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Abstract

We study a dynamic moral hazard model where the agent does not fully observe his
performance. We consider the effects on incentives and on selection of providing feedback
to the agent.
We show that, for a fixed incentive scheme, there is a wide range of cases, where the

agent works harded if feedback is provided. However, we show that the optimal incentive
scheme depends on whether the agent is given feedback.
When the principal chooses the optimal incentive scheme, then it is cheaper to provide

incentives when feedback is not provided.
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1 Introduction

We consider how organization decide whether, and to what extent, to provide feedback to
individuals on how their performance to date has been evaluated.

We study a dynamic model with moral hazard where the agent does not fully observe
her performance. In this setting the principal has a choice of whether to conduct an interim
performance evaluation (IPE) and whether to reveal the outcome of this IPE to the agent.

To the extent that feedback helps individuals do their jobs better, or plan their future
better, it is beneficial. But what effects does performance feedback have on incentives? What
effects does it have on sorting, i.e., ensuring that the more able advance faster than the less
able?

There are several examples where IPEs are potentially important. Associates in law
firms and consulting firms know that a substantial part of their rewards takes the form
of a potential promotion to partner. Long before the promotion decisions are made, some
information about their prospects is revealed to these associates. Sometimes this information
is revealed through a formal process of periodic evaluations by the partners. Sometimes the
information revelation process is informal. A particularly stark example of an IPE is the case
of midterm exams. Most courses require (sometimes multiple) midterm exams, and, if given
the choice, students appear to favor having a midterm exam than having the entire grade
based on the final exam.

Furthermore, there are several environments where it is easy to think of analogues to
IPE’s. In patent races, we can think of the effects of interim information on the progress
made by rivals’: if for instance the social planner can communicate this information to firms,
what are the effects on innovation and on social welfare? There is also an interesting contrast
between sealed-bid and ascending auctions such as the English auction. The latter provides
interim information to bidders. Other application include multi-stage sports competitions
and pre-election polling.

There has been little attention devoted to IPEs in the economics literature. There is
extensive discussion of IPEs in the human resource management literature but there is no
consensus, and little formal analysis.

We study the effects of IPE’s on incentives to exert effort post IPE, incentives to exert
effor prior to the IPE, and on the optimal structure of the incentive scheme that the principal
wants to offer to the agent. We assume that output is not observable by agents themselves.
Furthermore, when individuals have heterogeneous abilities, IPE’s affect how well contests
sort agents according to ability as well as tailoring of effort to ability.

We consider an environment with two periods. In each period the agent exerts an effort
that determinines the probability of success. The agent does not observe the outcome. The
principal observes the outcome but does not observe the agent’s effort choice. We consider
a model with a risk-neutral agent and limited liability. We discuss two scenarios. In the
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first scenario, when choosing second period effort the agent does not know the first period
outcome. In the second scenario, the agent knows the first period outcome before choosing
second period effort.

We first consider an environment where an incentive scheme consisting of rewards con-
ditional on the possible outcomes is fixed and is the same in the two scenarios. In this case
we show that in some circumstances total expected efforts are higher when information is re-
vealed to the agent. However, the agent earns more money in the revelation scenario because
he can taylor his effort to exploit differences in marginal compensation. Thus, the cost to the
principal is higher in the revelation scenario. As a consequence, even if revelation raises the
agent’s expected effort, we cannot conclude that the principal prefers to reveal information
to him.

Furthermore, if the principal were to choose the incentive schemes optimally, i.e. to
minimize the expected cost of inducing a given level of expected effort, he would choose
different schemes in the two scenarios. When interim evaluations are not provided, the
optimal incentive scheme rewards the agent if and only if he succeeds twice. By contrast,
when interim evaluations are given, it is optimal to offer a strictly positive reward for a single
success, while offering an even greater marginal reward for a second success.

Armed with these characterizations, we then assess the desirability of providing interim
performance evaluations when incentive schemes can be designed optimally. In this setting,
we show that it is better not to reveal any information, i.e. the expected cost of inducing
any given level of expected effort is lower in the no-revelation scenario.

Related literature
There is a large literature on dynamic agency problems. Rogerson (1985) studies a re-

peated moral hazard problem with risk aversion but not limited liability. He assumes that
first-period output is observed by the agent. Furthermore, he studies the cost minimizing way
of implementing a specified contingent effort plan. We make assumptions about how a con-
tingent effort plan is ‘aggregated’ by the principal. A weak assumption is that the principal
cares only about expected effort within each period; a stronger assumption is that the princi-
pal only cares only about total expected effort over both periods. Given these assumptions,
we derive the optimal effort vector (and of course make comparisons between the cases where
interim information is and is not provided). Holmstrom and Milgrom (1987) show that, under
some circumstances, the optimal contract is linear in the final outcomes. In their paper, as
in the accounting literature on earnings management, the agent (privately) learns how he’s
doing and optimally reacts by choosing his subsequent efforts. Thus, in this literature, IPEs
are not addressed: the principal knows strictly less than the agent. A number of papers (e.g.,
Fudenberg, Holmstrom, and Milgrom 1990, Chiappori et al 1994) investigate the conditions
under which the optimal contract in a long term agency relation can be implemented through
a sequence of short-term (spot) contracts. In our setting, a sequence of spot contracts would
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be strictly worse for the principal than the optimal long-term contract. This is true whether
IPEs are provided or not, and it is due to the limited liability assumption.

The closest papers are the following. In Prendergast (1992), the firm privately learns
workers’ abilities after the first period and decides whether or not to signal high ability to
the worker. The main result of the paper concerns the desirability of fast-track promotions.
In his model, the cost of IPEs is inefficiency in job assignment. The benefit is the induced
tailoring of effort (training) to ability. Gibbs (91) provides a discussion of interim evaluations
on subsequent efforts when the agent has to pass a minimal threshold in order to receive any
compensation. Lazear (99) performs a similar analysis, focusing on tournaments.

2 Model

There are two periods. In each period t, there are only two possible outcomes: success or
failure. The outcome in period t is denoted by Xt ∈ {f, s}. The probability of a success
in period t is equal to the effort et in that period: P (Xt = S) = et. Conditional on effort
choices, outputs are independent across periods.

In each period the cost of effort et is denoted by c(et), where c is increasing, three times
differentiable, convex, with c(0) = c0(0) = 0.

The agent is assumed to be risk neutral.
An incentive scheme for the agent is characterized by transfers conditional on all possible

outcomes: w(f, f), w(f, s), w(s, f), w(s, s). Given that the agent is risk neutral, the problem
is uninteresting unless we assume that there is a limited liability constraint. We assume that
w(x, y) ≥ 0 for x, y = f, s.

We will contrast two scenarios on the information that is available to the agent when he
chooses effort. In the first scenario, which we call the N-scenario, when choosing effort in
the second period, the agent does not observe the first period outcome. In this scenario, the
agent’s payoffs are as follows:

UN(e1, e2) = w(s, s)e1e2+w(s, f)e1(1−e2)+w(f, s)(1−e1)e2+w(f, f)(1−e1)(1−e2)−c(e1)−c(e2)

In the second scenario, which we call the Y-scenario, the agent observes the first period
outcome before choosing second period effort. Thus, in this scenario, the agent can choose a
different effort in the second period depending on the first period outcome and the payoff of
the agent in this scenario are

UY (e1, e2) = w(s, s)e1e2(s) +w(s, f)e1(1− e2(s)) +w(f, s)(1− e1)e2(f) +w(f, f)(1− e1)(1− e2(f))
−c(e1)− e1c(e2(s))− (1− e1)c(e2(f))
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3 Fixed-Incentives Scheme

3.1 Preliminaries

In this section, we discuss the effects of interim performance evaluations when the incentive
scheme is the same in both scenarios. For now, we assume that the cost of effort function
is quadratic: c(e) = ce2/2. We also assume that the rewards only depend on the number
of successes, i.e., w(f, s) = w(s, f) ≡ w(s). This assumption is relaxed later. Since the
probability of success for the agent will generally be affected by the revelation policy, the
expected expenditure of the principal is different in the two scenarios, even though the in-
centive scheme (w(f, f), w(s), w(s, s)) is the same. We will also assume that the incentive
scheme is monotonic: w(f, f) ≤ w(s) ≤ w(s, s).1 In this section we assume that w(s, s) < c
to guarantee interior solutions.2

3.2 Comparison

It is useful to start by assuming an exogenously fixed probability of success p in the first
period. In the no-revelation scenario the agent chooses e to maximize

p(w(s, s)e+w(s)(1− e)) + (1− p)(w(s)e+w(f, f)(1− e))− 1
2
ce2. (1)

Consider the revelation scenario. If the first period outcome is a success, the agent chooses
e to maximize

w(s, s)e+w(s)(1− e)− 1
2
ce2, (2)

while, if the first period outcome is a failure, the agent maximizes

w(s)e+w(f, f)(1− e)− 1
2
ce2. (3)

Consider the problem faced by the agent in the second period in the two scenarios. We
want to compare these efforts by first abstracting from differences in first period effort in the
two scenarios. To do this, we fix a probability of success in the first period.

Lemma 1 Fix the first period probability of success at the same level p in both scenarios.
Then, expected effort in the second period is the same in the two scenarios.

Proof: Immediate, noting that expression (1) is the expected value with weight p of expres-
sions (2) and (3).

1The optimal incentive scheme obtained in the next section is monotonic.
2Corner solutions will typically involve the same total effort choice in both scenarios. An important case

which is ruled out by assuming that w(s, s) < c is the case of w(s, s) = c which turns out to be the optimal
scheme in the case of no revelation. We will come back to this later.
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Lemma 1 says that, the effect of information revelation on effort is only through its effect
on first period effort since, given a level of first period effort, second period incentives are on
average the same in the two scenarios.

Denote by uY (s) and uY (f) and uN(s) and uN (f) the continuation utilities associated
with success and failure in the revelation and no revelation scenarios, respectively. In either
scenario i, the difference in utilities in the two states in the second period ui(s) and ui(f)
represents the marginal benefit from increasing effort in the first period. The following result
says that, if the probability of success in the first period is no larger than 1/2, this marginal
benefit is larger in the revelation scenario than in the no revelation scenario. This is the key
to the effort comparison across the two scenarios.

Lemma 2 Given an exogenously fixed probability of success p in the first period, suppose that
the agent chooses effort optimally in the second period. Then uY (s)−uY (f) ≥ uN (s)−uN(f)
if and only if p ≤ 1

2 . Equality holds only if (w(s, s)−w(s)) = (w(s)−w(f, f)) or p = 1
2 .

Proof: If the first period outcome is a success, the effort that maximizes expression (2) is

eY2 (s) =
w(s, s)−w(s)

c
(4)

If the first period outcome is a failure, the effort that maximizes expression (3) is

eY2 (f) =
w(s)−w(f, f)

c
(5)

Substituting these respectively into equations (2) and (3) we obtain

uY (s)− uY (f) = (w(s)−w(f, f)) + 1

2c
((w(s, s)−w(s))2 − (w(s)−w(f, f))2) (6)

To obtain the difference in utilities among the two states in the no-revelation scenario,
first observe that, by maximizing expression (1) optimal second period effort for a fixed p is

eN2 (p) =
p(w(s, s)−w(s)) + (1− p)(w(s)−w(f, f))

c
(7)

By substituting into payoffs in the two states, we obtain

uN(s)− uN (f) = (w(s)−w(f, f)) + 1
c

n
p [w(s, s)−w(s)]2 − (1− p) [w(s)−w(f, f)]2

+(1− 2p) [w(s, s)−w(s)] [w(s)−w(f, f)]} (8)

Define x = w(s, s) − w(s) and y = w(s) − w(f, f). Then expression (6) is greater than
(8) if and only if

px2 − (1− p) y2 + (1− 2p)xy < x2

2
− y

2

2
.
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We can rewrite this inequality as

(p− 1
2
)x2 + (p− 1

2
)y2 − 2(p− 1

2
)xy < 0,

or
(p− 1

2
)(x− y)2 < 0.

Hence the result.

The next proposition shows that first period effort is higher in the revelation scenario.

Proposition 1 Suppose that the agent is facing an incentive scheme defined by (w(s, s), w(s), w(f, f)).
Then

(i) First period effort is higher if information is revealed: eY1 ≥ eN1 ; with strict inequaltiy
if the incentive scheme is nonlinear, i.e., w(s, s)−w(s) 6= w(s)−w(f, f).

(ii) E(eY2 ) > (<) eN2 if and only if w(s, s) − w(s) > (<) w(s) − w(f, f), i.e., expected
second period effort is higher (lower) when information is revealed if the incentive scheme is
convex (concave).

Proof: Part (i): In the revelation scenario the agent’s objective is to choose e1 to maximize
e1u

Y (s) + (1− e1)uY (f)− 1
2c (e1)

2. The first order conditions are

uY (s)− uY (f) = ceY1 . (9)

In the no revelation scenario, given the optimal choice of eN2 giving rise to u
N(s), uN(f), the

agent chooses e1 to maximize e1uN (s)+ (1− e1)uN(f)− 1
2ce

2
1. The first order conditions are

uN (s)− uN(f) = ceN1 . (10)

Now observe that, since c > w(s, s)−w(f, f), then

eN1 = e
N
2 =

w(s)−w(f, f)
c+w(s)−w(f, f)− (w(s, s)−w(s)) <

1

2
. (11)

Suppose then that the first period probability of success is fixed at the optimal effort in
the N-scenario, eN1 . Lemma 2, guarantees that given this probability of success in the first
period, the left-hand side of equation (9) exceeds the left-hand side of equation (10). Thus,
first period effort must be higher in the Y-scenario.

Part (ii): In order to compare second period efforts, observe that at the optimum, from
equation (7),

eN2 =
eN1 (w(s, s)−w(s)) + (1− eN1 )(w(s)−w(f, f))

c
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and, from equations (4) and (5),

EeY2 =
eY1 (w(s, s)−w(s)) + (1− eY1 )(w(s)−w(f, f))

c

Since, by part (i), eY1 > e
N
1 , then we have that Ee

Y
2 > e

N
2 if and only if (w(s, s)−w(s)) >

(w(s)−w(f, f))
Proposition 1 says that first period effort is higher under revelation. However, part (ii) of

the Proposition says that second period effort could be eiher higher or lower in the revelation
scenario than in the no-revelation scenario depending on the convexity of the incentive scheme.

We now want to complete the effort comparison by comparing total expected efforts over
the two periods in the two scenarios. In order to make the comparison, we need the following
Lemma.

Lemma 3 Given an exogenously fixed probability of success p in the first period, suppose that
the agent chooses effort optimally in the second period. In the revelation scenario, expected
optimal effort in the second period changes less than one for one with p.

Proof: We need to obtain expected second period effort in the Y-scenario as a function of p.
In order to do this, multiply by p the right-hand side of equation 4, multiply the right-hand
side of equation 5 by (1− p) and add the resulting expressions to obtain

E
¡
eY2 |p

¢
=
p(w(s, s)−w(s)) + (1− p)(w(s)−w(f, f))

c
(12)

Thus, ¯̄̄̄
dE(eY2 |p)
dp

¯̄̄̄
=

¯̄̄̄
(w(s, s)−w(s))− (w(s)−w(f, f))

c

¯̄̄̄
< 1.

The next proposition shows expected total effort is higher in the revelation scenario and
shows that first period effort is higher than second period effort in the Y scenario.

Proposition 2 Suppose that the agent is facing an incentive scheme defined by (w(s, s), w(s), w(f, f)).
Then

(i) Total expected effort is higher if information is revealed: eY1 + E(e
Y
2 ) ≥ eN1 + eN2 ;with

strict inequality as long as w(s, s)−w(s) 6= w(s)−w(f, f).
(ii) In the revelation scenario„ first period effort is higher than second period effort:

eY1 ≥ E(eY2 ); with strict inequality as long as w(s, s)−w(s) 6= w(s)−w(f, f).
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Proof: Part (i):

eY1 − eN1 ≥ ¯̄
E(eY2 |eY1 )−E(eY2 |eN1 )

¯̄
≥ E(eY2 |eN1 )−E(eY2 |eY1 )
= eN2 −E(eY2 |eY1 ).

where the inequality in the first line comes from Lemma 3, and the third line comes from
Lemma 1. Therefore, eY1 +E(e

Y
2 ) > e

N
1 + e

N
2 .

Part (ii): Observe first that eN1 = eN2 . Furthermore, by Lemma 1, if we evaluate the
expectation of second period effort in the revelation scenario according to the probability
eN1 , we obtain Ee

Y
2 = eN1 . Finally, by Lemma 1, Ee

Y
2 increases less than one for one with

increases in p. Thus, eY1 > Ee
Y
2 .

Corollary 1 The expected cost of effort to the agent is higher in the Y scenario.

Proof: From the above Proposition we have

eN1 ≤
eY1 +E(e

Y
2 )

2
.

Thus, using first monotonicity, and then concavity, of c, we can write

c
¡
eN1
¢ ≤ c

µ
eY1 +E(e

Y
2 )

2

¶
≤ 1

2
c
¡
eY1
¢
+
1

2
c
¡
E(eY2 )

¢
≤ 1

2
c
¡
eY1
¢
+
1

2
E
¡
c(eY2 )

¢
whence

2c
¡
eN1
¢ ≤ c ¡eY1 ¢+E ¡c(eY2 )¢

For future reference, observe that the optimum first period effort in the revelation scenario
is

eY1 =
(w(s)−w(f, f))2c+ (w(s, s)−w(f, f))(w(s, s) +w(f, f)− 2w(s))

2c2
<
1

2
. (13)
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3.3 Discussion

Proposition 2 shows that there is a wide class of incentive schemes that lead the agent to
exert more effort in the case where information is revealed to the agent. It would be tempting
to conclude from this result that a principal who is interested in eliciting effort from the agent
would choose to conduct interim performance evaluations and give all possible feedback to
the agent. However, such a conclusion would be premature. In the revelation scenario, the
expected wage bill is also higher. To see this, observe that the wage bill is equal to the
expected utility of the agent plus the expected cost of effort. The expected utility of the
agent is obviously higher in the revelation scenario and, by corollary 1 the total cost of effort
is also higher in the revelation scenario. The inequalities are strict if the incentive scheme
is nonlinear. Thus, it is not clear whether the principal would prefer to conduct interim
performance evaluations. Furthermore, if the principal chooses the compensation scheme as
well as the revelation policy, we have to consider the possibility that the optimal scheme in
the no revelation scenario may be quite different from the optimal scheme in the revelation
scenario.

One exception to this discussion is the case of a subprincipal (say a division manager) who
has no control over the compensation scheme, but can choose whether to conduct interim
performance evaluations. If the division manager is rewarded on the basis of total output
and not on the wage bill, he would choose to reveal information.

4 Optimal Incentive Schemes

We now allow the principal to choose the incentive scheme optimally in the two scenarios, we
compare the properties of the incentive schemes in the two scenarios, and we look at which
scenario is preferred by the principal. We dispense with the assumption of a quadratic cost
function and the assumption that the incentive scheme must depend only on the number of
successes. It is clear that in the optimal incentive scheme, w(f, f) = 0. Thus, from now on
we will focus only on the remaining three values of the compensation scheme.

4.1 No revelation

Let us express the problem of an agent in the following way

max
e1,e2

U (e1, e2)

= max
e1,e2

αe1 + βe2 + γe1e2 − c (e1)− c (e2) . (14)

The α,β, γ’s are synthetic parameters which, in our problem must be a function of w(s, f),
w(f, s), and w(s, s). Specifically, α = w(s, f), β = w(f, s) and γ = w(s, s)−w(s, f)−w(f, s).
The limited liability assumption implies that α and β are restricted to be nonnegative. We
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Figure 1:

now discuss how the principal would choose a compensation scheme that depends on e1, e2,
and e1 · e2, two linear terms and a mixed term. It will become clear how such a scheme can
be implemented with the instruments available to the principal. We assume that c0 (0) =
0, c0 (1) =∞. These conditions guarantee that the optimal e1 and e2 are interior.

Let us first solve for the case in which the principal sets β = α, meaning that the reward
for just one success is independent of whether the success happened in period 1 or 2 (we will
soon show that this contract is indeed optimal for the principal.) Provided that problem (14)
is concave in e1, e2 (requiring c000 ≥ 0) the agent will choose the same effort in both periods.
Denote this effort by e. Then problem (14) becomes

max
e
2αe+ γe2 − 2c (e) .

The first order conditions for the agent are

2
£
α+ γe− c0 (e)¤ = 0.

Denote the solution by e∗. Integrating this expression over e between zero and e∗ yields the
surplus that the principal must allow the agent in order to implement e∗ in the two periods.
The per-period surplus enjoyed by the agent is depicted in Figure 1 as the area between the
thin straight line originating at α, and the curve c0 (e). Adding the cost of exerting effort,
i.e., the integral under the curve c0 (e), yields the expected per-period cost to the principal of
implementing e∗.
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Any line going through e∗ and with intercept greater than 0 corresponds to a contract
that implements e∗. It is clear from Figure 1 that the contract that minimizes the per-period
cost to the principal is the contract in which α = 0. In this case the per-period cost is the
area of the triangle (0, c0 (e∗) , e∗). The expected total cost of implementing (e∗, e∗) is double
the area of that triangle, i.e., exactly the area of the rectangle (0, A, c0 (e∗) , e∗). Denoting
with R (e) the area of the rectangle with base of e and height of c0 (e) ,

R (e) ≡
Z e

0
c0 (e) dy,

then the expected total cost to the principal of implementing e∗, e∗ is simply R (e∗).
Now, let us verify that indeed the optimal contract indeed entails α = β. Suppose not,

and without loss of generality suppose that it were optimal to set α < β. Then it must be
e∗1 < e∗2. Write the agent surplus as

U (e∗1, e
∗
2) = U (e

∗
1, 0) +

Z e∗2

0

∂U (e∗1, y)
∂e2

dy.

In light of the first order conditions and of the fact that the compensation scheme is linear
in e2 we can rewrite the above equation as

U (e∗1, e
∗
2) = U (e

∗
1, 0) +

Z e∗2

0

£
c0 (e∗2)− c0 (y)

¤
dy.

Adding the agent’s cost of effort yields the expense to the principal of implementing e∗1, e∗2.
That equals

αe∗1 +
Z e∗2

0
c0 (e∗2) dy

= αe∗1 +R (e
∗
2) .

Notice that for a lesser expense of just R (e∗2) the principal can implement e∗2, e∗2 (a strictly
larger total effort) by setting α = β = 0 and appropriately adjusting γ. This shows that it is
suboptimal for the principal to set α < β.

We collect this argument in the following proposition.

Proposition 3 Assume c000 > 0. Under no revelation, the contract that implements a given
total effort E at the lowest cost entails rewarding the agent only in the case of two successes.
Thus, w(s, f) = w(f, s) = 0. The expected payment by the principal to the agent in the
optimal contract implementing a total effort of E is R (E/2) = c0 (E/2) ·E/2.

To complete our characterization, we should consider what happens if the principal wants
to implement different efforts in the two periods. This could happen if effort has different
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values in the two periods. The following Proposition characterizes the optimal incentive
scheme in the case in which the principal wants to implement e1 < e2. The case e2 < e1 has
the complementary properties.

Proposition 4 Assume c000 > 0. Under no revelation, the contract that implements an
effort profile e1 < e2 at the lowest cost entails setting w(f, s) = 0, w(s, f) > 0 andw(s, s) >
w(s, f) > 0 (unless e1 = 0).

4.2 Comparison with Revelation Scenario

In the case of revelation, the agent is able to condition the choice of the second period effort
level on the outcome of the first period effort. The principal, similarly, can give different
second period incentives depending on whether the first period effort resulted in success.
The problem of an agent can be written as

max
e1,eF2 ,e

S
2

U
¡
e1, e

F
2 , e

S
2

¢
(16)

= max
e1,eF2 ,e

S
2

[δe1 − c (e1)] + (1− e1) [ζe2(f)− c (e2(f))] + e1 [θe2(s)− c (e2(s))] .

Our goal is to show that for any constellation of e∗1, e∗2(f), and e∗2(s) giving rise to a total
exepcted effort E, the same total expected effort can be implemented more cheaply in the no
revelation scenario.

Proposition 5 Assume 2c00 (e) + ec000 (e) > 0. Achieving a total expected effort of E under
revelation has an expected cost to the principal of more than R (E/2). Thus, it is less costly
to implement any given total expected if information is not revealed.

Proof: Case e∗1 > E/2.
From the first order conditions with respect to e1 we have

∂U (e1, e∗2(f), e∗2(s))
∂e1

= c0 (e∗1)− c0 (e1) .

We can then express the agent’s surplus as

U
¡
e∗1, e

∗F
2 , e

∗S
2

¢
= U (0, e∗2(f), e

∗
2(s)) +

Z e∗1

0

∂U (e1, e∗2(f), e∗2(s))
∂e1

de1

= U (0, e∗2(f), e
∗
2(s)) +

Z e∗1

0

£
c0 (e∗1)− c0 (e1)

¤
de1.

Adding to this expression the cost of effort, which is at least c (e∗1), yields the cost to the
principal of implementing (e∗1, e∗2(f), e∗2(s)). The cost to the principal is therefore not smaller
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than

U (0, e∗2(f), e
∗
2(s)) +R (e

∗
1)

> U (0, e∗2(f), e
∗
2(s)) +R (E/2) .

The inequality follows from the assumption that e∗1 > E/2. The term U (0, e∗2(f), e∗2(s))
represents the expected surplus of an agent who has exerted no effort in the first period; it is
nonnegative by individual rationality. This shows that a total expected effort of E is cheaper
to achieve via no revelation.

Case e∗1 ≤ E/2.
Write the agent’s surplus as

U (e∗1, e
∗
2(f), e

∗
2(s))

= U (e∗1, 0, 0) +
Z e∗2(f)

0

∂U (e∗1, e2(f), 0)
∂eF2

de2(f) +

Z e∗2(s)

0

∂U (e∗1, e∗2(f), e2(s))
∂eS2

de2(s)

Make use of the first order conditions to rewrite the agent’s surplus as

U (e∗1, 0, 0)+(1− e∗1)
Z e∗2(f)

0

£
c0 (e∗2(f))− c0 (e2(f))

¤
de2(f)+e

∗
1

Z e∗2(s)

0

£
c0 (e∗2(s))− c0 (e2(s))

¤
de2(s).

Adding the cost of effort to this expression yields the cost to the principal of implementing
(e∗1, e∗2(f), e∗2(s)), which is

δe∗1 + (1− e∗1)R (e∗2(f)) + e∗1R (e∗2(s)) .
The function R (e) is strictly convex when 2c00 (e)+ec000 (e) > 0. This means that the average
area of the two rectangles in Figure 2 is larger than the area of the rectangle with average
base. Then the cost to the principal of implementing (e∗1, e∗2(f), e∗2(s)) is strictly greater than

δe∗1 +R ((1− e∗1) e∗2(f) + e∗1e∗2(s)) .
Since by assumption e∗1 ≤ E/2, it must be (1− e∗1) e∗2(f) + e∗1e∗2(s) ≥ E/2. Therefore, the
previous expression is greater than

δe∗1 +R (E/2) .

The term R (E/2) represents the cost of implementing E in the no revelation scenario. Since
δ ≥ 0, that cost is smaller than the cost to the principal of implementing (e∗1, e∗2(f), e∗2(s))
under revelation.

Note that the proof of Proposition 5 can be readily adapted to prove the following

Proposition 6 Suppose the principal wants to implement an effort of e1 in the first period
and an expected effort of E2 in the second period. This can be done at lower cost when
information is not revealed to the agent.
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4.3 The Optimum Under Revelation

The analysis of the comparison of the two scenarios has not explored the characteristics of
the optimal scheme in the revelation scenario. We shall now describe some properties of the
optimal incentive scheme in this scenario

Proposition 7 Suppose the principal wants to implement an effort of e1 > 0 in the first
period and an expected effort of E2 in the second period. Then, for any e1 ∈ (0, 1), the
compensation scheme that minimizes the principal’s expected cost induces the agent to exert
a strictly positive effort after a faliure, but to work even harder after a success: e2(s) >
e2(f) > 0.

Proof: Given an incentive scheme described by w(s, s), w (s, f) and w(f, s), the agent’s sec-
ond period effort choices satisfy:

w(s, s)−w(s, f) = c0(e2(s)) and w(f, s) = c0(e2(f)),

so the utility of the agent conditional on a success can be written as

u(s) = w(s, f) + c0(e2(s))e2(s)− c(e2(s)) (17)

and conditional on failure

u(f) = c0(e2(f))e2(f)− c(e2(f)) (18)
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The agent’s first period effort satisfies u(s)−u(f) = c0(e1). For any effort triple (e1, e2(s), e2(f))
the principal chooses to induce, the necessary wage payments are determined by the equations
above.

The principal’s objective is to minimize expected wage paymentssubject to inducing a
period 1 effort e1 and period 2 expected effort E2 = e1e2(s) + (1− e1)e2(f). The principal’s
expected total cost is

The total cost to the principal is

TC = U + c(e1) +E(c(e2))

where U = e1u(s) + (1 − e1)u(f) and E(c(e2) = e1c(e2(s)) + (1 − e1)c(e2(f)). TC can be
rewritten as

TC = e1c
0(e1) + u(f) +E(c(e2))

= e1c
0(e1) + c0(e2(s))e2(s) + e1(c(e2(s))− c(e2(f))) (19)

using the agent’s first order conditions above as well as expression 18. The principal
chooses e2(s) and e2(f) to minimize TC subject to e1e2(s) + (1− e1)e2(f) = E2. Using this
constraint to substitute for e2(s) in TC and differentiating with respect to e2(f) yields the
first-order condition

c00(e2(f))e2(f) + (1− e1)(c0(e2(f))− c0(e2(s)) = 0 (20)

This implies that e2(s) > e2(f) since c00 > 0.
Moreover, since at e2(f) = 0 the left hand side of equation 20is strictly negative, it follows

that 0 < e2(f) < e2(s).

Proposition 7 shows that in the revelation scenario, the principal will choose to distort
the effort of the agent in the second period away from what would be optimal in the absence
of moral hazard. Specifically, the agent is induced to work harder after a success than
after a failure despite the fact that this variation in effort per se raises the agent’s ecpected
effort costs. This distortion is optimal because it makes it cheaper for the principal to
provide incentives for effort in the first period: The marginal reward to e1 is u(s)− u(f) =
w(s, f)+[c0(e2(s))e2(s)−c(e2(s))]−[c0(e2(f))e2(f)−c(e2(f))], so for any e1, the larger the gap
between e2(s) and e2(f), the smaller the value of w(s, f) required to make u(s)−u(f) = c0(e1).

An implication of Proposition 7 is that the probability of success is positively correlated
across periods.

If the principal wants to implement a total expected effort of E and does not care di-
rectly about how the agent allocates his effort across periods, then we can show that, at the
optimum, 0 < e2(f) < e1 < e2(s).
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Proposition 8 Suppose the principal wants to implement a total expected effort of E =

e1 + e1e2(s) + (1− e1)e2(f). Then, the compensation scheme that minimizes the principal’s
expected cost induces the agent to choose efforts satisfying 0 < e2(f) < e1 < e2(s)

Proof: By Proposition 7, we already know that 0 < e2(f) < e2(s). We first show that
e1 > e2(f). The principal chooses e1, e2(s), and e2(f) to minimize expression 19 subject to
e1 + e1e2(s) + (1 − e1)e2(f) = E. Using this constraint to substitute for e2(s) in 19 and
differentiating with respect to e1 yields the following first-order condition

c0(e1) + c00(e1)e1 − c0(e2(s))(1 + e2(s)− e2(f)) + (c(e2(s))− c(e2(f))) = 0. (21)

The first-order condition with respect to e2(f) is the same as when e1 is exogenously
given, namely equation 20. Subtracting 20 from 21 yields

c0(e1) + c00(e1)e1 − (c0(e2(f)) + c00(e2(f))e2(f)))
= c0(e2(s))(e2(s)− e2(f))− (c(e2(s))− c(e2(f))) + e1(c0(e2(s))− c0(e2(f))) > 0

because e2(s) > e2(f) and c is strictly convex. Since c0(e) + c00(e)e is strictly increasing if
c000 ≥ 0, it follows that e1 > e2(f). Furthermore, it follows from 0 < e2(s)−e2(f) < 1, c000 ≥ 0,
and equation 21 that

2c0(e1) < c0(e1) + c00(e1)e1 = c0(e2(s))(1 + e2(s)− e2(f))− (c(e2(s))− c(e2(f))) < 2c0(e2(s))

and therefore, since c is strictly convex, e1 < e2(s).

4.4 Ability

We now add to the model a component of ability. Agents can be more or less able. Ability
translates into higher value of effort to the principal: effort exerted by a more able agent is
more valuable to the principal. Formally, the value to the principal of effort e from agent of
ability a is given by the function v (e, a) which is increasing in a. In this formulation, a good
agent is not more likely than a bad agent to succeed, nor is his effort cheaper.

After the first period effort has been exerted, the principal draws a signal that is infor-
mative about the agent’s ability. This signal is separate from and independent of the signal
about effort, which as before is thought of as success or failure.

As before, we allow the contract to be conditional on the agent’s revealed ability. The
question for the principal is whether, in this new scenario, there should be interim evaluations.
If so, what kind of evaluation should this be, i.e., should it reveal to the agent how well his
effort turned out and/or reveal the signal about his ability?

We show that, while an the interim evaluation is generally preferable to no interim eval-
uation, the subject of the evaluation should be the ability of the candidate, not how well

17



his or her effort turned out. Formally, we show that revealing how the effort turned out is
dominated by not revealing.

To this end, we first study the case in which ability is revealed but effort is not. We
examine the case in which the agent is rewarded only for two successes.

Proposition 9 Suppose the principal give an interim evaluation that only reveals the agent’s
ability a but not whether the agent succeeded or failed in the first period. Suppose further that
the agent is rewarded only for two successes. Then the cost of implementing any imple-
mentable plan e∗1,e∗2 is R (e∗1) = Ea [R (e∗2 (a))].

Remark 1 By the equality, and since R is convex, we obtain e∗1 ≥ Ea [e
∗
2 (a)]. Thus, the

agent’s expected effort (though not necessarily its value to the principal) is greater in the first
period.

Proof of the Proposition
Denote with γ (a) the reward for two successes that implements e∗1, e∗2 (a). Notice that

this reward depends on the ability of the agent as revealed by the signal a. Given this system
of rewards, the agent’s utility from taking plan e1, e2 (a) is

U (e1, e2) = Ea [e1 · e2 (a) · γ (a)− c (e2 (a))]− c (e1)
Write

U (e∗1,e
∗
2) = U (0,e∗2) +

Z e∗1

0

∂U (e1, e∗2)
∂e1

de1

= Ea [−c (e∗2 (a))] +
Z e∗1

0

£
c0 (e∗1)− c0 (e1)

¤
de1.

Adding the expected cost of effort yields the cost to the principal of implementing the action
plan, which equals R (e∗1). Conversely, write

U (e∗1, e
∗
2) = U (e∗1,0) +Ea

(Z e∗2(a)

0

£
c0 (e∗2 (a))− c0 (e2 (a))

¤
de2 (a)

)

= −c (e∗1) +Ea
(Z e∗2(a)

0

£
c0 (e∗2 (a))− c0 (e2 (a))

¤
de2 (a)

)
.

Adding the expected cost of effort yields the cost to the principal of implementing the action
plan, which equals Ea [R (e∗2 (a))].

Proposition 10 Suppose the principal give an interim evaluation that only reveals the agent’s
ability a but not whether the agent succeeded or failed in the first period. Then it is optimal
for the principal to reward the agent only for two successes.
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Proof of the Proposition
Consider any action plan ee∗1,ee∗2 that can be implemented by rewarding more outcomes

than just two successes, and denote the agent’s utility by

U (ee∗1,ee∗2) = eαee∗1 − c (ee∗1) +Ea heβ (a) · ee∗2 (a)− c (ee∗2 (a))i+Ea [eγ (a) · ee∗1 · ee∗2 (a)] .
Performing the usual transformations yields

U (ee∗1,ee∗2) = eαee∗1 +Ea [R (ee∗2 (a))] = Ea heβ (a) · ee∗2 (a)i+R (ee∗1) .
Now we construct e∗1,e∗2, an action plan that is implementable by rewarding only two successes
and has greater or equal expected value as ee∗1,ee∗2. Start from a reward scheme that only
rewards two successes and in which the vector γ (a) is chosen so that the resulting vector of
second period efforts ee∗2. Now, look at the resulting first period effort level. Two scenarios
are possible. Either the first period effort is larger or equal than ee∗1, in which case we denote
the resulting action plan by e∗1,e∗2. The action plan e∗1,e∗2 gives the agent greater expected
value than ee∗1,ee∗2 and, by Proposition 9, costs Ea [R (e∗2 (a))] = Ea [R (ee∗2 (a))]. This cost is no
greater than what it costs to implement ee∗1,ee∗2, which proves our claim that it is optimal for
the principal to reward the agent only for two successes.

In the second scenario, the first period effort associated with the reward scheme γ is
smaller than ee∗1. This means that the expected value to the principal under scheme γ is
smaller than the expected value of ee∗1,ee∗2. Then, increase the vector γ along all its components,
and keep doing this until the resulting expected value of the effort taken by the agent equals
the expected value of ee∗1,ee∗2. Denote the resulting effort levels by e∗1,e∗2. Notice that since
by construction e∗2 (a) > ee∗2 (a) for all a, therefore e∗1 < ee∗1. But then the expected cost of
implementing e∗1, e∗2 which, by Proposition 9, equals R (e∗1), is smaller than R (ee∗1) and thus
smaller than the cost of implementing ee∗1,ee∗2.

Now we want to show that, assuming that the principal reveals the agent’s ability in the
interim evaluation, then a given expected value of effort can be more cheaply implemented
by not disclosing in the interim evaluation whether the first period effort resulted in success
or failure.

Proposition 11 Given any action plan e∗R1 ,e∗2(f),e∗2(s) that is implementable with revela-
tion of success, there is plan e∗1, e∗2 that is implementable under no revelation and gives the
principal an expected value at least as large.

Proof of Proposition
Write

U
¡
eR1 , e2(f),e2(s)

¢
= δeR1 − c (e1) +

¡
1− eR1

¢
Ea [e2 (f, a) ζ (a)− c (e2 (f, a))]

+eR1 Ea [e2 (s, a) θ (a)− c (e2 (s, a))] .
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Denote e∗2 =
¡
1− e∗R1

¢
e∗2(f)+e∗R1 e∗2(s) as the ability-indexed vector of expected efforts in

period 2 in the case of revelation. Pick the vector γ (a) so that the second period effort vector
in the case of no revelation equals e∗2. Then, look at the corresponding first period effort in
the case of no revelation, e1. If the resulting value of effort to the principal is greater with
no revelation than with revelation, then the resulting allocation in the no revelation case is
our candidate plan e∗1,e∗2. We call this configuration Case A.

If, instead, the the resulting value of effort to the principal is smaller with no revelation
than with revelation (which must mean that e1 < e∗R1 ), then increase all the components
of the vector γ (a) until the resulting value of effort to the principal is with no revelation
equals that with revelation. The resulting vector of effort in the no-revelation case is our
candidate plan e∗1,e∗2. Note that by construction in this case we have e∗1 < e∗R1 . We call this
configuration Case B.

Case A.
Write

U
¡
e∗R1 , e

∗F
2 , e

∗S
2

¢
= U

¡
e∗R1 ,0,0

¢
+
¡
1− e∗R1

¢
Ea

"Z e∗2(f,a)

0

£
c0 (e∗2 (f, a))− c0 (e2 (f, a))

¤
de2 (f, a)

#

+e∗R1 Ea

"Z e∗S2 (a)

0

£
c0 (e∗2 (s, a))− c0 (e2 (s, a))

¤
de2 (s, a)

#

= δe∗R1 − c ¡e∗R1 ¢+ ¡1− e∗R1 ¢Ea
"Z e∗2(f,a)

0

£
c0 (e∗2 (f, a))− c0 (e2 (f, a))

¤
de2 (f, a)

#

+e∗R1 Ea

"Z e∗2(s,a)

0

£
c0 (e∗2 (s, a))− c0 (e2 (s, a))

¤
de2 (s, a)

#
.

Adding the cost of effort yields the cost to the principal of implementing e∗R1 ,e∗2(f),e∗2(s),
which is

δe∗R1 +
¡
1− e∗R1

¢
Ea [R (e

∗
2 (f, a))] + e

∗R
1 Ea [R (e

∗
2 (s, a))] .

Because R is convex, this is greater than

δe∗R1 +Ea
£
R
¡¡
1− e∗R1

¢
e∗2 (f, a) + e

∗R
1 e

∗
2 (s, a)

¢¤
= δe∗R1 +Ea [R (e

∗
2 (a))] .

This is not smaller than Ea [R (e∗2 (a))], the cost of implementing the plan e∗1,e∗2 under no
revelation. Since that plan gives the principal an expected value of effort at least as large as
that in the revelation case, we have proved our claim.

Case B.
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Write

U
¡
e∗R1 , e

∗
2(f),e

∗
2(s)

¢
= U (0, e∗2(f), e

∗
2(s)) +

Z e∗R1

0

£
c0
¡
e∗R1
¢− c0 ¡eR1 ¢¤ deR1

= Ea [e
∗
2 (f, a) ζ (a)− c (e∗2 (f, a))] +

Z e∗R1

0

£
c0
¡
e∗R1
¢− c0 ¡eR1 ¢¤ deR1 .

The first term is nonnegative by individual rationality. Adding the cost of effort, which is
at least c

¡
e∗R1
¢
, yields the cost to the principal of implementing e∗R1 , e∗2(f), e∗2(s), which is

therefore not smaller than Z e∗R1

0

£
c0
¡
e∗R1
¢¤
deR1 = R

¡
e∗R1
¢
.

Since by construction we have e∗1 < e∗R1 , this quantity is strictly greater than R (e∗1), which
is the cost to the principal of implementing the plan e∗1, e∗2 under no revelation. Since that
plan gives the principal an expected value of effort at least as large as that in the revelation
case, we have proved our claim.

Example 1 The Value of Interim Evaluations. Suppose that ability a can be 0 or 2, with
equal probability. Suppose further that v (e, a) = e · a. In the absence of interim evaluations
about ability (we have shown already that interim evaluations about effort are suboptimal),
whatever incentive scheme the principal offers that is a function of a will be perceived as its
expected value by the agent. Thus, the agent’s effort will not depend on information about his
ability and the situation is like that in Proposition 3. So, the optimal plan for the principal is
to implement the same effort in both periods, call it e∗, e∗. The expected value of this effort
in the first period is e∗, in the second period is 1

2 · 2e∗ + 1
2 · 0 = e∗, so the expected value in

total is 2e∗ and that is achieved at cost R (e∗).
Suppose now that the principal implements the following effort scheme with revelation of

ability (but not of effort). The principal will pay the able agent γ in case of two successes,
and zero otherwise. The unable agent receives zero in any case. It is clear that an agent who
learns that he is unable will exert no effort in the second period. So, letting be2 denote the
agent’s effort in the second period, the agent solves

maxbe1,be2 be112 (be2γ − c (be2))− c (be1)
The resulting value of effort is be1 + be2. Pick γ so that be1 + be2 equals 2e∗. The cost of
implementing be1 + be2 is, by Proposition 9, R (be1). So, if we are able to show that be1 ≤ be2
then it follows that be1 ≤ e∗ and so it is cheaper to implement be1+be2 with revelation of ability
rather than e∗, e∗ without revelation. To verify that be1 ≤ be2 inspect the first order conditions
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that determine be1 and be2,
1

2
[be2γ − c (be2)] = c0 (be1)

γ = c0 (be2) .
Since be2 ≤ 1 then 1

2 [be2γ − c (be2)] < γ, which implies that be1 < be2.
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