3.6, 3.8 and check Assumptions 3.1-3.5 and 3.7.
Assumption 3.1 follows by Assumption 4.1(a): Assumption 3.2 holds since N�1

n grows at most
polynomially by Lemma A.10(ii): Assumption 3.3 holds a:s: for any � > 0 due to Lemma A.10(i).
Assumption 3.4 holds a:s: as follows. For (a; b) use that g(xt; �)� g(xt; �0) = x0tNnN

�1
n (� � �0) so

that
G =

Pn
t=1jg(xt; �)� g(xt; �0)j

k � jjN�1
n (� � �0)jjk

Pn
t=1jjN

0
nxtjjk;

for k = 2; 4: Since
Pn

t=1N
0
nxtx

0
tNn = I then jjN 0

nxtjj2 � 1 so that
Pn

t=1jjN 0
nxtjjk �

Pn
t=1jjN 0

nxtjj2
for k = 2; 4: For a vector v the spectral norm satis�es jjvjj2 = v0v = tr(vv0): Thus,

Pn
t=1jjN 0

nxtjj2 �
tr
Pn

t=1N
0
nxtx

0
tNn = tr(Ip) = p: Noting that N�1

n (� � �0) = o(n�) a:s: we get G a:s:
= o(nk�): For

(c) use that _g(xt; �0) = xt so that
Pn

t=1jjN 0 _gjj2 =
Pn

t=1jjN 0
nxtjj2 � p: For (d) note that �g = 0:

Assumption 3.5 holds by Lemma A.10(iii): Assumption 3.7 also holds because Assumptions 3.3,
3.4 were demonstrated a:s: �

A.5 Proofs for separable models with homogeneous functions

We need a Law of Iterated Logarithm for the regressor xt satisfying Assumption 4.3. If the intercept
� in the vector autoregressive component is absent we can appeal to Lai and Wei (1985, Theorem
1). For general � we need the following generalization.

Lemma A.11 (Nielsen 2005, Theorem 5.1,i,ii) Suppose xt satis�es Assumption 4.3. Then,
for some ! > 0; we have xn =

Pn�1
s=1 �s + o(n

1=2�!) = Of(n log log n)1=2g a:s:

For almost sure arguments we use a stochastic normalization matrix Nn = [
Pn

t=1fg(xt)g2]�1=2:
This has the following property.

Lemma A.12 Let Assumptions 4.3, 4.4(i) hold. Let N�2
n =

Pn
t=1fg(xt)g2: Then N�2

n = O(n`)
a:s: for some ` > 0.

Proof of Lemma A.12. The homogeneity of g in Assumption 4.4(i) yields

N�2
n = nfg(n1=2)g2 1

n

Pn
t=1fg(xt)=g(n

1=2)g2 = nfg(n1=2)g2 1
n

Pn
t=1fg(xt=n

1=2)g2:

The bound g(x) � C(1+jxj`1) for some �nite C; `1 > 0 in Assumption 4.4(i) gives that fg(n1=2)g2 =
O(n`1): Moreover we get jg(xt=n1=2)j � C(1 + jxt=n1=2j`1): Note that xt=n1=2 can be written as
(xt=

p
t log log t)(

p
t log log t=n1=2): By Lemma A.11, using Assumption 4.3, we have that for almost

every realization, there exists a C1 so that xt=
p
t log log t � C1. Since

p
t log log t=n1=2 �

p
log log n,

then max1�t�n jxt=n1=2j = Of(log log n)1=2g a:s: and therefore

n�1
Pn

t=1fg(xt=n
1=2)g2 � n�1

Pn
t=1C

2(1 + jxt=n1=2j`1)2:

Since, (x+ y)2 � 2(x2 + y2) we get

n�1
Pn

t=1fg(xt=n
1=2)g2 � 2C2(1 + max

1�t�n
jxt=n1=2j2`1)

a:s:
= Of(log log n)`1g:

In combination, we get N�2
n = nO(n`1)Of(log log n)`1g so that N�2

n = O(n`2) a:s: for some �nite
`2 � 2 + `1. �

Proof of Theorem 4.5. By Lemma A.7 using Assumptions 3.1, 4.4(ii); we get

fN�1
n (�̂n � �)g2 =

f
Pn

t=1 g(xt)"tg2Pn
t=1fg(xt)g2

a:s:
= of(log[

Pn
t=1fg(xt)g

2])1+&g+O(1) for all & > 0:
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Since
Pn

t=1fg(xt)g2 = N�2
n = O(n`) a:s: for some �nite ` by Lemma A.12 using Assumptions 4.3,

4.4(i) then N�1
n (�̂n � �) = of(log n)1+&g = o(n�) a:s: for all � > 0: �

Proof of Theorem 4.6. We apply Theorems 3.6, 3.8 and check Assumptions 3.1-3.5 and 3.7.
Note g(xt; �) = �g(xt) so that _g(xt; �) = g(xt) and �g(xt; �) = 0. Assumption 3.1 is assumed.

Assumption 3.2: N�2
n =

Pn
t=1fg(xt)g2 is of polynomial order by Lemma A.12 using Assump-

tions 4.3, 4.4. We also have that N�2
n is invertible for n > n0 by Assumption 4.4(ii):

Assumption 3.3 holds a:s: for any � > 0 by Theorem 4.5 using Assumptions 3.1, 4.3, 4.4.
Assumption 3.4: For (a; b) use that g(xt; �)� g(xt; �0) = (� � �0)g(xt) so that for k = 2; 4;

G =
Pn

t=1jg(xt; �)� g(xt; �0)j
k � jN�1

n (� � �0)jk
Pn

t=1jNng(xt)jk:

Since N2
n

Pn
t=1fg(xt)g2 = 1 then N2

nfg(xt)g2 � 1 and
Pn

t=1jNng(xt)jk �
Pn

t=1jNng(xt)j2 = 1
while N�1

n (� � �0) = o(n
�) a:s: and therefore G =o(nk�) a:s: For (c) we get

Pn
t=1jNn _g(xt; �0)j2 =Pn

t=1jNng(xt)j2 = 1: For (d) note that �g = 0:
Assumption 3.5 is assumed in Assumption 4.4(ii).
Finally, Assumption 3.7 holds because Assumptions 3.3, 3.4 were demonstrated a:s: �

A.6 Proofs for separable models with asymptotically homogeneous functions

Proof of Thorem 4.10. Part I: By Assumption 4.3, xt =
Pt�1

s=1 �s + �0xt�1: Hence, by Lemma
A.11 using Assumption 4.3,

n�1=2x[un] = n�1=2
P[un]�1

s=1 �s + n
�1=2�0x[un]�1

a:s:
= n�1=2

P[un]�1
s=1 �s + o(1):

The random walk term satis�es the functional central limit theorem by Brown (1971) using As-
sumption 4.3. Hence, the result follows.

Part II: Since T is asymptotically homogeneous we can write

T (xt) = T (n1=2n�1=2xt) = v(n1=2)H(n�1=2xt) +R(n
�1=2xt; n

1=2);

where H(x) is locally integrable and jR(n�1=2xt; n1=2)j is bounded as described in De�nition 4.8:
Hence,

fnv(n1=2)g�1
Pn

t=1T (xt) = n�1
Pn

t=1H(n
�1=2xt) + fnv(n1=2)g�1

Pn
t=1R(n

�1=2xt; n
1=2);

where the �rst term satis�es

n�1
Pn

t=1H(n
�1=2xt)

D!
R 1
0H(��Wu)du;

by Theorem 2.1 in Pötscher (2004) and the second term vanishes as we next show. By De�nition
4.8, the remainder term R(n�1=2xt; n1=2) can be bounded by

jR(n�1=2xt; n1=2)j � a(n1=2)P (n�1=2xt);

where supn!1 a(n1=2)=v(n1=2) = 0 and P is locally integrable. Thus, by the triangle inequality,

jfnv(n1=2)g�1
Pn

t=1R(n
�1=2xt; n

1=2)j � fa(n1=2)=v(n1=2)gn�1
Pn

t=1P (n
�1=2xt) = oP(1);

applying again Theorem 2.1. in Pötscher (2004) to the term n�1
Pn

t=1P (n
�1=2xt). �

Proof of Thorem 4.13. Let N�1
n = [

Pn
t=1fg(xt)g2]1=2. By Lemma A.7 using Assumptions 3.1,

4.12, we get, for all & > 0;

fN�1
n (�̂n � �)g2 =

f
Pn

t=1 g(xt)"tg2Pn
t=1fg(xt)g2

a:s:
= of(log[

Pn
t=1fg(xt)g

2])1+&g+O(1): (A.18)
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By Theorem 4.10 using Assumption 4.11, we have

N�2
n =

Pn
t=1fg(xt)g

2 = OPfnv(n1=2)g = OP(n1+`); (A.19)

where the last equality holds since v(n1=2) = o(n`) for some ` > 0 by De�nition 4.8. As a conse-
quence

(log[
Pn

t=1fg(xt)g
2])1+& = oP(n

!);

for any ! > 0: Inserting this into (A.18) shows that

fN�1
n (�̂n � �)g2 =

f
Pn

t=1 g(xt)"tg2Pn
t=1fg(xt)g2

= oP(n
!);

which gives N�1
n (�̂n � �) = oP(n�) for � = !=2 as desired. �

Proof of Thorem 4.14. We apply Theorem 3.10 so that Assumption 3.9 implies Assumption
3.4 and Theorem 3.6. Hence we need to check Assumptions 3.1, 3.2, 3.3, 3.5 and 3.9. Note
g(xt; �) = �g(xt) so that _g(xt; �) = g(xt) and �g(xt; �) = 0. Assumption 3.1 is assumed.

Assumption 3.2: By Theorem 4.10 using Assumption 4.11 , we have N�2
n =

Pn
t=1fg(xt)g2 =

OP(n
1+`) as shown in the proof of Theorem 4.13 �see (A.19). We also have that N�2

n is invertible
for n > n0 by Assumption 4.12.

Assumption 3.3 holds by Theorem 4.13 using Assumptions 3.1, 4.3, 4.9, 4.11, 4.12.
Assumption 3.5 is assumed in Assumption 4.12.
Assumption 3.9: For (a) let k = 2; 4 and consider

Pn
t=1jNng(xt)jk: Since N2

n

Pn
t=1fg(xt)g2 = 1

then N2
nfg(xt)g2 � 1 and

Pn
t=1jNng(xt)jk �

Pn
t=1jNng(xt)j2 = 1 = oP(nk=4�k�) for 0 < � < 1=4.

For (b) note that �g = 0: �

A.7 Proofs for power curve model

We start with some algebraic manipulations of the criterion function. Since the data generating
process satis�es yt = (xt + �0)2 + "t, the criterion function is

Qn(�) =
Pn

t=1fyt � (xt + �)
2g2 =

Pn
t=1f"t + (xt + �0)

2 � (xt + �)2g2: (A.20)

This is a fourth order random polynomial and as such can have one or two local minimizers. Indeed,
the fourth order polynomial has (a) one minimizer when its derivative, a third order polynomial,
has only one real root; and (b) two local minimizers when its derivative has three distinct real
roots. We will analyze these minimizers, �rst, for general regressors in Theorem A.17 below and,
then, for the three speci�c regressors in the proof of Theorems 4.16 and 4.18. Finally we check the
conditions for the cumulated sum of squares statistics results in the proofs of Theorems 4.17 and
4.19.

Add and subtract �0 to � in the criterion function (A.20) and let # = � � �0 and ~xt = xt + �0
to get

Qn(�) =
Pn

t=1f"t + ~x
2
t � (~xt + #)2g2 =

Pn
t=1("t � 2#~xt � #

2)2:

Normalize Qn(�) as

Dn(#) = Qn(�)�Qn(�0) =
Pn

t=1f#
4 + 4~xt#

3 + (4~x2t � 2"t)#2 � 4~xt"t#g: (A.21)

These are random polynomials so we can exploit the following continuity result.

Lemma A.13 (Hammersley, 1956, Theorem 4.2) The q-value function consisting of the zeros
of the polynomial

Pq
j=0 cjz

j = 0 is continuous at any point (c0; : : : ; cq) such that cq 6= 0 and
(c0; : : : ; cq�1) are �nite.
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In the analysis of the criterion function Dn in (A.21) we will balance the coe¢ cents to #; #2; #3

and #4 in various ways. When doing that it is convenient to work with the correlation-type
coe¢ cient

cx;n =

Pn
t=1 ~xt

(n
Pn

t=1 ~x
2
t )
1=2

: (A.22)

We analyze the criterion function under either of the following assumptions. The �rst covers the
random walk case while the second covers the stationary and power function cases.

Assumption A.14 (weak) Suppose xt is Ft�1-adapted and satis�es
(a) fn�1

Pn
t=1(xt + �0)

2g�1 = OP(1);
(b) cx;n

D! cx in distribution for some some random variable cx satisfying P(c2x < 1) = 1;
(c)
Pn

t=1(xt + �0)
2 = OP(n

`) for some ` > 0:

Assumption A.15 (strong) Suppose xt is Ft�1-adapted and satis�es
(a) fn�1

Pn
t=1(xt + �0)

2g�1 = O(1) a:s:;
(b) cx;n ! cx a:s: for some deterministic cx satisfying c2x < 1;
(c)
Pn

t=1(xt + �0)
2 = O(n`) a:s: for some ` > 0:

Notation A.16 If either of Assumption A.14 or A.15 is satis�ed we write (n�1
Pn

t=1 ~x
2
t )
�1 =

ov(1) and c2x;n !v c
2
x while c

2
x <v 1:

We can then establish the consistency properties of the model.

Theorem A.17 Consider model (4.4) with � 2 � = R: Suppose "t satis�es Assumption 3.1 while
xt satis�es Assumption A.14 or A.15. Recall the Notation A.16. Then the global minimizer satis�es

f
Pn

t=1(xt + �0)
2g1=2(�̂n � �0) =

Pn
t=1(xt + �0)"t

2f
Pn

t=1(xt + �0)
2g1=2

+ ov(1) = ovf(log n)2g:

If c2x > 8=9 then the criterion function has a local minimizer satisfying

fn�1
Pn

t=1(xt + �0)
2g�1=2(�̂local � �0) = �

3

2
cxf1 + (1�

8

9c2x
)1=2g+ ov(1):

Proof of Thorem A.17. We derive the properties of the global and the local minimizers by
analyzing the criterion function Dn de�ned in (A.21) in detail. We start by �nding the roots of the
�rst derivative of Dn, which correspond to the extrema points in Dn.

1. Finding roots of the �rst derivative of Dn. Divide the polynomialDn in (A.21) by 4n(n�1
Pn

t=1~x
2
t )
2

and normalize the parameter so that � = #=(n�1
Pn

t=1~x
2
t )
1=2 and

Dn(#)

4n(n�1
Pn

t=1~x
2
t )
2
= Dn(�) =

1

4
�4 + cx;n�

3 + bx;n�
2 � ax;n�;

with coe¢ cients

cx;n = cx;n =

Pn
t=1 ~xt

(n
Pn

t=1 ~x
2
t )
1=2

; bx;n = 1�
Pn

t=1 "t
2
Pn

t=1 ~x
2
t

; ax;n = n1=2
Pn

t=1 ~xt"t

(
Pn

t=1 ~x
2
t )
3=2

:

To �nd the extrema of Dn, or equivalently of Dn; we �nd the derivative

_Dn(�) =
@

@�
Dn(�) = �3 + 3cx;n�

2 + 2bx;n�� ax;n: (A.23)

We start by checking that the coe¢ cients satisfy the conditions of the Hammersley Lemma A.13.
If that is the case, then by continuity, we can learn about the roots _Dn by studying the roots of the
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limit of _Dn. In particular, we will be interested in the number of real roots as this informs about
the number of extrema of Dn:

We argue that the coe¢ cients of _Dn(�) in (A.23) satisfy

c2x;n � 1; cx;n !v cx; bx;n !v 1; ax;n !v 0:

The Cauchy-Schwarz inequality shows c2x;n � 1; while cx;n !v cx by part (b) of Assumption A.14
or A.15. Rewrite

1� bx;n = f
(n log log n)1=2

n
g(n log log n)

�1=2Pn
t=1 "t

2n�1
Pn

t=1 ~x
2
t

:

Apply the Law of Iterated Logarithm in Lemma A.11 to
Pn

t=1 "t and part (a) of either Assumption
A.14 or A.15 to

Pn
t=1 ~x

2
t . In this way, we can establish a rate for 1� bx;n, which will be used later

in the proof, and show that bx;n !v 1. That is, for all ! > 0;

1� bx;n = f
(n log log n)1=2

n
gOa:s:(1)ov(1) = ov(n!�1=2) = ov(1); (A.24)

by the dominance of powers over logarithms. Finally, using �rst Lemma A.7 and then that power
functions dominate logarithms we get

ax;n
a:s:
= n1=2

o[flog(
Pn

t=1 ~x
2
t )g2]Pn

t=1 ~x
2
t

:

Now, apply dominance of powers over logarithms and part (a) of Assumption A.14 or A.15 to show
that, for all 0 < & < 1=2;

ax;n
a:s:
= o(n1=2)(

Pn
t=1~x

2
t )
&�1 = o(n1=2)n&�1(n�1

Pn
t=1~x

2
t )
&�1 = ov(1):

We can now apply the Hammersley Lemma A.13 since the highest order coe¢ cient, to �3 in
polynomial (A.23), is unity and hence non-zero, while the other coe¢ cients are �nite. Thus, the
roots of _Dn(�) are continuous functions of the coe¢ cients. Applying continuity to the a:s: sequence
or through the Continuous Mapping Theorem shows that the roots converge to the roots of the
limiting polynomial

_Dn(�)!v
_D(�) = �3 + 3cx�

2 + 2� = �(�2 + 3cx�+ 2);

which has roots
�1 = 0; �� = �

3

2
fcx � (c2x �

8

9
)1=2g:

We have Dn(�)! D(�) = �4=4+cx�
3+�2: The location of the roots of _D(�) indicates the location

of the local minimizers of D(�): Since D(�) has a positive coe¢ cient to �4 then it must have either
one local minimizer or two local minimizers with a local maximum in between.

If c2x < 8=9 then �� are complex so that _D(�) has one real root and D(�) has one local minimizer
at zero. If c2x = 8=9 then �+ = �� and j�+j = (3=2)(8=9)1=2 =

p
2 so that _D(�) has one single real

root and one double real root. In this case, D(�) has one local minimizer at zero and a point of
in�ection at �+ = ��: If 8=9 < c2x � 1 then �� are real, distinct and non-zero so that _D(�) has
three distinct real roots and D(�) has two local minimizers. Thus, D(�) has one local minimizer
at zero if c2x � 8=9 and two local minimizers if 8=9 < c2x � 1:

2. Ordering the limiting roots when 8=9 < c2x � 1. Since c2x > 0 we can write

�� = �
3

2
cxf1� (1�

8

9c2x
)1=2g:
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We have 0 < c2x � 8=9 � 1=9 and 8=9 < c2x so that 0 < 1 � 8=(9c2x) � 1=(9c2x) < 1=8: We then get
that the roots have the same sign and satisfy

j��j < j�+j <
3

2
jcxj(1 +

1p
8
) � 3

2
(1 +

1p
8
) � 2:03;

j�+j > j��j >
3

2
jcxj(1�

1p
8
) >

3

2
(

p
8

3
)(1� 1p

8
) � 0:91:

In particular, we �nd �1 = 0 < j��j < j�+j and therefore the roots are either ordered as �1 = 0 <
�� < �+ or �1 = 0 > �� > �+. Therefore, in both cases, �1 and �+ are local minimizers for D
while �� is a local maximum.

Recall that � = #=(n�1
Pn

t=1~x
2
t )
1=2 so that # = �(n�1

Pn
t=1~x

2
t )
1=2: Since n�1

Pn
t=1~x

2
t is bounded

away from zero by part (a) of AssumptionA.14 or A.15 we get that j#+j > j#�j > 0: When
n�1

Pn
t=1~x

2
t diverges we get that j#+j > j#�j diverge.

3. Evaluating D(�+) when 8=9 < c2x � 1. We know that _D(�+) = 0: Thus, we can eliminate
the fourth power term in D as follows

D(�+) = D(�+)�
1

4
�+ _D(�+) =

1

4
cx�

3
+ +

1

2
�2+ =

1

4
�2+(cx�+ + 2):

Using �rst that 0 < 1� 8=(9c2x) � 1=(9c2x), as argued in item 2, and then that c2x <v 1 by part (b)
of Assumption A.14 or A.15 we get

cx�+ + 2 = 2�
3

2
c2xf1 + (1�

8

9c2x
)1=2g � 2� 3

2
c2x(1 +

1

3jcxj
) = �3

2
(jcxj � 1)(jcxj+

4

3
) >v 0:

The second order polynomial, with a negative coe¢ cient on c2x, is positive between its roots cx =
�4=3 and cx = 1. Hence, cx�++2 > 0 whenever jcxj < 1 or equivalently c2x < 1. Thus, cx�++2 >v 0:
Furthermore, since j�+j > 0:9 we then get �2+=4 > 0:2 and therefore D(�+) >v 0: As D(0) = 0 then
�+ cannot be a global minimizer for the limiting polynomial D(�):

The analysis so far shows that the limiting polynomial D has a unique global minimum at zero.
Since Dn(�) approaches D(�) continuously by the Hammersley Lemma A.13 then, to show that
�1 = 0 is the global minimizer of Dn(#) for large n; it su¢ ces to show that the local minimum of
Dn(�) in the vicinity of �+ is larger than the local minimum of Dn(�) in the vicinity of �1 = 0. We
start by showing, in item 4, that the local minimum of Dn(�) in the vicinity of �+ is positive. In
items 5 and 6, we will argue that the local minimum of Dn(�) in the vicinity of �1 = 0 is lower.

4. Showing that the minimum of Dn(�) in the vicinity of �+ is positive for large n. The argu-
ment is slightly di¤erent for the weak and strong convergence cases under Assumption A.14 and
A.15, respectively. Hence, we outline these arguments separately.

The strong consistency case under Assumption A.15: We have that cx;n ! cx a:s: where the
constant cx satis�es c2x < 1. Then item 3 shows not only that D(�+) > 0, but also that a small
� > 0 exists so that D(�+) > �: Since Dn(�) approaches D(�) continuously by the Hammersley
Lemma A.13 then for almost every outcome the local minimum of Dn(�) in the vicinity of �+ will
be larger than �=2 for large n: Thus, if the local minimum in the vicinity of 0 is less than �=2, this
must be the global minimum. We will show that this is the case in item 6.

The weak convergence case under Assumption A.14: We have that cx;n ! cx in distribution
where the random variable cx satis�es P(jcxj < 1) = 1: This will only result in a second local
minimum when c2x > 8=9: Item 3 shows that on the set c2x > 8=9 we have PfD(�+) > 0g = 1.
This implies that for all � > 0 there exists a continuity point � > 0 of D(�+) so that P[fc2x >
8=9g\fD(�+) � �g] � �=4: Since Dn(�) approaches D(�) continuously by the Hammersley Lemma
A.13 then the probability that Dn(�) has two local minimizers converges to P(c

2
x > 8=9): Moreover,

by the same continuity argument, the probability for the joint event that Dn(�) has two local
minimizers and the local minimum in the vicinity of �+ is smaller than �=2 will be at most �=2 for
large n: Thus, if it is shown that the local minimum in the vicinity of 0 exceeds �=4 with probability
of at most �=2 for large n; then the local minimum at 0 is not the global minimum with probability
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of at most � for large n: Equivalently, if the local minumum in the vicinity of 0 is less than �=4
with probability of at least 1� �=2 for large n, then the local minimum at 0 is the global minimum
with probability of at least 1� � for large n: We will show that this is the case in item 6.

5. Analyzing the minimum of Dn in the vicinity of 0 for large n. We now study the root �1 =
0. Recall that in item 1 we normalized the coe¢ cients # so that � = #(n�1

Pn
t=1~x

2
t )
�1=2: We show

that the root �1 = 0 corresponds to the consistent root, (
Pn

t=1~x
2
t )
1=2#, on the # scale. Moreover,

we want to �nd the asymptotic properties of its corresponding minimizer. To do all this, we study
Dn(#) in a shrinking region around # = 0: Moreover, to �nd the asymptotic properties of the
consistent root normalize # by (

Pn
t=1~x

2
t )
1=2 and de�ne the parameter � = #(

Pn
t=1~x

2
t )
1=2 so that

# = �(
Pn

t=1~x
2
t )
�1=2: Note that � = 0 corresponds to # = 0. This gives the following relationship

� = �(n�1=2
Pn

t=1~x
2
t ):

The shrinking region is de�ned by j�j � n1=8: On the # scale this region is indeed shrinking
because

j#j = j�j(
Pn

t=1~x
2
t )
�1=2 = n�1=2j�j(n�1

Pn
t=1~x

2
t )
�1=2 � n�1=2+1=8(n�1

Pn
t=1~x

2
t )
�1=2 = Ov(n

�3=8);

since (n�1
Pn

t=1~x
2
t )
�1 = Ov(1) by part (a) of Assumption A.14 or A.15, see Notation A.16. The

region is also shrinking on the � scale because

j�j = j�j(n�1=2
Pn

t=1~x
2
t )
�1 � n1=8(n�1=2

Pn
t=1~x

2
t )
�1 = n1=8�1=2(n�1

Pn
t=1~x

2
t )
�1 = Ov(n

�3=8):

We check that the asymptotic local minimimizer �+ is outside this shrinking region. From item 2
we know that either �+ 2 [�2:04;�0:90] or �+ 2 [0:90; 2:04]: Therefore �+ is outside the shrinking
region where j�j = Ov(n�3=8) for large n.

We study the properties of Dn uniformly in j�j � n1=8. The polynomial Dn in (A.21) can be
rewritten as

1

4
Dn(#) = D

n
(�) = dx;n�

4 + cx;n�
3 + bx;n�

2 � ax;n�

with coe¢ cients

dx;n =
n

4(
Pn

t=1~x
2
t )
2
; cx;n =

Pn
t=1 ~xt

(
Pn

t=1 ~x
2
t )
3=2

; bx;n = 1�
Pn

t=1 "t
2
Pn

t=1 ~x
2
t

; ax;n =

Pn
t=1 ~xt"t

(
Pn

t=1 ~x
2
t )
1=2

:

We will argue that

sup
j�j�n1=8

dx;n�
4 = Ov(n

�1=2); sup
j�j�n1=8

cx;n�
3 = Ov(n

�1=8); sup
j�j�n1=8

(bx;n � 1)�2 = Ov(n�1=8):

The bound for dx;n�4 follows from part (a) of Assumption A.14 or A.15 showing that

dx;n�
4 = (1=4)nn�2(n�1

Pn
t=1~x

2
t )
2�4 = n�1Ov(1)n

4=8 = Ov(n
�1=2):

The bound for cx;n�3 follows similarly using that c2x � 1 by the Cauchy-Schwarz inequality, that is

cx;n�
3 =

Pn
t=1 ~xt

(n
Pn

t=1 ~x
2
t )
1=2
(n�1

Pn
t=1~x

2
t )
�1n�1=2�3 = O(1)Ov(1)n

�1=2n3=8 = Ov(n
�1=8):

The bound for (bx;n � 1)�2 follows since bx;n � 1 = bx;n � 1 = ov(n!�1=2) for any ! > 0 as derived
in (A.24) while �2 � n2=8 so that (bx;n � 1)�2 = ov(n!�1=2)n1=4 = Ov(n�1=8): In summary, we get,
uniformly in j�j � n1=8; that

D
n
(�) = �2 � ax;n�+Ov(n�1=8): (A.25)

This quadratic criterion function has minimum at

�1 = ax;n=2 + Ov(n
�1=16) =

Pn
t=1 ~xt"t

2(
Pn

t=1 ~x
2
t )
1=2

+Ov(n
�1=16):
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We note that ax;n = ov(log n); see Lemma A.7 with part (c) of Assumption A.14 or A.15. In
particular j�1j � n1=8 for large n: Since � = #(

Pn
t=1~x

2
t )
1=2 we get that the corresponding minimizer

on the # scale satis�es

(
Pn

t=1~x
2
t )
1=2#1 =

Pn
t=1 ~xt"t

2(
Pn

t=1 ~x
2
t )
1=2

+ ov(1);

which is the desired solution, noting that Ov(n�1=16) = ov(1):
6. Evaluating Dn(#1). Inserting #1 = �1(

Pn
t=1~x

2
t )
�1=2 with �1 = ax;n=2+Ov(n

�1=16) andj�1j �
n1=8 in (A.25) we get

Dn(#1) = 4Dn
(�1) = �a2x;n +Ov(n�1=8):

The �rst term, �a2x;n; is non-positive. The second term may be positive, but vanishes. Thus, by
the argument in item 4 we get that #1 is the global minimizer in the limit. Indeed, in the strong
consistency case we get that for any � > 0 then for each outcome Dn(#1) � �=2 for large n: In the
weak consistency case we get that for any �; � > 0 then PfDn(#1) � �=4g > 1� �=2 for large n. �

We need some preliminary results for stationary and power function regressors.

Lemma A.18 Let xt be stationary and autoregressive with Ext = �x and Vxt = �2x and Ex
4
t <1:

Then n�1
Pn

t=1 ~xt ! ~�x = �x + �0 a:s: and n�1
Pn

t=1 ~x
2
t ! �2x + ~�

2
x a:s:

Proof of Lemma A.18. Apply Phillips and Solo (1992, Theorems 3.13, 3.16). �

Lemma A.19 Let xt = t� for some � > 0: Then n�(1+k�)
Pn

t=1 ~x
k
t ! (1 + k�)�1 for k > 0:

Proof of Lemma A.19. Approximate n�(1+k�)
Pn

t=1(t
� + �0)

k by
R 1
0 u

k�du = (1 + k�)�1: �

We can now prove the desired results for stationary and power function regressors.
Proof of Theorem 4.16. Since Assumption 3.1 is assumed we can apply Theorem A.17 if
Assumption A.15 holds.

Let xt be stationary and autoregressive. We check Assumption A.15 using Lemma A.18. (a);
(c) follow since n�1

Pn
t=1 ~x

2
t ! �2x + ~�2x a:s: For (b) note c

2
x;n ! c2x = ~�2x=(�

2
x + ~�2x) a:s: where

c2x � 8=9 when ~�2x � 8�2x: Thus, the objective function has one minimizer for processes with small
to medium signal-to-noise ratio and two minimizers otherwise.

Let xt = t� for � > 0. We check Assumption A.15 using Lemma A.19. (a); (c) follow since
n�(1+2�)

Pn
t=1 ~x

2
t ! (1 + 2�)�1: For (b) note c2x;n ! c2x = (1 + 2�)=(1 + �)

2 where c2x;n � 8=9 when
� � 1=2: �

Proof of Theorem 4.17. We apply Theorems 3.6, 3.8 with N�1
n;�0

= f
Pn

t=1(xt + �0)
2g1=2 and

check Assumptions 3.1-3.5 and 3.7. Assumption 3.1 is assumed. Note that g(xt; �) = (xt + �)2 so
that _g(xt; �) = 2(xt + �) and �g(xt; �) = 2: Let # = � � �0 and ~xt = xt + �0:

Assumption 3.2: In the stationary, autoregressive case n�1N�1
n;�0

= n�1
Pn

t=1~x
2
t converges a:s:

by Lemma A.18. In the power case n�1�2�N�1
n;�0

converges by Lemma A.19. In both cases the
normalization is of polynomial order. These results also show (n�1

Pn
t=1~x

2
t )
�1 = O(1) a:s:

Assumption 3.3: This is satis�ed a:s: for any � > 0. Indeed, Theorem 4.16 shows N�1
n;�0
(���0) =

of(log n)2g = o(n�) a:s:
Assumption 3.4. We need part (b) weakly and the parts (a; c; d) strongly. The set Sn =

f� : jN�1
n;�0
(� � �0)j � n��g is equivalent to the set where #2

Pn
t=1 ~x

2
t � n2��2: We have that

(n�1
Pn

t=1 ~x
2
t )
�1 = O(1) a:s: using Lemmas A.18, A.19 in the autoregressive and in the trend case,

respectively. Therefore for large n we have that # = O(n2��1) a:s: on the set Sn:
Assumption 3.4(a) holds a:s: Use that g(xt; �) � g(xt; �0) = #2 + 2#~xt. By the inequality

(y + z)2 � 2(y2 + z2) we �nd

Gn2 =
Pn

t=1fg(xt; �)� g(xt; �0)g
2 � 2n#4 + 8#2

Pn
t=1~x

2
t
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On the set Sn we have # = O(n2��1) and #2
Pn

t=1 ~x
2
t � n2��2 so that Gn2 = O(n8��3)+O(n2��2) =

o(n1=2) a:s: when � > 0 is chosen su¢ ciently small.
Assumption 3.4(b) holds a:s: Proceed as before using (y + z)4 � C(y4 + z4) and

Pn
t=1~x

4
t �

(
Pn

t=1~x
2
t )
2 to get, on Sn;

Gn4 =
Pn

t=1fg(xt; �)� g(xt; �0)g
4 � Cfn#8 + (#2

Pn
t=1~x

2
t )
2g a:s:= O(n16��7) + O(n4��4) = o(n)

when � > 0 is chosen su¢ ciently small.
Assumption 3.4(c) also holds a:s: since

Pn
t=1jjN 0

n;�0
_g(xt; �0)jj2 = 1:

Assumption 3.4(d) also holds a:s: We have �g = 2 so that, noting (n�1
Pn

t=1~x
2
t )
�1 = O(1) a:s:;

sup�:jjN�1
n;�0

(���0)jj�n��
Pn

t=1jjN
2
n;�02jj

2 = 22nN4
n;�0 = 2

2n�1(n�1
Pn

t=1~x
2
t )
�2 a:s:= O(n�1):

Assumption 3.5:
Pn

t=1f _g(xt; �0)g2 = 4
Pn

t=1~x
2
t which diverges since (n

�1Pn
t=1~x

2
t )
�1 = O(1) a:s:

Finally, Assumption 3.7 holds because Assumptions 3.3, 3.4(a; c; d) were demonstrated a:s: �

Lemma A.20 Let xt satisfy the random walk type Assumption 4.3. Then

(a) n�1=2x[nu]
D!Wx;u on D[0; 1] where Wx;u is a Brownian motion;

(b) (n�3=2
Pn

t=1 xt; n
�2Pn

t=1 x
2
t )

D! (
R 1
0 Wx;udu;

R 1
0 W

2
x;udu);

(c)
R 1
0 W

2
x;udu� (

R 1
0 Wx;udu)

2 D=
R 1
0 B

2
udu where Bu is a Brownian bridge;

(d) (
R 1
0 Wx;udu)

2;
R 1
0 W

2
x;udu;

R 1
0 B

2
udu; (

R 1
0 Wx;udWx;u)

2=
R 1
0 W

2
x;udu are positive with probability

one;
(e)

Pn
t=1 ~x

2
t = O(n

2 log log n) a:s:;
(f) lim infn!1 n�2 log log n

Pn
t=1 ~x

2
t > 0 a:s:

Proof of Lemma A.20. Recall that xt =
Pt

s=1 �s + �
0xt�1 and ~xt = xt + �0:

(a) Apply Chan and Wei (1988, Theorem 2.2), noting that xt = o(n1=2) a:s:, see Lemma A.11.
(b) Use the Continuous Mapping Theorem from D[0; 1] to R2 for integrals.
(c) Apply, for instance, Donati-Martin and Yor (1991, Proposition 1).
(d) The variable

R 1
0 Wx;udu is normally distributed, see Dickey and Fuller (1979). Hence its

square is positive a:s: Chan and Wei (1988, Lemma 3.1.1) show
R 1
0 W

2
x;udu > 0 a:s: Their proof

extends to
R 1
0 B

2
udu: The Ito formula shows that

R 1
0 Wx;udWx;u = (W2

x;1� 1)=2; see also Dickey and
Fuller (1979). This has a continuous distribution so that (

R 1
0 Wx;udWx;u)

2=
R 1
0 W

2
x;udu > 0 a:s:

(e) Note
Pn

t=1 ~x
2
t � n2max1�t�n(n�1=2~xt)2 and apply the Law of Iterated Logarithm in Lemma

A.11.
(f) Nielsen (2005, equation 3.1) gives the decomposition xt = ~xt+~�; where ~xt follows the vector

autoregressive equation (4.2) with � = 0 and some vector ~�: Thus, we can write ~xt = vt+ut where
vt =

Pt
s=1 �s + �

0~�+ �0 and ut = �0~xt: Thus, we can expandPn
t=1~x

2
t =

Pn
t=1v

2
t + 2

Pn
t=1utvt +

Pn
t=1u

2
t : (A.26)

We get lim infn!1 n�2 log log n
Pn

t=1 v
2
t > 0 a:s: from the Donsker-Varadhan Law of Iterated Loga-

rithm, see Lai andWei (1982, equation 3.23). We bound j
Pn

t=1 utvtj � nmax1�t�n jutjmax1�t�n jvtj
and show this is o(n2= log log n): Indeed max1�t�n jvtj = of(n log log n)1=2g a:s: by Lemma A.11,
while max1�t�n jutj = o(n1=2�!) a:s: for some ! > 0 see A.11. In combination j

Pn
t=1 utvtj =

ofn(n log log n)1=2n1=2�!g = o(n2= log log n) a:s: Finally,
Pn

t=1 u
2
t = O(n) = o(n

2= log log n) a:s: by
Lai and Wei (2005, Corollary 1,iii). Thus, the �rst term in the expansion (A.26) dominates and
gives the desired rate. �

Proof of Theorem 4.18. Since Assumption 3.1 is satis�ed we apply Theorem A.17 if Assump-
tion A.14 holds, which we will check. Apply Lemma A.20(b; c; d). Now, (a); (c) in Assumption
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A.14 follows since n�2
Pn

t=1 x
2
t

D!
R 1
0 W

2
x;udu which is positive a:s: For (b) note c

2
x;n

D! c2x =

(
R 1
0 W

2
x;udu)

�1(
R 1
0 Wx;udu)

2: This has a distribution on (0; 1). �

Proof of Theorem 4.19. We apply Theorem 3.6 with N�1
n;�0

= f
Pn

t=1(xt + �0)
2g1=2 and show

Assumptions 3.1-3.5. Assumption 3.1 is assumed. Note that g(xt; �) = (xt + �)2 so that _g(xt; �) =
2(xt + �) and �g(xt; �) = 2: Let # = � � �0 and ~xt = xt + �0:

Assumption 3.2: Lemma A.20(e; f) shows N�2
n;�0

= O(n2 log log n) = O(n3) a:s: and also that
lim infn!1 n�2(log log n)N2

n;�0
> 0 a:s:

Assumption 3.3 is satis�ed weakly for any � > 0 by Theorem 4.18 using Assumptions 3.1, 4.3.
Assumption 3.4, 3.5: same as in the proof of Theorem 4.17 due to the stochastic normalization

while (n�1
Pn

t=1~x
2
t )
�1 = O(1) a:s also in this case by Lemma A.20(e; f). �

A.8 Proof of the local power result

We start by deriving limiting results for the least squares product sums appearing in the analysis
of model (5.1).

Lemma A.21 Suppose Assumption 5.1 holds. Then, we have jointly on D27[0; 1]; endowed with
the Skorokhod metric with common distortion across the coordinates so that addition is continuous,

(a) n�1=2f
P[nu]

t=1 "t; x[nu]; z[nu]g0
D! (W";u;Wx;u;Wz;u)

0;

(b) n�1=2
P[nu]

t=1 ("
2
t � �2)

D! Bu;
(c) fg(x[nu]=n1=2); h(z[nu]=n1=2)g0

D! (Gu;Hu)
0 = fg(Wx;u); h(Wz;u)g0;

(d) Sgg;u = n�1
P[nu]

t=1g
2(xt=n

1=2)
D! Igg;u =

R u
0 G

2
sds;

(e) Sgh;u = n�1
P[nu]

t=1g(xt=n
1=2)h(zt=n

1=2)
D! Igh;u =

R u
0 GsHsds;

(f) Sg";u = n�1=2
P[nu]

t=1g(xt=n
1=2)"t

D! Ig";u =
R u
0 GsdW";s;

Further if mt;n = m(zt=n
1=2; xt=n

1=2) = h(zt=n
1=2)� Sgh;1S�1gg;1g(xt=n1=2) then

(g) m[nu];n
D!Mu = m(Wz;u;Wx;u) = Hu � Igh;1I�1gg;1Gu;

(h) n�1
P[nu]

t=1m
j
t;n

D!
R u
0 M

j
sds for j = 1; 2; 3; 4; 6;

(i) n�1=2
P[nu]

t=1mt;n"t
D!
R u
0 MsdW";s;

(j) n�1
P[nu]

t=1m
j
t;n"

k
t = OP(1) for k = 1; 2; 3; j = 0; : : : ; 4� k;

(k) n�1
P[nu]

t=1mt;ng(xt=n
1=2)

D!
R u
0 MsGsds:

Proof of Lemma A.21. (a); (b) Under Assumption 5.1 the listed partial sum process converges
weakly to the Brownian motion (W";Wx;Wz)

0 due to Chan and Wei (1988, Theorem 2.2) and the
Cramér-Wold device (Billingsley, 1968).

(c) Use the Continuous Mapping Theorem (Billingsley, 1968) for the mapping from D2[0; 1] by
g; h to D2[0; 1]; where g; h are assumed continuous in Assumption 5.1(a):

(d); (e); (h); (k) Use the Continuous Mapping Theorem for partial product sums mapping from
D8[0; 1] to D8[0; 1]:

(f); (i) For linear g; h and u = 1 apply Chan and Wei (1988, Theorem 2.4). For the general
case apply Jakubowski, Ménin and Pages (1989), see also Kurtz and Protter (1991).

(g) Same as (c) noting that addition is continuous on the chosen space so that m is a continuous
mapping from D2[0; 1] to D[0; 1]:

(j) The triangle inequality gives

Mjk=jn�1
P[nu]

t=1m
j
t;n"

k
t j � n�1

P[nu]
t=1 jmt;njj j"tjk:

Further, the Hölder inequality gives the further bound, for k = 1; 2; 3 and j = 0; : : : ; 4� k;

Mjk � fn�1
P[nu]

t=1 jmt;nj4j=(4�k)g(4�k)=4fn�1
P[nu]

t=1 j"tj4gk=4:
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Here 4j=(4� k) � 6: The Jensen inequality gives the further bound

Mjk � fn�1
P[nu]

t=1 jmt;nj6gj=6fn�1
P[nu]

t=1 j"tj4gk=4:

The �rst average is OP(1) by (h). The second average converges to '2 � �4 as in Lemma A.1. �

Proof of Theorem 5.2: The model is yt = �g(xt) + vt where vt = "t + �n�1=4h(zt=n1=2).
Let N�1

n = n1=4g(n1=2): Recall g(xt=n1=2) = g(xt)=g(n
1=2) and h(zt=n

1=2) = h(zt)=h(n
1=2) by

Assumption 5.1.
1. The estimator satis�es

�̂n � � =
Pn

i=1g(xt)vtPn
i=1g

2(xt)
= n�1=2

n�1=2
Pn

i=1g(xt)"t
n�1

Pn
i=1g

2(xt)
+ �n�1=4

n�1
Pn

i=1g(xt)h(zt=n
1=2)

n�1
Pn

i=1g
2(xt)

:

Using �rst the homogeneity of g and then Lemma A.21(d; e; f) we get

N�1
n (�̂n � �) = n�1=4

Sg";1
Sgg;1

+ �
Sgh;1
Sgg;1

D! �
Igh;1
Igg;1

:

2. The residuals are v̂t;n = vt � (�̂n � �)g(xt): Recalling vt = "t + �n
�1=4h(zt=n1=2) we get

v̂t;n � "t = �n�1=4h(zt=n
1=2)� fN�1

n (�̂n � �)gNng(xt):

Using the homogeneity of g, item 1 and the de�nition of the function m in Lemma A.21 we get

n1=4(v̂t;n� "t) = �h(zt=n
1=2)�f�Shg;1

Sgg;1
+n�1=4

Sg";1
Sgg;1

gg(xt=n1=2) = �mt;n+n
�1=4Sg";1

Sgg;1
gt;n; (A.27)

where mt;n = m(zt=n
1=2; xt=n

1=2) = h(zt=n
1=2) � Shg;1S

�1
gg;1g(xt=n

1=2); see Lemma A.21(g); and
gt;n = g(xt=n

1=2): The second term does not depend on � and it is OP(n�1=4) uniformly in t.

Lemma A.21(g) then shows n1=4(v̂[nu];n � "[nu])
D! �Mu:

3. The test statistic is CUSQn = max1�t�n jVt;nj='̂n; where

Vt;n = n�1=2f
Pt

s=1v̂
2
s;n � (t=n)

Pn
s=1v̂

2
s;ng; '̂2n = n�1

Pn
t=1v̂

4
t;n � (n�1

Pn
t=1v̂

2
t;n)

2:

3.1. The numerator is location invariant. Thus replace v̂2s;n by v̂2s;n � �2 and note Vt;n =
~Vt;n � (t=n)~Vn;n where ~Vt;n = n�1=2

Pt
s=1(v̂

2
s;n � �2): Write v̂s;n = (v̂s;n � "s) + "s and expand

~Vt;n = n�1=2
Pt

s=1f("
2
s � �2) + 2(v̂s;n � "s)"s + (v̂s;n � "s)2g:

Apply expansion (A.27) for n1=4(v̂t;n � "t) to get

~Vt;n = n�1=2
Pt

s=1f("
2
s � �2) + 2(n�1=4�)ms;n"s + (n

�1=4�)2m2
s;ng

+ n�1=2
Pt

s=1f2n
�1=2gs;n"s

Sg";1
Sgg;1

+ 2n�3=4�ms;ngs;n
Sg";1
Sgg;1

+ n�1g2s;n
S2g";1
S2gg;1

g: (A.28)

Apply Lemma A.21(d; e; i; k) to get

~Vt;n = n�1=2
Pt

s=1("
2
s � �2) + �2n�1

Pt
s=1m

2
s;n +OP(n

�1=2) + OP(n
�1=4�):

Applying Lemma A.1, A.21(h) then shows, on D[0; 1], ~Vt;n
D! Bu + �2Lu; where Bu and Lu =R u

0 M
2
sds. In particular we can form the bridge processes B�u = Bu � uB1 and L�u = Lu � uL1 so

that max1�t�n jVt;nj
D! sup0�u�1 jB�u + �2L�uj:
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3.2. The denominator . First, item 3.1 shows n�1
Pn

t=1v̂
2
t;n = �2 + n�1

Pn
t=1(v̂

2
t;n � �2) =

�2 + oP(1): Second, noting v̂t;n = "t + (v̂t;n � "t) a binomial expansion gives

n�1
Pn

t=1v̂
4
t;n = n�1

Pn
t=1"

4
t +

P4
j=1

�
4

j

�
n�j=4[n�1

Pn
t=1fn

1=4(v̂t;n � "t)gj"4�jt ]:

Expansion (A.27) shows n1=4(v̂t;n � "t) = �mt;n +OP(n
�1=4) so that a binomial expansion gives

fn1=4(v̂t;n � "t)gj = (�mt;n)
j +

Pj
h=1

�
j

h

�
OP(n

�h=4)(�mt;n)
j�h:

Insert this to get

n�1
Pn

t=1v̂
4
t;n = n�1

Pn
t=1"

4
t +

P4
j=1

�
4

j

�
(n�1=4�)j(n�1

Pn
t=1m

j
t;n"

4�j
t )

+
P4

j=1

�
4

j

�Pj
h=1

�
j

h

�
(n�1=4�)j�hOP(n

�h=2)n�1
Pn

t=1m
j�h
t;n "4�jt : (A.29)

Lemma A.21(h; j) shows n�1
Pn

t=1m
j
t;n"

4�j
t = OP(1) so that n�1

Pn
t=1v̂

4
t;n = n�1

Pn
t=1"

4
t + oP(1) =

'2 + �4 + oP(1); see also Lemma A.1. In combination we have '̂2n = '2 + oP(1):
4. Combine items to get the desired result. �

Remark A.1 The consistency of the CUSQn test can be explored by inspecting the expansions
(A.28), (A.29) for numerator and denominator of the test statistic. It can be seen that if � in (5.1)
is replaced by a non-decreasing sequence �n then CUSQn diverges at the rate of min(�2n; n

1=2): This
result arises because the remainder terms are of order n�1=4�n: The argument goes as follows.
If �n=n1=4 ! 0 but �n ! 1 then the term �2nL�u dominates in the numerator (A.28) and '2
dominates in the denominator (A.29) so that

CUSQn � �2n sup
0�u�1

jL�uj
'

:

If �n=n1=4 = c 2 R+ then �2nL�u = n1=2c2L�u dominates in the numerator (A.28) as before but all
terms in the �rst j sum contribute in the denominator (A.29) so that, for E("3t jFt�1) = �3;

CUSQn � sup
0�u�1

n1=2c2jL�uj
('2 + 4c�3

R 1
0 Msds+ 6�2

R 1
0 M2

sds+
R 1
0 M4

sds)
1=2

:

If �n=n1=4 ! 1 the term �2nL�u dominates in the numerator (A.28) as before and the j = 4 term
in the �rst j sum dominates in the denominator (A.29). Thus '̂2n � (n�1=4�n)4

R 1
0 M

4
sds so that

CUSQn � sup
0�u�1

�2njL�uj
f(n�1=4�n)4

R 1
0 M4

sdsg1=2
= n1=2 sup

0�u�1

jL�uj
(
R 1
0 M4

s)
1=2

:
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B Tables and �gures

Table 1: DGPs: Data Generating Processes
* DGP yt g (xt; �)

CS 1 1 + 0:5xt + "t �1 + �2xt
CS 2 1 + 0:5x2t + "t �1 + �2x

2
t

CS 3 1 + 0:9xt1 (vt � 0) + 0:5xt1 (vt > 0) + "t �1 + �2xt1 (vt � 0) + �3xt1 (vt > 0)
CS 4 1 + 0:3 jxtj1:5 + "t �1 + �2 jxtj�3

M 5 yt�1 + "t �1 + �2 jxtj�3
M 6 1 + 0:9xt1 (vt � 0) + 0:5xt1 (vt > 0) + "t �1 + �2xt
M 7 1 + 0:5x2t + "t �1 + �2xt
M 8 1 + 0:3 jxtj1:5 + ut ut = xt + "t �1 + �2 jxtj�3
M 9 1 + 0:5x2t + "t �1 + �2ln

2 jxtj
CS denotes correct speci�cation and M denotes misspeci�cation. yt and g(xt; �) are the dependent
variable and the estimated regression function, respectively. xt is I(�) with � = 0:7; 1; 2. "t; vt are
i:i:d:N (0; 1). xt, "t and vt are independent of each other.

Table 2: Size and Power: Finite Sample Performance
xt� I (0:7) xt� I (1) xt� I (2)

CUSQn n n n

* DGP 100 500 1000 100 500 1000 100 500 1000
CS 1 0.031 0.041 0.044 0.032 0.040 0.044 0.031 0.040 0.044
CS 2 0.031 0.040 0.045 0.031 0.040 0.044 0.031 0.039 0.044
CS 3 0.030 0.041 0.043 0.033 0.042 0.043 0.033 0.041 0.042
CS 4 0.031 0.040 0.045 0.031 0.041 0.043 0.033 0.040 0.044

M 5 0.527 0.975 0.997 0.814 0.999 1.000 0.957 1.000 1.000
M 6 0.085 0.485 0.708 0.553 0.984 0.999 0.998 1.000 1.000
M 7 0.096 0.790 0.962 0.479 0.993 1.000 0.974 1.000 1.000
M 8 0.302 0.854 0.946 0.460 0.846 0.913 0.935 1.000 1.000
M 9 0.313 0.709 0.775 0.320 0.599 0.759 0.945 0.999 0.999

CS denotes correct speci�cation; hence, size is being analyzed in those cases. M denotes mis-
speci�cation; hence, power is considered in those cases. 10000 replications are conducted.
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Table 3: DGPs: Data Generating Processes
* DGP yt g (xt; �)

CS 1 1 + 0:5xt + "t �1 + �2xt
CS 2 1 + 0:5x2t + "t �1 + �2x

2
t

CS 3 1 + 0:9xt1 (vt � 0) + 0:5xt1 (vt > 0) + "t �1 + �2xt1 (vt � 0) + �3xt1 (vt > 0)
CS 4 1 + 0:3 jxtj1:5 + "t �1 + �2 jxtj�3

M 5 1 + 0:5xt + zt + "t �1 + �2xt
M 6 1 + 0:5x2t + zt + "t �1 + �2x

2
t

M 7 1 + 0:9xt1 (vt � 0) + 0:5xt1 (vt > 0) + zt + "t �1 + �2xt1 (vt � 0) + �3xt1 (vt > 0)
M 8 1 + 0:3 jxtj1:5 + zt + "t �1 + �2 jxtj�3

CS denotes correct speci�cation and M denotes misspeci�cation. yt and g(xt; �) are the dependent
variable and the estimated regression function, respectively. xt = (1+c=n)xt�1+ut with c = �2;�10;�50
for CS and c = 0 for M . zt = �zt�1 + �t with � = 0:8; 0:9; 0:99. "t, �t; ut; vt are i:i:d:N (0; 1) and
independent of each other.

Table 4: Size: Finite Sample Performance
xt= (1 + c=n)xt�1+ut c = �5 c = �20 c = �50

CUSQn n n n

* DGP 100 500 1000 100 500 1000 100 500 1000
CS 1 0.031 0.041 0.043 0.030 0.040 0.043 0.031 0.040 0.044
CS 2 0.032 0.041 0.043 0.032 0.040 0.043 0.028 0.040 0.044
CS 3 0.031 0.039 0.042 0.029 0.040 0.042 0.030 0.040 0.042
CS 4 0.031 0.040 0.042 0.030 0.040 0.043 0.030 0.039 0.044

CS denotes correct speci�cation; hence, size is being analyzed in those cases. 10000 replications are
conducted.

Table 5: Power: Finite Sample Performance
xt= xt�1+ut zt= �zt�1+�t � = 0:7 � = 0:8 � = 0:9

CUSQn n n n

* DGP 100 500 1000 100 500 1000 100 500 1000

M 5 0.104 0.189 0.215 0.185 0.387 0.443 0.371 0.771 0.838
M 6 0.107 0.190 0.217 0.189 0.387 0.444 0.374 0.772 0.841
M 7 0.103 0.193 0.222 0.186 0.390 0.444 0.368 0.765 0.846
M 8 0.096 0.187 0.212 0.174 0.381 0.436 0.347 0.760 0.835

M denotes misspeci�cation; hence, power is considered in those cases. 10000 replications are conducted.
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Table 6: Power performance comparison with Kasparis (2008)
DGP yt
R1 zt
R2 sign (zt) jztj0:5

R3 sign (xt) jxtj0:75 + ut
R4 sign (xt) jxtj1:25 + ut
R5 ln (1 + jxtj) + ut
R6 xt + jxtj0:5 + ut
R7 0:4xt1 (xt � 0)+1:8xt1 (xt � 0) + ut
R8 xt + 1:8 [xt=(1 + exp (�xt=

p
n� 2))] + ut

R9 xt + zt + ut
R10 sign (xt) (jxtj jztj)0:5 + ut

zt = zt�1 + wt where wt = 0:3wt�1 + !t, xt = xt�1 + �t,
ut = �t, (�t; �t+1; !t+1)0 = Drt where rt are i:i:d:N (0; 1)
and D = [1 .2 .1, .3 2 0, 0 .1 1.2]

Table 7: Power performance comparison with Kasparis (2008)
CUSQn Kasparis�best power

n 100 200 500 100 200 500

R1 0.909 0.999 1.000 0.762 0.920 0.984
R2 0.925 1.000 1.000 0.790 0.930 0.984
R3 0.093 0.612 0.860 0.180 0.377 0.698
R4 0.349 0.962 0.996 0.430 0.706 0.902
R5 0.408 0.922 0.986 0.706 0.901 0.993
R6 0.514 0.953 0.993 0.626 0.862 0.989
R7 0.548 0.825 0.872 0.485 0.597 0.704
R8 0.340 0.849 0.959 0.327 0.557 0.825
R9 0.882 0.999 1.000 0.753 0.915 0.983
R10 0.670 0.997 1.000 0.411 0.702 0.904
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