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Abstract

This paper studies information transmission in a two-sender, multidimensional cheap

talk setting where there are exogenous restrictions on the feasible set of policies for the re-

ceiver. Such restrictions are present in most applications, and by limiting the punishments

available to the receiver, they can prevent the existence of fully revealing equilibria (FRE).

We focus on equilibria that are robust to small mistakes by the senders, in that small differ-

ences between the senders’ messages result in only small punishments by the receiver. For

convex policy spaces in two dimensions, we provide a simple, local geometric condition,

on the directions of the senders’ bias vectors relative to the frontier of the policy space,

that is necessary and sufficient for the existence of a robust FRE that is independent of

the magnitudes of the biases. We also provide a specific policy rule for the receiver that

supports a robust FRE whenever one exists. The same local geometric condition remains

necessary and sufficient for existence even if we drop either the requirement of robustness

or the requirement that the equilibrium be independent of the magnitudes of the biases (but

not both). Our necessary and sufficient condition can be easily adapted if the receiver is

uncertain about the directions of the biases and/or if the biases vary with the state of the

world. Finally, we extend our characterization results for existence of robust FRE’s to con-

vex policy spaces in more than two dimensions and to non-convex two-dimensional policy

spaces.
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1 Introduction

In sender-receiver games with cheap talk, the decision-maker (receiver) has imperfect infor-

mation about the consequences of a policy and elicits reports from better-informed experts

(the senders), whose preferences are not perfectly aligned with those of the decision-maker

(i.e. the experts are “biased”). The advice transmitted by the senders is costless but unveri-

fiable (hence, “cheap talk”), and the receiver cannot commit himself in advance to how he

will respond to the senders’ advice.1 Cheap talk games with two biased experts have been

used, for example, in organizational economics to analyze the interaction between the CEO

of a multi-divisional firm and the division managers, and in political science to study the

transmission of information from legislative committees to the legislature as a whole.2 In

both of these contexts, as well as in most other settings to which cheap-talk models have

been applied, the decision-maker typically faces constraints on the set of feasible policies—

these may stem from limited budgets, from physical restrictions on what is possible (within

a given time frame), or from legal constraints.

Our objective in this paper is to provide simple geometric conditions, on the shape of

the feasible set of policies relative to the directions of the senders’ bias vectors, that are

necessary and sufficient for the existence of equilibria that are not only fully revealing but

have additional desirable properties.

In cheap-talk models in which the receiver can consult two equally well-informed

senders, the receiver has the potential to extract all of the senders’ information, by com-

paring the senders’ messages and punishing any discrepancy between them. However, as

Battaglini (2002) demonstrated, with a unidimensional policy space and senders whose

preferences are biased, relative to the receiver’s, in opposite directions, a fully revealing

equilibrium exists if and only if the magnitudes of the senders’ biases are small relative

to the size of the policy space. Furthermore, those fully revealing equilibria are such that

small deviations by the senders from their equilibrium strategies will result in large punish-

ments by the receiver; in consequence, such equilibria fail to be ’robust’ to small mistakes

by the senders. For multidimensional policy spaces, Battaglini’s equilibrium construction

implies both that a fully revealing equilibrium exists no matter how large the magnitudes

of the senders’ biases (as long as the two vectors are linearly independent) and that small

deviations or mistakes induce only small changes in the receiver’s chosen policy.

The message of these contrasting results would appear to be that when the receiver’s

choice set expands from one dimension to more than one, full extraction of information

from self-interested experts, even in a manner robust to small mistakes, becomes unprob-

lematic. However, Battaglini’s analysis of the multidimensional case assumes that both the

state space and the receiver’s policy space are the whole of Rd; under this assumption, there

are neither exogenous restrictions on the receiver’s possible actions nor constraints stem-

ming from the requirement of Perfect Bayesian Equilibrium that the receiver’s action after

1For the seminal paper in this literature see Crawford and Sobel (1982).
2For the former application, see Alonso, Dessein, and Matouschek (2008) and for the latter, Gilligan and

Krehbiel (1989) and Krishna and Morgan (2001a,b)
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out-of-equilibrium messages be an optimal response to some beliefs.

Ambrus and Takahashi (2008) analyze the case of compact multidimensional state

spaces. Since the receiver’s out-of-equilibrium beliefs must in consequence be confined

to the compact state space, the set of actions with which the receiver can punish any dis-

crepancies between the senders’ messages is therefore also confined to the (convex hull

of the) compact state space. This limitation on the punishments available to the receiver

can prevent the existence of fully revealing equilibria, and non-existence of such equilibria

becomes more likely the larger the magnitudes of the senders’ biases. Ambrus and Taka-

hashi show that, when the magnitudes of the biases can be arbitrarily large, a fully revealing

equilibrium exists if and only if the senders have a common least-preferred policy. While

this characterization result is elegant, the equilibrium construction involves the receiver

punishing any discrepancies between the senders’ reports by choosing their common least-

preferred policy. As they themselves acknowledge, the use of extreme punishments after

even small deviations is unappealing, since such deviations could in practice arise from

small mistakes by the senders. Their analysis leaves open the question of characterizing,

for restricted state spaces or policy spaces, the conditions for existence of a fully revealing

equilibrium that is robust to small mistakes.

This is the main question that we tackle in this paper. In our model, as in Ambrus and

Takahashi (2008) and Battaglini (2002), the receiver and the senders all have quadratic util-

ity functions, and sender i’s ideal point differs from the receiver’s by a vector, bi, sender

i’s bias vector. We define an intuitive notion of robustness for a fully revealing equilib-

rium, that requires that the receiver responds to small discrepancies between the senders’

messages with small punishments, that is, punishments that are close to the messages. For

restricted policy spaces, and hence restricted punishment possibilities, we characterize the

conditions under which there exists a fully revealing equilibrium that is robust to small

mistakes by the senders and independent of the magnitudes of the biases.

We begin by focusing on convex policy spaces in an arbitrary number of dimensions.

We prove that whenever there exists a fully revealing equilibrium (FRE) that is indepen-

dent of the magnitudes of the biases, there also exists a robust FRE independent of these

magnitudes. In other words, when biases can be arbitrarily large, if small deviations cannot

be deterred with small punishments, then they cannot be deterred with any feasible pun-

ishments. Moreover, we show that for convex policy spaces that are two-dimensional or

multidimensional and compact, it is sufficient for existence of a FRE (robust or not) that

small deviations can be deterred (with small punishments). These preliminary results are

extremely useful, because they show that a) robustness is, perhaps surprisingly, not a re-

strictive requirement on a FRE when biases can be arbitrarily large and the policy space is

convex; and b) in the two-dimensional or compact multidimensional cases, we need only

ensure that local deviations can be punished.

Section 3.1 then focuses on the case where the policy space is two-dimensional and

convex. Proposition 4 identifies a simple, local geometric condition, on the directions of

the senders’ bias vectors relative to the frontier of the policy space, that is necessary and

sufficient for the existence of a FRE (robust or not), independent of the magnitudes of the
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biases. The proposition also provides a specific policy rule for the receiver that supports a

robust FRE whenever one exists. To describe this rule, observe that as the senders’ biases

become arbitrarily large, their indifference curves approach hyperplanes. Using the coor-

dinate system defined by these limiting preferences of the senders, the policy rule specifies

that, given any two reported states, the receiver chooses the component-wise minimum of

these reports: this is the best policy for both senders that is also, for both of them, at least

weakly inferior to both reported states. If this policy rule is feasible, it deters deviations

from truthful reporting, independently of the magnitudes of the biases, and it does so in a

manner robust to small mistakes. Proposition 4 shows that this policy rule is feasible, for

all pairs of reports, if and only if the local geometric condition is satisfied.

To state this local geometric condition, define, for given bias vectors b1 and b2, the

open convex cone C(b1, b2), and the closed convex cone C(b1, b2), spanned by b1 and b2.

The condition requires that at every smooth point on the frontier of the policy space, the

inward-pointing normal vector to the frontier not lie in C(b1, b2). This condition is easiest

to interpret by examining its “strict” version: For a given smooth point θ on the frontier, the

requirement that the inward-pointing normal vector not lie in C(b1, b2) holds if and only if,

even for arbitrarily large biases, there exists a feasible policy for the receiver, close to θ, that

would make both senders strictly worse off than if the receiver chose y = θ. Now consider

the boundary case of a smooth point θ on the frontier at which the inward normal vector

coincides with the direction of one (or both) of the bias vectors. If the frontier is locally

curved, so the inward normal vector is rotating, then the necessary and sufficient condition

will be violated at a nearby θ; if instead, the frontier is linear in a neighborhood of θ, then

there exist nearby policies on the frontier that would leave both senders weakly worse off

than if the receiver chose the action y = θ. If and only if the inward normal vector lies

outside C(b1, b2) for all smooth points on the frontier, all local deviations can be deterred

with (possibly weak) local punishments.

For convex spaces in two dimensions, we also prove that the same condition remains

necessary and sufficient for existence of a robust FRE even if the biases have known finite

sizes. This is true because, when the receiver is constrained to use small punishments,

whether or not the senders have incentives to deviate from truthtelling depends only on the

orientations, not the magnitudes, of their bias vectors.

In Section 3.2, we extend our characterization to a convex state space of any dimension

d > 2. The key observation here is that, for bias vectors that are linearly independent, the

only directions of conflict between the senders and the receiver are the ones in the plane

spanned by these vectors. Proposition 5 shows that, for existence of a FRE (robust or

not) when the biases can be arbitrarily large, it is necessary and sufficient to look at the

projection of the state space onto the subspace of conflict of interest and see whether a FRE

can be constructed there. The reason is that, for arbitrarily large biases, no given shift of

the receiver’s action in a direction orthogonal to the plane of the biases can be certain to

serve as a punishment for a deviating sender. Therefore, to be certain that he is actually

punishing a deviation, the receiver needs to choose an action whose projection on the plane

of the biases is worse for both senders. Such an action exists if and only if the projection of

4



the state space onto the plane of the biases satisfies the necessary and sufficient condition

identified in Proposition 4 for the two-dimensional case.

Since indivisibilities may cause the set of feasible actions for the receiver to be non-

convex, it is important to address the question of the existence of a robust FRE for non-

convex spaces. This we do in Section 4. We identify a pair of local geometric conditions,

on the directions of the senders’ biases relative to 1) the frontier of the convex hull of the

policy space and 2) the frontier of the policy space itself, that together are necessary and

sufficient for existence of a robust FRE, independent of the magnitudes of the biases. (When

the policy space is convex, both conditions reduce to the condition identified in Proposition

4 in Section 3.1.) The second condition is necessary and sufficient for small deviations to be

deterrable with small punishments, but for non-convex policy spaces, this is not sufficient

for existence of a robust FRE: large deviations might not be deterrable even if small ones

are. The first condition is necessary and sufficient for all deviations, including large ones,

to be deterrable with feasible punishments, when the biases can be arbitrarily large.

Finally, in Section 5, we relax the assumptions that (i) the directions of the senders’

biases are common knowledge and (ii) the biases are independent of the realization of the

state. We prove that when the receiver does not know the actual biases but knows only the

minimal closed cone in which they are certain to lie, and this minimal cone is the same

for all states, then the necessary and sufficient condition for existence of a robust FRE

for arbitrarily large biases is the same condition identified in Proposition 4 in Section 3.1,

except that the known biases b1 and b2 there are replaced by the least aligned possible

realizations of the biases.

2 The Model

The model we consider is the same as that of Ambrus and Takahashi (2008) and Battaglini

(2002). The game is between two senders S 1, S 2 and a receiver R. Both senders perfectly

observe θ ∈ Θ ⊆ Rd the realization of a random variable θ̂. We will refer to the realization

θ as the state. The prior distribution of θ̂ is given by F and is commonly known. After

observing θ, each sender S i sends message mi ∈ Mi to the receiver who then chooses a

policy y from a set of feasible policies Y , a closed subset of Θ. We will refer to the pair

(Θ,Y) as the environment of the game.

Given the state θ and the chosen policy y, the receiver’s utility is −|y − θ|2, and each

sender i’s utility is −|y − θ − bi|
2. The vector bi ∈ R

d is referred to as the bias vector

of sender i. Given these utilities, an ideal policy for the receiver when the state is θ is

y∗(θ) ∈ arg miny∈Y |y − θ|2. In the particular case in which Y ≡ Θ, y∗(θ) = θ.3

Sender S i’s strategy will be denoted by si : Θ −→ Mi, and the receiver’s strategy will

be denoted by y :M1×M2 −→ Y . Given messages m1,m2, µ(m1,m2) denotes the receiver’s

belief about y∗(θ̂) after receiving m1,m2. We denote by yR(m1,m2) ∈ Y an optimal policy

3When the policy space Y is a strict subspace of Θ and Y is non-convex, the set arg miny∈Y |y − θ|2 might not
be a singleton. In such a case, we will focus on one particular ideal policy and label this policy y∗(θ); which ideal
policy is singled out in this way is irrelevant.
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for the receiver given belief µ(m1,m2), and µ(·) will be referred to as the belief function of

the receiver. Since the senders’ payoffs depend on the receiver’s choice of policy, it is more

convenient to work directly with the receiver’s beliefs over the ideal policy y∗(θ̂) than with

his beliefs over θ̂. The equilibrium concept we use is Perfect Bayesian Equilibrium.

Definition 1. The strategies (s1, s2, y) constitute a Perfect Bayesian Equilibrium if there

exists a belief function µ(·) such that:

(i) si is optimal given s−i and y for i ∈ {1, 2}.

(ii) y(m1,m2) = yR(m1,m2) for each (m1,m2) ∈ M1 ×M2

(iii) If s−1
1 (m1) ∩ s−1

2 (m2) , ∅ then µ(m1,m2) is derived from Bayes’ rule.

2.1 Robust Fully Revealing Equilibrium

In what follows we will focus on a special kind of equilibria in which the receiver perfectly

learns the ideal policy from the messages of the senders.

The strategies (s1, s2) are fully revealing if for all θ ∈ Θ the conditional probability

of the random variable y∗(θ̂) given messages s1(θ) and s2(θ) has mass one on y∗(θ). In

particular yR(s1(θ), s2(θ)) = y∗(θ). An equilibrium with fully revealing strategies is called a

fully revealing equilibrium (FRE).

In a Perfect Bayesian Equilibrium, no restriction is imposed on beliefs in response to

out-of- equilibrium messages, i.e. messages such that s−1
1 (m1) ∩ s−1

2 (m2) = ∅. This implies

that after any incompatible messages the receiver could choose any policy to punish the

deviation. However, when the discrepancy between two incompatible messages is small, it

might be reasonable to think that the receiver’s chosen policy should be close to each of the

messages, since small discrepancies might be due not to deliberate misrepresentation by

the senders but rather to small mistakes. Battaglini (2002) was the first to raise this concern

when analysing fully revealing equilibria in models with a unidimensional state space. He

showed that in such models, when the senders were biased in opposite directions relative

to the receiver, none of the fully revealing equilibria were robust to a perturbation of the

game that allowed small mistakes in the senders’ reports. This problem did not arise in his

multidimensional analysis because, with no restrictions on the state or policy spaces and

with his equilibrium construction, there were never any incompatible reports. However,

as Ambrus and Takahashi (2008) pointed out, incompatible messages arise naturally, even

with Battaglini’s construction, when the state (or policy) space is restricted.

We now formulate a definition of robustness of an equilibrium to small mistakes that

explicitly captures the requirement that when the discrepancy between two incompatible

messages is small, the receiver’s chosen policy should be close to each of the messages. In

order to do so, we introduce some notation that will be used throughout the paper. Given

x ∈ Rd and a scalar ε > 0, B(x, ε) = {y ∈ Rd | |y− x| < ε} is the ball with centre x and radius

ε. In particular B(θ+ b, |b|) is the set of points that are closer to θ+ b than θ. In other words,

B(θ + b, |b|) is the set of points that a sender with bias b would prefer to θ.
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Definition 2. Given some fully revealing strategies (s1, s2), a belief function µ(·) deters

local deviations with local punishments if for any θ ∈ Θ and any ε > 0, there exist δ > 0

and δ′ > 0 such that if: (i) θ′, θ′′ ∈ B(θ, δ)∩Θ and (ii) y∗(θ′), y∗(θ′′) ∈ B(y∗(θ), δ′)∩ Y , then

yR(s1(θ′), s2(θ′′)) ∈ B(y∗(θ), ε) ∩ Y

|yR(s1(θ′), s2(θ′′)) − (θ′′ + b1)| ≥ |y∗(θ′′) − (θ′′ + b1)|

|yR(s1(θ′), s2(θ′)) − (θ′ + b2)| ≥ |y∗(θ′) − (θ′ + b2)|

A fully revealing equilibrium (s1, s2, y) supported by a belief function that deters local

deviations with local punishments is called a robust fully revealing equilibrium.4

If Y is convex and/or Θ = Y , then condition (ii) in Definition 2 is superfluous: in either

case, whenever θ′ and θ′′ are close, y∗(θ′) and y∗(θ′′) are also close. Condition (ii) is relevant

when Y is non-convex and Θ ⊃ Y , because in this case, small changes in θ for θ < Y can

result in large changes in the receiver’s ideal policy y∗(θ).

There are two interpretations of the type of small mistakes to which Definition 2 re-

quires the receiver to respond with only small punishments. That is, there are two inter-

pretations for why, even if senders do not intend to mislead the receiver, the receiver might

nevertheless receive incompatible reports. First, there might be some noise in the commu-

nication process, with the result that the receiver might not interpret the messages exactly

as the senders intended. Second, even if the communication process were noiseless, the

senders might not perceive the state perfectly accurately, and their errors might not be per-

fectly correlated. Under either interpretation of mistakes, our analysis would apply when

the senders and the receiver were unaware that these mistakes might happen. Our robust-

ness requirement ensures that as the size of the mistakes goes to zero, the outcome in the

presence of mistakes approaches the outcome when mistakes never occur.

2.2 Preliminary Results

In a fully revealing equilibrium (FRE), the receiver perfectly learns the ideal policy from

the pair of messages, and neither sender has an incentive to try to mislead the receiver by

sending a different message. Using a similar argument to the Revelation Principle we can,

without loss of generality, concentrate on equilibria in which each sender truthfully reports

the ideal policy given his observation. The strategies (s1, s2) are truthful ifM1 =M2 = Y

and si(θ) = y∗(θ). An equilibrium with truthful strategies is called a truthful equilibrium.

Lemma 1 is an extension of Lemma 1 in Battaglini (2002) that incorporates our notion

of robustness and simplifies our subsequent analysis.

Lemma 1. For any (robust) fully revealing equilibrium there exists a (robust) truthful equi-

librium that is outcome-equivalent to it.

Proof: In the Appendix.

4Strategies (s1, s2) can together be fully revealing even if each sender’s report by itself does not fully reveal the
ideal policy. Battaglini’s (2002) construction of a fully revealing equilibrium for an unrestricted multidimensional
state space is an example of this possibility. We have stated Definition 2 in a way that allows for this possibility.
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We are interested in robust fully revealing equilibria that persist even when the mag-

nitudes of the senders’ biases can be arbitrarily large. More precisely, if the senders’ bias

vectors are (t1b1, t2b2), where the vectors b1 and b2 are commonly known and the positive

scalars t1 and t2 can be arbitrarily large, we seek conditions under which there exists a ro-

bust fully revealing equilibrium that is independent of the values of t1 and t2. Such a robust

FRE would remain a robust FRE even if the receiver were uncertain about the magnitudes

of the senders’ biases.5

Besides being invariant to the intensity of senders’ preferences, such equilibria are also

appealing because of the relative tractability of their characterization. As observed by Levy

and Razin (2007), the indifference curves of a sender with a very large bias are very close to

hyperplanes orthogonal to the bias vector. Furthermore, as the magnitude of the bias goes

to infinity, a sender’s ranking over policies becomes independent of the true state.

Proposition 1 and Proposition 2 below allow us to abstract from specifying particu-

lar belief functions when proving the existence and nonexistence of robust fully revealing

equilibria that are independent of the magnitudes of the senders’ biases.

Proposition 1 deals with the case in which the policy space coincides with the state

space. The first part is essentially the same as in Ambrus and Takahashi (2008)’s Proposi-

tion 7, although it allows for non-compact state (and policy) spaces. It provides a necessary

and sufficient condition for the existence of fully revealing equilibria that are independent

of the magnitudes of the biases. The second part of Proposition 1 establishes a necessary

and sufficient condition for the existence of a belief that deters local deviations with local

punishments and is independent of the magnitudes of the biases. Finally, we show that

the two conditions together are not only necessary but also sufficient for the existence of a

robust FRE independent of the magnitudes of the biases.

Before proceeding we introduce two additional pieces of notation. Given a (bias) vector

b ∈ Rd and a scalar k ∈ R, we define H(b, k) ≡ {x ∈ Rd | bx > k}. In other words, H(b, k)

is the half-space composed of all the points of Rd whose inner product with b is greater

than k. In particular, for any point θ′ ∈ H(b, bθ), bθ′ > bθ, and there exists a scalar t > 0

such that θ′ ∈ B(θ + tb, t|b|), that is, θ′ is preferred to θ by a sender with bias tb. Finally,

h(b, k) ≡ {x ∈ Rd | bx = k) is the boundary of the half-space H(b, k), that is, the set of

points whose inner product with b is exactly k.

Proposition 1. Suppose Y ≡ Θ ⊆ Rd. Given b1, b2 ∈ R
d,

(i) There exists a fully revealing equilibrium with biases (t1b1, t2b2) for every t1, t2 ≥ 0 if

and only if 6

for any θ′, θ′′ ∈ Y, Y * H(b1, b1θ
′′) ∪ H(b2, b2θ

′) (1)

5Section 5 shows how our characterization results can be extended when the receiver is also, to some degree,
uncertain about the directions of the senders’ biases.

6In Ambrus and Takahashi (2008)’s Proposition 7, the condition states co(Θ) * H(b1, b1θ
′′) ∪ H(b2, b2θ

′) for
any θ′, θ′′ ∈ Θ. The reason is that their policy space contains the convex hull of Θ and hence punishments might be
taken from points that are in co(Θ) \ Θ. Since we want to allow for non-convex policy spaces our condition does
not incorporate the convex hull of Θ.
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(ii) There exists some fully revealing strategies and a belief function that deters local

deviations with local punishments for biases (t1b1, t2b2) for every t1, t2 ≥ 0, if and

only if

for any θ ∈ Y and any ε > 0, there exists δ > 0 such that for any θ′, θ′′ ∈ B(θ, δ) ∩ Y

B(θ, ε) ∩ Y * H(b1, b1θ
′′) ∪ H(b2, b2θ

′)
(2)

(iii) Conditions (1) and (2) are necessary and sufficient for the existence of a robust fully

revealing equilibrium.

Proof: In the Appendix.

When condition (1) holds, the receiver’s policy rule yR(θ′, θ′′) in a truthful fully reveal-

ing equilibrium will satisfy yR(θ′, θ′′) = θ′ if θ′ = θ′′ and yR(θ′, θ′′) ∈ Y\(H(b1, b1θ
′′) ∪ H(b2, b2θ

′))

if θ′ , θ′′. Such a rule is feasible and ensures that sender 1 (resp., 2) has no incentive to

deviate to a report of θ′ (resp., θ′′) when the true state is θ′′ (resp., θ′), even for arbitrarily

large magnitudes of the biases.

Proposition 2 deals with the case in which Y ⊆ Θ, that is, the policy space might

be a strict subset of the state space. It states that there exists a (robust) fully revealing

equilibrium for Y ⊆ Θ, if and only if there exist a (robust) fully revealing equilibrium when

the space state is reduced to coincide with the policy space. In other words, we can ignore

those states that cannot be implemented as a policy.

Proposition 2. Given Y ⊆ Θ ⊆ Rd and b1, b2 ∈ R
d, the following two statements are

equivalent:

(i) For the environment (Θ,Y), there exists a (robust) fully revealing equilibrium for all

biases (t1b1, t2b2), t1, t2 ≥ 0.

(ii) For the environment (Y,Y), there exists a (robust) fully revealing equilibrium for all

biases (t1b1, t2b2), t1, t2 ≥ 0.

Proof: (i)⇒ (ii) : Trivial

(ii) ⇒ (i) : Suppose there exists a (robust) FRE in (Y,Y). By Lemma 1, there exists a

truthful (robust) equilibrium outcome-equivalent to it. Denote the truthful equilibrium by

(s1, s2, yR) where for all θ ∈ Y , si(θ) = y∗(θ) = θ. For θ ∈ Θ we define the following

strategies: s̃i(θ) = y∗(θ). We claim that (s̃1, s̃2, yR) is a (robust) FRE in (Θ,Y).

Consider the out-of-equilibrium messages (y′, y′′) where y′ , y′′ and denote by x =

yR(y′, y′′) the receiver’s policy after the report (y′, y′′). By Proposition 1,

b1(y′′ − x) ≥ 0, b2(y′ − x) ≥ 0. (3)

For sender S 1, we need to show that for any θ ∈ Θ such that y∗(θ) = y′′, |θ + tb1 − y′′| ≤

|θ + tb1 − x| for all t > 0. For any θ ∈ Θ with y∗(θ) = y′′, y′′ is the closest point in Y

to θ. Hence, |θ − y′′| ≤ |θ − x|. Define z as the midpoint of the segment [x, y′′]. Then
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z

y′′

x = yR(y′, y′′)

θ

θ + tb1 b1

b1

Figure 1

θ(y′′ − x) ≥ z(y′′ − x), and by (3), (θ + tb1)(y′′ − x) ≥ z(y′′ − x) for all t > 0, or in other

words |θ + tb1 − y′′| ≤ |θ + tb1 − x| for all t > 0. A similar argument for S 2 shows that for

any θ ∈ Θ such that y∗(θ) = y′, |θ+ tb2− y′| ≤ |θ+ tb2− x| for all t > 0. Therefore (s̃1, s̃2, yR)

is a FRE in (Θ,Y). (See Figure 1.)

Finally if we further assume that the initial equilibrium (s1, s2, yR) is robust, then by Propo-

sition 1, for any y ∈ Y and ε > 0, there exists δ > 0 such that for all y′, y′′ ∈ B(y, δ) ∩ Y ,

yR(y′, y′′) ∈ B(y, ε). In particular, for any θ ∈ Θ and θ′, θ′′ ∈ Θ such that y∗(θ′), y∗(θ′′) ∈

B(y∗(θ), δ), we have that yR(y∗(θ′), y∗(θ′′)) ∈ B(y∗(θ), ε). �

Given Proposition 2, the shape of the state space Θ is irrelevant (as long as Y ⊆ Θ), and

all that matters for the existence of a (robust) FRE is the shape of the policy space, relative

to the bias vectors of the senders. For the rest of the paper, we can therefore focus, when

proving existence results for (robust) FRE’s, on the case in which Θ ≡ Y . Proposition 1,

which is stated for the case Θ ≡ Y , will be our primary tool.

Finally, we discuss two special cases where, for any number of dimensions and any

shape of Y , it is straightforward to draw conclusions about the existence of a robust fully

revealing equilibrium when the biases can be arbitrarily large. First, if the senders’ bias

vectors are in exactly the same direction (i.e. b1 = tb2 for some strictly positive scalar t),

then for arbitrarily large magnitudes there always exists a robust FRE. In it, the receiver

responds to any discrepancy between the messages by choosing whichever of the two re-

ported states leads to a smaller inner product with (each of) the bias vectors. In other words,

the receiver’s chosen policy coincides with whichever of the reported states would be less

preferred, if biases were infinitely large, by both senders. Such a strategy for the receiver

ensures that neither sender can strictly gain by deviating from truthful reporting, and since

the receiver’s chosen policy always coincides with one of the senders’ messages, this FRE

satisfies our definition of robustness.

Second, if the biases are exactly opposite (i.e. b1 = tb2 for some strictly negative scalar

t), then it follows from part (i) of Proposition 1 and Proposition 2 that a FRE exists for

arbitrarily large biases “if and only if Y is included in a lower dimensional hyperspace that

is orthogonal to the direction of the biases” (Ambrus and Takahashi (2008, p. 13)). In

addition, it follows from part (ii) that when a FRE exists in this case, a robust FRE exists as
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well: a (truthful) robust FRE is supported by a response function for the receiver such that

y(θ′, θ′′) = λθ′ + (1 − λ)θ′′, for λ ∈ [0, 1].

For the remainder of the paper, we will exclude these two special cases and assume that

b1 and b2 are linearly independent.

3 Convex Policy Space

We begin by focusing on convex state spaces in an arbitrary number of dimensions. Propo-

sition 3 below shows that, when biases can be arbitrarily large, whenever there exists a

fully revealing equilibrium (FRE), there also exists a robust FRE. In other words, if small

deviations cannot be deterred with small punishments, then they cannot be deterred with

any feasible punishments. Moreover, we show that for convex state spaces that are two-

dimensional or multidimensional and compact, it is sufficient for existence of a FRE (robust

or not) that small deviations can be deterred (with small punishments). These preliminary

results are extremely useful, because they show that a) robustness is, perhaps surprisingly,

not a restrictive requirement on a FRE when biases can be arbitrarily large and the state

space is convex; and b) in the two-dimensional or compact multidimensional cases, we

need only to ensure that local deviations can be punished.

Proposition 3. Given Y ⊆ Rd convex and b1, b2 ∈ R
d linearly independent, the following

statements are equivalent:

(i) There exists a fully revealing equilibrium for all biases (t1b1, t2b2) with t1, t2 ≥ 0

(ii) There exists a robust fully revealing equilibrium for all biases (t1b1, t2b2) with t1, t2 ≥

0.

When we further assume that a) Y ⊆ R2 or that b) Y ⊆ Rd and Y is compact, then the

following statement is also equivalent to the previous two:

(iii) Local deviations can be deterred for all biases (t1b1, t2b2) with t1, t2 ≥ 0.

Proof: By Proposition 2, we can restrict attention to the case in which Θ ≡ Y .

(ii)⇒ (i) is trivial.

(i) ⇒ (ii) We argue in two steps. First, we prove that if local deviations from θ ∈ Y cannot

be deterred with a local punishment, then there exists ε > 0 such that

B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ)

where S denotes the closure of S . Note that this statement is independent of whether Y

is convex or not. Second, we use the first result and the convexity of Y to show that if a

local deviation cannot be deterred with a local punishment, it cannot be deterred with any

punishment and hence a fully revealing equilibrium does not exist.

STEP 1: If local deviations from θ ∈ Y cannot be deterred with local actions then by

Proposition 1 there exists ε > 0 such that for every δ > 0 there exist θ′δ, θ
′′
δ ∈ B(θ, δ) ∩ Y

such that B(θ, ε)∩Y ⊆ H(b1, b1θ
′′
δ )∪H(b2, b2θ

′
δ). We show that for that same ε, B(θ, ε)∩Y ⊆

11



H(b1, b1θ) ∪ H(b2, b2θ). Suppose that B(θ, ε) ∩ Y * H(b1, b1θ) ∪ H(b2, b2θ). Then there

exists θ̃ ∈ B(θ, ε) ∩ Y , such that b1θ̃ < b1θ and b2θ̃ < b2θ. Define δ̃ = min{ |b1(θ−θ̃)|
|b1 |

, |b2(θ−θ̃)|
|b2 |
}

and denote θ̃′, θ̃′′ ∈ B(θ, δ̃) the corresponding θ′
δ̃

and θ′′
δ̃

such that B(θ, ε)∩Y ⊆ H(b1, b1θ̃
′′)∪

H(b2, b2θ̃
′). But by the definition of δ̃, b1θ̃ < b1θ̃′′ and b2θ̃ < b2θ̃

′ and hence θ̃ ∈ B(θ, ε) ∩

Y \
(
H(b1, b1θ̃

′′) ∪ H(b2, b2θ̃
′)
)

which is a contradiction. See Figure 2.

h(b2, b2θ̃)h(b1, b1θ̃)

θ B(θ, ε)

θ̃

|b1(θ−θ̃)|
|b1 |

|b2(θ−θ̃)|
|b2 |

h(b2, b2θ)h(b1, b1θ)

b2 b1
Θ ≡ Y

Figure 2

STEP 2: Suppose that local deviations from θ ∈ Y cannot be deterred with a local pun-

ishment. By Step 1 there exists ε > 0 such that B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ).

Define θ′ = arg min{b2θ̃ | θ̃ ∈ B(θ, ε) ∩ Y} and θ′′ = arg min{b1θ̃ | θ̃ ∈ B(θ, ε) ∩ Y}. Clearly

B(θ, ε)∩Y ⊂ H(b1, b1θ
′′)∪H(b2, b2θ

′) and hence either b1θ > b1θ
′′ or b2θ > b2θ

′. Without

loss of generality assume that b1θ > b1θ
′′. We show now that the deviation {θ′, θ′′} cannot

be deterred in Y . (See Figure 3.)

h(b2, b2θ
′)

h(b2, b2θ)

b2

θ

B(θ, ε)

h(b1, b1θ
′′)

h(b1, b1θ)

b1

θ′ θ′′

θ̂

Θ ≡ Y

Figure 3: Every fully revealing equilibrium is robust: if a local deviation cannot be deterred with a
local punishment, it cannot be deterred with any punishment.

Suppose there exists θ̂ ∈ Y such that b1θ̂ ≤ b1θ
′′ < b1θ and b2θ̂ ≤ b2θ

′ ≤ b2θ. We

claim that b2θ̂ < b2θ and hence by the convexity of Y there exists a λ ∈ (0, 1) such that

λθ̂ + (1 − λ)θ ∈ B(θ, ε) ∩ Y and b1(λθ̂ + (1 − λ)θ) < b1θ, b2(λθ̂ + (1 − λ)θ) < b2θ which
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contradicts that B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ).

To see that b2θ̂ < b2θ, suppose b2θ̂ = b2θ = b2θ
′ = min{b2θ̃ | θ̃ ∈ B(θ, ε) ∩ Y} (See

Figure 4). Since local deviations from θ cannot be deterred, by Proposition 1 there exists

an ε̃ > 0 such that for any δ > 0 there exists θ′δ, θ
′′
δ ∈ B(θ, δ) ∩ Y such that B(θ, ε̃) ∩ Y ⊂

H(b1, b1θ
′′
δ ) ∪ H(b2, b2θ

′
δ). Consider δ < min{ε, ε̃ |b1t2 |

|b1 |
}, where t2 is the unit normal vector

to b2 such that b1t2 < 0. In particular, since δ < ε̃ |b1t2 |
|b1 |

, b1θ
′′
δ > b1(θ + ε̃t2) and hence there

exists µ ∈ (0, 1) such that µθ̂+(1−µ)θ ∈ B(θ, ε̃)∩Y and b1θ
′′
δ > b1(µθ̂+(1−µ)θ). Moreover,

since δ < ε and b2θ̂ = b2θ = b2θ
′ = min{b2θ̃ | θ̃ ∈ B(θ, ε) ∩ Y}, b2(µθ̂ + (1 − µ)θ) ≤ b2θ

′
δ.

But this contradicts that B(θ, ε̃) ∩ Y ⊂ H(b1, b1θ
′′
δ ) ∪ H(b2, b2θ

′
δ).

θ
B(θ, ε̃)

Θ ≡ Y

b2

h(b2, b2θ)

t2

h(b1, b1θ
′′
δ )

b1

ε̃ |b1t2 |
|b1 |

θ′′δ

θ̂

µθ̂ + (1 − µ)θ

Figure 4

(ii)⇒ (iii) is trivial.

(iii) ⇒ (i) Suppose there exists θ′, θ′′ ∈ Y such that Y ⊆ H(b1, b1θ
′′) ∪ H(b2, b2θ

′). Then

h(b1, b1θ
′′) ∩ h(b2, b2θ

′) ∩ Y = ∅ and for Y compact or Y ⊆ R2, there exist7

θ̃′ ∈ arg miny{b1y | y ∈ Y, b2y = b2θ
′} and

θ̃′′ ∈ arg miny{b2y | y ∈ Y, b1y = b1θ
′′}.

Note that H(b1, b1θ̃
′′)∪H(b2, b2θ̃

′) = H(b1, b1θ
′′)∪H(b2, b2θ

′) and hence Y ⊆ H(b1, b1θ̃
′′)∪

H(b2, b2θ̃
′). We show that for any λ ∈ (0, 1), Y ⊆ H(b1, b1(λθ̃′ + (1 − λ)θ̃′′)) ∪ H(b2, b2θ̃

′)

and therefore given θ̃′, for every δ > 0 there exists a λ ∈ (0, 1) such that λθ̃′ + (1 − λ)θ̃′′ ∈

B(θ̃′, δ) ∩ Y and

Y ⊆ H(b1, b1(λθ̃′ + (1 − λ)θ̃′′)) ∪ H(b2, b2θ̃
′)

and hence a local deviation from θ̃′ cannot be deterred8. See Figure 5.

Suppose that there exists λ ∈ (0, 1) and θ̂ ∈ Y such that θ̂ < H(b1, b1(λθ̃′ + (1 − λ)θ̃′′)) ∪

7If Y is compact then the minimum is reached within the set. This is also the case if Y ⊆ R2 because h(b1, b1θ
′′)∩

h(b2, b2θ
′) ∩ Y = ∅ implies that the sets Y ∩ h(b2, b2θ

′) and Y ∩ h(b1, b1θ
′′) are closed, bounded (from below) half-

lines and hence they have a minimum. For general Y ⊆ Rd, even if Y∩h(bi, biθ) is closed and bounded from below,
it might be the case that the minimum is never reached.

8Note that for any ε > 0, B(θ̃′, ε)∩Y ⊆ Y ⊆ H(b1, b1(λθ̃′ + (1−λ)θ̃′′))∪H(b2, b2θ̃
′), and hence local deviations

from θ̃′ cannot be deterred with local punishments.
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H(b2, b2θ̃
′). Since θ̂ ∈ H(b1, b1θ̃

′′) ∪ H(b2, b2θ̃
′),

θ̂ ∈ H(b1, b1θ̃
′′)

θ̂ < H(b2, b2θ̃
′)

θ̂ < H(b1, b1(λθ̃′ + (1 − λ)θ̃′′))

Moreover since θ̃′, θ̃′′ ∈ Y ⊆ H(b1, b1θ̃
′′) ∪ H(b2, b2θ̃

′), b2θ̃
′ < b2θ̃

′′ and b1θ̃
′′ < b1θ̃

′.

Putting all the inequalities together we find that

b2θ̂ ≤ b2θ̃
′ < b2θ̃

′′ (4)

b1θ̃
′′ < b1θ̂ < b1θ̃

′ (5)

By (4) there exists µ ∈ (0, 1] such that b2(µθ̂+ (1− µ)θ̃′′) = b2θ̃
′ and by convexity µθ̂+ (1−

µ)θ̃′′ ∈ Y . But by (5), b1(µθ̂ + (1 − µ)θ̃′′) < b1θ̂ < b1θ̃
′ which contradicts the definition of

θ̃′. �

Θ ≡ Y

θ′

θ′′

θ̃′ θ̃′′

θ̂

h(b2, b2θ
′)

b2

h(b1, b1θ
′′)

b1

µθ̂ + (1 − µ)θ̃′′

λθ̃′ + (1 − λ)θ̃′′

Figure 5: In R2, if a deviation cannot be deterred, there is a local deviation that cannot be deterred
with local actions.

We next turn to a detailed analysis of the case of two-dimensional state spaces. Section

3.2 then shows how we can extend the results for the two-dimensional case to higher di-

mensions, building on the fact that the biases of the senders span a two-dimensional space

outside of which there is no conflict of interest between them and the receiver.

3.1 Policy Space a Subset of R2

We begin by defining some notation that will be used for the rest of the paper.

Given S ⊂ R2 closed and convex, we denote the frontier of S by Fr(S ). We say that a

point s ∈ Fr(S ) is smooth if there exists a unique tangent hyperplane to Fr(S ) at s. Any

point in Fr(S ) that is not smooth will be called a kink. The set of smooth points in the

frontier is denoted by F̃r(S ). For any s ∈ F̃r(S ), we denote by nS (s) the unit normal vector

to Fr(S ) at s in the inward direction to S . In particular, for S convex, nS (s) is the unique

vector that satisfies that nS (s)s′ ≥ nS (s)s for all s′ ∈ S .
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Given b1, b2 ∈ R
2, C(b1, b2) = {αb1 + βb2 | α, β > 0} is the open convex cone, and

C(b1, b2) = {αb1 + βb2 | α, β ≥ 0} the closed convex cone, spanned by the vectors b1, b2.

Given b1, b2 ∈ R
2 linearly independent, we denote by n1, n2 ∈ R

2, the normal vectors

to b1, b2 respectively such that n1b2 = 1 and n2b1 = 1. The pair (n2, n1) forms a basis for

R2. Note that for any θ ∈ R2, the coordinates of θ with respect to the basis (n2, n1) are

(b1θ, b2θ). For any θ′, θ′′ ∈ R2 we denote by θ′ ∧{b1,b2} θ
′′ the component-wise minimum of

θ′ and θ′′ in the basis (n2, n1). In other words, θ′ ∧{b1,b2} θ
′′ is the point in R2 whose coordi-

nates with respect to the basis (n2, n1) are (min{b1θ
′, b1θ

′′},min{b2θ
′, b2θ

′′}). Equivalently,

b1(θ′ ∧{b1,b2} θ
′′) = min{b1θ

′, b1θ
′′} and b2(θ′ ∧{b1,b2} θ

′′) = min{b2θ
′, b2θ

′′}.

Proposition 4 below provides a geometric condition that is easy to check and that deter-

mines whether or not a robust FRE exists. The proposition also provides a specific policy

rule for the receiver that supports a robust FRE whenever one exists.

Proposition 4. Given Y ⊆ R2 convex and b1, b2 ∈ R
2 linearly independent, the following

statements are equivalent:

(i) There exists a robust fully revealing equilibrium for biases (b1, b2).

(ii) There exists a (robust) fully revealing equilibrium for all biases (t1b1, t2b2) with

t1, t2 ≥ 0.

(iii) For every θ ∈ F̃r(Y), nY (θ) < C(b1, b2).

(iv) For every θ′, θ′′ ∈ Y, θ′ ∧{b1,b2} θ
′′ ∈ Y

Θ ≡ Y

b1
b2

n1

θ′′

θ′

y(θ′, θ′′)

Figure 6

Before presenting the proof, we make some observations. As Proposition 3 already

showed, when the policy space is convex, requiring robustness of a FRE when the biases

can be arbitrarily large does not restrict the circumstances under which it exists. Proposition

4 shows that when robustness is required, then existence becomes no more likely when we

drop the assumption that the biases can be arbitrarily large. The reason is that when the

receiver is constrained to use small punishments, then whether the senders have incentives

to deviate from truthtelling depends only on the orientations, not the magnitudes, of their

bias vectors.
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Condition (iii) in the proposition is a simple, local geometric condition, on the direc-

tions of the senders’ bias vectors relative to the frontier of the policy space. This con-

dition is easiest to interpret by examining its “strict” version: For a given θ ∈ F̃r(Y),

nY (θ) < C(b1, b2) holds if and only if there exists a feasible policy for the receiver, close to

θ, that would make both senders strictly worse off than if the receiver chose y = θ. Now

consider the boundary case of a θ ∈ F̃r(Y) at which nY (θ) coincides with the direction of

one of the bias vectors, say b1. If F̃r(Y) is locally curved at θ, so nY (θ) is rotating, then con-

dition (iii) will be violated at a nearby θ′. If, instead, F̃r(Y) is linear in a neighborhood of

θ, then there exists a nearby policy on the frontier that would leave sender 2 strictly worse

off and sender 1 no better off than if the receiver chose y = θ.

Condition (iv) provides a policy rule for the receiver, the min-rule, that deters deviations

in a robust way whenever a FRE exists. Whenever the reports (θ′, θ′′) of the senders do not

agree, the receiver’s action is rationalized by a belief that allocates mass one to θ′ ∧{b1,b2}

θ′′ ∈ Y .

Consider the example depicted in Figure 6. The feasible set Y ≡ Θ is the set of non-

negative y1,y2 such that y1 + y2 ≤ k, for some k > 0, representing a setting where the

receiver has to allocate funds from a budget of k to two different potential uses. Sender

1 is biased towards one use of funds, while Sender 2 is biased towards the other use. For

the bias vectors illustrated, condition (iii) in Proposition 4 is satisfied, and therefore there

exists a robust FRE, even for arbitrarily large biases. At smooth points along the segment

of the frontier where y1 + y2 = k, nY (θ) < C(b1, b2), and there exists a feasible policy for

the receiver, close to θ, that would make both senders strictly worse off than if the receiver

chose y = θ. Condition (iv) in Proposition 4 provides such a rule. For messages (θ′, θ′′)

that are both smooth points along this segment of the frontier, let the receiver’s belief be

such that yR(θ′, θ′′) = (min{θ′1, θ
′′
1 },min{θ′2, θ

′′
2 }). Such a belief satisfies both conditions (1)

and (2) in Proposition 1. Slightly changing the belief so that yR
i < min{θ′i , θ

′′
i } would al-

low the receiver to deter local deviations along this segment of the frontier with strict local

punishments, no matter how large the magnitudes of the biases.

At smooth points along the segments of the frontier where y1 = 0 or where y2 = 0, the

directions of nY (θ) and one of the senders’ biases coincide. For messages (θ′, θ′′) that are

both smooth points along the same such segment, a belief for R such that yR
i = min{θ′i , θ

′′
i }

for i = 1, 2 again deters local deviations with local punishments. However, along each of

these segments, at most one sender can be punished strictly for deviating, since when the

magnitudes of the biases are extremely large, each of these segments essentially lies along

an indifference curve of one of the senders.

Proposition 4 is valid even for non-compact state spaces. In the special case where

Y ≡ Θ is compact, the condition that Ambrus and Takahashi (2008, Proposition 8) showed

to be necessary and sufficient for existence of a FRE for arbitrarily large biases can be

shown to be equivalent to our condition (iii).9 However, their result, in contrast to ours, is

not valid for unbounded state spaces.

9In Ambrus and Takahashi’s model, Y is assumed to contain the convex hull of Θ, so all policies in (co(Θ)) are
feasible, and hence the effective policy space in their model is convex.
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In our setting with Y ≡ Θ, Ambrus and Takahashi’s result can be expressed in the

following way. First recall that as the magnitude of the bias goes to infinity, a sender’s

ranking over policies becomes independent of the true state. Thus, when Θ is compact and

biases are arbitrarily large, each sender’s least-preferred point(s) in Θ is(are) independent

of the true state. For compact Θ and arbitrarily large biases, Ambrus and Takahashi’s

result is that a FRE exists if and only if for sufficiently large magnitudes of the biases

the senders have a common least-preferred policy in Θ. With no robustness requirement

imposed on the equilibrium, it is clear that the common least-preferred point can be used by

the receiver to punish any discrepancies in the senders’ reports and thereby deter deviations

from truthtelling.10 The equivalence, for compact, convex Y ≡ Θ, between our condition

(iii) in Proposition 4 and Ambrus and Takahashi’s condition, shows that existence of a

common least-preferred point for the senders is sufficient for existence not only of a FRE

but also for a robust FRE, when the biases can be arbitrarily large.

Proof of Proposition 4: By Proposition 2, we can restrict attention to the case Θ ≡ Y .

(i) ⇒ (iii): Suppose there exists θ ∈ F̃r(Y) such that nY (θ) ∈ C(b1, b2). Since Y is convex

Y ⊆ H(nY (θ), nY (θ)θ). We can find ε > 0 such that

B(θ, ε) ∩ H(nY (θ), nY (θ)θ) ⊂ B(θ + b1/2, |b1|/2) ∪ B(θ + b2/2, |b2|/2) (6)

nY(θ)

t(θ)θ

b2

B(θ + b2/2, |b2|/2)

|b2t(θ)|

b1

B(θ + b1/2, |b1|/2)

|b1t(θ)|

√
|b1 |2 |b2 |2−(b1·b2)2

(b1−b2)2

B(θ, ε)

Figure 7

More precisely, if we denote by t(θ) a unit normal vector to nY (θ), any 0 < ε ≤

min{|b1t(θ)|, |b2t(θ)|,
√
|b1 |2 |b2 |2−(b1·b2)2

(b1−b2)2 } will satisfy (6).11 See Figure 7.

Moreover, for any δ > 0,

B(θ − b1/2, |b1|/2) ∩ Y ∩ B(θ, δ) , ∅

B(θ − b2/2, |b2|/2) ∩ Y ∩ B(θ, δ) , ∅

10The common least-preferred policy (when the magnitudes are large) serves as a punishment even to senders
with small biases. Denote by θ the common least-preferred policy when the magnitudes of the biases are sufficiently
large. In particular θ satisfies that biθ ≤ biθ for i = 1, 2 and any θ ∈ Θ. This implies that for any realization of the
ideal policy θ, |θ + bi − θ|

2 = |bi|
2 + |θ − θ|2 + 2bi(θ − θ) > |bi|

2 = |θ + bi − θ|
2. In other words, θ is closer to θ + bi

than θ and hence θ is preferred to θ.
11The last number in this minimum corresponds to the length of the common chord of the two balls. It is derived

using standard trigonometry.
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Consider ε̃ = min{ε, |b1|/2, |b2|/2}. Then for any δ > 0 consider θ′ an arbitrary element of

B(θ−b2/2, |b2|/2)∩Y∩B(θ, δ) and θ′′ an arbitrary element of B(θ−b1/2, |b1|/2)∩Y∩B(θ, δ).

We show that B(θ, ε̃) ∩ Y ⊂ B(θ′′ + b1, |b1|) ∪ B(θ′ + b2, |b2|) and hence the equilibrium is

not robust.

Consider θ̃ ∈ B(θ, ε̃) ∩ Y , then since ε̃ ≤ ε, θ̃ ∈ B(θ + b1/2, |b1|/2) ∪ B(θ + b2/2, |b2|/2).

Suppose θ̃ ∈ B(θ + b1/2, |b1|/2), then

|θ̃ − (θ′′ + b1)| ≤ |θ̃ − (θ +
b1

2
)| + |θ −

b1

2
− θ′′| <

|b1|

2
+
|b1|

2
= |b1|

which implies that θ̃ ∈ B(θ′′ + b1, |b1|). The case θ̃ ∈ B(θ + b2/2, |b2|/2) is analogous.

(iii) ⇒ (ii): By Proposition 3, it is enough to show the existence of a fully revealing

equilibrium for arbitrarily large biases. We argue by contradiction. By Proposition 1,

suppose that there exist θ′, θ′′ ∈ Y such that Y ⊆ H(b1, b1θ
′′) ∪ H(b2, b2θ

′). Denote by

x = h(b1, b1θ
′′) ∩ h(b2, b2θ

′) < Y and consider any θ̃ ∈ F̃r(Y)12 that lies in the interior

of the triangle formed by θ′, θ′′ and x (See Figure 8). In particular, since Y is convex,

h(nY (θ̃), nY (θ̃)θ̃) is a separating hyperplane to Y and:

nY (θ̃)(θ′ − θ̃) ≥ 0 (7)

nY (θ̃)(θ′′ − θ̃) ≥ 0 (8)

nY (θ̃)(x − θ̃) < 0 (9)

Moreover, since b1, b2 span R2 there exists α, β ∈ R such that nY (θ̃) = αb1 + βb2. Sub-

stituting this into equations (7), (8), (9), and then substracting (9) from (7) and (8), we

obtain

0 < αb1(θ′ − x) − βb2(θ′ − x) = αb1(θ′ − θ′′) (10)

0 < αb1(θ′′ − x) − βb2(θ′′ − x) = βb2(θ′′ − θ′) (11)

where the equalities follow by the definition of x. And given that b1θ
′ > b1θ

′′ and b2θ
′ <

b2θ
′′, (10) and (11) imply α > 0 and β > 0 respectively. Hence nY (θ̃) ∈ C(b1, b2) which

contradicts (iii).

(ii)⇒ (i): Trivial.

(iv) ⇒ (ii): Suppose that for all θ′, θ′′ ∈ Y θ ≡ θ′ ∧{b1,b2} θ
′′ ∈ Y . By the definition of

θ′ ∧{b1,b2} θ
′′, b1θ ≤ b1θ

′′ and b2θ ≤ b2θ
′. Therefore θ < H(b1, b1θ

′′) ∪ H(b2, b2θ
′) and

hence Y * H(b1, b1θ
′′)∪H(b2, b2θ

′) and by Proposition 1 there exists a FRE for arbitrarily

large biases.

12Note that Fr(Y) has at most a countable number of kinks. Since Y is convex, Fr(Y) is locally the graph of a
concave (convex) function and hence the derivative of this function is monotonic, and it has at most a countable
number of jumps.
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Figure 8

(ii)⇒ (iv): Consider θ′, θ′′ ∈ Y . If b1θ
′ ≤ b1θ

′′ and b2θ
′ ≤ b2θ

′′ then θ′∧{b1,b2} θ
′′ = θ′ ∈ Y .

Analogously, if b1θ
′ ≥ b1θ

′′ and b2θ
′ ≥ b2θ

′′, then θ′∧{b1,b2}θ
′′ = θ′′ ∈ Y . Suppose then that

b1θ
′ > b1θ

′′ and b2θ
′ < b2θ

′′. By Proposition 1, Y * H(b1, b1θ
′′) ∪ H(b2, b2θ

′). Consider

y ∈ Y such that b1y ≤ b1θ
′′ and b2y ≤ b2θ

′. Then

b1y ≤ b1(θ′ ∧{b1,b2} θ
′′) = b1θ

′′ < b1θ
′ (12)

b2y ≤ b2(θ′ ∧{b1,b2} θ
′′) = b2θ

′ < b2θ
′′ (13)

By (12), there exists α ∈ [0, 1) such that b1(αy + (1 − α)θ′) = b1(θ′ ∧{b1,b2} θ
′′). Denote

y′ = αy+ (1−α)θ′. By the convexity of Y , y′ ∈ Y . By (13), b2y′ ≤ b2θ
′ = b2(θ′∧{b1,b2} θ

′′) <

b2θ
′′, and hence there exists β ∈ [0, 1) such that b2(βy′ + (1 − β)θ′′) = b2(θ′ ∧{b1,b2} θ

′′).

Denote y′′ = βy′ + (1 − β)θ′′. By convexity, y′′ ∈ Y . Finally, b1y′′ = b1(θ′ ∧{b1,b2} θ
′′),

b2y′′ = b2(θ′ ∧{b1,b2} θ
′′), and the linear independence of b1 and b2 together imply θ′ ∧{b1,b2}

θ′′ = y′′ ∈ Y .

Finally, the case b1θ
′ < b1θ

′′ and b2θ
′ > b2θ

′′ is handled in a symmetric fashion, using the

deviation (θ′′, θ′) instead of (θ′, θ′′). �

3.2 Multidimensional Spaces

The results for arbitrarily large biases derived in the previous section extend easily to higher

dimensions. For b1, b2 linearly independent, the only directions of conflict between the

senders and the receiver are the ones in the plane spanned by these two vectors. Thus,

senders will not have incentives to deviate by misreporting dimensions of the state orthogo-

nal to this plane. On the other hand, the receiver could potentially utilize these dimensions

of no conflict to punish inconsistent messages. However, this strategy cannot be guaranteed

to work for the receiver if the senders’ biases can be arbitrarily large. Proposition 5 shows

that it is necessary and sufficient to project the state space onto the plane of the bias vectors

and to check whether condition (iii) in Proposition 4 is satisfied by this two-dimensional
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projection.

Given b1, b2 ∈ R
d linearly independent, denote by Πb ⊂ R

d the plane spanned by these

two vectors. Denote by Pro jb : Rd −→ Πb the orthogonal projection onto Πb. We will

denote by xb a generic element of Πb and by Bb and Hb the two-dimensional balls and

half-spaces in the plane Πb. Finally θb will denote a generic element of Yb ≡ Pro jb(Y).

Proposition 5. Given Y ⊆ Rd compact and convex and b1, b2 ∈ R
d linearly independent,

the following statements are equivalent:

(i) There exists a (robust) fully revealing equilibrium for all biases (t1b1, t2b2) with

t1, t2 ≥ 0

(ii) For every θb ∈ F̃r(Yb), nYb(θb) < C(b1, b2)

Proof of Proposition 5: By Proposition 3, it is enough to show the equivalence for fully

revealing equilibria. Given Proposition 2 we can focus on the case Θ ≡ Y . We show that

for Y ⊂ Rd, a fully revealing equilibrium exists for all biases (t1b1, t2, b2) with t1, t2 ≥ 0

if and only if, for the two-dimensional state space Yb, a fully revealing equilibrium exists

for arbitrarily large magnitudes of the biases, where now the biases are regarded as two-

dimensional vectors in Πb. The equivalence claimed in the proposition then follows from

Proposition 4.

Given θ̃ ∈ Rd, define θ̃b ≡ Pro jb(θ̃). Then

θ̃ ∈ H(b, bθ)⇐⇒ bθ̃ > bθ ⇐⇒ bθ̃b > bθb ⇐⇒ θ̃b ∈ Hb(b, bθb). (14)

Suppose there does not exist a fully revealing equilibrium for all biases (t1b1, t2b2) with

t1, t2 ≥ 0. By Proposition 1, Y ⊆ H(b1, b1θ
′′) ∪ H(b2, b2θ

′) for some θ′, θ′′ ∈ Y . Define

θ′b ≡ Pro jb(θ′) and θ′′b ≡ Pro jb(θ′′). Then it follows from (14) that Yb ⊆ Hb(b1, b1θ
′′
b ) ∪

Hb(b2, b2θ
′
b). The reverse implication is proved analogously, again using (14). �

Proposition 5 implies that for the existence in high-dimensional spaces of a FRE (robust

or not) that is independent of the sizes of the biases, it is necessary and sufficient to look at

the projection of the policy space onto the subspace of conflict of interest and see whether

a FRE can be constructed there.13 The reason is that when the equilibrium is required to

exist regardless of the magnitudes of the biases, then no given shift of the receiver’s action

in a direction orthogonal to the plane of the biases can be certain to serve as a punishment

for a deviating sender. Therefore, to be certain that he is actually punishing a deviation, the

receiver needs to choose an action whose projection on the plane of the biases is worse for

both senders. Such an action exists if and only if the projection of the state space onto the

plane of the biases satisfies (iii) in Proposition 4.

If the biases have known finite magnitudes, then condition (ii) in Proposition 5 is suf-

ficient for existence of a robust FRE but not necessary. In this case, the receiver might be

13The assumption in the proposition that Y is compact ensures that its projection onto the plane spanned by b1
and b2 is closed. We could relax the assumption of compactness as long as Y were such that its projection onto Πb

was closed.
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able to exploit the dimensions orthogonal to the biases for punishments. In fact, if the state

space were unrestricted in one dimension orthogonal to the plane of the biases, a robust

FRE would always exist.

4 Non-Convex Policy Spaces

This section considers the case where the policy space is non-convex, for example because

of indivisibilities. Before presenting our result, we need to generalize our definition of an

inward normal vector to a smooth point on the frontier.14 Consider an arbitrary set S and

a smooth point s on its frontier Fr(S ). The inward normal vector, nS (s), to Fr(S ) at s is

the normal vector that satisfies the condition that there exists an ε > 0 such that for any

0 < δ < ε, s + δnS (s) ∈ S .

We also need to define a specific type of kink that might be particularly perverse when

we are dealing with non-convex sets. We say that a kink point θ is non-convex if Y is locally

not convex at θ, that is, for all ε > 0, there exist θ′, θ′′ ∈ B(θ, ε) ∩ Fr(Y) such that for all

λ ∈ (0, 1), λθ′ + (1 − λ)θ′′ < Y . A kink point is linear with normal vectors {n1, n2} if Fr(Y)

is locally linear to both sides of θ and the inward normal vectors to these locally linear

segments of Fr(Y) are n1 and n2.

Proposition 6. Suppose Y ⊆ R2 is compact and Fr(Y) has finitely many kinks. Given

b1, b2 ∈ R
2 linearly independent, the following statements are equivalent:

(i) There exists a robust fully revealing equilibrium for all biases (t1b1, t2b2)

with t1, t2 ≥ 0

(ii) 1. For every θ ∈ F̃r(co(Y)), nco(Y)(θ) < C(b1, b2), and

2. For every θ ∈ F̃r(Y), nY (θ) < C(b1, b2), and there does not exist a non-convex

kink in Fr(Y) that is linear with normal vectors {b1, b2}.

Proof of Proposition 6: In the Appendix.

Condition (ii-2) is necessary and sufficient for small deviations to be deterrable with

small punishments, whether the biases have known finite magnitudes or whether they can

be arbitrarily large. (When only local punishments are considered, senders’ incentives

to deviate from truthtelling depend only on the orientations, not the magnitudes, of their

biases.) When Y is convex, this condition is necessary and sufficient for existence of a

robust FRE, as Proposition 4 shows. (For Y convex, non-convex kinks never exist.) When

Y is non-convex, however, deterrence of small deviations with small punishments is no

longer sufficient for existence of a robust FRE. Condition (ii-1) is necessary and sufficient

for all deviations, including large ones, to be deterrable with feasible punishments, when

the biases can be arbitrarily large. Since for non-convex Y , deterrability of large deviations

depends in general on the magnitudes as well as the orientations of the biases, existence of

14Recall that for a convex set S we defined an inward normal vector to s ∈ F̃r(S ), as the only vector nS (s) such
that nS (s)s′ ≥ nS (s)s for all s ∈ S . This definition does not apply to non-convex sets.
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a robust FRE for arbitrarily large biases implies, but is not in general implied by, existence

of a robust FRE for biases of known finite magnitudes. We illustrate these points with two

examples, displayed in Figures 9 and 10.

Figure 9 presents an example in which all local deviations can be deterred with local

actions, because condition (ii-2) is satisfied. However, at points along the dashed line

connecting A to C, which is part of the frontier of co(Y), condition (ii-1) is violated. To see

the consequence of this violation, observe that if sender 1 reports C and sender 2 reports A,

and the magnitudes of the biases are very large, then there is no feasible response for the

receiver that would suffice to deter S 1, in state A, from deviating to a report of C, and that

would also deter S 2, in state C, from deviating to a report of A—any response that would

deter both of these deviations would have to lie northeast of both the line through AD and

the line through CD. Hence, a fully revealing equilibrium does not exist.

A

C

B

Θ ≡ Y

b1

b1

b1

b1

b2

b2

b2

b2

n1

n2

n3

D

Figure 9

In Figure 9, if the northeast boundary of Y had been the segment AC instead of the seg-

ments AB and BC, so Y had been convex, then it would have been necessary, for existence

of a robust FRE, that at states θ along AC, local deviations be deterrable with local pun-

ishments. Had this condition been satisfied (for the biases shown, it would not have been),

this would have implied that for any pair of incompatible reports, both of which lay along

AC, there existed a feasible punishment—it would not have been necessary to consider ex-

plicitly the global deviation represented by the pair of reports (C,A). It is because of the

non-convexity of Y in Figure 9—A∈ Y and C∈ Y but segment AC* Y— that deterrence,

for all θ ∈ Y , of small deviations with small punishments does not guarantee that large

deviations such as that represented by (C,A) can be deterred. Figure 9 thus shows that, in

Proposition 3, condition (iii) no longer implies condition (i) if the assumption of convexity

of Y is dropped.

Figure 10 displays an example in which there exists a fully revealing equilibrium for

arbitrarily large biases, because condition (ii-1) is satisfied. For very large magnitudes of

the biases, point C is the least-preferred point in Y ≡ Θ for both senders, so it can be used
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by the receiver to punish any discrepancies in the senders’ reports.15 However, no robust

FRE exists. To see why, note that along segment AB on the frontier of Y , condition (ii-2)

is violated; as a consequence, it is not possible to deter local deviations along segment AB

with local punishments. This example shows that in Proposition 3, condition (i) no longer

implies condition (iii) if the assumption of convexity is dropped.

A

C

B

Θ ≡ Y

b1

b1

b1

b1b2

b2

b2

b2

n1

n2

n3

Figure 10

Finally, Figure 11 illustrates the case in which Fr(Y) has a non-convex linear kink with

normal vectors {b1, b2} at point D. On each side of this point, Fr(Y) is locally linear, and

the normal vectors coincide with the two bias vectors. As a consequence, at point D, there

are no small punishments available to the receiver in response to small mistakes by both

senders, so a robust fully revealing equilibrium does not exist. This is so despite the facts

that a) condition (ii)-1 is satisfied, so a (non-robust) fully revealing equilibrium exists for

arbitrarily large biases, and b) for every θ ∈ F̃r(Y), nY (θ) < C(b1, b2), so for all points other

than D, small deviations are deterrable with small punishments.

A B

C

D

EΘ ≡ Y

b1

b2

n1

n2

n3

Figure 11

15See footnote 10
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5 Uncertain Biases

In this section, we relax the assumptions that the directions (b1, b2) of the senders’ bias

vectors are (i) common knowledge and (ii) independent of the realization of the state.

Suppose that the players have a common prior joint distribution G over (θ, b1, b2). Each

sender observes θ and his own bias vector, while the receiver does not observe any of these

realizations. The definition of a fully revealing equilibrium remains unchanged.

Proposition 7. Given Y ⊆ R2 convex, suppose that there exists a closed convex cone

C(b, b) = {αb + βb | α, β ≥ 0}, such that for all θ ∈ Θ, the supports of the conditional

distributions of the bias directions b1 and of b2 given θ are both contained in C(b, b). Then

conditions (i) and (ii) are equivalent and imply (iii):

(i) For all θ ∈ F̃r(Y), nY (θ) < C(b, b).

(ii) For all θ′, θ′′ ∈ Y, θ′ ∧
{b,b} θ

′′ ∈ Y.

(iii) There exists a (robust) fully revealing equilibrium for arbitrarily large magnitudes of

the biases.

Moreover, if the conditional distribution of the bias directions (b1, b2) given θ assigns pos-

itive density to (b, b) for all θ ∈ Y, then (iii) implies (i) and (ii).

Proof of Proposition 7: In the Appendix.

Proposition 7 says that when the receiver does not know the actual biases but knows

only the minimal closed cone in which they are certain to lie, and this minimal cone is

the same for all states, then the necessary and sufficient condition for existence of a robust

FRE for arbitrarily large biases is condition (iii) in Proposition 4, with the known biases

b1 and b2 replaced by the least aligned possible realizations, b and b. Condition (i) in

Proposition 7 ensures that for all true states on the frontier of Y , the receiver can find local

punishments that would deter local deviations, whether the realized values of (b1, b2) were

(b, b) or (b, b). This in turn implies that for any more closely aligned realizations of the

biases, local deviations would continue to be deterrable by local punishments.
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A Appendix

In order to prove Lemma 1 we show the equivalence between our concept of robustness

and the concept of continuity on the diagonal introduced by Ambrus and Takahashi (2008),

which requires that whenever a sequence of reports converges to a pair of compatible mes-

sages, then the sequence of induced actions should converge to the action induced by the

limiting pair of (compatible) messages. Formally the definition is as follows16:

Definition 3 (Ambrus and Takahashi (2008)). A fully revealing equilibrium (s1, s2, y) is

continuous on the diagonal if

lim
n→∞

y(s1(θn
1), s2(θn

2)) = y∗(θ)

for any sequence {(θn
1, θ

n
2)}n∈N of pairs of states such that limn→∞ y∗(θn

1) = limn→∞ y∗(θn
2) =

y∗(θ).

Proposition 8. A fully revealing equilibrium (s1, s2, y) is robust if and only if it is continu-

ous on the diagonal.

Proof. ⇒) Consider any pair of sequences {(θn
1, θ

n
2)}n∈N ⊂ Θ such that limn→∞ y∗(θn

1) =

limn→∞ y∗(θn
2) = y∗(θ). Since µ deters local deviations with local actions, for every ε > 0

there exists a δ > 0 such that for all y∗(θ′), y∗(θ′′) ∈ B(y∗(θ), δ) ∩ Y , y(s1(θ′), s2(θ′′)) ∈

B(y∗(θ), ε). Now, limn→∞ y∗(θn
1) = limn→∞ y∗(θn

2) = y∗(θ) implies that for that δ > 0, there

exists n0 ∈ N such that for all n ≥ n0, y∗(θn
1), y∗(θn

2) ∈ B(y∗(θ), δ) ∩ Y , which implies that

y(s1(θn
1), s2(θn

2)) ∈ B(y∗(θ), ε) and hence the equilibrium is continuous on the diagonal.

⇐) We argue by contradiction. Suppose that µ does not deter local deviations with local

actions. Then there exists θ ∈ Θ and ε > 0 such that for all n ∈ N there exists θn
1, θn

2 such

that y∗(θn
1), y∗(θn

2) ∈ B(y∗(θ), 1
n ) ∩ Y with

y(s1(θn
1), s2(θn

2)) < B(y∗(θ), ε) \
(
B(θn

1 + b2, |b2|) ∪ B(θn
2 + b1, |b1|)

)
.

Note that for any n such that 1
n < ε, θn

1 , θn
2, because if θn

1 = θn
2, y(s1(θn

1), s2(θn
2)) =

y∗(θn
1) ∈ B(y∗(θ), ε) \

(
B(θn

1 + b2, |b2|) ∪ B(θn
2 + b1, |b1|)

)
. Since (s1, s2, y) is an equilibrium,

y(s1(θn
1), s2(θn

2)) < B(θn
1 + b2, |b2|) ∪ B(θn

2 + b1, |b1|), otherwise either sender 1 would have

an incentive to deviate to s1(θn
1) when θn

2 is realized, or sender 2 would have an incentive to

deviate to s2(θn
2) when θn

1 is realized. Hence y(s1(θn
1), s2(θn

2)) < B(θ, ε), which contradicts

the diagonal continuity of the equilibrium. �

Proof of Lemma 1 Consider a robust fully revealing equilibrium (s1, s2, yR) supported by

the belief function µ(·) and consider the following strategies: s̃i : Θ −→ Y , such that

s̃i(θ) = y∗(θ); ỹ : Θ × Θ −→ Y , such that ỹ(y, y′) = y(s1(y), s2(y′)) and the belief func-

tion µ̃(θ, θ′) = µ(s1(y), s2(y′)). Since (s1, s2, y) is robust, it is continuous on the diagonal

16Both diagonal continuity and our robustness concept can be defined for arbitrary equilibria/strategies. How-
ever, we will use those concepts only for fully revealing equilibria. For convenience, therefore, we have stated the
definitions only in the context of fully revealing equilibria/strategies.
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and hence, given {θn
1}, {θ

n
2} with lim y∗(θn

1) = lim y∗(θn
2) = y∗(θ), lim ỹ(y∗(θn

1), y∗(θn
2)) =

lim y(s1(y∗(θn
1)), s2(y∗(θn

2))) = y∗(θ). Therefore (s̃1, s̃2, ỹ) is continuous on the diagonal and

thus robust. �

Proof of Proposition 1 (i): ⇒) Suppose there exist θ′, θ′′ ∈ Y such that Y ⊆ H(b1, b1θ
′′) ∪

H(b2, b2θ
′). Then y(s1(θ′), s2(θ′′)) ∈ H(b1, b1θ

′′) ∪ H(b2, b2θ
′). In particular, denoting

y ≡ y(s1(θ′), s2(θ′′)), either b1(y − θ′′) > 0 or b2(y − θ′) > 0. Suppose that b1(y − θ′′) > 0

and consider t1 >
|y−θ′′ |2

2b1·(y−θ′′)
. Then y(s1(θ′), s2(θ′′)) ∈ B(θ′′ + t1b1, t1|b1|) which implies that

for the sender 1with bias t1b1 has an incentive to deviate to s1(θ′) given θ′′. The symmetric

argument could be made if b2(y − θ′) > 0 with t2 >
|y−θ′ |2

2b2·(y−θ′)
.

⇐) Consider truthful strategies and the following belief function µ(·) such that µ(θ, θ) al-

locates mass one on θ and µ(θ′, θ′′) with θ′ , θ′′ ∈ Y , puts mass one in an element of

Y \ H(b1, b1θ
′′) ∪ H(b2, b2θ

′). Given a report (θ′, θ′′), µ(θ′, θ′′) < H(b1, b1θ
′′) ∪ H(b2, b2θ

′)

so in particular µ(θ′, θ′′) < B(θ′′ + t1b1, t1|b1|) and µ(θ′, θ′′) < B(θ′ + t2b2, t2|b2|). So none

of the two senders has an incentive to deviate.

(ii): ⇒) Suppose there exist some fully revealing strategies (s1, s2) and a belief function

µ(·) that deters local deviation with local punishments, then for any θ ∈ Y and any ε > 0

there exists δ > 0 such that for every θ′, θ′′ ∈ B(θ, δ), µ̄(s1(θ′), s2(θ′′)) ∈ B(θ, ε) ∩ Y \

(B(θ′ + t1b1, t1|b1|) ∪ B(θ + t2b2, t2|b2|)) for any t1, t2 ≥ 0. Hence B(θ, ε)∩Y * H(b1, b1θ
′′)∪

H(b2, b2θ
′).

⇐) By the argument used in the proof of Lemma 1 we can focus on truthful strategies. For

any θ ∈ Θ define µ(θ, θ) a belief that allocates mass one to θ. If θ , θ′ ∈ Θ define µ(θ, θ′)

a belief that allocates mass one to an element of arg mins∈Y\(H(b1,b1θ′)∪H(b2,b2θ)) |s − θ|, if

Y * H(b1, b1θ
′) ∪ H(b2, b2θ), and any arbitrary belief if Y ⊆ H(b1, b1θ

′) ∪ H(b2, b2θ).

To see that this belief function deters local deviation with local punishments consider any

θ ∈ Θ and any ε > 0, by hypothesis, for ε̃ = ε/3 there exists 0 < δ < ε̃ such that for all

θ′, θ′′ ∈ B(θ, δ)∩Y , B(θ, ε̃)∩Y * H(b1, b1θ
′′)∪H(b2, b2θ

′). Consider any θ̂ ∈ B(θ, ε̃)∩Y *

H(b1, b1θ
′′)∪H(b2, b2θ

′). And |µ(θ′, θ′′)− θ| ≤ |µ(θ′, θ′′)− θ′|+ |θ′ − θ| ≤ |θ̂− θ′|+ |θ′ − θ| ≤

|θ̂ − θ| + 2|θ′ − θ| < 3ε̃ = ε, hence µ(θ′, θ′′) ∈ B(θ, ε) \ (H(b1, b1θ
′′) ∪ H(b2, b2θ

′)) ⊂

B(θ, ε) \ (B(θ′′ + t1b1, t1|b1|) ∪ B(θ′ + t2b2, t2|b2|). �

(iii): The necessity is given by parts (i) and (ii). To see the sufficiency, consider truthful

strategies and the belief specified in the previous paragraph. Note that given condition (2),

Y \ (H(b1, b1θ
′) ∪ H(b2, b2θ)) , ∅ for any θ , θ′ ∈ Y . �

Proof of Proposition 6: By Proposition 2, we can restrict attention to the case in which

Θ ≡ Y . By Proposition 1, there exists a robust fully revealing equilibrium if and only if

both conditions (i) and (ii) of Proposition 1 are satisfied. We will show that in fact condition

(ii-1) of Proposition 6 is equivalent to condition (i) of Proposition 1 and condition (ii-2) of

Proposition 6 is equivalent to part (ii) of Proposition 1.

Prop.1-(i) ⇒ Prop.6-(ii-1): Suppose there exists θ ∈ F̃r(co(Y)) such that nco(Y)(θ) ∈
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C(b1, b2). Then there exists α > 0, β > 0 such that nco(Y)(θ) = αb1 + βb2. Moreover,

since θ ∈ F̃r(co(Y)), h(nco(Y)(θ), nco(Y)(θ)θ) is the unique separating hyperplane to co(Y) at

θ. Hence neither h(b1, b1θ) nor h(b2, b2θ) are separating hyperplanes of co(Y). In particular,

there exist θ′, θ′′ ∈ Y such that:

b1θ
′′ < b1θ < b1θ

′ b2θ
′ < b2θ < b2θ

′′

We now show that Y ⊆ H(b1, b1θ
′′) ∪ H(b2, b2θ

′), which contradicts Prop.1-(i). Suppose

there exists θ̃ ∈ Y such that θ̃ < H(b1, b1θ
′′) ∪ H(b2, b2θ

′), then b1θ̃ ≤ b1θ
′′ < b1θ and

b2θ̃ ≤ b2θ
′ < b2θ. And hence nco(Y)(θ)θ̃ = αb1θ̃ + βb2θ̃ < αb1θ + βb2θ = nco(Y)(θ)θ which

contradicts the definition of nco(Y)(θ).

Prop.6-(ii-1) ⇒ Prop.1-(i): Suppose there exist θ′, θ′′ ∈ Y such that Y ⊆ H(b1, b1θ
′′) ∪

H(b2, b2θ
′). Since Y is compact, consider θ̃′ ∈ arg min{b2y | y ∈ Y} and θ̃′′ ∈ arg min{b1y |

y ∈ Y}. Since b1θ̃
′′ ≤ b1θ

′′ and b2θ̃
′ ≤ b2θ

′, Y ⊆ H(b1, b1θ̃
′′) ∪ H(b2, b2θ̃

′). In particular

b1θ̃
′ > b1θ̃

′′, b2θ̃
′′ > b2θ̃

′ and x = h(b1, b1θ̃
′′)∩h(b2, b2θ̃

′) < Y . Moreover, by the definition

of θ̃′, θ̃′′, Y ⊂ H(b1, b1θ̃
′′) ∩ H(b2, b2θ̃

′) and x cannot be written as a convex combination

of points in Y (x < co(Y)). Now choose any point θ̃ ∈ F̃r(co(Y)) such that θ̃ belongs to the

triangle formed by x, θ̃′ and θ̃′′. Then denoting n = nco(Y)(θ̃) we have that n(θ̃′ − θ̃) ≥ 0,

n(θ̃′′− θ̃) ≥ 0, n(x− θ̃) < 0 which implies that n(θ̃′− x) > 0 and n(θ̃′′− x) > 0. Using {b1, b2}

as a base for R2 we can write n = αb1 +βb2 and hence αb1(θ̃′− θ̃′′) > 0 and βb2(θ̃′′− θ̃′) > 0

which implies α, β > 0 and therefore n ∈ C(b1, b2) which contradicts Prop.5-(ii-2).

Prop.1-(ii) ⇒ Prop.6-(ii-2): Suppose there exists θ ∈ F̃r(Y) such that nY (θ) ∈ C(b1, b2).

Then for any δ > 0, both B(θ, δ)∩Y∩H(bi, biθ) , ∅ and B(θ, δ)∩Y∩{y ∈ R2 | biy < biθ} , ∅

for i = 1, 2. Moreover there exists ε > 0 such that

B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ) (15)

For any δ > 0 consider θ′ ∈ B(θ, δ) ∩ Y ∩ {x ∈ R2 | b2x < b2θ} and θ′′ ∈ B(θ, δ) ∩ Y ∩ {x ∈

R2 | b1x < b1θ}. Then B(θ, ε) ∩ Y ⊆ H(b1, b1θ
′′) ∪ H(b2, b2θ

′). To see this, consider

θ̃ ∈ B(θ, ε) ∩ Y . By (15), θ̃ ∈ H(b1, b1θ) ∪ H(b2, b2θ). Suppose θ̃ ∈ H(b1, b1θ), then

b1θ̃ ≥ b1θ > b1θ
′′ so θ̃ ∈ H(b2, b2θ

′). Similarly, if θ̃ ∈ H(b2, b2θ), then θ̃ ∈ H(b2, b2θ
′).

Hence θ̃ ∈ H(b1, b1θ
′′) ∪ H(b2, b2θ

′).

Prop.6-(ii-2) ⇒ Prop.1-(ii): Suppose that local deviations from θ ∈ Y cannot be deterred.

By Step 1 of Proposition 3, there exists an ε > 0 such that B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪

H(b2, b2θ). Moreover for all δ > 0, B(θ, δ) ∩ Y * H(b1, b1θ) ∩ H(b2, b2θ) because if not

θ would be locally the worst point for both senders and a local deviation could be de-

terred by choosing θ. Moreover if Fr(Y) does not have a non-convex kink at θ that is

linear with normal vectors {b1, b2}, and has a finite number of kinks, then there exits either

θ′ ∈ H(b1, b1θ) \H(b2, b2θ) or θ′′ ∈ H(b2, b2θ) \H(b1, b1θ) such that Fr(Y) is differentiable

in (θ, θ′) (alternatively differentiable in (θ, θ′′)). Assume we are in the first case, then and

by the mean value theorem there exists θ̃ ∈ (θ, θ′) such that t(θ̃) = γ(θ′−θ), where t(θ̃) is the

tangent vector to Fr(Y) at θ̃. Using b1, b2 as a base of R2, we have that nY (θ̃) = αb1 + βb2
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and hence, 0 = nY (θ̃)(θ′ − θ) = αb1(θ′ − θ) + βb2(θ′ − θ). And since b1(θ′ − θ) > 0 and

b2(θ′ − θ) < 0, we have that both α and β have the same sign. Moreover since nY (θ̃) is

the inward normal vector and B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ), it has to be that both

α, β > 0, and hence nY (θ̃) ∈ C(b1, b2) �

Proof of Proposition 7: (i)⇔ (ii): This follows from Proposition 4.

(ii) ⇒ (iii): Consider first the case Θ = Y . We show that if for any pair of reports (θ′, θ′′)

in Y such that θ′ , θ′′, the receiver responds by choosing yR(θ′, θ′′) = θ′ ∧
{b,b} θ

′′, this

response deters both senders from deviating, whatever the realizations of b1, b2 ∈ C(b, b),

and therefore the truthful strategies (s1, s2) together with yR constitute a robust FRE.

Since b1, b2 ∈ C(b, b), there exist α1, α2, β1, β2 ≥ 0 such that, bi = αib + βib, for i = 1, 2.

Denote by θ̂ = θ′ ∧
{b,b} θ

′′.

b1θ̂ = (α1b + β1b)θ̂ = α1bθ̂ + β1bθ̂

= α1 min{bθ′, bθ′′} + β1 min{bθ′, bθ′′}

= min{b1θ
′, b1θ

′′, α1bθ′ + β1, bθ′′, α1bθ′′ + β1bθ′}

≤ min{b1θ
′, b1θ

′′}

(16)

Analogously, b2θ̂ ≤ min{b2θ
′, b2θ

′′}, and therefore the action θ̂ deters the two senders with

biases (b1, b2) from deviating. Note that whenever θ′, θ′′ converge to θ, θ′ ∧
{b,b} θ

′′ also

converges to θ, and hence θ′∧
{b,b}θ

′′ deters local deviations with local actions. Furthermore,

observe that the inequality (16) and the analogous inequality for b2 hold for any b1, b2 ∈

C(b, b) independently of whether those values of the biases belong to the support of the

conditional distribution of the biases given the realization of the state.

Consider now Y ( Θ, and for any θ ∈ Θ define s̃i(θ) = y∗(θ). We show that for any

realisation of the biases (b1, b2), (s̃1, s̃2, yR) is a robust FRE in (Θ,Y) for arbitrarily large

biases.

Given y′, y′′ ∈ Y denote by x = yR(y′, y′′) = y′ ∧
{b,b} y′′. For sender S 1 we need to show

that for any θ ∈ Θ such that y∗(θ) = y′′, |θ + tb1 − y′′| ≤ |θ + tb1 − x| for all t > 0 and

for all b1 ∈ C(b, b). Consider any such θ ∈ Θ with y∗(θ) = y′′, that is, y′′ is the closest

point in Y to θ. In particular |θ − y′′| ≤ |θ − x|. Define z as the midpoint of the segment

[x, y′′]. Then θ(y′′ − x) ≥ z(y′′ − x), and by (16), (θ + tb1)(y′′ − x) ≥ z(y′′ − x) for all t > 0

and all b1 ∈ C(b, b), or in other words |θ + tb1 − y′′| ≤ |θ + tb1 − x| for all t > 0 and all

b1 ∈ C(b, b). A similar argument for S 2 shows that for any θ ∈ Θ such that y∗(θ) = y′,

|θ + tb2 − y′| ≤ |θ + tb2 − x| for all t > 0 and all b2 ∈ C(b, b). Therefore (s̃1, s̃2, yR) is a FRE

in (Θ,Y).

(iii) ⇒ (i): Given Y, if for Θ ) Y there exists a robust FRE then for Θ = Y there exists a

robust FRE. Given that for all θ ∈ Y , the realization of biases (b, b) has positive probability,

then Proposition 4 implies that condition (i) must hold. �
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