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Abstract

Although out-of-sample forecast performance is often deemed to be the ‘gold standard’
of evaluation, it is not in fact a good yardstick for evaluating models. The arguments are
illustrated with reference to a recent paper by Carruth, Hooker and Oswald (1998), who
suggest that the good dynamic forecasts of their model support the efficiency-wage theory
on which it is based.
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1 Introduction

Out-of-sample forecast performance is often viewed as the acid test of an econometric model.
When that model is based on a well-articulated economic theory, a ‘good’ out-of-sample per-
formance is then assumed to provide support for the theory. ‘Good’ can be assessed both in
comparison to rival (often naive) forecasts, and relative to in-sample performance. The sen-
timent that a good forecasting performance constitutes a ‘seal of approval’ to the empirical
model, and therefore of the theory on which the model is based, is general. Two examples
suffice. First:

any inflation forecasting model based on some hypothesized relationship cannot be
considered a useful guide for policy if its forecasts are no more accurate than such
a simple atheoretical forecast (namely, next year’s inflation will equal last year’s).
Atkeson and Ohanian (2001)

Secondly, in a study of US unemployment:

If a dynamic modeling approach is to be convincing, it needs to say something about
the behavior of unemployment out of sample. Carruth, Hooker and Oswald (1998,
p. 626)

∗We thank Andrew Oswald and James Stock for helpful comments, and Alan Carruth for kindly providing the
data used by Carruth, Hooker and Oswald (1998). Computations were performed using Givewin 2 and PcGive
10: see Doornik and Hendry (2001), and code written in the Gauss Programming Language.
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While explanations for forecast success are rarely sought, beyond claiming corroboration of
the underlying theory, a poor performance usually requires rationalization. Forecast failure
is defined here as a significant deterioration in forecast performance relative to its anticipated
outcome, usually based on historical performance. Explanations for forecast failure might point
to the occurrence of extraneous or atypical events in the forecast period, or might lead to a
deeper questioning of a model, such as that occasioned by the failure of the 1970’s Keynesian
income-expenditure models to account for the simultaneous occurrence of high inflation and
unemployment rates.

Despite the intuitive appeal of these views, six dichotomies intrude on any forecast evaluation
exercises:

1. unconditional versus conditional, models;

2. internal versus external standards;

3. checking constancy versus adventitious significance;

4. ex ante versus ex post evaluation;

5. 1-step versus multi-horizon forecasts; and

6. in-sample fixed coefficients versus continuous updating.

These six dichotomies relate to the type of model, method of forecasting, and method of forecast
evaluation. Whichever branch one chooses will in general have important implications for what
can be learnt from the forecasting exercise about the validity or usefulness of the model and the
theory on which it is based. Moreover, there may be important interactions, as we note below
following a detailed consideration of their implications in section 2. At least as important will
be a dichotomy relating to the nature of the economic environment: whether the environment
is stationary or non-stationary (in the sense of changing moments). For example, Stock and
Watson (1996) show that instability is a feature of many macroeconomic time series and time-
series relationships, and Clements and Hendry (1999) examine the effects of structural shifts
on forecast performance.

The point of our paper is that the combined impact of the six dichotomies, and the under-
lying instability inherent in many economic relationships, vitiates any simplistic claims about
the supremacy of forecast performance, or forecast tests, in model evaluation.

The structure of the paper is as follows. Section 2 briefly reviews forecasting in stationary
versus non-stationary environments, and considers the impact of the six dichotomies on judging
a model by its forecasting performance. Then, in the light of that analysis, section 3 considers
the forecasting exercise in Carruth et al. (1998) in some detail. Section 4 provides an illustrative
Monte Carlo study of the role of cointegration (one aspect of the empirical study) in explaining
‘good’ out-of-sample forecast performance. Section 5 discusses the implications of our analysis,
and section 6 concludes.

2 Six dichotomies

We consider the six dichotomies in turn, but first note some of the implications of non-
stationarity.

In stationary processes, as shown in Miller (1978) and Hendry (1979), forecasts on aver-
age will be as accurate unconditionally as expected. As a consequence, internal standards of
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comparison (section 2.2) may lack power.1 If the forecast-period data happen to be quiescent,
a lack of failure is not persuasive evidence of a sound theory: for example, interest rates may
be a crucial omitted variable in an investment equation, but happen not to change over the
sample, so the false model is not rejected. Idiosyncratic factors could be such that the good
performance of a model lends little support to any given theory.

Conversely, poor models may not be rejected. If the process is highly non-stationary (with
changing moments), a lack of failure may merely reflect the use of an adaptive tracking device
with a large forecast variance, such that systematic mis-forecasting cannot happen with most
individual outcomes being consistent with the forecasts (even though the forecasts may be ‘poor’
in the sense of having low correlation with the outcomes). Such models may do well on internal
standards (and even relative to rival models), but have no significant economic predictive power.
Worse still, ‘good’ models may fare poorly in terms of out-of-sample performance when there
are location shifts (such as in an equilibrium mean) near the forecast origin (see, e.g., Clements
and Hendry, 1999, pp.307—9, for a brief review).

2.1 Unconditional versus conditional models

The first dichotomy relates to whether or not all variables are modeled. Unconditional models
endogenize all variables (as in a vector autoregression, denoted VAR), whereas conditional
models treat some variables as given. For statistical inference, only weak exogeneity is required
to sustain the conditioning on the non-modeled variables, but for forecasting more than one
step ahead, strong exogeneity is essential (see Engle, Hendry and Richard, 1983, and Ericsson,
1992 for an exposition). The distortionary effects of invalid conditioning on multi-step forecast
performance are compounded when non-modeled dynamics partially substitute for modeled-
variable dynamics (see section 2.5 a) such that the performance of the model forecasts may
appear more accurate than they actually are.

One way round the difficulties entailed by conditioning is to require that all the variables
are ‘endogenized’ in any forecasting exercise. However, this amounts to requiring that a theory
should specify generating mechanisms for the complete vector of variables under study: other-
wise the forecast performance of the system as a whole depends upon equations for variables
which are not specified by the theory. That would leave little room for the large class of the-
ory models which are partial, in the sense of making conditional statements relating economic
variables. Consequently, we focus on conditional models hereafter, and return to the issue of
exogeneity in the context of the empirical example.

2.2 Internal versus external standards

Internal standards denote that forecasts are evaluated relative to the estimated model (e.g.,
against its forecast standard errors), whereas external standards involve a comparison with
other, usually mechanistic, forecasts. Internal evaluations–assuming that inferences are in fact
validly based under the null–tend to be tests of parameter constancy.

1Consistent with the view that corroboration may be too easy, Mayo and Spanos (2000) quote: ‘mere support-
ing instances are as a rule too cheap to be worth having; they can always be had for the asking; thus they cannot
carry any weight; and any support capable of carrying weight can only rest upon ingenious tests, undertaken
with the aim of refuting our hypothesis, if it can be refuted’ (Popper, 1983, p. 130).
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External evaluation is more in the nature of an encompassing test against a rival specifi-
cation as in the above quote from Atkeson and Ohanian (2001), who deem failure against an
atheoretical contender decisive. As ever, the issue is rather less clear-cut in practice: forecast
failure could, but need not, impugn a policy model; could, but need not, be ‘camouflaged’ by a
variety of devices (of which the best know are intercept corrections); and a ‘naive’ model could,
but need not, be robust to location shifts which are pernicious for an econometric model (see
e.g., Hendry and Mizon, 2000). Thus, we consider both internal and external evaluation below.

2.3 Checking constancy versus adventitious significance

The third dichotomy concerns the purpose of the evaluation exercise. One common aim is
to check whether selected variables are really relevant or just significant by chance. A rather
different objective is to test parameter constancy over a ‘forecast period’ (the nature of which
will be addressed in the next sub-section). We take these in turn.

First, sub-sample evaluation is often used as a ‘hold-back check’ against spurious signifi-
cance, as in the data-mining literature (see e.g., Hoover and Perez, 1999). This approach is
based on the idea that an estimated coefficient is unlikely to be significant by chance in two
sub-samples as well as the whole sample. Thus, various authors have proposed selecting which
variables to include in a model by a rule of consistent significance across sub-samples. Doing
so certainly lowers the implicit significance level of the selection procedure, because under the
null, significance in several sub-samples is indeed less likely to occur by chance. However, it
also lowers the power to retain those variables that genuinely matter. Lynch and Vital-Ahuja
(1998) and Krolzig and Hendry (2003) show that a higher power at any desired significance
level can in fact be achieved by a single full-sample procedure, so ‘hold-back’ is an inefficient
device for evaluating a model for ‘data mining’.

Nevertheless, conditional on having selected a model, a few post-sample observations can
be dramatically more helpful than a large number of in-sample data points in discriminating
between substantive and adventitious significance. This occurs because conditional on a signifi-
cant outcome being observed on the full sample, no split of the sample can discriminate between
that being due to chance or because the null is really false. However, out-of-sample, t-tests on
explanatory variables with non-zero coefficients have increasing non-centralities as the number
of new observations grows, so their significance increases on average, whereas t-tests on the
estimated coefficients of irrelevant variables converge towards zero.

The key difference between these two uses of the sub-samples is that the first is employed
to select the model, whereas the second tests an already selected model on previously unseen
data. Since we are concerned with evaluating models by their forecast performance, we will
now focus on the use of sub-samples to check parameter constancy, and turn to doing so using
existing or new data.

2.4 Ex ante versus ex post evaluation

The fourth dichotomy contrasts whether the ‘forecasts’ are genuinely made before the outcomes
have occurred, and evaluated at a later stage when the outcomes are known (ex ante), or are
evaluated against a sub-set of the originally available data ‘retained for in-sample forecasts’ (ex
post).
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Ex ante evaluation has high face validity, and could constitute a Neyman—Pearson ‘quality
control’ test with high content validity: a few observations after a model is developed can provide
definitive evidence on its performance. Nevertheless, considerable care is needed in interpreting
outcomes of either success or failure. First, Clements and Hendry (1998) use the analogy of
a serious forecast failure when a spacecraft to the moon is knocked off course by a meteor,
to emphasize that there need be no implications for the underlying theory–here that based
on Newton’s laws. Indeed, it need not even reflect badly on the soundness of the forecasting
algorithms, which probably quickly corrected their forecasts. Secondly, Hendry (1996) shows
that ex ante forecast failure is consistent with ex post parameter constancy in some situations
(particularly when there changes in data measurement: see also Patterson, 2003). Thirdly, we
have already alluded to the fact that the evaluation may lack power. Finally, ex ante evaluation
is only possible in conditional models–the focus here–by using a sequence of 1-step forecasts.

Ex post evaluation tests the key attribute of parameter constancy, and although in-sample
tests can be conducted using the Lagrange-multiplier approach, a formal hold-back sample is
often used. Such ex post evaluation usually assumes a division of the sample into an in-sample
and out-of-sample period. Suppose there are Q observations in total, indexed by q = 1     Q ,
and that the initial estimation period is q = 1     O, with E 1-step ahead forecasts for O+ 1
through to O +E (so O +E = Q ). West (1996), for example, discusses fixed, recursive and
rolling forecasting schemes, depending on whether model parameters are estimated on data up
to O, and then held fixed for the calculation of all the forecasts, estimated on an expanding
window of data (q = 1 to O, q = 1 to O+ 1, etc), or estimated on a fixed window that moves
through the sample (q = 1 to O, q = 2 to O + 1, etc).We discuss recursive forecasting (simply
referred to as updating) versus fixed schemes in section 2.6.

In ex post evaluation, ‘data-snooping’ is hard to exclude: an investigator may have checked
the performance of a variety of models on the ‘hold-back’ sample, and only reported those that
happen to be constant. For example, Boughton (1992) and Hendry and Starr (1993) show
that constancy can be designed as part of the process of modelling. That potential problem is
almost certainly why investigators deem ex ante evaluation to be preferable, taking us rapidly in
a circle. Subject to the caveats just made about careful interpretation, the conclusion is perhaps
to support the use of ‘blind hold-back’, as in computer learning competitions, where some of the
sample is not available to the modeler, which then jointly evaluates adventitious significance
and parameter constancy. That raises the issue of precisely how to use the information in such
a sample, which is addressed in the next two sub-sections, now further restricting our analysis
to ex post evaluation of conditional models.

2.5 1-step versus multi-horizon forecasts

1-step ex post forecast evaluation in a conditional model takes the regressors at their observed
values and compares the forecasts with realized values, using internal standards. Appropriate
tests with powers against different alternatives are widely available, and some at least seem to
have good operating characteristics: see inter alia, Chow (1960), Andrews (1993).

However, there are a number of reasons why multi-step ex post ‘forecast’ performance (dy-
namic simulation), may not be a good guide to the credence to be attached to a model:

a. The first was stressed by Chong and Hendry (1986) — ‘what dynamic simulation tracking
accuracy mainly reflects is the extent to which the explanation of the data is attributed
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to non-modelled variables’ (italics in original). In many instances, the researcher has
some latitude in choosing the mix of lags of dependent and explanatory variables. If
the latter are unmodeled, and so replaced by their actual values in dynamic ‘forecasting’
or simulation exercises, apparent performance may be improved by reducing the role of
own-variable dynamics.2

b. The second reason relates specifically to equilibrium-correction (EC) models, which em-
body long-run relations suggested by economic theory, where a good forecast performance–
especially over long horizons–may be thought to lend support to the theory embodied
in the EC term. Analytical calculations in Clements and Hendry (1995) show that, in
general, this assertion is incorrect, in that long-horizon forecasts of the changes in the
variables are no more accurate than forecasts from models which omit the EC terms.
Given the importance often attributed to EC terms, especially for long-horizon forecasts,
section 4 considers this issue in the context of forecasting the US unemployment rate.

c. The third reason is that in any particular instance there may be idiosyncratic factors at
work, such that the good dynamic performance of the model actually lends little support
to the theory: this is also addressed in section 4.

d. Finally, the appropriate variance matrix for evaluating multi-step ex post forecasts is a
function of the 1-step, and there is no real benefit in the exercise when properly conducted:
see Pagan (1989).

Sections 3 and 4 show how these explanations — of why multi-step ex post forecast per-
formance may have little bearing on the validity of an economic theory — cast doubt on the
conclusions drawn from the results of the out-of-sample forecast exercise reported by Carruth
et al. (1998). In section 6 we also comment on the role of non-stationarity, more extensively
discussed in Clements and Hendry (1999).

Accurate dynamic simulations many steps ahead are tantamount to owning a crystal ball:
the ability to forecast unemployment a decade or more ahead more accurately than its uncon-
ditional distribution (even if that was stationary) entails knowledge of a vast range of events,
laws and circumstances that were undreamt of at the time the forecast was supposed to be
made (especially from 1978Q2).

2.6 Fixed coefficients versus updating

Finally, an investigator can choose between a number of forecasting schemes. Estimated coef-
ficients could be held fixed at their in-sample values for the whole ex post forecast evaluation
horizon, or updated recursively as the period unfolds. The nature of their multi-step evaluation
constrains Carruth et al. (1998, p. 626) to use in-sample fixed coefficients. However, the out-
comes of an empirical forecast comparison exercise can depend on whether model coefficients
are continuously updated or are held fixed at in-sample values, especially when there are non-
constancies. Models that are robust to location shifts will have a relative advantage for fixed
coefficients (see Eitrheim, Husebø and Nymoen, 1999): continuously updating may blunten this

2There is no suggestion that considerations of this sort played a part in the specification of the efficiency-wage
model discussed below.
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edge, consistent with the success of re-selecting the model specification and re-estimating as
new information accrues (see e.g., Phillips, 1994, 1995, 1996, and Swanson and White, 1997).
Although Carruth et al. (1998, p. 626) use a fixed-coefficients scheme, we will also look at the
impact of updating.

In general, the interactions between these dichotomies also matter: for example, conditional
multi-horizon forecasts require known future values of unmodeled variables and fixed coeffi-
cients; ex post evaluation on purely internal criteria at best checks for parameter constancy,
rather than forecast performance; and so on.

3 An out-of-sample forecasting exercise

An implication of the efficiency-wage model developed by Carruth et al. (1998, p. 626) (hence-
forth CHO) is that in the long-run, or static equilibrium, unemployment should respond to
input prices. For input prices, they consider real oil prices and the real rate of interest. They
establish that the unemployment rate and the two input price variables are individually in-
tegrated of order one, but that a linear combination of these three variables is integrated of
order zero, that is, the variables are cointegrated. The signs of the estimated coefficients in the
cointegrating combination are consistent with their theory: higher input prices lead to a higher
unemployment rate in the long run. An out-of-sample forecasting exercise over a sixteen year
period from 1979 to 1995 is viewed as an ‘exceptionally hard examination’ (CHO, p.626) and a
dynamic equilibrium-correction model is judged to fare reasonably well.

The plots of the data are shown in figure 1, panels a and b. The real oil price and unem-
ployment rate variables match quite closely over the post-War period. The coefficients of the
cointegrating regression are not readily interpretable because the data are in levels (not logs),
but evaluating the elasticities at the sample means gives 036 and 006 for real oil prices and real
interest rates respectively, indicating that 10% increases in the real input price variables will
result in increases of 36% and 06% in the unemployment rate in the long run.3 The greater
magnitude of the response to the real oil price reflects the greater visual match between the
series.

Figure 2 shows dynamic forecasts of the annual change in the unemployment rate based
on the estimation period 1955Q4—1978Q4, reproducing CHO Figure 2A. The model estimates
are given in table 2 in the Appendix. The forecasts use actual values of all the explanatory
variables save for the lagged dependent variables, which are replaced by recursively computed
predictions. We assume the lagged dependent variable component of the EC term is known,
corresponding to CHO Approach A. The forecasts appear to track the actual course of annual
changes reasonably well. In addition to the point forecasts, we display error fans which allow
for both error and parameter estimation uncertainty. These show that the periods for which
CHO identify large forecast errors generally correspond to the actual values lying outside a
two-sided 95% forecast interval.

Although not reported by CHO, the long-run coefficient on the oil price in the equilibrium-
correction term is quite different when the estimation period ends in 1978: see tables 2 and 3.
The estimated coefficient is nearly three times larger than the full-sample estimate, implying
an elasticity (evaluated at the sub-sample data means) of 0.94, so that close to a 10% change

3Table 3 records the full-sample estimates.
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Figure 1: Time series plots of the unemployment rate and real input price series. Uses the CHO
data. The unemployment rate series is reproduced in each panel for ease of comparison. The input price series

are plotted against the right-hand vertical axis

in the unemployment rate results from a 10% change in the oil price in the long run. The
magnitude of the change in the long-run elasticity (between the two samples) suggests that it
may be possible to improve upon the assumed linear relationship between oil prices and the
unemployment rate, as in the recent literature relating output growth to oil price changes, but
that is beyond our immediate concern of what can be learnt from the out-of-sample forecasting
exercise.4 Figure 3 records the ‘equilibrium errors’ based on the full and sub-sample estimates
of the cointegrating regressions. They mainly differ at the times of high levels of oil prices in
the early eighties and nineties.

Using the full-sample estimates of the cointegrating relationship to produce the forecasts
results in figure 4, which otherwise match figure 2. The model estimates are recorded in table
3. The forecasts based on the full-sample estimates of the long run are more accurate, as might
be expected, because by construction the full-sample estimates reflect the long-run relationship
over the forecast period. The first two rows of table 1 record summary forecast-error statistics
for the fixed-coefficient dynamic forecasts displayed in figures 2 (first row of the table) and
4 (second row, headed CHOCP , to denote the use of full-sample estimates of the long-run
relationship), and show an approximate 40% reduction in the RMSE. The use of the forecast
period to estimate the long run is of course illegitimate from the perspective of an out-of-sample
forecasting exercise (as is CHO’s use of the full sample to obtain the model specification) but

4Hooker (1996) shows that the linear relationship between oil prices and output growth of Hamilton (1983)
does not appear to hold from 1973 onwards. Hamilton (1996) suggests that output should be related to the net
increase in oil prices over the previous year. Given sustitution in production and consumption as input prices
change, a constant coefficient relation seems unlikely.
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Figure 2: Forecasts of the annual change in the unemployment rate from col. 2 of Table
3 of CHO, with the ECM estimated on the sub-sample. The forecasts are generated using CHO

Approach A, i.e., actual values of the real oil, interest rates and equilibrium correction variables are used for

the explanatory variables, though lagged unemployment rate changes are predictions. The error fans allow for
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Figure 3: The equilibrium error based on full sample estimates and estimates up to 78Q4
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Figure 4: Forecasts of the annual change in the unemployment rate using full-sample estimates
of the long-run relationship. The forecasts are generated using CHO Approach A, i.e., actual values of the

real oil, interest rates and equilibrium correction variables are used for the explanatory variables, though lagged

unemployment rate changes are predictions. The error fans allow for parameter estimation uncertainty
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by improving the forecast performance of the model would appear to work in CHO’s favour,
strengthening the support for the theory.

A comparison of figures 2 and 4 shows that using full-sample estimates of the long-run
approximately halves the 4 point over-prediction of the unemployment rate in 1981Q1. The
‘proper’ sub-sample model (CHO) has a dynamic contemporaneous response to oil price changes
which is nearly twice as large as in CHOCP, and the 48% increase in the real oil price in 81Q1
on a year earlier leads to a predicted increase in the unemployment rate far in excess of that
which materialized.5

A closer examination of the CHOCP specification on the first sub-sample suggests some
simplifications of the model may be possible, and we consider the effects of these on forecast
performance. The two lagged dependent variable terms are not significant on the sub-period,
and the small magnitude of the estimated coefficients suggests their effect on the forecasts is
minimal. Also, the EC term enters with a coefficient close to unity at lag 1, and in excess of
−1 at lag 4. An C -test restricting these two coefficients to 1 and −1 respectively yielded a
m-value of 00645, and if in addition we simultaneously restrict the coefficients on the lagged
dependent variables to zero, we obtain an C486 with a m-value of 00324 under the null. This
restriction is not significant at the 1% level, indicating that such a restricted model might be a
reasonable approximation to the CHO model. Figure 5 records the forecasts from this model.
A visual comparison between figures 4 and 5 suggests that the models are indeed similar, and
this is borne out by the forecast-error summary statistics reported in table 1 (compare the rows
CHO1—Eqn. (1)—and CHOCP). The form of the restricted model is revealing. Algebraically:

∆4Rq = + �OL∆4OLq + �OO∆4OOq +∆3 (Rq−1 − 
OLOLq−1 − 
OOOOq−1) + boolo (1)

where I is the lag operator, ∆g = 1 − Ig ; R , OL and OO are the unemployment rate,
real oil price, and real interest rate variables, respectively, and the cointegrating vector is
[1 : −
OL : −
OO]

0, with the cointegrating regression estimates such that 
OL , 0 and 
OO , 0.
This model ostensibly relates the annual change in the unemployment rate to annual changes in
the input price variables and EC terms that include lagged values of the unemployment rates.
But the lag polynomial on Rq is

¡
1− I4 − I

¡
1− I3

¢¢
= (1− I), so that we obtain:

∆Rq = + �OL∆4OLq + �OO∆4OOq −∆3 (
OLOLq−1 + 
OOOOq−1) + boolo (2)

The quarterly change in unemployment depends only on input prices, and using ∆4Rq =P3
p=0∆Rq−p, the restricted model predictions of the annual changes in the unemployment rate

are also determined solely by contemporaneous and lagged values of variables other than the
dependent variable. Therefore, although CHO stress that “in neither approach are the lagged
dependent variables updated with actual unemployment” (CHO, p. 626) — where approach A
uses the actual EC values, and approach B replaces the lagged dependent variable in the EC by
a prediction — this claim lacks force. We have shown that in a restricted version of their model,
which has a superior performance in terms of forecast bias and RMSE, there are no lagged

5CHOCP exhibits a smaller long-run response as well, but the impact of this is hard to disentangle because the
EC terms enter with a positive coefficient at lag one, and a negative (and larger in absolute magnitude) coefficient
at lag four. The dynamic and long-run effects of oil on unemployment vary in a complicated, interrelated fashion in
the CHO model between the estimation and full-sample periods, but imposing the full-sample long-run estimates
and estimating the model up to 78Q4, as in CHOCP, reduces the general dependence on oil and produces more
accurate forecasts.
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dependent variables. This means that actual values of all the explanatory variables are being
used. Because the contemporaneous values of real oil price and interest rates are explanatory
variables, the ‘dynamic’ forecasts are not even proper 1-step ahead forecasts, given that the
forecast of period q uses information dated period q.

3.1 Evaluating the forecasts

In terms of the framework introduced above, now consider the six dichotomies.
1. Unconditional versus conditional models.
The model is conditional on two regressors, and the forecasts on their known future val-

ues. The validity of conditioning on these variables for carrying out statistical inference rests
upon the weak exogeneity of these variables, which is certainly not unreasonable even if not
guaranteed. But valid forecasting requires strong exogeneity. One aspect of strong exogeneity
is easily tested, namely, Granger non-causality from unemployment to oil prices and interest
rates (see Granger (1969)). Granger non-causality is a necessary though not sufficient condi-
tion for strong exogeneity, such that rejection would reject the validity of the conditioning for
forecasting. Testing causality in a VAR(5) for the three variables yields non-rejection; allowing
contemporaneous unemployment to affect interest rates, however, leads to rejection of the null
(but does not for oil prices).

2. Internal versus external standards.
As an internal standard of assessment, the model based on known future input price vari-

ables tracks the actual evolution of annual changes in the unemployment rate ‘reasonably well’
as judged by the graph. As an external standard, we follow the long-standing tradition in the
forecast evaluation literature of comparing econometric model forecasts to those from time-series
models of the Box—Jenkins type, see, for example, Nelson (1972) and Granger and Newbold
(1975). Comparisons of this sort ask whether the explanatory variables contribute to more ac-
curate forecasts than forecasts based on the history of the variable alone. Because the economic
model forecasts are at best 1-step ahead forecasts, we generate a sequence of 1-step forecasts
from a second-order autoregressive model of ∆4Rq, using fixed coefficients. These are depicted
in figure 6. They compare favorably with the econometric model forecasts. From table 1 (the
row labelled AR(2)) the forecast bias of the AR model is similar to that of CHO1, the restricted
CHOCP model, and the RMSE is some 20% smaller.

3. Checking constancy versus adventitious significance.
The main use of the sub-samples in CHO was to check parameter constancy, rather than

the significance of the selected variables in sub-samples, so we have focused on that aspect.
4. Ex post and ex ante evaluation.
All the evaluations offered are ex post rather than ex ante. It would now be possible to

undertake an ex ante evaluation using the data for the second half of the 1990s that has become
available subsequent to the development of the efficiency-wage model. Care would need to be
taken to ensure that the results were not affected by data revisions (e.g., Patterson (2003)).

5. 1-step versus multi-step.
The first and third explanations for why dynamic forecast performance does not lend much

support to the theory are relevant and reinforce each other here. Despite the initial appearance
of the model, the model forecasts are not truly ‘dynamic’: the model can be restricted to a
version in which lagged dependent variables do not appear. This aspect is the ‘idiosyncratic
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explanation’, because it will not in general be true. When coupled with generating ‘dynamic
forecasts’ by replacing the unmodeled variables by their actual values, then in the restricted
version of the model, CHO1, the variation in the dependent variable is explained wholly by
unmodeled variables whose future values are assumed known in the forecasting exercise. Thus,
the CHO1 forecasts are 1-step, in that they make use of information on the unemployment rate
in the period immediately prior to that being forecasted (as well as the values of input prices
in the same period as that being forecasted).

6. Updating versus fixed coefficients.
To isolate the impact of updating the model parameter estimates, we first produce forecasts

from a variant of CHO1 which provides a more suitable benchmark. This is denoted in table
1 as CHO∗1. Recall that the estimates of the long-run parameters that feed into CHO1 were
based on the full-sample up to 1995. CHO∗1 has the same explanatory variables as CHO1, but
the estimates are obtained by freely estimating the model on the initial sample period. The
parameters are held fixed at these values for forecasting, so that the statistics recorded in the
table for CHO∗1 are for a fixed forecasting scheme. The relative gain of the AR(2) over the
efficiency-wage model (now represented by CHO∗1) is much reduced, but still apparent. The
rows labelled AR(2)r and CHO

∗
1r report the results of producing forecasts from these two

models based on continuously updating the parameter estimates. The AR model is barely
affected (there are no apparent differences to two decimal places), although there is a marked
improvement in the accuracy of the efficiency-wage model. Clearly, the way in which the
forecasting exercise is conducted can give rise to markedly different results in terms of the
support accorded to the theory on which the model is based.

In section 2.6, we noted that models which are robust to location shifts will have a relative
advantage for fixed coefficients, and that updating may blunten this edge. An explanation for
our empirical findings is that the AR(2) enjoys a certain amount of robustness, in part due
to its specification in (fourth) differences. The efficiency-wage model is less robust, but by
effectively being a model in differences (the EC term is absent from the restricted version of the
CHO model, which nevertheless closely approximates their model), this too is more robust to
locations shifts than would be models with important EC terms. Paradoxically, therefore, the
improved forecasting success of this version now detracts from the economic theoretical basis
of all the models considered.

4 Monte Carlo analysis of the relevance of EC terms

The efficiency-wage theory implies an equilibrium relationship between the unemployment rate
and input prices. Is it the case, therefore, that cointegration, as embodied in the EC terms,
explains the ‘good’ out-of-sample forecast performance, especially a decade and a half out?
Clements and Hendry (1995) show that cointegration is not an important determinant of long-
horizon forecast performance, assessed by RMSE, unless one is interested in forecasting the
stationary equilibrium combination of the variables.

To demonstrate the force of that argument here, a small Monte Carlo study was undertaken.
First, we use the CHOPP model given in col. 2 of their Table 3 as the data generating process.
Because CHO’s analysis is single-equation, we condition on the actual values of the oil and
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Table 1: Multi-step dynamic forecast error summary statistics 1979Q1 to 1995Q2 for ∆4R

Mean RMSE
CHO −0.22 0.97

CHOCP 0.04 0.59
CHO1 (Eq.(1)) 0.02 0.60
CHO∗1 0.03 0.47
CHO∗1r −0.04 0.38

AR(2) −0.02 0.45
AR(2)r −0.02 0.45

Notes.
CHO is the Carruth, Hooker and Oswald (1998) model, from col. 2 of their Table 3, with
forecasts obtained using their Approach A.
CHOCP is as CHO but using full-sample estimates of the cointegrating relationship.
CHO1 is eqn. (1), i.e., the restricted version of CHOCP .
CHO∗1 has the same regressors as CHO1 but with freely estimated parameters (but fixed over
the forecast period).
CHO∗1r has the same regressors as CHO1 but the forecasts are generated by a recursive-updating
scheme.
AR(2) is the second-order autoregression in the annual change in unemployment.
AR(2)r is as AR(2), but based on recursively-updated parameter estimates. The AR(2) model
forecasts are 1-step ahead.
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Figure 5: Forecasts of the annual change in the unemployment rate based on the model given
by equation 1. The forecasts are generated as in figure 4. The error fans allow for parameter estimation

uncertainty
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Figure 6: Forecasts of the annual change in the unemployment rate from a second-order au-
toregression for the annual change in the unemployment rate. The forecasts are 1-step ahead, so that

the explanantory variables — the first two lags of the dependent variable — are replaced by actual values. The

error fans allow for parameter estimation uncertainty
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Figure 7: RMSEs obtained by Monte Carlo for the CHO model and a model where the
equilibrium-correction term is switched off

interest rate variables rather than specifying equations for these variables, so in all replications,
the actual values of these variables are used. Based on the data up to period 1978Q4, we simulate
the next 66 values of the unemployment rate, replacing lagged values of the unemployment
rate (including in the EC terms) by simulated values as appropriate. The disturbances are
given by pseudo-random Gaussian variables with a standard error of 0.49, thereby ignoring the
autocorrelation in the estimated model’s errors. We then consider forecasting with two models.
The first is the CHO model, which uses the correct coefficients and the actual values of the
non-modelled variables, but replaces lagged unemployment rate terms (including those in the
EC terms) by predictions. There is no model mis-specification nor estimation uncertainty. The
second model is expressed entirely in (annual) differences. Estimating a model of this sort on
the data to 1978Q4 would not be appropriate because the DGP for the (simulated) forecast
data differs from the estimation period actual data, to the extent that it ignores the residual
correlation in the fitted empirical EC model. Nor can we simulate a representative sample of
data on which to estimate the model in differences, because we do not have equations for the
unmodeled variables. Our solution to this problem was as follows. Use the same coefficients
as in the EC model (and the DGP), but replace the EC variables by their estimation sample
means. Thus the difference model does not exhibit equilibrium-correcting behavior, but in all
other respects it matches the EC model.

Series of 1 to 66-step ahead forecasts were generated and compared to the simulated (‘ac-
tual’) values of annual unemployment rate changes on each of 10,000 replications, over which
the RMSEs for each step ahead were calculated and are plotted in figure 7. There are some odd
departures between the RMSEs of the two models at specific horizons — attributable to the odd
dynamics of the model — but overall the EC terms do not appreciably improve the forecasts.
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5 Implications

What, therefore, can be learned from forecast performance? Clearly, one learns how well the
given model actually forecasts over the specific historical period, absolutely, relative to its
earlier (in-sample) behavior, and in comparison to other forecasting devices. But as adverts by
financial institutions now always warn: ‘past performance is not necessarily a good guide to
future performance’. More generally, corroboration is not definitive and rejection is not final
in any progressive science: either successful or failed forecast performance is but one item of
information in the gestalt needed to appraise both models and theories.

The CHO model may be a useful partial description of the economic relations of interest,
even though it fails to predict well. Taking instrumentalism to be the view that ‘theories can
never be considered to be true or false but merely as instruments of prediction’, as in Lawson
(1989, p.238), a poor forecast performance is damaging. Evidently, we have a poor instrument.
But in a non-stationary environment, that instrument may still be the best available for other
purposes. Equally, the realist view would be that the model describes a ‘tendency’ that in any
instance may not be fulfilled because of the interplay of other influences in an ‘open system’:
here the claimed tendency is for unemployment to rise as the real oil price increases, but at
high levels of the real oil price other non-modelled forces come to bear (e.g., firms substitute
from machinery, now expensive to run, to relatively cheaper labor). Whether or not the model
provides a useful partial description of the forces behind the evolution of the unemployment
rate is a moot point. Certainly it is unlikely to be a useful description outside the historical
period on which it was estimated. We note that unemployment in the US was about the same
in the last half of the 19th century as now, but oil prices then were irrelevant.

In principle, one would want to close the system, and model all the forces that have a
bearing, and ex post one might be able to make progress in this direction, but failure to do so
does not invalidate the theory from a realist perspective.

Finally, it has emerged that whether we adopt fixed coefficients or update the estimates
can be decisive. If the model’s parameters are constant, more information (as in a recursive
scheme) would be expected to provide more precise parameter estimates and improved forecasts,
although Clements and Hendry (1998) suggest that improvements emanating from this source
are likely to be of secondary importance. The gains of the size we observed from updating point
to the non-constancy of the efficiency-wage model parameters. But if the model’s parameters
are not constant, what are we to conclude about the underlying theory on which the model
is based? Since adaptability is key to successful forecasting, updating will improve forecasts
even if parameters are not constant and the theory is not relevant. And in terms of what we
can learn from forecast exercises, would it not be preferable to check the model’s parameters
directly using recursive methods? Figure 8 reports Chow tests for the CHO∗1 model where the
parameter estimates are estimated recursively over the forecast period. The ‘1-step’ statistics
indicate several periods of parameter non-constancy, although the more quiescent later data
period offsets this in the break-point tests.

6 Conclusions

Out-of-sample forecast performance is not a reliable indicator of the validity of an empirical
model, nor therefore of the economic theory on which the model is based. This is despite the
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Figure 8: Recursive Chow statistics for the CHO∗1 version of the efficiency-wage model
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apparently widespread belief in the economics profession that a good out-of-sample performance
conveys strong support for a model. The arguments are illustrated with an efficiency-wage
model of post-War US equilibrium unemployment. That model appears to have a good forecast
performance, but we show that this does not establish the validity of the model. The efficiency-
wage model may well explain the post-War course of US unemployment, but the standard
assessments of out-of-sample performance typically reported do not lend much credence to the
claim, and indeed the original study’s authors provide empirical evidence in support of their
model from other sources, such as Granger causality tests.

In the present context, one implication of the belief that out-of-sample forecast performance
validates a model, and the theory on which it is based, would be that the annual change in
the unemployment rate is an AR(2) process with no impact from any other factors in the
economy. This follows because we have shown that a model using only lagged actual values
of unemployment rate changes performs better than a model based on the actual values of
contemporaneous and lagged oil and interest rate variables. If we allow the model estimates
to be recursively updated, then the economic model fares better than the AR(2). But this is
cold comfort for advocates of the use of forecast performance to evaluate models. It highlights
an instance where one of our ‘dichotomies’ is decisive in determining whether or not the model
receives support, but the literature rarely pays attention to these ‘dichotomies’. Put more
starkly, do the forecast evaluation differently, and you get different results. It also raises the
issue of the support offered to a theory by a model whose forecasts are improved by allowing
for non-constant parameters.

It may be that a combination of the economic model forecasts and AR forecasts would be
an improvement on either alone, as would be the case if neither model forecast encompasses the
other.6 This may be the best way to proceed for practical forecasting, given that our restricted
version of the CHOCP model shows no role for lagged unemployment rate terms, but again
what support that such a finding accords to a theory is not obvious.

We also show that the belief that the equilibrium-correction terms can be responsible for a
good long-horizon performance is incorrect. Finally, we mentioned briefly in the introduction
the argument of Clements and Hendry (1999) that location shifts mitigate the usefulness of out-
of-sample forecast performance for model evaluation. Without examining this aspect in detail
in the present context, a comparison of figures 5 and 6 is illuminating. Figure 5 depicts 1-step
ahead ‘forecasts’ from the restricted model relating unemployment to the input price variables,
and figure 6 reports the 1-step AR(2)model forecasts. The success of the AR(2) forecasts derives
from their closely tracking the time series of annual unemployment rate changes, resulting in
small forecast errors. The economic model records large errors in the early 1980s when the
real oil price variable shifts to unprecedentedly high levels. The long-run relationship which
held prior to this period no longer appears a reliable guide at levels of the real oil price far in
excess of the values historically observed (compare the EC terms in tables 2 and 3, specifically
the estimated oil price coefficients). This suggests that the poor forecast performance of the
economic model relative to the AR model is due to the shift in the oil price, and not to
the merits of the model itself. Models are approximations to the local DGP (namely, the joint
density of the variables under analysis), so that expecting them to characterize the relationships
between variables over ranges that bear little resemblance to the historical sample period may

6For explanations and further references on forecast combination (or pooling) and forecast encompassing, see
Newbold and Harvey (2002).
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be unreasonable. Thus, the poor forecast performance in the early 1980s by itself need not
invalidate the efficiency-wage hypothesis, but suggests that the response of unemployment to
very large oil price changes is more muted than indicated by the linear model with pre-1980
coefficients. In effect, rejecting a model of a theory also does not disconfirm that theory.

The main message is that one must be very careful when using a forecasting exercise as an
evaluation device in non-stationary processes.
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7 Appendix

Table 2: CHO model estimated 1955Q4 to 1978Q4

∆4Rq = 0272
(026)

∆4Rq−1 − 0108
(011)

∆4Rq−2 + 00137
(0057)

+ 00752
(0018)

∆4OLq + 00768
(0064)

∆4OOq + 0727
(022)

B∂Jq−1

− 0918
(021)

B∂Jq−4

The above equation corresponds to CHO Table 3, col. 2 p.625. It gives the estimates obtained
on the sample to 1978Q4, using the estimated EC term recorded below (estimated 1954Q2 to
1978Q4). The figures in parenthesis below the parameter estimates are heteroscedasticity and
autocorrelation consistent standard errors. The estimated standard error of the equation is

0.49, and the m-values of an LM test for serial correlation up to fifth order, heteroscedasticity,
and normality, are respectively, 0000, 0013 and 0017.

Rq = 0187 + 00974 OLq + 0115 OOq
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Table 3: CHO model estimated 1955Q4 to 1978Q4 with full-sample estimates of EC term

∆4Rq = 00405
(023)

∆4Rq−1 − 00757
(011)

∆4Rq−2 − 000719
(0050)

+ 00438
(0009)

∆4OLq + 0121
(0060)

∆4OOq + 102
(017)

B∂Jq−1

− 113
(017)

B∂Jq−4

The above equation corresponds to CHO Table 3, col. 2 p.625 but using the EC term based on
the data through to 1995Q2. (The EC term below matches that of CHO Table 2, p. 625.) The
figures in parenthesis below the parameter estimates are heteroscedasticity and autocorrelation
consistent standard errors. The estimated standard error of the equation is 0.46, and the m-

values of an LM test for serial correlation up to fifth order, heteroscedasticity, and normality,
are respectively, 0000, 0075 and 0001.

Rq = 351 + 00356 OLq + 0136 OOq
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