
Increasing Interdependence

of Multivariate Distributions

Margaret Meyer Bruno Strulovici∗

September 13, 2011

forthcoming in the Journal of Economic Theory Symposium on Inequality and Risk

Abstract

Orderings of interdependence are useful in many economic contexts: in assessing ex post

inequality under uncertainty; in comparing multidimensional inequality; in valuing portfolios of

assets or insurance policies; and in assessing systemic risk. We explore five orderings of interde-

pendence for multivariate distributions: greater weak association, the supermodular ordering,

the convex-modular ordering, the dispersion ordering, and the concordance ordering. For two

dimensions, all five are equivalent, whereas for three dimensions, the first four are strictly ranked

and the last two are equivalent, and for four or more dimensions, all five are strictly ranked. For

the special case of binary random variables, we establish some equivalences among the orderings.
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1 Introduction

1.1 Motivation

In many economic contexts, it is of interest to know whether one set of random variables displays

a greater degree of interdependence than another. This paper explores several orderings of interde-

pendence for multivariate distributions and establishes the relationships among the orderings, both

in general as well as in the important special case when all random variables are binary.

Orderings of interdependence are applicable in several welfare-economic contexts. In many group

settings where individual outcomes (e.g. rewards) are uncertain, members of the group may be

concerned, ex ante, about how unequal their ex post rewards will be (Meyer and Mookherjee [40];

Ben-Porath et al [9]; Gajdos and Maurin [26]; Adler and Sanchirico [2]; Chew and Sagi [17]).

(This concern is distinct from concerns about the mean level of rewards and about their riskiness.)

Comparisons of reward schemes then require comparisons of the degree of interdependence of the

random rewards.

Another welfare-economic application concerns comparisons of inequality when individual-level

data are available on multiple attributes such as income, health, and education (Atkinson and

Bourguignon [6]; Bourguignon and Chakravarty [11]; Atkinson [5]). As long as the function aggre-

gating the different attributes into an overall measure of welfare or deprivation for individuals is not

additively separable across attributes, comparisons of multidimensional inequality will necessitate

comparisons of the degree of interdependence among the attributes.1

Interdependence orderings are also useful for comparing the efficiency of matching mechanisms. In

many matching contexts, perfectly assortative matching would be efficient and would correspond to

a “perfectly positively dependent” joint distribution of the random variables representing quality

in each category (dimension). When, however, matches are formed based only on noisy or coarse

information (McAfee [38]), or when search is costly (Shimer and Smith [51]), or when signaling

is constrained by borrowing constraints (Fernandez and Gali [25]), perfectly assortative matching

will generally not arise. Fernandez and Gali [25] and Meyer and Rothschild [41] apply bivariate

dependence orderings to compare the performance of different matching institutions.2

1There are important formal differences between these two welfare-economic applications. In the former applica-

tion, the number of dimensions represents the number of individuals in the group, whereas in the latter, the number

of dimensions represents the number of attributes.
2In a related application, Prat [47] explores how the composition of employee teams affects interdependence in

(ex ante random) decisions of team members and shows how properties of the production function translate into
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Orderings of interdependence can also be applied to compare the degree of alignment in the pref-

erences of members of decision-making groups (Boland and Proschan [10]; Baldiga and Green [7]).

Relatedly, in a strategic model of consensus building within a committee, Caillaud and Tirole [13]

study how the degree of interdependence of members’ ex ante uncertain payoffs from a proposal

affects the proposer’s optimal persuasion strategy.

In theoretical or experimental studies of information transmission in networks (Calvo-Armengol

and Jackson [14], Choi, Gale, and Kariv [19]), interdependence orderings can be used to assess how

the degree of concordance of individuals’ ex ante uncertain actions or outcomes varies with time

and with social structure, as represented by the network.

Finally, in finance and insurance, valuing portfolios of assets or insurance policies requires assessing

the degree of interdependence among asset returns or insurance claims (Müller and Stoyan [46];

Denuit et al [21]). Financial economists and macroeconomists are, moreover, increasingly interested

in measures and comparisons of systemic risk in financial and economic systems that reflect the

interdependence in the returns of different financial institutions or sectors (Acharya [1]; Allen,

Babus, and Carletti [3]; Beale et al [8]; Hennessy and Lapan [30]).

For the special case of bivariate distributions, economists and statisticians have shown that two

intuitive concepts of greater interdependence are in fact equivalent. Suppose we are comparing

the degree of interdependence between (Y1, Y2) with that between (X1, X2), where for each i, Yi

and Xi have the same marginal distribution. The first concept is lower orthant dominance. Lower

orthant dominance of Y over X requires that for all points in the support of the random vectors

Y and X, the cumulative distribution function (cdf) of Y be at least as large as the cdf of X:

this captures the requirement that the components of Y are more likely than those of X to both

be “low” together, for any thresholds determining the precise meaning of “low”.3 The second

concept of greater interdependence is supermodular dominance, which requires that Ew(Y ) be at

least as large as Ew(X) for all objective functions w that are supermodular. Supermodularity (see

Topkis [53] and Section 2.3) is a natural property of an objective function to capture a preference

for interdependence, since its arguments are complements, not substitutes: For a supermodular

function (of two or more arguments), the effect of an increase in the value of any argument is

larger, the larger are the values of the other arguments. It has been shown, in the economics

literature by Levy and Parousch [37], Epstein and Tanny [23], and Atkinson and Bourguignon

[6] and in the statistics literature by Tchen [52], that for two-dimensional random vectors with

preferences over team composition.
3Given the assumption of identical marginal distributions, lower orthant dominance is equivalent to upper orthant

dominance, which requires that the components of Y be more likely than those of X to both be “high” together.
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identical marginals, lower-orthant dominance of Y over X is equivalent to Ew(Y ) ≥ Ew(X) for all

supermodular functions w.

Economists have, nevertheless, made very little progress in the development of orderings for com-

paring interdependence in multivariate, as opposed to bivariate, distributions. Given the wide

variety of applications for such orderings in both theoretical and empirical work, this is disappoint-

ing and may seem, at first glance, surprising. However, as we now argue, the n-dimensional case is

substantially more difficult than the 2-dimensional case, for several reasons.

First, whereas positive and negative interdependence are “mirror images” of each other in two

dimensions, this symmetry breaks down for more than two dimensions. In two dimensions, for

any plausible concept of positive dependence, if Y1 and Y2 are positively dependent, then −Y1

and Y2 are negatively dependent. Moreover, for Y1 and Y2 with identical uniform marginals on

[0, 1], perfect positive dependence corresponds to Y2 = Y1, while perfect negative dependence

corresponds to Y2 = 1 − Y1. For more than two dimensions, however, there is in general no

simple way to convert a positively interdependent random vector (Y1, Y2, . . . , Yn) into a negatively

interdependent one. And even for {Yi}n
i=1 with identical uniform marginals on [0, 1], while Y1 =

Y2 = · · · = Yn represents perfect positive dependence, there is no obvious definition of perfect

negative dependence.4 Since multivariate concepts of greater and lesser interdependence should be

applicable to distributions displaying either positive or negative dependence, the lack of symmetry

between positive and negative dependence in n > 2 dimensions complicates the development of

orderings.5

Second, for n > 2 dimensions, there are more distinct notions of greater interdependence than

there are for n = 2. Section 2 below presents five dependence orderings and shows that, whereas

for n = 2, all five are equivalent, for n = 3, four are strictly ranked and only two are equivalent,

and for n > 3, all five are strictly ranked. Thus, the selection of orderings of interdependence is

more complicated for multivariate distributions than for bivariate ones.

Finally, even for a given ordering of greater interdependence, determining whether two multivariate
4For the set of all distribution functions with given marginals F1, F2, . . . , Fn, there exist upper and lower bounds

for the distribution function, termed Fréchet bounds. The upper Fréchet bound is the natural candidate for the

distribution exhibiting maximal positive dependence. However, while the lower Fréchet bound might seem like a

natural candidate for the distribution displaying maximal negative dependence, the lower Fréchet bound is not in

fact a proper distribution function except in very special cases (which do not include the uniform example described

in the text). See Joe [36] and Müller and Stoyan [46] for more details.
5Unfortunately, this lack of symmetry between positive and negative dependence for more than two dimensions is

not always recognized. See, for example, the discussion in Galeotti et al [27, fn. 12].

4



distributions can be ranked according to it may be more difficult than for bivariate distributions.

For n = 2, checking lower orthant dominance is straightforward: it requires comparing the cdf’s

at every point in the support. For n > 2, some of the dependence orderings we study below can

be implemented in an analogous fashion, by checking a given set of inequalities for each point in

the support. However, for others, there exists no set of criteria that can be applied pointwise; for

implementing these orderings, more sophisticated techniques or algorithms need to be developed.

1.2 Outline

Section 2 presents five orderings of greater interdependence for multivariate distributions. Three

of these have received some attention in the statistics and economics literatures, while two of them

are new.

We begin with an ordering inspired by the dependence concept of association, a concept proposed by

Esary, Proschan, and Walkup [24] and widely used in statistics.6 Since the definition of association

cannot be meaningfully reversed to yield a concept of negative association, we turn to the concept of

weak association (defined by Burton, Dabrowski, and Dehling [12]) and use it to define the ordering

we term greater weak association. A random vector (Y1, . . . , Yn) displays greater weak association

than a random vector (X1, . . . , Xn) if Y and X have identical marginals and, for all disjoint subsets

A,B of {1, . . . , n} and nondecreasing functions r, s, Cov(r(Yi, i ∈ A), s(Yj , j ∈ B)) ≥ Cov(r(Xi, i ∈
A), s(Xj , j ∈ B)).

We then present the (multivariate) supermodular ordering, which is the natural multivariate gen-

eralization of the concept of supermodular dominance discussed above for bivariate distributions.

Meyer and Mookherjee [40] and Meyer [39] contain early proposals to use it as a multivariate

dependence ordering, in the context of comparisons of ex post inequality under uncertainty. In

the statistical literature, the multivariate supermodular ordering was formalized by Shaked and

Shanthikumar [49].

In Section 2.4, we introduce a new dependence ordering, the convex-modular ordering. Greater

interdependence for Y than for X according to the convex-modular ordering corresponds to greater
6Association, though a strong concept of dependence, is strictly weaker than affiliation, which is familiar to

economists from the work of Milgrom and Weber [44], who used it to formalize positive interdependence among

bidders’ valuations in auctions. De Castro [16] also notes that affiliation is strictly stronger than many other concepts

of positive dependence. Though association has not been widely used in economics, in a pair of recent papers Calvo-

Armengol and Jackson [14, respectively 15] show that the employment statuses (respectively, wages) of individuals

connected by a social network are positively dependent in the sense of association.
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riskiness, in the sense of Rothschild and Stiglitz [48], of any aggregate
∑n

i=1 ri(Yi) compared to∑n
i=1 ri(Xi), for any choice of {ri}n

i=1 nondecreasing. Convex-modular objective functions are a

natural way of capturing insurance companies’ preferences over the degree of dependence in the

claims they face.

Section 2.5 introduces another new dependence ordering, the dispersion ordering. The dispersion

ordering is motivated by the idea that interdependence in random vectors can be compared by

comparing the dispersion of the cdf’s of their order statistics, with lower dispersion (assessed

using the majorization ordering of vectors7) representing greater interdependence. We show that

greater interdependence for Y than for X according to the dispersion ordering corresponds to

greater riskiness, in the sense of Rothschild and Stiglitz [48], of the summary statistic
∑n

i=1 I{Yi>si}

compared to
∑n

i=1 I{Xi>si}, for any point (s1, . . . , sn) in the support (where I is the indicator

function). A natural application of the dispersion ordering is to the assessment of systemic risk in

financial systems, where systemic risk is greater the more “positively correlated” are bank failures

and where the summary statistic
∑n

i=1 I{Yi>si} represents the number of banks that would be

solvent if bank i’s failure threshold were si.

Finally, we present the concordance ordering, which was formalized for multivariate distributions

by Joe [35] and which combines the requirement of lower-orthant dominance with that of upper-

orthant dominance.8 The dispersion and concordance orderings share an important advantage

relative to the other three orderings, namely that they are checkable pointwise.

Section 3 presents our main results, which establish the relationships among the five orderings just

described. Theorem 1 shows that for two dimensions, all five orderings are equivalent. Theorem 2,

on the other hand, shows that i) for three dimensions, the first four orderings presented are strictly

ranked, and the dispersion and concordance orderings are equivalent, while ii) for four or more

dimensions, all five orderings are strictly ranked.

Section 4 focuses on binary random variables. Binary random variables, besides being common in

theoretical, experimental, and empirical applications, also help to illuminate the structure of and

relationships among the dependence orderings. We study a variety of special cases with binary

random variables, highlighting equivalences among the orderings in these cases. We offer a brief

conclusion in Section 5.
7See Hardy, Littlewood, and Pólya [29].
8With more than two dimensions, even if Y and X have identical marginals, upper-orthant and lower-orthant

dominance are no longer equivalent.
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2 Orderings of Greater Interdependence

2.1 Preliminaries

We consider multivariate distributions with the same number, n, of variables and identical, finite

support. Focusing on finite supports simplifies notation, avoids some uninteresting technical issues,

and clarifies the underlying structure of the orderings and the relationships between them.

Formally, let Li denote the finite, totally ordered set of values taken by the ith random variable,

and let L denote the Cartesian product of the Li’s. Li is a finite subset of R, and L is a finite

lattice of Rn with the following partial order: z ≤ v if and only if zi ≤ vi for all i ∈ N = {1, . . . , n}.
If li denotes the cardinality of Li, then L has d =

∏n
i=1 li elements.

As argued by Joe [36, p. 39], a natural desideratum for an ordering of interdependence is invariance

to monotonic relabelings of the elements of the support for each component. Formally, we say that

the ordering �O is invariant to monotonic relabelings of coordinates if

(Y1, . . . , Yn) �O (X1, . . . , Xn) =⇒ (r1(Y1), . . . , rn(Yn)) �O (r1(X1), . . . , rn(Xn)) (1)

whenever ri : R → R, i ∈ {1, . . . , n}, are all nondecreasing. This invariance property captures the

idea that dependence orderings should be ordinal in that they should compare the extent to which

higher (respectively, lower) realizations in one dimension are accompanied by higher (respectively,

lower) realizations in other dimensions, regardless of the cardinal scales used for each dimension.

An example of monotonic relabeling of coordinates is a componentwise coarsening of the support,

in which some adjacent elements in the support of each component are combined. For example,

starting with the lattice L = {0, 1, 2}n, the nondecreasing transformations ri with, for all i, ri(0) = 0

and ri(1) = ri(2) = 1 coarsen the lattice to {0, 1}n by combining the realizations {1, 2} in each

dimension.

All of the interdependence orderings we consider will be invariant to monotonic relabelings of

coordinates, as defined in (1). This is straightforward to confirm from their formal definitions

below. Consistent with our definition of invariance in (1), in the formal definitions of the orderings,

when we consider monotonic functions, we allow these functions to be nondecreasing rather than

requiring them to be increasing. None of our results is affected by this choice, but proofs are

simplified by the ability to use nondecreasing indicator functions (denoted by I).

While all of our interdependence orderings satisfy the invariance property in (1), some widely used

orderings, such as the (bivariate) linear correlation coefficient, fail to satisfy this invariance and, a
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fortiori, are not invariant to a coarsening of the support. A higher value of the linear correlation

coefficient for one bivariate empirical distribution than another is therefore not a robust indicator of

greater dependence in the former distribution, since the ranking might be reversed by aggregation

of the data. To see this, for L = {l, m, h}2, where l < m < h, let (Y1, Y2) have distribution

g, where g(l,m) = g(m, l) = g(m,m) = g(h, h) = 1
4 , and let (X1, X2) have distribution f , where

f(l, l) = f(m, m) = f(m,h) = f(h, m) = 1
4 . Then corr(Y1, Y2) > (<) corr(X1, X2) if (l+h)

2 > (<) m.

This in turn implies that if the support L is coarsened by combining the realizations l and m in

each dimension, then corr(Y1, Y2) > corr(X1, X2), while if instead m and h are combined, then

corr(Y1, Y2) < corr(X1, X2).

Given that the orderings we consider below all satisfy the invariance property in (1), it is without

loss of generality, and convenient notationally, to assume henceforth that the sets Li of values taken

by the ith random variable each have the form {0, 1, . . . , li − 1}.

The lattice structure of the support L and its corresponding order are useful for comparing distri-

butions. One may label the d elements (or “nodes”) of L and view real functions on L as vectors of

Rd, where each coordinate of the vector corresponds to the value of the function at a specific node

of L. Similarly, a multivariate distribution whose support is L can be represented as an element

of the unit simplex ∆d of Rd. For any function w : L → R and distribution f ∈ ∆d, the expected

value of w given f is then the scalar product of w with f , seen as vectors of Rd:

E[w|f ] =
∑
z∈L

w(z)f(z) = w · f,

where · denotes the scalar product of w and f in Rd.

Suppose the random vectors Y and X have distributions g and f , respectively, and the former

distribution dominates the latter according to some ordering “O”. We will use the phrases “Y

dominates X according to the ordering O” and “g dominates f according to the ordering O”

interchangeably, and we denote the former by Y �O X and the latter by g �O f .

Given two distributions g and f on L, define the difference between them by

δ ≡ g − f. (2)

Most (though not all) of the orderings we consider are difference-based orderings, in that whether

or not two distributions g and f satisfy the ordering depends only on the corresponding δ. We will

frequently exploit this convenient property of difference-based orderings.9

9Some of the orderings of interdependence considered in this paper can be modified so they are responsive not
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2.2 Greater Weak Association

We begin with an ordering of greater interdependence that is inspired by the dependence concept

of association. Esary, Proschan, and Walkup [24] defined association as follows:

Definition 1 (Association) A random vector Y with support L is associated if for all nonde-

creasing functions r, s : L → R, Cov(r(Y ), s(Y )) ≥ 0.

A concept of negative association defined by reversing the inequality in the definition above would

be uninteresting: Y could only be negatively associated in this strong sense if it were constant (to

see this, consider functions r = s). This is an important motivation for studying a less stringent

concept, weak association, defined by Burton, Dabrowski, and Dehling [12], along with its negative

counterpart, negative association, defined by Joag-Dev and Proschan [34]. In contrast to associa-

tion, which allows both r and s to depend on the entire vector Y , weak association and negative

association restrict them to depend on disjoint components of Y .10

Definition 2 (Weak Association and Negative Association) A random vector Y with support L =

×n
i=1Li is weakly associated (respectively, negatively associated) if for any pair (A,B) of

disjoint subsets of {1, . . . , n} and nondecreasing functions r : ×i∈ALi → R and s : ×j∈BLj → R,

Cov(r(Yi, i ∈ A), s(Yj , j ∈ B)) ≥ 0 (respectively, Cov(r(Yi, i ∈ A), s(Yj , j ∈ B)) ≤ 0).

We can now define an interdependence ordering corresponding to weak association and negative

association as follows.11

Definition 3 (Greater Weak Association) Y displays greater weak association than X, de-

noted Y �GWA X, if they have identical univariate marginal distributions and for all disjoint

subsets A,B of {1, . . . , n} and nondecreasing functions r : ×i∈ALi → R and s : ×j∈BLj → R,

Cov(r(Yi, i ∈ A), s(Yj , j ∈ B)) ≥ Cov(r(Xi, i ∈ A), s(Xj , j ∈ B)).

Note that Definition 3 assumes that the random vectors being compared have identical univariate

marginals; this is not an implication of the condition of greater covariance per se. In Section 3, we

only to the interdependence of the elements of a random vector but also to the levels of the elements. For clarity of

focus, we will not explicitly consider these modifications of the orderings or the relations between them.
10It is clear from the definitions that association is a stronger concept than weak association. Hu, Müller, and

Scarsini [31] have shown that it is strictly stronger, even for two dimensions.
11In the insurance literature, this ordering has been termed the correlation order— see Denuit et al. [21].
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show that for n ≥ 3, greater weak association is not a difference-based ordering, though Theorem

1 in Section 3 implies that for the special case of n = 2, it is.12

The greater weak association ordering has the desirable feature that (Y1, . . . , Yn) are weakly asso-

ciated if and only if Y displays greater weak association than its independent counterpart, defined

as the random vector X such that (X1, . . . Xn) are independent and, for each i, Xi and Yi have

the same distribution.13 It might seem tempting to define Y as displaying “greater association”

than X if Y and X have identical marginals and for all non-decreasing functions r and s defined

on L, Cov(r(Y ), s(Y )) ≥ Cov(r(X), s(X)). However, such a definition would have the unappealing

consequence that an associated random vector Y would not necessarily display greater association

than its independent counterpart.14

2.3 The Supermodular Ordering

For any z, v ∈ L, denote by z∧v the component-wise minimum of z and v, i.e., the element of L such

that for each i, (z∧v)i = min{zi, vi} ∈ Li. Let z∨v similarly denote the component-wise maximum

of z and v. A function w is said to be supermodular (on L) if w(z ∧ v) + w(z ∨ v) ≥ w(z) + w(v)

for all z, v ∈ L. Denote by ei the unit vector in the ith dimension. Supermodular functions are

characterized by the following property (see Topkis [53]):

w(z + ei + ej) + w(z) ≥ w(z + ei) + w(z + ej) (3)

for all i 6= j and z such that z + ei + ej ∈ L.15

Definition 4 (Supermodular Ordering) Let the random vectors Y and X have distributions g and

f , respectively. The distribution g dominates the distribution f according to the supermodular

ordering, written g �SPM f , if and only if E[w|g] ≥ E[w|f ] for all supermodular functions w.
12To verify the claim for n = 2 directly, note that the only non-trivial partition of {1, 2} into disjoint subsets

is {1}, {2}. Then given Definition 3’s requirement that Y and X have identical marginals, Cov(r(Y1), s(Y2)) −
Cov(r(X1), s(X2)) = E[r(Y1)s(Y2)]−E[r(X1)s(X2)], and the sign of the right-hand side depends only on the difference

between the distributions of Y and X.
13Similarly, (Y1, . . . , Yn) are negatively associated if and only if the independent counterpart of Y displays greater

weak association than Y .
14For the support {0, 1, 2}2, let Pr(Y1 = Y2 = 0) = Pr(Y1 = Y2 = 1) = Pr(Y1 = Y2 = 2) = 1

4
and Pr(Y1 = 0, Y2 =

2) = Pr(Y1 = 2, Y2 = 0) = 1
8
. Then it can be checked that Y is associated. However, consider the nondecreasing

functions r(Y1, Y2) = I{Y1≥1,Y2≥1} and s(Y1, Y2) = I{Y1=2 or Y2=2}. It is easy to confirm that Cov(r(Y1, Y2), s(Y1, Y2))

is strictly smaller for Y than for its independent counterpart.
15For functions w defined on Rn and twice differentiable, an equivalent characterization is: w is supermodular if

and only if ∂2w
∂zi∂zj

≥ 0 for all z ∈ Rn and all i 6= j.
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It is clear from the definition that the supermodular ordering is a difference-based ordering.

To see most clearly the appeal of the supermodular ordering as an ordering of greater interdepen-

dence, consider two distributions g and f such that, for some z ∈ L such that z + ei + ej ∈ L, the

difference δ ≡ g − f satisfies

δ(z) = δ(z + ei + ej) = −δ(z + ei) = −δ(z + ej) = α (4)

for some α > 0, and such that δ(v) = 0 for all other nodes v of L. In such a case, we say the

distribution g is obtained from f by an elementary transformation (ET) of size α on L which leaves

unchanged the probability of all nodes other than z, z + ei, z + ej , and z + ei + ej and which

raises the probability of nodes z and z + ei + ej by the common amount α, while reducing the

probability of nodes z + ei and z + ej by the same amount. Intuitively, such ETs increase the

degree of interdependence of a multivariate distribution, as for some pair of components i and j,

they make jointly high and jointly low realizations more likely, while making realizations where one

component is high and the other low less likely. Furthermore, they raise interdependence without

altering the marginal distribution of any component. From (3), a function w is supermodular if and

only if w · δ ≥ 0 for any δ of the form (4). Hence the class of supermodular functions is precisely

the class for which the expectation is raised by any ET as defined in (4).

Meyer and Strulovici [42] use duality methods to characterize the supermodular ordering and

develop several constructive methods to implement this characterization. In their characterization,

the elementary transformations defined above play a similar role to that of mean-preserving spreads

in Rothschild and Stiglitz [48] and Pigou-Dalton transfers in Atkinson [4] and Dasgupta, Sen, and

Starrett [20].16

If g �SPM f , then g and f have identical univariate marginal distributions. To see this, note

that for any i ∈ {1, . . . , n} and k ∈ Li, the functions w(z) = I{zi≥k} and w(z) = I{zi<k} are both

supermodular. Therefore g �SPM f implies that, for each i ∈ {1, . . . , n} and k ∈ Li,

0 ≤ E[w|g]− E[w|f ] =
∑

z: zi≥k

g(z)−
∑

z: zi≥k

f(z)

and 0 ≤ E[w|g]− E[w|f ] =
∑

z: zi<k

g(z)−
∑

z: zi<k

f(z), (5)

16Elementary transformations of bivariate distributions were also used by Epstein and Tanny [23] and Tchen [52]

to prove the equivalence, in two dimensions, of the supermodular and lower-orthant orderings for distributions with

identical marginals. Our definition of ETs in the text is more restrictive, as it requires that the four points affected

by the ET be adjacent points in the lattice; this more restrictive definition allows a much simpler proof of the two-

dimensional result and, more importantly, greatly facilitates the constructive methods for multivariate distributions

developed in Meyer and Strulovici [42].
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and these inequalities together imply that g and f have identical univariate marginal distributions.

2.3.1 The Symmetric Supermodular Ordering

In many contexts, it is natural to assume that the supermodular objective functions being used to

compare distributions are symmetric with respect to the components of the random vectors. For

example, when the function w is an ex post welfare function defined on the realized utilities of n

individuals, as in the assessment of ex post inequality under uncertainty, it is natural to assume

that welfare is invariant to permutations of a given n-vector of utilties over the individuals. We

now formally define the symmetric supermodular ordering.

Call a lattice L = ×n
i=1Li symmetric if Li = Lj for all i 6= j. Let θ denote a real function on

a symmetric lattice L. Depending on the context, θ can represent an objective function w or a

probability distribution f . We will say that the function θ is symmetric on L if θ(z) = θ(σ(z)) for

all z ∈ L and for all permutations σ(z) of z.

Definition 5 (Symmetric Supermodular Ordering) Let the random vectors Y and X have distri-

butions g and f , respectively, on a symmetric lattice. The distribution g dominates the distribution

f according to the symmetric supermodular ordering, written g �SSPM f , if and only if

E[w|g] ≥ E[w|f ] for all symmetric supermodular functions w.

For an arbitrary (not necessarily symmetric) function θ, the symmetrized version of θ, θsymm, is

defined as follows: for any z,

θsymm(z) =
1
n!

∑
σ∈Σ(n)

θ(σ(z)), (6)

where Σ(n) is the set of all permutations of {1, . . . , n}. Importantly, if w is a supermodular function,

then wsymm is supermodular. For a symmetric supermodular function w, let Wsymm(w) denote the

set of supermodular functions ŵ on L such that the symmetrized version of ŵ is w, i.e., ŵsymm = w.

Note that {Wsymm(w)} is a partition of the set of all supermodular functions on the symmetric

lattice L. We can now state the following useful result:

Proposition 1 Given a pair of distributions g, f defined on a symmetric lattice L, g �SSPM

f ⇐⇒ gsymm �SPM fsymm.

Proof. =⇒: If for all symmetric supermodular w, w·g ≥ w·f , then for all symmetric supermodular

w, w · gsymm ≥ w · fsymm. In turn, if for some symmetric supermodular w, w · gsymm ≥ w · fsymm,
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then ŵ · gsymm ≥ ŵ · fsymm for all ŵ ∈ Wsymm(w). Therefore, since {Wsymm(w)}w partitions the

set of all supermodular functions on L, w · gsymm ≥ w · fsymm for all symmetric supermodular w

implies that gsymm �SPM fsymm.

⇐=: If for all supermodular w, w·gsymm ≥ w·fsymm, then for all supermodular w, wsymm ·gsymm ≥
wsymm ·fsymm. This is equivalent to wsymm ·gsymm ≥ wsymm ·fsymm for all symmetric supermodular

wsymm. This in turn implies that for all symmetric supermodular wsymm, wsymm · g ≥ wsymm · f .

�

Proposition 1 states that one can characterize the symmetric supermodular ordering in terms of

the supermodular order applied to symmetrized distributions.

The symmetric supermodular ordering has a very simple form for random vectors for which each

component has a binary support {0, 1}, so the lattice is L = {0, 1}n. To state the result, first

define, for a random vector Y with support L = {0, 1}n,

c(Y ) ≡
n∑

i=1

I{Yi=1}.

The “count function” c(Y ) gives the number of components of Y for which the realization takes

the value 1. Now recall the definition of the univariate convex ordering.17

Definition 6 (Univariate Convex Ordering) For random variables Z and V with support S ⊆ R,

Z dominates V according to the convex ordering, written Z �CX V , if Ew(Z) ≥ Ew(V ) for all

convex functions w : S → R.

Since w(z) = z and w(z) = −z are both convex functions, Z �CX V implies EZ = EV . The

convex ordering is equivalent to the ordering of greater riskiness studied by Rothschild and Stiglitz

[48].

Proposition 2 For random vectors Y and X distributed on L = {0, 1}n, Y �SSPM X if and only

if c(Y ) �CX c(X).

Proof. Any symmetric function w defined on L = {0, 1}n can be written as

w(Y1, . . . , Yn) = φ(c(Y1, . . . , Yn)), (7)
17We do not require the support S to be convex, since we wish to apply the ordering to discrete random variables.

A function defined on S ⊂ R is convex if it can be extended to a convex function on R.
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for some function φ : {0, 1, . . . , n} → R. Furthermore, a symmetric function w on {0, 1}n is

supermodular if and only if the function φ(·) in (7) is convex. �

In Sections 2.4 and 2.5, we propose two new orderings of greater interdependence.

2.4 The Convex-Modular Ordering

In many contexts, the objective functions used to compare interdependence in multivariate distri-

butions have the form

w(z) = φ(r1(z1) + · · ·+ rn(zn)), with φ(·) convex and {ri(·)}n
i=1 nondecreasing.

We will term such functions convex-modular, as they take a convex transformation of a modular

(i.e. additively separable) aggregate,
∑n

i=1 ri(zi). Any convex-modular function is supermodular,

and therefore the expectation of any convex-modular function is not decreased by any elementary

transformation of the form defined in (4). The proof of Proposition 2 rested on the observation

that any symmetric supermodular function w defined on L = {0, 1}n is convex-modular, with∑n
i=1 ri(zi) =

∑n
i=1 I{zi=1}. Convex-modular functions arise naturally in an insurance context,

where Z represents a vector of losses incurred by individuals 1, . . . , n, all of whom are insured

by a given insurer, and where the insurance contract of individual i obliges the insurer to pay

compensation ri(Zi), which would take the form ri(Zi) = min{mi,max{(1− βi)(Zi − di), 0}} for a

policy with a deductible di, a copayment rate βi for the insured, and a compensation limit mi. The

total compensation paid out by the insurer is then
∑n

i=1 ri(Zi), and the insurer is concerned with

the riskiness of this total, so evaluates the cost of this payout using a convex objective function

φ.18 These observations motivate us to define the following difference-based ordering:

Definition 7 (Convex-Modular Ordering) Let the random vectors Y and X have distributions

g and f , respectively. The distribution g dominates the distribution f according to the convex-

modular ordering, written g �CXMOD f , if and only if E[w|g] ≥ E[w|f ] for all convex-modular

functions w.

This definition is equivalent to the requirement that E[w|g] ≥ E[w|f ] for all functions w that

are nonnegative weighted sums of convex-modular functions. It follows from the definition that

Y �CXMOD X if and only if, for all nondecreasing {ri}n
i=1,

∑n
i=1 ri(Yi) �CX

∑n
i=1 ri(Xi).

18See Denuit et al [21] for more details.
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Since w(z) = I{zi≥k} and w(z) = −I{zi≥k} are both convex-modular functions, it follows, from

the same logic as for the supermodular ordering, that Y �CXMOD X implies that Y and X have

identical marginals.

It is natural to define a symmetric counterpart of the convex-modular ordering. It is clear from our

definition in (6) of the symmetrized version of a function, that if w is a convex-modular function,

then wsymm is a nonnegative weighted sum of convex-modular functions. Let CM∗ denote the

set of nonnegative weighted sums of convex-modular functions (where the dependence on a given

L is implicit). It follows from the above observation that CM∗ is closed under symmetrization

(although the set of convex-modular functions itself is not). As a consequence, we define the

symmetric convex-modular ordering as follows:

Definition 8 (Symmetric Convex-Modular Ordering) Let the random vectors Y and X have distri-

butions g and f , respectively, on a symmetric lattice. The distribution g dominates the distribution

f according to the symmetric convex-modular ordering, written g �SCXMOD f , if and only

if E[w|g] ≥ E[w|f ] for all symmetric functions w ∈ CM∗.

As noted above, g �CXMOD f if and only if E[w|g] ≥ E[w|f ] for all w ∈ CM∗. Using this

equivalence, it is then straightforward to adapt the proof of Proposition 1 to show:

Proposition 3 Given a pair of distributions g, f defined on a symmetric lattice L, g �SCXMOD

f ⇐⇒ gsymm �CXMOD fsymm.

2.5 The Dispersion Ordering

Another notion of greater interdependence in Y than in X reflects the idea that the distribution

functions of the order statistics of Y should be “closer together” or less dispersed than the distri-

bution functions of the order statistics of X. To understand the link between dispersion of order

statistics and interdependence, suppose (Y1, Y2) and (X1, X2) both have symmetric distributions on

{0, 1}2, and that Pr(Yi = 1) = Pr(Xi = 1) = 1
2 . Let Y1 and Y2 be perfectly positively dependent:

the realizations (0, 0) and (1, 1) both have probability 1
2 . Let X1 and X2 be perfectly negatively

dependent: the realizations (0, 1) and (1, 0) both have probability 1
2 . For the order statistics of Y ,

min{Y1, Y2} and max{Y1, Y2}, Pr(min{Y1, Y2} = 0) = Pr(max{Y1, Y2} = 0) = 1
2 , so the two order

statistics have the same distribution. By contrast, for those of X, Pr(min{X1, X2} = 0) = 1 while

Pr(max{X1, X2} = 0) = 0, so the two order statistics have distributions as different as possible in

this context. The qualitative lesson of this example is that for the more dependent random vector
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Y , the distribution functions of the order statistics are more similar (less dispersed) than for X.

The majorization ordering of vectors can be used to formalize the notion of lower dispersion. A

vector a is said to be majorized by a vector b, written a ≺ b, if i) the components of the vectors

have the same total sum, and ii) for all k, the sum of the k largest entries of a is weakly smaller

than the sum of the k largest entries of b (see Hardy, Littlewood, and Pólya [29]). If a ≺ b, then

the components of a are less dispersed than the components of b.

Let Y(j) denote the jth order statistic of Y , i.e. the jth smallest value from (Y1, . . . , Yn), and define

X(j) similarly. Let FY(j)
and FX(j)

denote the c.d.f.’s of these order statistics. For random vectors

with symmetric distributions, Shaked and Tong [50] suggested the following dependence ordering.

Definition 9 (Symmetric Dispersion Ordering) For random vectors Y , X with symmetric dis-

tributions on a symmetric lattice L, the distribution of Y dominates that of X according to the

symmetric dispersion ordering, written Y �SDISP X, if the distribution functions of the order

statistics of Y are less dispersed than the distribution functions of the order statistics of X, that is,

(FY(1)
(b0), . . . , FY(n)

(b0)) ≺ (FX(1)
(b0), . . . , FX(n)

(b0)) ∀b = (b0, . . . , b0) ∈ L. (8)

We now reformulate this dependence ordering in a manner which suggests a new ordering which is

both stronger and naturally applicable to asymmetric distributions. Each vector b = (b0, . . . , b0) ∈
L can be seen as generating a (componentwise) binary coarsening of the support of the random

vector Y from L to {0, 1}n and a corresponding coarsened version of Y , Y b, such that Y b
i = 0 if

Yi ≤ b0 and Y b
i = 1 if Yi > b0. Let Y b

(j) denote the jth order statistic of Y b, i.e. the jth smallest value

from (Y b
1 , . . . , Y b

n ) ∈ {0, 1}n, and let FY b
(j)

denote the distribution function of this order statistic.

Then a condition equivalent to (8) is

(FY b
(1)

(0), . . . , FY b
(n)

(0)) ≺ (FXb
(1)

(0), . . . , FXb
(n)

(0)) ∀b = (b0, . . . , b0) ∈ L. (9)

For asymmetric multivariate distributions, there is no particular reason to confine attention to

binary coarsenings generated by vectors with equal components b = (b0, . . . , b0). We now propose a

new dependence ordering, which strengthens condition (9) by requiring that it hold for every vector

s = (s1, s2, . . . , sn) ∈ L.

For a random vector Y , define its (componentwise) binary coarsening corresponding to the vector

s ∈ L, Y s, by

Y s ≡ (Y s
1 , . . . , Y s

n ) ∈ {0, 1}n where Y s
i =

{
0 if Yi ≤ si

1 if Yi > si.

16



Let (Y s
(1), . . . , Y

s
(n)) ∈ {0, 1}n denote the vector of order statistics of Y s, that is, Y s

(j) equals the jth

smallest value from (Y s
1 , . . . , Y s

n ). Thus, Y s
(j) = 0 if there are at least j values of i ∈ {1, . . . , n} such

that Yi ≤ si. Let FY s
(j)

denote the distribution function of Y s
(j).

Definition 10 (Dispersion Ordering) For random vectors Y and X distributed on L, consider the

set of all binary coarsenings of Y and X, Y s and Xs, respectively, corresponding to some s ∈ L. The

distribution of Y dominates that of X according to the dispersion ordering, written Y �DISP X,

if for all s ∈ L, the distribution functions of the order statistics of Y s are less dispersed than the

distribution functions of the order statistics of Xs, that is,

(FY s
(1)

(0), . . . , FY s
(n)

(0)) ≺ (FXs
(1)

(0), . . . , FXs
(n)

(0)) ∀s ∈ L. (10)

The following proposition illuminates the appeal and convenience of the dispersion ordering19 by

presenting some equivalent formulations. To state it, we define, for any s ∈ L,

cs(Y s) =
n∑

i=1

I{Y s
i =1} =

n∑
i=1

I{Yi>si}, (11)

which counts the number of components of Y s that equal 1, or equivalently, the number of compo-

nents of Y that strictly exceed the corresponding component of s.

Proposition 4 The following three conditions are equivalent:

i) For Y, X with support L, Y �DISP X;

ii) For all s ∈ L, Y s �SSPM Xs.

iii) For all s ∈ L, cs(Y s) �CX cs(Xs).

Proof. Since for any s, Y s and Xs have support {0, 1}n, the equivalence of ii) and iii) follows

from Proposition 2 in Section 2.3.1. To show that ii) implies i), first note that since Y s
(j) is the jth

smallest value from (Y s
1 , . . . , Y s

n ), FY s
(j)

(0) = Pr(Y s
(j) = 0) = E[I{Y s

(j)
=0}] is weakly decreasing in j.

Hence the majorization condition (10) can be rewritten as

E

 k∑
j=1

I{Y s
(j)

=0}

 ≤ E

 k∑
j=1

I{Xs
(j)

=0}

 ∀k ∈ {1, . . . , n}, ∀s ∈ L, (12)

19It might, at first glance, seem more natural to define the dispersion ordering by requiring (10) to hold for all s

in the extended lattice L̄ ≡ ×n
i=1L̄i, where L̄i ≡ {−1, 0, 1, . . . , li − 1}. If si = −1, then Y s

i = 1 with probability 1,

while if si = li− 1, then Y s
i = 0 with probability 1. Thus, including coarsenings corresponding to every s in L̄ would

make the treatment of these two types of degenerate case symmetric. Nevertheless, it is straightforward to confirm

that if (10) holds for all s ∈ L, then it holds for all s ∈ L̄, so the potential alternative definition is equivalent to the

one used in the text.
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with equality required for k = n. Now observe that

k∑
j=1

I{Y s
(j)

=0} =
k∑

j=1

I{cs(Y s)<n−(j−1)} =
k∑

j=1

(1− I{cs(Y s)≥n−(j−1)})

= k −max{cs(Y s)− (n− k), 0}. (13)

Since for any s ∈ L, cs(Y s) is a symmetric function of Y s, and max{z− t, 0} is convex in z for any

t ∈ R, max{cs(Y s)− (n− k), 0} is a symmetric supermodular function of Y s for all k ∈ {1, . . . , n}.
Therefore, ii) and (13) imply that (12) holds for all k ∈ {1, . . . , n}. Setting k = n in (13) gives

n∑
j=1

I{Y s
(j)

=0} = n− cs(Y s), (14)

and since both cs(Y s) and −cs(Y s) are symmetric supermodular functions of Y s, ii) and (14) imply

that for k = n, (12) holds with equality, as required. Thus ii) implies i).

To show that i) implies iii), first note20 that for random variables Z and V with support {0, 1, . . . , n},

Z �CX V ⇔ E(Z) = E(V ) and∀t ∈ {1, . . . , n− 1}, E[max{Z − t, 0}] ≥ E[max{V − t, 0}]. (15)

Given (14), the equality in (12) for k = n implies that E(cs(Y s)) = E(cs(Xs)). Given (13), the weak

inequality in (12) for k ∈ {1, . . . , n−1} implies that E[max{cs(Y s)− t, 0}] ≥ E[max{cs(Xs)− t, 0}]
for all t ∈ {1, . . . , n− 1}. Hence, for all s ∈ L, cs(Y s) �CX cs(Xs). �

Proposition 4 provides a simple interpretation of the dispersion ordering for random vectors Y

and X. Consider any coarsening of the support L = ×n
i=1Li into {0, 1}n generated by, for each

dimension i, classifying all values zi ≤ si as 0 and all values zi > si as 1, for some s ∈ L. Then

compare the distributions of the correspondingly coarsened random vectors Y s and Xs according

to the symmetric supermodular ordering, or equivalently, given Proposition 2, use the univariate

convex ordering to compare the distributions of the random variables cs(Y s) and cs(Xs) which

count, respectively, the number of components of Y such that Yi > si and of X such that Xi > si.

Y �DISP X if and only if, for any point s in the support,
∑n

i=1 I{Yi>si} is riskier than
∑n

i=1 I{Xi>si}

in the sense of Rothschild and Stiglitz [48].

A natural application of the dispersion ordering is to the assessment of systemic risk in financial

systems, where the n dimensions represent banks and where a bank’s financial health is often

summarized by classifying it as either solvent or insolvent. The degree of interdependence in

failures of financial institutions is of crucial importance because “as more banks fail in the same

time period, the economic disruption tends to increase disproportionately” (Beale et al [8, p. 1]).
20See, for example, Jewitt [33] and Hardy, Littlewood, and Pólya [28].
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This disproportionate increase in cost, representing an aversion to positive interdependence, can be

captured by a systemic cost function φ(k), where k is the number of banks that fail and φ is convex.

It is natural to want rankings of expected systemic cost to be robust to variations in the precise

values of the failure thresholds for different banks. These considerations point towards using the

dispersion ordering of the random vectors describing banks’ returns to compare levels of systemic

risk under different regulatory scenarios.

It is apparent from Proposition 4 that the dispersion ordering is a difference-based ordering. Fur-

thermore, if Y �DISP X, then Y and X have identical univariate marginals. To see this, observe

that (10) implies that for all s ∈ L,

n∑
j=1

FY s
(j)

(0) =
n∑

j=1

FXs
(j)

(0). (16)

Now take s to be a vector with ith component equal to k ∈ Li and all other components j equal

to lj − 1. Then for any Y and X and for any j 6= i, Y s
j = Xs

j = 0. Hence the first n − 1 order

statistics of both Y s and Xs are 0, so it follows from (16) that FY s
(n)

(0) = FXs
(n)

(0). This in turn

is equivalent to Pr(Yi ≤ k) = Pr(Xi ≤ k), and since this holds for all i and all k ∈ Li, Y and X

have identical marginals.

It follows from Proposition 4 that there is an easily described algorithm for checking whether or

not any given pair of n-dimensional random vectors Y and X satisfy Y �DISP X: For each s ∈ L,

check whether or not cs(Y s) �CX cs(Xs). Since the support of cs(Y s) and cs(Xs) is {0, 1, . . . , n},
checking cs(Y s) �CX cs(Xs) is equivalent, given (15), to checking n− 1 inequalities and 1 equality.

Therefore, because an equality constraint can be rewritten as two inequality constraints, to check

Y �DISP X, it is sufficient to check n + 1 inequalities for each s ∈ L.21 The fact that Y �DISP X

is checkable pointwise is an important advantage of the dispersion ordering, relative to the greater

weak association, supermodular, and convex-modular orderings.

2.6 The Concordance Ordering

Another intuitively appealing notion of greater interdependence, the concordance ordering, has

been formalized for multivariate distributions by Joe [35].
21In practice, many of the inequalities generated as s varies will hold trivially or be redundant. For example, for

L = {0, 1}2, the set of 12 inequalities that in principle need to be checked in fact reduces to only 5, corresponding to

the requirements that i) (Y1, Y2) and (X1, X2) have identical marginals (4 inequalities) and ii) Pr(Y1 = 0, Y2 = 0) ≥
Pr(X1 = 0, X2 = 0).
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Definition 11 (Concordance Ordering) Let the random vectors Y and X have distributions g and

f , respectively. The distribution g dominates the distribution f according to the concordance

ordering, written g �CONC f , if and only if

Pr(Y ≥ z) ≥ Pr(X ≥ z) and Pr(Y ≤ z) ≥ Pr(X ≤ z) ∀z ∈ L.

For any node in the support, the concordance ordering requires that the components of Y , relative

to those of X, be both more likely to be all higher than at that node and more likely to be all lower

than at that node.22

It is easy to see that the concordance ordering is a difference-based ordering. As is well known,

Y �CONC X implies that Y and X have identical univariate marginals.23 Note that the concordance

ordering shares with our dispersion ordering the desirable feature of being checkable pointwise.

3 Relationships among the Orderings

We are now in a position to present our main results, which establish the relationships among the

orderings of interdependence defined in Section 2.

Theorem 1 (Orderings: Two Dimensions) For two dimensions, the following orderings are

equivalent: greater weak association, supermodular ordering, convex-modular ordering, dispersion

ordering, and concordance ordering.

Proof. The equivalence for n = 2 between greater weak association, the supermodular ordering,

and the concordance ordering is well known (see Meyer [39, Prop. 2] and Müller and Stoyan [46,

Theorem 3.8.2] for references). We now prove that for n = 2 the convex-modular and dispersion

orderings are equivalent to the other three orderings by showing that Y �SPM X =⇒ Y �CXMOD

X =⇒ Y �DISP X =⇒ Y �CONC X.

Since every convex-modular function is supermodular, the supermodular ordering implies the

convex-modular ordering. The fact that the convex-modular ordering implies the dispersion or-
22See Decancq [22] for a discussion of two classes of multivariate rearrangements which together underlie the

concordance order.
23To see this, first take z ∈ L to be a vector with ith component equal to k and all other components 0. Then

Pr(Y ≥ z) ≥ Pr(X ≥ z) becomes Pr(Yi ≥ k) ≥ Pr(Xi ≥ k). Similarly, taking z to be a vector with ith component

equal to k− 1 and all other components equal to li− 1, Pr(Y ≤ z) ≥ Pr(X ≤ z) becomes Pr(Yi ≤ k− 1) ≥ Pr(Xi ≤
k − 1). Hence, for all i and k ∈ Li, Pr(Yi ≥ k) = Pr(Xi ≥ k), so Y and X have identical marginals.
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dering follows from the proof of Proposition 4 and the facts that the functions max{cs(Y ) −
(2 − k), 0}, for k ∈ {1, 2}, and −cs(Y ) are convex-modular. Finally, observe that by Proposi-

tion 4, if (Y1, Y2) �DISP (X1, X2), then for all s ∈ L, Pr(cs(Y s) = 0) ≥ Pr(cs(Xs) = 0) and

Pr(cs(Y s) = 2) ≥ Pr(cs(Xs) = 2). The first of these inequalities is equivalent to Pr(Y1 ≤ s1, Y2 ≤
s2) ≥ Pr(X1 ≤ s1, X2 ≤ s2), while the second is equivalent to Pr(Y1 > s1, Y2 > s2) ≥ Pr(X1 >

s1, X2 > s2). Hence (Y1, Y2) �DISP (X1, X2) implies (Y1, Y2) �CONC (X1, X2). �

Theorem 2 (Orderings: Three or More Dimensions) a) For n ≥ 3, greater weak asso-

ciation is strictly stronger than the supermodular ordering, which is strictly stronger than the

convex-modular ordering, which is strictly stronger than the dispersion ordering, which is at

least as strong as the concordance ordering.

b) For n = 3, the dispersion ordering is equivalent to the concordance ordering, whereas for

n > 3, the dispersion ordering is strictly stronger than the concordance ordering.

Proof. i) The proof that Y �GWA X implies Y �SPM X is in Appendix A. Example 1 proves

that this implication is strict:

Example 1: Let L = {0, 1}3 and let X and Y have distributions f and g, respectively. Let f(x) = 1
3

if
∑3

i=1 xi = 1 and f(x) = 0 otherwise. Let g(y) take the values 17
66 , 11

66 , 5
66 , 1

66 when
∑3

i=1 yi

takes the values 0, 1, 2, 3, respectively. For these symmetric distributions, Propositions 1 and 2

together imply that g �SPM f on L = {0, 1}3 if and only if c(Y ) �CX c(X) on {0, 1, 2, 3}. From

(15), c(Y ) �CX c(X) on {0, 1, 2, 3} if and only if 1) Ec(Y ) = Ec(X); 2) E[max{c(Y ) − 1, 0}] ≥
E[max{c(X)− 1, 0}]; and 3) E[max{c(Y )− 2, 0}] ≥ E[max{c(X)− 2, 0}]. It is easily checked that

Ec(Y ) = Ec(X) = 1. Condition 2) holds since 17
66 = 2Pr(c(Y ) = 3) + Pr(c(Y ) = 2) ≥ 2Pr(c(X) =

3) + Pr(c(X) = 2) = 0, and condition 3) holds since 1
66 = Pr(c(Y ) = 3) ≥ Pr(c(X) = 3) = 0.

Hence, c(Y ) �CX c(X) and g �SPM f . However, for r(z1) = I{z1=1} and s(z2, z3) = I{z2=z3=1},

Cov(r(Y1), s(Y2, Y3)) = 1
66 −

1
3 ·

1
11 < 0, while Cov(r(X1), s(X2, X3)) = 0, so g �GWA f does not

hold.

ii) Since every convex-modular function is supermodular, Y �SPM X implies Y �CXMOD X. We

show that the implication is strict by providing, in Appendix B, an example of a supermodular

function on L = {0, 1, 2}3 which cannot be written as a nonnegative weighted sum of convex-

modular functions.

iii) That Y �CXMOD X implies Y �DISP X follows from the proof of Proposition 4 and the facts

that the functions max{cs(Y )− (n− k), 0}, for k ∈ {1, . . . , n}, and −cs(Y ) are all convex-modular.

Example 2 proves that this implication is strict:
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Example 2: Let L = {0, 1, 2} × {0, 1} × {0, 1}. Since both the convex-modular and the dispersion

ordering are difference-based orderings, it is sufficient to specify δ ≡ g − f , the difference between

the distributions of Y and X. Let δ(z1, z2, z3) = ε > 0 if
∑3

i=1 zi is even and δ(z1, z2, z3) = −ε < 0

if
∑3

i=1 zi is odd. It is easily checked that Y �CONC X. As proved in part iv) of the proof

below, for n = 3, Y �CONC X ⇔ Y �DISP X. However, for the convex-modular function

w(z) = max{(
∑3

i=1 zi)− 2, 0}, we have w · (g − f) = −ε < 0, so Y �CXMOD X does not hold.

iv) To show that Y �DISP X implies Y �CONC X, observe that, for k = 1, the left-hand side

of (12) can be rewritten as E[I{Y s
(1)

=0}] = 1 − Pr(Yi > si ∀i). Therefore, (12) implies that for all

s ∈ L, Pr(Y > s) ≥ Pr(X > s). Similarly, it follows from the equality in (12) for k = n and the

inequality for k = n − 1 that, for all s ∈ L, E[I{Y s
(n)

=0}] ≥ E[I{Xs
(n)

=0}], which implies that for all

s ∈ L, Pr(Y ≤ s) ≥ Pr(X ≤ s). Hence Y �CONC X.

Now we show that for n = 3, Y �CONC X implies Y �DISP X. First, for any s ∈ L, showing that

(12) holds with equality for k = n = 3 is equivalent, given (13) and (14), to showing that

E

[
3∑

i=1

I{Yi≤si}

]
= E

[
3∑

i=1

I{Xi≤si}

]
,

and this is true, since Y �CONC X implies that Y and X have identical marginal distributions.

Given the equality in (12) for k = 3, it remains to show that for all s ∈ L,

E[I{Y s
(1)

=0}] ≤ E[I{Xs
(1)

=0}] and E[I{Y s
(3)

=0}] ≥ E[I{Xs
(3)

=0}].

The first of these inequalities is equivalent to Pr(Y > s) ≥ Pr(X > s) and the second to Pr(Y ≤
s) ≥ Pr(X ≤ s), as shown above in the proof that Y �DISP X implies Y �CONC X. Therefore,

both inequalities follow from Y �CONC X.

Example 3 proves that for n > 3, Y �CONC X does not imply Y �DISP X:

Example 3: Let L = {0, 1}4, let g, f represent the distributions of Y, X, and let δ(z1, z2, z3, z4) ≡
g − f = ε > 0 if

∑4
i=1 zi is even and δ(z1, z2, z3, z4) = −ε < 0 if

∑4
i=1 zi is odd. Again, it is easily

checked that Y �CONC X. For s = (0, 0, 0, 0), consider the convex function of cs(z) defined by

w = max{cs(z)− 2, 0}. We have w · (g − f) = −2ε < 0, so by Proposition 4, Y �DISP X does not

hold. �

Remark 1: Given the close relationship shown by Proposition 4 between the dispersion ordering

and the symmetric supermodular ordering, and given that both are strictly weaker than the super-

modular ordering, it is natural to ask how these two orderings relate to each other. For arbitrary

supports, neither implies the other; however, as we note in Section 4, in the special case of binary
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random variables, the dispersion ordering is strictly stronger than the symmetric supermodular

ordering.

To confirm that for arbitrary supports, Y �DISP X does not imply Y �SSPM X, consider Example

2, used in part iii) of the proof of Theorem 2. Expand the support from L = {0, 1, 2}×{0, 1}×{0, 1}
to the symmetric L′ = {0, 1, 2}3. For z ∈ L′ \ L, let δ(z) ≡ g − f = 0 and for z ∈ L, define δ(z)

as in Example 2. Then Y �DISP X but, for the symmetric supermodular function w defined in

Example 2, w · δ = w · (g − f) = −ε < 0, so Y �SSPM X does not hold.

To confirm that Y �SSPM X does not imply Y �DISP X, consider Y, X with distributions g, f ,

respectively, on L = {0, 1}3 such that δ = g − f is given by δ(0, 0, 0) = 0, δ(z1, z2, z3) = ε > 0

if
∑3

i=1 zi = 1, δ(1, 1, 0) = −4ε, δ(0, 1, 1) = δ(1, 0, 1) = −ε, and δ(1, 1, 1) = 3ε. It is easy to

check that for k = 0, 1, 2, 3, Pr(c(Y ) = k) − Pr(c(X) = k) = 0, 3ε,−6ε, 3ε, respectively, so the

distribution of c(Y ) is derived from the distribution of c(X) by a mean-preserving spread. Therefore,

c(Y ) �CX c(X) and hence, by Proposition 2, Y �SSPM X. However, P (Y1 = 1)− P (X1 = 1) < 0.

Hence, Y and X do not have identical marginals, and therefore Y �DISP X does not hold.

Remark 2: For n ≥ 3, the strongest of our interdependence orderings, greater weak association,

is not a difference-based ordering. To show this, we extend Example 1, used in part i) of the

proof of Theorem 2. For L = {0, 1}3, define f and g as in Example 1. Now define f̃(x) = 1
2

if
∑3

i=1 xi = 0, f̃(x) = 1
6 if

∑3
i=1 xi = 1, and f̃(x) = 0 otherwise, and let g̃(y) take the values

50
66 , 0, 5

66 , 1
66 when

∑3
i=1 yi takes the values 0, 1, 2, 3, respectively. By construction, g̃ − f̃ = g − f ,

and we showed in part i) of the proof of Theorem 2 that g �GWA f does not hold. Yet (see

Appendix C) g̃ �GWA f̃ . Hence for n ≥ 3, greater weak association is not difference-based. Since

the supermodular ordering is difference-based and the distributions in this example are symmetric,

it follows that even for symmetric distributions, greater weak association is strictly stronger than

the supermodular ordering whenever n ≥ 3.

4 Binary Random Variables

In many economic contexts, the random variables whose interdependence is to be assessed are

binary. Theoretical models often focus on binary action spaces or binary outcome spaces for

tractability. For example, Calvo-Armengol and Jackson’s [14] study of the effects of social net-

works on interdependence in individuals’ employment outcomes suppressed wage variation among

employed workers and focused only on whether workers were employed or unemployed. Experi-
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mental studies often focus on binary choice spaces to simplify the subjects’ decision problems as

well as to simplify the data analysis. For example, Choi, Gale, and Kariv [19], in their experimen-

tal study of the effect of network structure on social learning and the resulting interdependence

among agents’ decisions, focused on a decision environment with only two states of the world, two

signals, and two possible actions. In empirical work, for example on multidimensional inequality,

binary classifications, such as whether or not income is below the poverty line or whether or not

an individual is literate, are often inevitable features of the data.

Binary random variables, besides being common, also help to illuminate the structure of and

relationships among the interdependence orderings. This section studies a variety of special cases

with binary random variables. Our aims are to highlight both i) equivalences among the orderings

that arise in these special cases and ii) easily checkable and easily interpretable necessary and

sufficient conditions for the orderings to hold.

4.1 Symmetric Distributions or Symmetric Objective Functions

The following result is valid for any number n of dimensions.

Proposition 5 a) For random vectors Y and X with symmetric distributions on L = {0, 1}n,

the following conditions are equivalent:

i) Y �SPM X;

ii) Y �CXMOD X;

iii) Y �DISP X;

iv) Y �SDISP X;

v) c(Y ) �CX c(X).

b) For random vectors Y and X distributed on L = {0, 1}n, the following conditions are equiva-

lent:

i) Y �SSPM X;

ii) Y �SCXMOD X;

iii) c(Y ) �CX c(X).

Proof. a) It is clear from Definitions 9 and 10 that Y �DISP X implies Y �SDISP X. It follows

from Definition 9 and the proof of Proposition 4 that for symmetric distributions on L = {0, 1}n,
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Y �SDISP X if and only if c(Y ) �CX c(X)—the only non-trivial choice of b = (b0, . . . , b0) in

Definition 9 is (0, . . . , 0), in which case (8) is equivalent to c(Y ) �CX c(X). But Propositions 1

and 2 together imply that for symmetric distributions on L = {0, 1}n, Y �SPM X if and only if

c(Y ) �CX c(X). The remaining equivalences then follow from Theorems 1 and 2.

b) Proposition 2 shows the equivalence of Y �SSPM X and c(Y ) �CX c(X) on L = {0, 1}n.

Since every symmetric w ∈ CM∗ is supermodular, i) implies ii). Since c(Y ) is symmetric and

convex-modular, ii) implies iii). �

For random vectors on L = {0, 1}n with asymmetric distributions, the dispersion ordering is strictly

stronger than the three orderings shown to be equivalent in part b) of Proposition 5. With s =

(0, 0, . . . , 0), the majorization condition (10) defining Y �DISP X is equivalent to c(Y ) �CX c(X),

but other choices of s generate additional conditions. In particular, as shown in Section 2.5,

Y �DISP X implies that Y and X have identical marginals, whereas this is not an implication of

the three orderings in part b) of Proposition 5.24

4.2 Three Dimensions

Proposition 6 For random vectors Y and X distributed on L = {0, 1}3, the following conditions

are equivalent:

i) Y �SPM X;

ii) Y �CXMOD X;

iii) Y �DISP X;

iv) Y �CONC X;

v) c(Y ) �CX c(X); Y and X have identical marginals; and for all i 6= j, Pr(Yi = Yj) ≥ Pr(Xi =

Xj).

Proof. All of the orderings in the proposition are difference-based orderings, so it is sufficient to

work with δ ≡ g− f . For L = {0, 1}3, the values of δ at each of the 8 nodes are displayed in Figure

1a. Each of conditions i)-v) implies that Y and X have identical marginals (as shown in Section

2). This in turn implies that once the 4 values of δ(1, 1, 1) ≡ a, δ(0, 1, 1) ≡ b1, δ(1, 0, 1) ≡ b2, and
24The second example in Remark 1 following Theorem 2 is one for which L = {0, 1}3 and Y �SSPM X, but Y and

X do not have identical marginals, so Y �DISP X does not hold.
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δ(1, 1, 0) ≡ b3 are specified (corresponding to the 4 nodes marked with black dots in Figure 1a),

the remaining 4 values are determined, as specified in Figure 1a.

[Insert Figure 1 about here]

We first prove iv) and v) are equivalent. Given identical marginals, Y �CONC X if and only if

a ≥ 0, a + bk ≥ 0 ∀k ∈ {1, 2, 3}, and 2a +
3∑

i=1

bi ≥ 0. (17)

From (15), c(Y ) �CX c(X) on {0, 1, 2, 3} if and only if 1) Ec(Y ) = Ec(X); 2) E[max{c(Y )−2, 0}] ≥
E[max{c(X)−2, 0}]; and 3) E[max{c(Y )−1, 0}] ≥ E[max{c(X)−1, 0}]. Given identical marginals,

condition 1) holds, since (using Figure 1a) Ec(Y )−Ec(X) = 3a+2
∑3

i=1 bi+(−3a−2
∑3

i=1 bi) = 0.

Conditions 2) and 3) are equivalent, respectively, to the first and third inequalities in (17). Finally,

the condition Pr(Yi = Yj) ≥ Pr(Xi = Xj) is equivalent, given identical marginals, to Pr(Yi = Yj =

1) ≥ Pr(Xi = Xj = 1), and this in turn is equivalent to a + bk ≥ 0, k 6= i, j. Hence, conditions iv)

and v) are equivalent.

We now provide a simple constructive proof that for L = {0, 1}3, Y �CONC X implies Y �SPM X.

Our constructive proof25 decomposes δ into 6 elementary transformations (ETs) of the form defined

in (4): for each of the 6 faces of the cube L = {0, 1}3, there is one ET involving the 4 nodes on

that face. Using the labels in Figure 1b, let the ET involving nodes A, Bi, Bj , and Ck have size

αij and the ET involving nodes Bk, Ci, Cj , and D have size αij . It is easily checked that these 6

ETs sum to δ if and only if

a = α12 + α13 + α23 and ∀i, j, k ∈ {1, 2, 3}, i 6= j 6= k, a + bk = αij + αij . (18)

Now set

αij = a

(
a + bk

3a +
∑3

i=1 bi

)
and αij = (2a +

3∑
i=1

bi)

(
a + bk

3a +
∑3

i=1 bi

)
. (19)

It is apparent by inspection that the equations (18) are satisfied and that, if the inequalities (17)

defining the concordance ordering hold, then for all i 6= j, αij ≥ 0 and αij ≥ 0. Thus, g �CONC f

implies the existence of a sequence of nonnegative ETs that sum to g − f . Since each ET raises

the expectation of any supermodular function, g �SPM f . By Theorem 2, it then follows that

conditions i)-v) are all equivalent. �

25Hu, Xie, and Ruan [32, pp. 188-9] proved this in a very indirect manner using the tool of “majorization with

respect to weighted trees”.
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4.3 Four Dimensions and “Top-to-Bottom” Symmetry

The equivalence demonstrated in Proposition 6 for the three-dimensional cube between the super-

modular ordering and the concordance ordering breaks down if we increase either the number of

dimensions, as shown by Example 3 (used in part iv) of the proof of Theorem 2), or the number

of points in the support for some dimension, as shown by Example 2 (used in part iii) of the same

proof). Nevertheless, some interesting equivalences do persist in higher dimensions and can be

demonstrated using a similar constructive method of proof.

Consider four-dimensional random vectors with support L = {0, 1}4, and assume now that their

distributions satisfy a symmetry condition we term “top-to-bottom symmetry”. We say that the

distribution of a random vector Z satisfies top-to-bottom symmetry if for any a ∈ {0, 1}4, P (Z =

a) = P (Z = (1, 1, 1, 1)− a). Top-to-bottom symmetry arises naturally in a variety of settings. We

give two examples: matching with frictions and social learning in networks.

In a matching context, suppose the four dimensions represent managers, supervisors, workers, and

firms, and suppose that for each dimension, there is one representative (individual or firm) with

high quality (zi = 1) and one with low quality (zi = 0). Production requires forming a “team”

consisting of exactly one manager, one supervisor, one worker, and one firm, and the output of such

a team is a supermodular function of the qualities of each of its four components. Supermodularity

of the production function w implies that it would be output-maximizing for the four high-quality

individuals/firm to be matched and for the four low-quality individuals/firm to be matched, in

which case output would be w(1, 1, 1, 1)+w(0, 0, 0, 0). However, informational frictions may prevent

such an outcome being reached and cause the matching process to be stochastic. Nevertheless, as

long as the stochastic process is certain to divide the individuals into two teams, each consisting

of one representative from each dimension, the distribution over team quality vectors necessarily

satisfies top-to-bottom symmetry. This is so since, if one of the teams formed has individuals

with qualities (a1, a2, a3, a4) ∈ {0, 1}4, the other team must consist of individuals with qualities

(1−a1, 1−a2, 1−a3, 1−a4), given that for each dimension, there is one representative with quality

0 and one with quality 1.

Choi, Gale, and Kariv [19] experimentally investigate the effect of network structure on the degree

of interdependence of choices in social learning situations. Each agent i can choose between two

actions, 0 and 1, and the randomness in the environment generates, for each period, an ex ante

distribution over action vectors (a1, . . . , an) ∈ {0, 1}n. To simplify the computation of equilibrium

behavior, they assume that the environment is symmetric with respect to the two states of the
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world, the two signals, and the two actions. Given this symmetry, in each period and for any

network, the ex ante probabilities of the action vectors (a1, . . . , an) and (1 − a1, . . . , 1 − an) are

equal, so the distributions satisfy top-to-bottom symmetry.

Proposition 7 For random vectors Y and X with distributions on L = {0, 1}4 that satisfy top-

to-bottom symmetry, the following conditions are equivalent:

i) Y �SPM X;

ii) Y �CXMOD X;

iii) Y �DISP X;

iv) c(Y ) �CX c(X) and for all i 6= j, Pr(Yi = Yj) ≥ Pr(Xi = Xj).

The proof, in Appendix D, has a similar structure to that of Proposition 6. We use Proposition 4

to show that when L = {0, 1}4 and the distributions satisfy top-to-bottom symmetry, Y �DISP X

implies that iv) holds. (Top-to-bottom symmetry on L = {0, 1}4 itself ensures that Y and X have

identical marginal distributions, since it implies that for all i, Pr(Yi = 1) = Pr(Yi = 0) = 1
2 and

Pr(Xi = 1) = Pr(Xi = 0) = 1
2 .) We then adapt the construction used to prove Proposition 6 to

show that the conditions in iv) ensure the existence of a sequence of nonnegative ETs that sum to

g − f . Since each ET raises the expectation of any supermodular function, g �SPM f and hence,

by Theorem 2, conditions i)-iv) in Proposition 7 are all equivalent.

Even though, in the environment of Proposition 7, the SPM, CXMOD, and DISP orderings are

equivalent, we can show by example that the GWA ordering is strictly stronger and the concordance

ordering strictly weaker.26

26To show that the GWA ordering is strictly stronger, let X have a uniform distribution on {0, 1}4 and let Y

be obtained from X by two ETs as defined in (4), each of size α ∈ (0, 1
16

), one involving (0, 0, 1, 1), (1, 0, 1, 1),

(0, 1, 1, 1), and (1, 1, 1, 1) and the other involving (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), and (1, 1, 0, 0). Both Y and X

satisfy top-to-bottom symmetry, and by construction, Y �SPM X. However, for r(z1, z2, z3) = I{z1+z2+z3≥2} and

s(z4) = I{z4=1}, Cov(r(Y1, Y2, Y3), s(Y4)) < 0 = Cov(r(X1, X2, X3), s(X4)), so Y �GWA X does not hold. To

show that the concordance ordering is strictly weaker, recall Example 3, which was used in part iv) of the proof of

Theorem 2. In that example, δ = g− f satisfies top-to-bottom symmetry, and as we showed, Y �CONC X holds but

Y �DISP X does not.
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5 Conclusion

In this paper we examined five orderings of interdependence for n-dimensional distributions and

described a range of economic contexts in which these orderings are applicable, including multidi-

mensional inequality comparisons, assessments of ex post inequality under uncertainty, valuations

of portfolios of assets or insurance policies, and assessments of systemic risk in financial systems.

While greater weak association, the supermodular ordering, and the concordance ordering have

received some attention in the statistics and economics literatures, this paper introduces the dis-

persion ordering and the convex-modular ordering. Our dispersion ordering is motivated by the

link between greater interdependence in random vectors and lower dispersion of the cdf’s of their

order statistics, and we proved that greater interdependence for Y than for X according to the

dispersion ordering corresponds to greater riskiness, in the sense of Rothschild and Stiglitz [48], of

the summary statistic
∑n

i=1 I{Yi>si} compared to
∑n

i=1 I{Xi>si}, for any point (s1, . . . , sn) in the

support. Similarly, Y is more interdependent than X according to the convex-modular ordering

if for any choice of {ri}n
i=1 nondecreasing, the aggregate

∑n
i=1 ri(Yi) is riskier than

∑n
i=1 ri(Xi).

Theorem 1 showed that for n = 2, all five orderings of interdependence are equivalent. In con-

trast, Theorem 2 showed that for n = 3, four of the orderings are strictly ranked, and only the

dispersion and concordance orderings are equivalent, while for n > 3, all five orderings are strictly

ranked. For multivariate random vectors each of whose components are binary, we demonstrated

some equivalences among the orderings and provided easily checkable and easily interpretable nec-

essary and sufficient conditions for the orderings to hold. For arbitrary multivariate distributions,

we emphasized that the dispersion and concordance orderings have the advantage, relative to the

other three, of being checkable pointwise.
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Appendices

A Proof that Y �GWA X implies Y �SPM X

This proof builds on Cristofides and Vaggelatou’s [18] proof that if (Y1, . . . , Yn) is weakly associated,

then (Y1, . . . , Yn) dominates its independent counterpart according to the supermodular ordering.

First, we define a new random vector Z that has the same distribution as X and is independent of

Y . We then show by induction that Y �SPM Z and hence Y �SPM X.

For n = 2, the result is proved in the references cited in the proof of Theorem 1. Suppose that it
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is true for n = m− 1, so that for all supermodular w, Ew(Y2, . . . , Ym) ≥ Ew(Z2, . . . , Zm). Then

Ew(Z1, Y2, . . . , Ym) =
li−1∑
i=0

E[w(i, Y2, . . . , Ym)|Z1 = i]Pr(Z1 = i)

=
li−1∑
i=0

E[w(i, Y2, . . . , Ym)]Pr(Z1 = i) (20)

=
li−1∑
i=0

E[w(i, Y2, . . . , Ym)]Pr(Y1 = i) (21)

≥
li−1∑
i=0

E[w(i, Z2, . . . , Zm)]Pr(Y1 = i)

=
li−1∑
i=0

E[w(i, Z2, . . . , Zm)|Y1 = i]Pr(Y1 = i) (22)

= Ew(Y1, Z2, . . . , Zm).

The equality in (20) uses the independence of Z from Y , and that in (21) the assumption that Y and

X, hence Y and Z, have identical marginal distributions (along with the fact that E[w(i, Y2, . . . , Ym)]

is a univariate function of i). The inequality follows by applying the induction hypothesis for each

value of i. The equality in (22) uses the independence of Z from Y .

Now we show that for all supermodular w,

Ew(Y1, Y2, . . . , Ym)− Ew(Z1, Z2, . . . , Zm) ≥ Ew(Z1, Y2, . . . , Ym)− Ew(Y1, Z2, . . . , Zm),

which combined with the previous steps yields the desired result. First observe that we can write

w(Y1, Y2, . . . , Ym)−w(Z1, Y2, . . . , Ym) =
li−1∑
i=0

(I{Y1>i}−I{Z1>i})(w(i+1, Y2, . . . , Ym)−w(i, Y2, . . . , Ym)).
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Hence,

Ew(Y1, Y2, . . . , Ym) − Ew(Z1, Y2, . . . , Ym)

=
li−1∑
i=0

{E
[
I{Y1>i}(w(i + 1, Y2, . . . , Ym)− w(i, Y2, . . . , Ym))

]
−E

[
I{Z1>i}(w(i + 1, Y2, . . . , Ym)− w(i, Y2, . . . , Ym))

]
}

=
li−1∑
i=0

{E
[
I{Y1>i}(w(i + 1, Y2, . . . , Ym)− w(i, Y2, . . . , Ym))

]
−E

[
I{Z1>i}

]
E [w(i + 1, Y2, . . . , Ym)− w(i, Y2, . . . , Ym)]} (23)

=
li−1∑
i=0

{E
[
I{Y1>i}(w(i + 1, Y2, . . . , Ym)− w(i, Y2, . . . , Ym))

]
−E

[
I{Y1>i}

]
E [w(i + 1, Y2, . . . , Ym)− w(i, Y2, . . . , Ym)]} (24)

=
li−1∑
i=0

Cov(I{Y1>i}, w(i + 1, Y2, . . . , Ym)− w(i, Y2, . . . , Ym))

≥
li−1∑
i=0

Cov(I{Z1>i}, w(i + 1, Z2, . . . , Zm)− w(i, Z2, . . . , Zm))

= Ew(Z1, Z2, . . . , Zm)− Ew(Y1, Z2, . . . , Zm). (25)

The equality in (23) uses the independence of Z from Y , and that in (24) the assumption that Y

and X, hence Y and Z, have identical marginal distributions. The inequality holds since i) I{Y1>i}

is a non-decreasing function of Y1; ii) (w(i + 1, Y2, . . . , Ym) − w(i, Y2, . . . , Ym)) is a non-decreasing

function of (Y2, . . . , Ym) since w is supermodular; and iii) by hypothesis, Y �GWA X and hence

Y �GWA Z. The equality in (25) follows from the logic of the first four equalities. �

B Proof that for n ≥ 3, the supermodular ordering is strictly stronger than the convex-

modular ordering

Since every convex-modular function is supermodular, Y �SPM X implies Y �CXMOD X. We show

that the implication is strict by providing an example of a supermodular function on L = {0, 1, 2}3

which cannot be written as a nonnegative weighted sum of convex-modular ones:

Define w as follows: w(2, 2, 2) = 3, w(2, 2, 1) = w(2, 1, 2) = w(1, 2, 2) = 2,w(2, 2, 0) = w(2, 0, 2) =

w(0, 2, 2) = 1, w(2, 1, 1) = w(1, 2, 1) = w(1, 1, 2) = 1, w(0, 2, 1) = 1, and w(z) = 0 for all other

nodes z ∈ L. We first show that this function w(x) is not itself convex-modular. Suppose it were.

Then clearly the function φ(·) would have to take values in {0, 1, 2, 3}. If
∑3

i=1 ri(xi) were strictly

larger at (0, 2, 2) than at (0, 2, 1), then since w(0, 2, 2) = w(0, 2, 1) = 1, φ(·) would not be convex,

since φ(·) would rise from 0 to 1 but then remain constant at 1 even though
∑3

i=1 ri(xi) increased.
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If, instead,
∑3

i=1 ri(xi) took on the same value at (0, 2, 2) as at (0, 2, 1), then since
∑3

i=1 ri(xi) is

modular (additively separable) in the xi’s, it would follow that
∑3

i=1 ri(xi) took on the same value

at (1, 2, 2) as at (1, 2, 1). However, w(1, 2, 2) = 2 > 1 = w(1, 2, 1). Thus, we reach a contradiction,

so w(z) as defined above is not convex-modular.

In Meyer and Strulovici [42], we show how, for any finite support L, the “double description

method”, conceptualized by Motzkin et al [45], can be used to determine the extreme rays of the

cone of supermodular functions on L. For L = {0, 1, 2}3, we show there that the function w defined

above is an extreme ray of the cone of supermodular functions and hence cannot be non-trivially

expressed as a nonnegative weighted sum of supermodular functions. This, combined with the fact

that it is not itself convex-modular, shows that it cannot be expressed as a nonnegative weighted

sum of convex-modular functions. �

C Proof that in the example in Remark 2 (Section 3), g̃ �GWA f̃

Since f̃ and g̃ are symmetric distributions, all partitions of {Z1, Z2, Z3} into disjoint sets {Zi}
and {Zj , Zk} will yield the same covariances. We therefore focus on the partition into {Z1} and

{Z2, Z3}. As is well known, any nondecreasing function on L = {0, 1}3 can be written as a

nonnegative weighted combination of indicator functions, so it is sufficient to focus on functions r, s

that are nondecreasing indicator functions. The only non-trivial nondecreasing indicator function

of z1 is r(z1) = I{z1=1}. There are four non-trivial nondecreasing indicator functions of (z2, z3):

s(z2, z3) = I{z2=1}, s(z2, z3) = I{z3=1}, s(z2, z3) = I{z2=z3=1}, and s(z2, z3) = I{z2+z3≥1}.

First take s(z2, z3) = I{z2=1}. Recall that g̃ − f̃ = g − f , where g and f are defined in Example 1.

Therefore, since it was shown in Example 1 that g �SPM f and since the supermodular ordering is

a difference-based order, g̃ �SPM f̃ . Note also that g̃ and f̃ have identical marginal distributions,

so Er(Y1) = Pr(Y1 = 1) = Pr(X1 = 1) = Er(X1) and Es(Y2, Y3) = Pr(Y2 = 1) = Pr(X2 =

1) = Es(X2, X3). Therefore, Cov(r(Y1), s(Y2, Y3)) − Cov(r(X1), s(X2, X3)) = E[r(Y1)s(Y2, Y3)] −
E[r(X1)s(X2, X3)]. Since r(z1)s(z2, z3) = I{z1=z2=1} is supermodular, it thus follows from g̃ �SPM

f̃ that Cov(r(Y1), s(Y2, Y3)) ≥ Cov(r(X1), s(X2, X3)). An analogous argument holds if s(z2, z3) =

I{z3=1}.

It remains only to consider s(z2, z3) = I{z2=z3=1} and s(z2, z3) = I{z2+z3≥1}. For s(z2, z3) =

I{z2=z3=1}, Cov(r(Y1), s(Y2, Y3)) − Cov(r(X1), s(X2, X3)) = 0, while for s(z2, z3) = I{z2+z3≥1},

Cov(r(Y1), s(Y2, Y3)) > 0 > Cov(r(X1), s(X2, X3)). Therefore, g̃ �GWA f̃ . �
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D Proof of Proposition 7

Since the SPM, CXMOD, DISP, and CX orderings are all difference-based orderings, it is sufficient

to work with δ ≡ g−f . Figure 2 displays the values of δ at each of the 16 nodes of L = {0, 1}4, given

top-to-bottom symmetry of g and f , and hence of δ. Top-to-bottom symmetry of δ implies that once

the 8 values of δ(1, 1, 1, 1) ≡ a, δ(0, 1, 1, 1) ≡ b1, δ(1, 0, 1, 1) ≡ b2, δ(1, 1, 0, 1) ≡ b3, δ(1, 1, 1, 0) ≡ b4,

δ(0, 1, 1, 0) ≡ c14, δ(1, 0, 1, 0) ≡ c24, and δ(1, 1, 0, 0) ≡ c34 are specified (corresponding to the 8

nodes marked with black dots in Figure 2), the remaining 8 values are determined. Note that

top-to-bottom symmetry implies that c12 = c34, c13 = c24, and c23 = c14. Top-to-bottom symmetry

of g and f also implies that Y and X have identical marginal distributions, since it implies that for

all i, Pr(Yi = 1) = Pr(Yi = 0) = 1
2 and Pr(Xi = 1) = Pr(X1 = 0) = 1

2 . From Figure 2, identical

marginals for Y and X here corresponds to

a +
4∑

h=1

bh + cij + cik + cil = 0 ∀i 6= j 6= k 6= l. (26)

[Insert Figure 2 about here]

We first show that condition iii) in the proposition implies condition iv). First note that from

Figure 2, it is apparent that the second part of condition iv), Pr(Yi = Yj) ≥ Pr(Xi = Xj) for

all i 6= j, holds if and only if a + bi + bj + cij ≥ 0 for all i 6= j. Now use Proposition 4 to

identify the implications of Y �DISP X. For s = (0, 0, 0, 0), Y s
i = Yi and Xs

i = Xi for all i, so

cs(Y s) �CX cs(Xs) if and only if c(Y ) �CX c(X). For s = (1, 1, 0, 0) and all permutations thereof,

cs(Y s) and cs(Xs) have support {0, 1, 2} and, from equation (15), cs(Y s) �CX cs(Xs) implies that

E[max{cs(Y s)− 1, 0}]−E[max{cs(Xs)− 1, 0}] ≥ 0, which is equivalent to a + bi + bj + cij ≥ 0 for

all i 6= j. Hence iii) implies iv).

In order to show that condition iv) implies condition i), we identify the inequalities to which

c(Y ) �CX c(X) is equivalent here. From (15), c(Y ) �CX c(X) if and only if 1) Ec(Y )−Ec(X) = 0

and 2) E[max{c(Y )−t, 0}]−E[max{c(X)−t, 0}] ≥ 0 for t = 1, 2, 3. Given top-to-bottom symmetry,

Ec(Y )−Ec(X) = 4a+3(
∑4

h=1 bh)+2·2(cij+cik+cil)+
∑4

h=1 bh, which equals 0 given (26). For t = 3,

condition 2) corresponds to a ≥ 0, and for t = 2, it corresponds to 2a+
∑4

h=1 bh ≥ 0. For t = 1 and

given top-to-bottom symmetry, the left-hand side of condition 2) is 3a+2
∑4

h=1 bh+2(cij +cik+cil),

which equals a given (26). Therefore, c(Y ) �CX c(X) here if and only if a ≥ 0 and 2a+
∑4

h=1 bh ≥ 0.

We now show that

a ≥ 0, 2a +
4∑

h=1

bh ≥ 0, and ∀i 6= j a + bi + bj + cij ≥ 0 =⇒ g �SPM f.
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To do so, we decompose δ into 24 elementary transformations (ETs) of the form defined in (4):

for each of the 24 faces of the hypercube L = {0, 1}4, there is one ET involving the 4 nodes on

that face. We will abuse notation slightly and let the value of δ at a given node also serve as the

label for that node. Let the two ETs involving the nodes a, bi, bj , and cij (there are two such ETs

because of the top-to-bottom symmetry of δ) have size βij = βji. Let the two ETs involving the

nodes bi, cik, cil, bj (once again, there are two such ETs because of the top-to- bottom symmetry)

have size αij = αji. There are 6 distinct values of βij and 6 distinct values of αij . For the 24 ETs

so defined to sum to δ, it is necessary and sufficient that βij and αij satisfy27

∑
i<j

βij = a

bi + βij + βik + βil = αij + αik + αil ∀i 6= j 6= k 6= l

−cij + βij + βkl = αik + αil + αjk + αjl ∀i 6= j 6= k 6= l. (27)

These three (sets of) equations ensure that each of the (sets of) nodes labeled a, bi, and cij ,

respectively, in Figure 2 is transformed from its values under the distribution f to its values under

the distribution g by the sequence of ETs just defined. The equations (27) can be rearranged to∑
i<j

βij = a

bi + βij + βik + βil = αij + αik + αil ∀i 6= j 6= k 6= l

2αij + 2βkl = a + bi + bj + cij ∀i 6= j 6= k 6= l. (28)

Noting the similarity between the equations (28) and (18) for the 3-dimensional cube, set

βkl =
a(a + bi + bj + cij)

4a +
∑4

h=1 bh

, ∀i 6= j 6= k 6= l

αij =
(2a +

∑4
h=1 bh)(a + bi + bj + cij)
2(4a +

∑4
h=1 bh)

, ∀i 6= j. (29)

Recalling that top-to-bottom symmetry of δ implies that c12 = c34, c13 = c24, and c23 = c14 and

using (26), it can be checked, with some algebra, that with these choices for βkl and αij , equations

(28) are satisfied. Furthermore, if a ≥ 0, 2a +
∑4

h=1 bh ≥ 0 and for all i 6= j, a + bi + bj + cij ≥ 0,

then βkl and αij as defined in (29) are all nonnegative. Thus, condition iv) in the proposition

implies the existence of a sequence of nonnegative ETs that sum to δ = g − f . Since each ET

raises the expectation of any supermodular function, g �SPM f . By Theorem 2, it then follows

that conditions i)-iv) are all equivalent. �

27Further details of this and subsequent arguments are provided in the supplementary material, Meyer and Strulovici

[43], available on the journal website.
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Figure 1a: δ = g − f for L = {0, 1}3 Figure 1b: Labels for the nodes of L = {0, 1}3
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Figure 2: δ(z) = g(z)− f(z) for L = {0, 1}4 and with “top-to-bottom symmetry” (which implies

that c14 = c23, c24 = c13, and c34 = c12). In the left cube, z4 = 0; in the right cube, z4 = 1.
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