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Abstract

In many economic applications involving comparisons of multivariate distributions, super-

modularity of an objective function is a natural property for capturing a preference for greater

interdependence. One multivariate distribution dominates another according to the supermodu-

lar stochastic ordering if it yields a higher expectation than the other for all supermodular objec-

tive functions. We prove that this ordering is equivalent to one distribution being derivable from

another by a sequence of elementary, bivariate, interdependence-increasing transformations, and

develop methods for determining whether such a sequence exists. For random vectors resulting

from common and idiosyncratic shocks, we provide non-parametric sufficient conditions for su-

permodular dominance. Moreover, we characterize the orderings corresponding to supermodular

objective functions that are also increasing or symmetric. We use the symmetric supermodular

ordering to compare distributions generated by heterogeneous lotteries. Applications to wel-

fare economics, committee decision-making, insurance, finance, and parameter estimation are

discussed.

Keywords: Interdependence, Supermodular, Correlation, Copula, Concordance, Mixture, Ma-

jorization, Tournament. JEL Codes: D63, D81, G11, G22

1 Introduction

In many economic contexts, it is of interest to know whether one set of random variables displays

a greater degree of interdependence than another. The stochastic dominance approach expresses
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attitudes towards interdependence through properties of objective functions whose expectations

are used to evaluate distributions. Since the expected values of additively separable objective

functions depend only on marginal distributions, attitudes towards interdependence must be rep-

resented through non-separability properties. We argue that supermodularity (Topkis, 1968, 1978)

of an objective function is a natural property with which to capture a preference for greater inter-

dependence. Supermodularity of a function captures the idea that its arguments are complements,

not substitutes: When an increasing function of two or more variables is supermodular and the val-

ues of any two variables are increased together, the resulting increase in the function is larger than

the sum of the increases that would result from increasing each of the values separately. Our main

objective in this paper is to characterize the partial ordering on distributions of n−dimensional

random vectors which is equivalent to one distribution’s yielding a higher expectation than another

for all supermodular objective functions. Following the statistics literature, we refer to this partial

ordering as the “supermodular stochastic ordering” (Shaked and Shanthikumar, 1997).1

There are many branches of economics where the supermodular stochastic ordering is a valuable

tool for comparing distributions with respect to their degree of interdependence. We describe ap-

plications of our methods and results to the assessment of i) ex post inequality under uncertainty;

ii) multidimensional deprivation; iii) the equilibrium duration of search by committees, iv) the

dependence among claims in a portfolio of insurance policies or among assets in a financial institu-

tion’s portfolio; v) systemic risk in financial systems; and vi) the richness of datasets for parameter

estimation. Our approach also permits a non-parametric comparison of copulas.

For the special case of two-dimensional random vectors, the economics and statistics literatures have

provided a complete characterization of the supermodular ordering. Specifically, Levy and Paroush

(1974), Epstein and Tanny (1980), and Tchen (1980) have shown that one bivariate distribution

dominates another according to the supermodular ordering if and only if the first distribution

dominates the second in the sense of both upper-orthant and lower-orthant dominance.2 This

equivalence breaks down for three or more dimensions (Joe, 1990, and Müller and Scarsini, 2000).

In general, the supermodular ordering is strictly stronger than the combination of upper-orthant

and lower-orthant dominance.

1Meyer and Strulovici (2012) review several interdependence orderings, from the strongest (greater weak associa-

tion) to the weakest (concordance). While one may define a concept of “greater affiliation,” that notion is too strong

to be useful (see, e.g., Genest and Verret, 2002). For example, a vector can be “negatively affiliated” (or satisfy the

weaker requirement of “negative association”) only if it is deterministic (see Meyer and Strulovici, 2012). In con-

trast, tournament outcomes are negatively interdependent in the sense of the (symmetric) supermodular stochastic

ordering, as we establish in Section 6. Furthermore, greater affiliation does not have the vectorial structure of the

stochastic supermodular ordering, which plays a crucial role in our analysis.
2A multivariate distribution G dominates another distribution F according to upper-orthant (respectively, lower-

orthant) dominance if for any vector z, a random vector distributed according to G has a higher probability of being

above (respectively, below) z in each component than a vector distributed according to F . The ordering corresponding

to the combination of upper-orthant and lower-orthant dominance is known as the concordance ordering (Joe, 1990).
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Focusing on random vectors with supports on a finite lattice,3 we characterize the supermodular

ordering for an arbitrary number of dimensions. Section 3 proves (Theorem 1) that one distribution

is preferred to another by every supermodular objective function if and only if the first distribution

can be derived from the second by a sequence of nonnegatively-weighted elementary, bivariate,

“interdependence-increasing transformations.” Our elementary transformations play a role similar

to the mean-preserving spreads defined by Rothschild and Stiglitz (1970) for univariate distributions

to capture the notion of increased riskiness, and can be described, by analogy to the univariate

case, as “marginal-preserving alignments.”

In the current context, where our concern is with interdependence between dimensions rather than

with riskiness in a single dimension, our elementary transformations leave all marginal distribu-

tions unaffected. Holding fixed the realizations of all but two of the random variables comprising

the random vector, our elementary transformations increase the probability that the remaining

two variables will take on (relatively) high values together or (relatively) low values together and

reduce the probability that one will be high and the other low. For multivariate distributions, our

elementary transformations provide a local characterization of the notion of “greater interdepen-

dence.” They are a natural generalization to multivariate distributions of the bivariate “correlation-

increasing transformations” defined by Epstein and Tanny (1980) and Tchen (1980). In another

sense, though, our definition of elementary transformations is more restrictive than that of these

other authors, in that our transformations affect only adjacent points in the support; because of

this restriction, as we prove (Proposition 3), our transformations are all extreme, in the sense that

none can be expressed as a positive linear combination of the others.

Our restrictive definition of elementary transformations allows a very simple proof of the known

characterization of the supermodular ordering for bivariate distributions. Our simple proof is based

on the observation that, for any pair of bivariate distributions with identical marginals, if we allow

elementary transformations to have weights of arbitrary sign, then there is a unique weighted

sequence of such transformations that converts one distribution into the other.

For three or more dimensions, even with our restrictive definition of elementary transformations,

there are many weighted sequences of such transformations that convert one distribution into

the other. How, then, can we determine whether g dominates f according to the supermodular

ordering? We introduce two different methods. One is to formulate a linear program such that the

optimum value of the program is zero if and only if there exist non-negative weights on elementary

transformations that will convert f to g. An alternative method, based on Minkowski’s and Weyl’s

representation theorems for polyhedral cones, allows us to compute once and for all, for any given

support, a minimal set of inequalities that characterize the supermodular ordering. This method

can be used for optimization problems such as mechanism design, where each mechanism or policy

3Some of our results can be extended to continuous supports. See Section 3.5 and the discussion following

Theorem 5.
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generates a multivariate distribution, and the set of mechanisms to be compared is large.

In some applications, it is natural to assume that objective functions are not only supermodular but

also increasing in their arguments. Theorem 2 demonstrates that comparison of two distributions

according to the increasing supermodular ordering can be decomposed into a two-step comparison,

comparing the marginals according to first-order stochastic dominance and then comparing the

joint distributions, after correcting to ensure identical marginals, according to supermodular dom-

inance. In Section 3.5, we prove that the supermodular ordering on a continuous support can be

characterized in terms of the supermodular ordering on all discretizations of the support, provided

that the multivariate distributions have continuous densities.

One important class of interdependent random vectors are those generated by both common and

idiosyncratic shocks. Section 4 studies precisely this class. First, a common shock determines, for

each random variable, the probability distribution from which it will be drawn. Then, each of the

random variables is drawn independently from the distribution determined by the realization of

the common shock. The resulting multivariate distribution is a mixture of conditionally indepen-

dent random variables. In finance and insurance contexts, mixtures of conditionally i.i.d. random

variables are frequently used to model positively dependent risks in a portfolio: the realization

of the common distribution represents an aggregate shock or common factor which affects all the

elements of the portfolio (Cousin and Laurent, 2008). In macroeconomics, the relative importance

of aggregate vs. sectoral shocks affects variation and covariation of output levels (Foerster, Sarte,

and Watson, 2011). Intuitively, for mixture distributions, the “more important” the common shock

relative to idiosyncratic shocks, the “more interdependent” the random variables should be. While

in simple parameterized settings, it is easy to formalize and confirm this intuition, two questions

arise when considering more general settings. First, how can “greater relative importance” of the

common shock be formalized? Second, how can greater interdependence of the resulting condition-

ally i.i.d. variables be assessed? Our Theorem 5 answers both questions. We use the supermodular

ordering to compare interdependence, and we present easily checkable sufficient conditions on the

structure of mixture distributions for two such distributions to be rankable according to the super-

modular ordering. Our sufficient conditions thus provide a useful non-parametric ordering of the

relative importance of common vs. idiosyncratic shocks for mixture distributions.

In some applications, it is natural to focus on objective functions that are symmetric. Sections

5 and 6 focus on the symmetric supermodular ordering, which corresponds to one distribution’s

generating a higher expected value than another for all symmetric supermodular objective functions.

Two distributions are ranked according to the symmetric supermodular ordering if and only if the

“symmetrized” versions of the distributions are ranked according to the supermodular ordering.

For the class of n-dimensional random vectors representing n independent lotteries, we identify

in Theorem 6 sufficient conditions for symmetric supermodular dominance and show that these

conditions have a natural interpretation in terms of lower dispersion among one set of lotteries
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than another, holding fixed the average of the lotteries. At a mathematical level, moreover, these

sufficient conditions are very closely related to the sufficient conditions identified in Theorem 5 for

supermodular dominance of mixture distributions, and the proofs of Theorems 5 and 6 are likewise

very similar.

Section 7 discusses a wide range of applications of the supermodular ordering. Section 7.1 focuses

on two applications in welfare economics: it shows how the ordering and Theorem 6 can be applied

to make comparisons of inequality in the presence of uncertainty and to compare multidimensional

distributions of economic status. Section 7.2 uses the ordering to analyze how changes in the degree

of alignment of the preferences of committee members affect equilibrium search and voting behavior.

Section 7.3 applies the symmetric supermodular ordering to examine how the degree of systemic

risk in banking networks depends on the structure of the interconnections among banks. Finally,

Section 7.4 considers an application of the supermodular ordering to prediction and parameter

estimation, showing how the ordering may be used to compare the “richness” of datasets.

Section 8 presents a brief conclusion. All proofs not in the text are in the Appendix.

2 General Setting

We consider multivariate distributions with n variables and identical, finite support. The ith vari-

able takes values in Li which is a totally ordered set with mi elements. The Cartesian product

×iLi is denoted L and is endowed with the usual partial order: x ≤ y if and only if xi ≤ yi for all

i ∈ N ≡ {1, . . . , n}.

For any x ∈ L, let x + ei denote the element y of L, whenever it exists, such that yj = xj for all

j ∈ N \ {i} and yi is the smallest element of Li greater than but not equal to xi. For example, if

L = {0, 1}2, (0, 0) + e1 = (1, 0) and (1, 0) + e2 = (0, 0) + e1 + e2 = (1, 1).

Lattice vs. Vector Structures. The lattice structure of L and its partial order are used to

compare distributions. In particular, supermodularity of objective functions is defined with respect

to that partial order. One may label the d =
∏n
i=1mi elements (or “nodes”) of L and view real

functions on L as vectors of Rd, where each coordinate of the vector corresponds to the value of the

function at a specific node of L. This representation will prove particularly important for our dual

characterizations of interdependence relations. A multivariate distribution whose support is L (or

a subset of L) can be represented as an element of the unit simplex ∆d of Rd.

Orderings of Multivariate Distributions. For any function w : L → R and distribution

f ∈ ∆d, the expected value of w given f is the scalar product of w with f , seen as vectors of Rd:

E[w|f ] =
∑
x∈L

w(x)f(x) = w · f.
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To any class W of functions on L corresponds an ordering of multivariate distributions:

f ≺W g ⇐⇒ ∀w ∈ W, E[w|f ] ≤ E[w|g]. (1)

3 The Supermodular Stochastic Ordering

Supermodular Functions and Elementary Transformations For any x, y ∈ L, x∧ y denotes

the component-wise minimum (or “meet”) of x and y, i.e., the element of L such that (x ∧ y)i =

min{xi, yi} ∈ Li for all i ∈ N . Let x∨y similarly denote the component-wise maximum (or “join”)

of x, y. A function w is supermodular (on L) if w(x ∧ y) +w(x ∨ y) ≥ w(x) +w(y) for all x, y ∈ L.

If, for all x, y ∈ L, the reverse inequality holds, the function w is submodular.

The set of all supermodular functions is denoted S. The supermodular stochastic ordering is

a partial order, denoted ≺SPM , on the set of distributions over L, and is defined as follows:

f ≺SPM g ⇐⇒ ∀w ∈ S, E[w|f ] ≤ E[w|g]. (2)

For random vectors X and Y with distributions f and g and cumulative distributions F and G,

respectively, we will use the expressions X ≺SPM Y , f ≺SPM g, and F ≺SPM G interchangeably.

To characterize this ordering, we introduce a class of elementary transformations which capture

the notion of “increasing interdependence”, analogously to the way that Rothschild and Stiglitz’s

(1970) mean-preserving spreads capture the notion of “increasing riskiness”.

For any x ∈ L such that x+ ei + ej ∈ L, let txi,j denote the function defined on L by

txi,j(x) = txi,j(x+ ei + ej) = 1, txi,j(x+ ei) = txi,j(x+ ej) = −1, (3)

and txi,j(y) = 0 for all other y ∈ L. We call txi,j an elementary transformation on L, and let T
denote the set of all elementary transformations.

If two distributions f and g are such that g = f + αtxi,j for some α ≥ 0, then we say that g

is obtained from f by an elementary transformation with weight α. The α-weighted elementary

transformation raises the probability of nodes x and x+ ei + ej by the common amount α, reduces

the probability of nodes x+ei and x+ej by the same amount, and leaves unchanged the probability

of all other nodes in L. Intuitively, such transformations increase the degree of interdependence

of a multivariate distribution, as for some pair of components i and j, they make jointly high and

jointly low realizations more likely, while making realizations where one component is high and

the other low less likely. Furthermore, they raise interdependence without altering the marginal

distribution of any component.

If, for example, L = {0, 1, 2}2, there are four elementary transformations, corresponding to the four

values of x, (0, 0), (1, 0), (0, 1), and (1, 1), such that x+ ei+ ej belongs to L. For L = {0, 1}3, there
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are six elementary transformations, one corresponding to each face of the unit cube. Observe that

our definition of elementary transformations confines attention to transformations that i) affect

only two of the n dimensions (as illustrated by the example of L = {0, 1}3) and ii) affect values

only at four adjacent points in the lattice, x, x + ei, x + ej , and x + ei + ej (as illustrated by

L = {0, 1, 2}2).

Theorem 1 (Dual Characterization) f ≺SPM g if and only if there exist nonnegative coeffi-

cients {αt}t∈T such that, with f , g, and t seen as vectors of Rd,

g = f +
∑
t∈T

αtt. (4)

Proof. Supermodular functions are characterized by the property (Topkis, 1968, 1978) that

w ∈ S ⇐⇒ w(x+ ei + ej) + w(x) ≥ w(x+ ei) + w(x+ ej) (5)

for all i 6= j and x ∈ L such that x+ ei + ej ∈ L. Equivalently,

w ∈ S ⇐⇒ w · t ≥ 0 ∀t ∈ T . (6)

Equation (4) holds if and only if g− f belongs to the convex cone C(T ) generated by T , defined by

C(T ) = {
∑

t∈T αtt : αt ≥ 0 ∀t ∈ T }. From (6), S is the dual cone of C(T ). Since C(T ) is closed

and convex, this implies (Luenberger, 1969, p. 215) that C(T ) is the dual cone of S:

δ ∈ C(T ) ⇐⇒ w · δ ≥ 0 ∀w ∈ S.

Therefore, f ≺SPM g if and only if g − f ∈ C(T ). �

Observe that since any elementary transformation t ∈ T leaves the marginal distributions un-

changed, it is an immediate implication of Theorem 1 that if f ≺SPM g, then f and g have

identical marginal distributions. Theorem 1 also allows a very simple proof of the following:

Corollary 1 Given random vectors X and Y with distributions f and g, respectively, if f ≺SPM g

and, for all i 6= j, Cov(Xi, Xj) = Cov(Yi, Yj), then f = g, that is, X and Y are identically

distributed.

Proof. Suppose that the hypotheses hold but that f 6= g. Then Theorem 1 implies that at least one

αt in (4) must be strictly positive. Let tzij denote a t ∈ T such that αt > 0. For the supermodular

function w(x) = xixj , the inequality in (5) is strict for all x, so w · tzij > 0 and thus w · g > w · f .

Therefore E(YiYj) > E(XiXj), and since any t ∈ T leaves marginal distributions unchanged, it

follows that Cov(Yi, Yj) > Cov(Xi, Xj), yielding a contradiction. �
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3.1 The Increasing Supermodular Ordering

In many economic settings, we want to compare multivariate distributions not just with respect

to interdependence but also with respect to the levels of the random variables. For example, the

class of objective functions that are both supermodular and increasing incorporates a preference

for greater interdependence as well as for higher values of each argument. We now characterize the

increasing supermodular ordering.

A function w on L is increasing if for any x ∈ L and i such that x+ ei ∈ L, w(x+ ei) ≥ w(x). Let

I denote the set of increasing functions on L. For any x ∈ L and i such that x + ei ∈ L, let τxi
denote the function on L such that τxi (x) = −1, τxi (x + ei) = 1, and τxi vanishes everywhere else.

Let U denote the set of all such functions. One may easily check that w belongs to I if and only if

w · τ ≥ 0 for all τ ∈ U . First-order stochastic dominance for distributions on L is defined by

g �FOSD f ⇐⇒ w · g ≥ w · f ∀w ∈ I. (7)

It is easy to adapt the proof of Theorem 1 to show that g �FOSD f if and only if there exist

nonnegative coefficients {βτ}τ∈U such that

g = f +
∑
τ∈U

βττ. (8)

The increasing supermodular ordering (denoted �ISPM ) is defined as follows:

g �ISPM f ⇐⇒ w · g ≥ w · f ∀w ∈ S ∩ I.

Since the functions w are now required to be increasing, g �ISPM f (in contrast to g �SPM f) does

not imply that g and f have identical marginals. Rather, g �ISPM f implies that each marginal

distribution of g dominates the corresponding marginal distribution of f according to first-order

stochastic dominance: this can be seen by taking, for each i ∈ N and each ki ∈ Li, w(z) = I{zi≥ki},

which is both increasing and supermodular.

Theorem 2 below demonstrates that comparison of two distributions according to the increasing su-

permodular ordering can be decomposed into a two-step comparison, first comparing the marginals

according to first-order stochastic dominance and then comparing the joint distributions, after

correcting to ensure identical marginals, according to supermodular dominance.

To simplify notation, assume that Li = {0, 1, . . . ,mi − 1}. Given two distributions f and g with

δ ≡ g − f , define the function γ on L, to correct for differences in the marginals of f and g, as

follows. Let γ(z) vanish everywhere except on the set L0 of z’s that have at most one positive

component, and for any i ∈ N and k ∈ {1, 2, . . . ,mi−1}, let

γ(kei) = Pr(Yi = k)− Pr(Xi = k) =
∑
z:zi=k

δ(z). (9)
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Finally, let γ(0, 0, . . . , 0) be such that
∑

z∈L0 γ(z) = 0. Since
∑

z∈L δ(z) =
∑

z∈L(g(z)− f(z)) = 0,

it follows from (9) that for all i and k, including k = 0,∑
z:zi=k

γ(z) =
∑
z:zi=k

δ(z). (10)

Equation (10) ensures that f + γ has the same marginal distributions as g, so f + γ and g can

be compared according to ≺SPM .4 At the same time, γ contains all the information necessary to

determine whether the marginals of g first-order stochastically dominate the marginals of f .

Theorem 2 (Increasing Supermodular Ordering) The following statements are equivalent:

1) g �ISPM f .

2) There exist nonnegative coefficients {αt}t∈T , {βτ}τ∈U such that

a) γ =
∑

τ∈U βττ , and

b) g = f + γ +
∑

t∈T αtt.

3) For each i, the ith marginal distribution of g dominates the ith marginal distribution of f

according to first-order stochastic dominance, and for all supermodular w, w · g ≥ w · (f + γ).

3.2 Coarsening and Relabeling

For many applications, the choice of a particular support is somewhat arbitrary. For example,

when comparing multivariate empirical distributions of attributes such as income, health, and

education (see Section 7.1), the distributions depend on the way the data for each attribute has

been aggregated into discrete categories. We now use Theorem 1 to show that the supermodular

ordering is robust to coarsening of the support (aggregation), as well as to monotonic relabeling of

coordinates. This is important, since some widely used orderings of interdependence, such as the

(bivariate) linear correlation coefficient, fail to satisfy this robustness criterion.

A coarsening L̃ of L is defined by a partitioning L̃i of Li for each i.5 To any coarsening L̃ of L
corresponds a surjective map φ : L → L̃ such that φ(x) = φ(z) if and only if xi and zi belong to

the same element x̃i of L̃i for all i. Each element of L̃ represents a hyperrectangle resulting from

slicing L along each dimension. For any probability distribution f on L and any coarsening L̃ of L,

let f̃ denote the “coarsened version” of f , defined by

f̃(x̃) =
∑

x∈L:φ(x)=x̃

f(x).

4Strictly speaking, we are assessing whether for all supermodular w, w · g ≥ w · (f + γ); this way of expressing

greater interdependence in g than in f + γ is valid whether or not all elements of the vector f + γ lie in [0, 1].
5For example, if L = {0, 1, 2, 3} × {0, 1, 2}, one possible coarsening of L is L̃ = {{0, 1}, {2, 3}} × {{0}, {1, 2}}.
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Theorem 3 (Coarsening Invariance) Suppose that f ≺SPM g and that L̃ is a coarsening of

L. Then f̃ ≺SPM g̃.

Theorem 3 can be applied to prove the following proposition, which will be useful in our discussion

of copulas in the next section. Suppose that the functions φi : Li → R are nondecreasing, and let

φ = (φ1, . . . , φn). Define L̃i = {φi(xi) : xi ∈ Li} and L̃ = {φ(x) : x ∈ L}. Then it is easy to show

that L̃ = ×iL̃i, so L̃ is also a lattice.6

Proposition 1 If X ≺SPM Y , then φ(X) ≺SPM φ(Y ). Moreover, if each φi is strictly increasing,

then X ≺SPM Y if and only if φ(X) ≺SPM φ(Y ).

Proof. Each φi defines a coarsening L̄i of Li such that xi and zi belong to the same element

x̄i of L̄i if and only if φi(xi) = φi(zi). Let ϕ = (ϕ1, . . . , ϕn) denote the increasing, one-to-one

map from ×L̄i to ×L̃i. A function w̃ is supermodular on ×L̃i if and only if the function w̄(x̄) =

w̃(ϕ1(x̄1), . . . , ϕn(x̄n)) is supermodular on×L̄i, as is easily checked. Combining this with Theorem 3

then shows the first part of the claim. For the second part, we have X = φ−1(φ(X)), where

φ−1(X̃) = (φ−1
1 (X̃1), . . . , φ−1

n (X̃n)) and φ−1
i is the inverse of φi. Applying the first part of the

proposition to the function φ−1 and the relation φ(X) ≺SPM φ(Y ) then shows that X ≺SPM Y .�

3.3 The Supermodular Ordering and Copulas

A useful approach to modeling the interdependence of random variables, which is widespread in

finance and in actuarial science, is based on the concept of a copula.7 Given any distribution

function F of n variables, with marginal distributions F1, . . . , Fn, Sklar’s theorem (1959) guarantees

the existence of a function C : [0, 1]n → [0, 1] such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (11)

C is called the copula of F . Since Xi ∼ Fi implies that Fi(Xi) ∼ U [0, 1], the copula is a

distribution function each of whose marginal distributions is uniform on [0, 1]. By normaliz-

ing marginal distributions to be uniform, copulas provide, intuitively, a “pure” measure of in-

terdependence. With discrete support, the values of the copula are pinned down on the do-

main L̃ = {(F1(x1), . . . , Fn(xn)) : (x1, . . . , xn) ∈ L}. The copula of a discrete distribution is

therefore essentially unique.

6The inclusion L̃ ⊂ ×iL̃i is straightforward. To show that the reverse inclusion holds, take any x̃ ∈ ×iL̃i. For

each i, there exists xi such that x̃i = φi(xi). Letting x = (x1, . . . , xn), we have x̃ = (φ1(x1), . . . , φn(xn)), which

shows that x̃ ∈ L̃.
7Copulas have been systematically used, since Li’s (2000) influential model, to price credit derivatives. They are

used to analyze risk insurance (Denuit et al. (2005)) and risk management (Embrechts (2009)). Copulas are also

used in statistics and econometrics to model the intertemporal dependence of time series (see Joe (1997, Ch. 8),

Ibragimov (2005), and Beare (2010)).
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As noted above, Theorem 1 implies that, for two multivariate distributions F and G to be com-

parable according to the supermodular ordering, they must have identical marginals: Fi = Gi for

all i. This in turn implies that the domain L̃ is the same for both copulas CF and CG. As observed

before Proposition 1, L̃ = ×iL̃i, where L̃i = {Fi(xi) : xi ∈ Li}, so L̃ is a lattice. By definition, the

marginal distributions Fi are nondecreasing. Moreover, without loss of generality, we can assume

that for each i, each level xi is achieved with positive probability (otherwise, we can simply remove

that level from the support Li), hence the Fi’s are strictly increasing from Li to L̃i. Now define

X̃i ≡ Fi(Xi) and Ỹi ≡ Gi(Yi)(= Fi(Yi)). Proposition 1 implies that X ≺SPM Y if and only if

X̃ ≺SPM Ỹ . Finally, observe from the definition of a copula in (11) that the joint distributions of

X̃ and Ỹ on L̃ coincide, respectively, with the copulas CF and CG. We have thus proved:

Proposition 2 F ≺SPM G on L if and only if F and G have identical marginals and their copulas

satisfy CF ≺SPM CG on L̃.

Several works have examined whether copulas within specific parametric families with continuous

supports can be ranked according to the supermodular ordering.8 In contrast, our methods for

characterizing the supermodular ordering, and generating distributions that are ranked according

to it, allow nonparametric comparisons. This feature makes our methods useful for comparing

multivariate empirical distributions.

3.4 Nonparametric Characterizations of the Supermodular Ordering

Two aspects of our approach greatly facilitate the use of Theorem 1 to determine, given a pair of

distributions f and g, whether or not f ≺SPM g. The first is our restriction to a finite support L.9

The second is our restriction that elementary transformations, defined in (3), affect only two of

the n dimensions and affect values at only adjacent points in the lattice. These two restrictions

make it straightforward, either manually or algorithmically, to list the entire set T of elementary

transformations on any given L. The next result guarantees that when looking for a representation

of g − f in the form
∑

t∈T αtt, none of the elementary transformations in T is redundant.

Proposition 3 All elements of T are extreme rays of C(T ), the convex cone generated by T .

For two dimensions, a stronger result is easily shown: It is impossible to write any t ∈ T as a

sum, with weights of arbitrary sign, of other elements of T .10 As a consequence, for any bivariate

8Wei and Hu (2002) obtain positive results for Archimedean copulas and asymmetric extensions thereof, and

Burtschell et al (2008) obtain positive results for Gaussian, Student t, Clayton, and Marshall-Olkin families of

copulas.
9Theorem 4 below may also be used, in conjunction with Theorem 1, to compare distributions on a continuous

support using our techniques, as long as the distributions have a continuous density.
10For three or more dimensions, this stronger result does not hold. To see this, consider L = {0, 1}3, and observe

that t
(0,0,0)
13 = t

(0,1,0)
13 − t(1,0,0)23 + t

(0,0,0)
23 .
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distributions f and g with identical marginals (which is necessary for f ≺SPM g), there is a unique

representation of g − f in the form
∑

t∈T αtt, where the weights αt are allowed to have arbitrary

signs. To see this, note that if L has m1 ×m2 elements, then g − f is fully described by its values

at (m1 − 1) × (m2 − 1) points, and there are exactly (m1 − 1) × (m2 − 1) linearly independent

elementary transformations.

This uniqueness of the representation g − f =
∑

t∈T αtt allows a very simple proof of the known

characterization of the supermodular ordering in two dimensions. Define Iv and Iv as the indicator

functions of the lower-orthant set {z|z ≤ v} and the upper-orthant set {z|z ≥ v}, respectively. For

two dimensions,

f ≺SPM g ⇐⇒ ∀v ∈ L, Iv · f ≤ Iv · g and Iv · f ≤ Iv · g, (12)

that is, supermodular dominance for bivariate distributions is equivalent to the combination of

upper-orthant and lower-orthant dominance.1112 Since Iv and Iv are both supermodular, the

implication ⇒ in (12) is obvious. To prove the reverse implication, let L− denote the (m1 − 1) ×
(m2 − 1) points x ∈ L such that x + e1 + e2 ∈ L, and observe that the right-hand side of (12) is

equivalent to lower-orthant dominance of g over f for all v ∈ L−, coupled with identical marginals

for g and f . Indexing the (m1 − 1) × (m2 − 1) transformations in T by the points in L−, we can

write the unique representation of g − f as
∑

x∈L− αxt
x. Hence for each v ∈ L−,

Iv · (g − f) = Iv · (
∑
x∈L−

αxt
x) =

∑
x∈L−

αx(Iv · tx) = αv. (13)

The third equality in (13) follows since Iv ·tv = 1, whereas for all x ∈ L− such that x 6= v, Iv ·tx = 0.

It follows from (13) that the right-hand side of (12) implies that g − f =
∑

x∈L− αxt
x with αx ≥ 0

for all x ∈ L−. Hence f ≺SPM g.

Note that (13) also identifies the weights αx in the unique decomposition of g − f for bivariate

distributions with identical marginals: αx = Ix · (g − f) = G(x) − F (x). In two dimensions, the

indicator functions of lower orthant sets are in fact the extreme rays of the cone S of supermodular

functions, and there is a one-to-one mapping associating with each tx ∈ T the only extreme ray Iv

of S, namely Ix, such that Iv · tx 6= 0.

11We can use Theorem 2 to provide an analogous proof that for two dimensions, f ≺ISPM g if and only if g

dominates f according to upper-orthant dominance.
12See Levy and Paroush (1974), Epstein and Tanny (1980), and Tchen (1980). The latter two papers proved the

implication ⇐ in (12) constructively, by defining a notion of a simple “correlation increasing” transformation. (Levy

and Paroush’s proof assumed continuous distributions and used integration by parts.) These constructive proofs were

laborious, because a) they did not restrict their transformations to affect values at only adjacent points in the support

and b) they sought a weighted sequence of transformations that, when added to f , yielded g and that produced, after

each step, a probability distribution. Our Theorem 1 makes clear that, in searching for a decomposition of g − f
into a weighted sum

∑
t∈T αtt, it is irrelevant whether or not partial sums of the form f +

∑
t∈T ′⊂T αtt are actual

probability distributions.
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For more than two dimensions, however, many decompositions of g − f into weighted sums of

elementary transformations exist, and as a consequence such a one-to-one mapping between ele-

mentary transformations and extreme supermodular functions does not exist. In addition, for more

than two dimensions, the supermodular ordering is in general strictly stronger than the combina-

tion of upper-orthant and lower-orthant dominance (Joe, 1990, and Müller and Scarsini, 2000).13

14 These features make it considerably more difficult to determine, given distributions f and g,

whether or not f ≺SPM g when (X1, . . . , Xn) and (Y1, . . . , Yn) have three or more dimensions.

For three or more dimensions, we provide two methods for determining whether a pair of distribu-

tions can be ranked according to ≺SPM . Both methods exploit Theorem 1’s dual characterization

of the ordering as well as Proposition 3’s result that all elementary transformations as defined in

(3) are extreme. We now briefly summarize these methods; details are provided in Section D of the

Appendix.

Theorem 1 shows that f ≺SPM g if and only if there exists a representation of g − f in the form∑
t∈T αtt with all αt ≥ 0. This existence problem can be reformulated as establishing the non-

emptiness of the domain of a linear program. This, in turn, leads to the formulation of an auxiliary

linear program, based on the set of elementary transformations of L, such that the optimum value

of the program is equal to zero if and only if there exist non-negative coefficients {αt}t∈T such

that g − f =
∑

t∈T αtt. This method has the advantage, when it is the case that f ≺SPM g, of

constructing an explicit sequence of transformations that, added to f , result in g. However, it also

has the drawback that a different linear program must be solved for each pair of distributions to

be compared.

A second method, based on Minkowski’s and Weyl’s representation theorems for polyhedral cones,

allows one to compute, for any given support L, a minimal set of inequalities which completely

characterize the supermodular ordering. That is, f ≺SPM g if and only if the vector g− f satisfies

all of these inequalities. This method can be used to compare many empirical distributions, or

to compare interdependence of many mechanism designs. Specifically, we develop an algorithm,

based on the “double description method” conceptualized by Motzkin et al. (1953) and developed

by Avis and Fukuda (1992), to generate, for any given support, the set of extreme rays of the

cone of supermodular functions. Each extreme ray defines an inequality of the minimal set charac-

terizing ≺SPM . Using a package to implement the double description method freely available for

Matlab (see Torrisi and Baotic (2005)), we have written and used programs to characterize both

the supermodular ordering and the symmetric supermodular ordering studied in Section 5.15

13In Meyer and Strulovici (2012), we contrast five orderings of interdependence, including the supermodular ordering

and the combination of upper-orthant and lower-orthant dominance. We show that, for two dimensions, all five

orderings are equivalent, but that, for an arbitrary number of dimensions, the five orderings are strictly ranked.
14Hu, Xie, and Ruan (2005) have shown that in the special case of three-dimensional Bernoulli random vectors,

the equivalence in (12) remains valid.
15The code is available online at http://faculty.wcas.northwestern.edu/ bhs675/.
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3.5 Continuous Support

The analysis so far has focused on discrete supports. We now prove that the supermodular ordering

on a continuous support can be characterized in terms of all its discrete coarsenings. For F,G

with continuous densities on L = ×i[ai, bi], define the supermodular ordering on L as follows:

F ≺CSPM G if and only if E[w|F ] ≤ E[w|G] for all integrable supermodular functions on L.

Recall that a finite coarsening L̃ of L is defined by a finite partitioning L̃i of each Li. The coarsened

version of F on L̃ is the distribution F̃ such that for all x̃ ∈ L̃, F̃ (x̃) is the probability that F puts on

the on the cell (hyperrectangle) defined by the Cartesian product of the x̃i’s: F̃ (x̃) = F (×ix̃i). For

any function w on L, the coarsened version w̃ of w on L̃ is the average of w over the hyperrectangle

defined by each ×ix̃i. Formally,

w̃(x̃) =

∫
×ix̃i

w(x)dx∫
×ix̃i

dx
. (14)

In light of Theorem 3, it is not surprising that the supermodular ordering on L is stronger than the

supermodular ordering on every finite coarseninig of L. With continuous densities, the following

equivalence result holds.

Theorem 4 Suppose that distributions F and G have continuous densities. F ≺CSPM G if and

only if F̃ ≺SPM G̃ on all finite coarsenings L̃ of L.

We note here that for random vectors X and Y with multivariate normal distributions, necessary

and sufficient conditions for X ≺SPM Y and for X ≺ISPM Y are easily stated. Müller and Scarsini

(2000) have shown that X ≺SPM Y if and only if X and Y have the same marginal distributions and

Cov(Xi, Xj) ≤ Cov(Yi, Yj) for all i 6= j. Arlotto and Scarsini (2009) have shown that X ≺ISPM Y

if and only if EXi ≤ EYi and V ar(Xi) = V ar(Yi) for all i and Cov(Xi, Xj) ≤ Cov(Yi, Yj) for all

i 6= j. To highlight the relationship between our characterization of the increasing supermodular

ordering in Theorem 2 and the latter result, we can rewrite the latter result as X ≺ISPM Y if and

only if EXi ≤ EYi for all i and X ′ ≺SPM Y , where X ′i ≡ Xi + (EYi − EXi).

4 Aggregate vs. Idiosyncratic Shocks

In economics, particularly macroeconomics and finance, the interdependence of random variables

often arises from the presence of aggregate shocks or common factors. This section focuses on

the class of random vectors generated by both aggregate and idiosyncratic shocks, and provides

non-parametric sufficient conditions for one such random vector to display more interdependence,

in the sense of the supermodular ordering, than another.

Two familiar parametric examples will help to motivate our approach.
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Example 1 Let the random vector X be such that Xi = θ + εi, where θ and {εi}i∈N are all

independent and normally distributed with mean 0 and where V ar(θ) = τ and V ar(εi) = (1−τ).16

Intuitively, an increase in τ raises the contribution to each Xi of the common shock θ relative to

that of the idiosyncratic shock εi, while leaving the marginal distribution of each Xi unchanged.

More formally, an increase in τ raises Cov(Xi, Xj) for each i 6= j. It therefore follows from Müller

and Scarsini’s (2000) result quoted above for multivariate normal distributions that an increase in

τ yields a distribution that dominates the original one according to the supermodular ordering.

Example 2 The conclusion in Example 1 need not hold if we relax the assumption of normal

distributions. Let Xi = θ+εi, where now θ equals 1 or -1 with probability p and 1−p, respectively,

and εi equals 2 or -2 with probability 1− p and p, respectively. Similarly, let Yi = θ′ + ε′i, where θ′

equals 2 or -2 with probability 1−p and p, respectively, and ε′i equals 1 or -1 with probability p and

1−p, respectively. Y and X have identical marginals, and the common shock would seem to be more

important relative to the idiosyncratic shock in the distribution of Y than in X. Nevertheless, for

any p 6= 1
2 , the distributions of Y andX cannot be ranked according to the supermodular ordering.17

In this section, we develop a general, non-parametric criterion for comparing two joint distributions

according to the relative importance of aggregate vs. idiosyncratic shocks, and we prove that if

two distributions can be ranked according to this criterion, then the one for which the aggregate

shock is relatively more important dominates the other according to the supermodular ordering.

We will consider the following class of “mixture distributions” (mixtures of conditionally indepen-

dent random variables).18 To each variable Xr, r ∈ N , is associated a q×m row-stochastic matrix

A(r), where each row of A(r) represents a probability distribution for the variable Xr on some

finite support with m values. The vector (X1, . . . , Xn) is constructed as follows. First, a row index

i ∈ {1, . . . , q} is drawn randomly, according to a uniform distribution.19 This step represents the

realization of the aggregate shock. Then, each variable Xr is independently drawn from the distri-

bution described by the ith row of A(r). This step represents the realization of the idiosyncratic

shocks. The unconditional marginal distribution of each Xr is described by the (equally-weighted)

average of the rows of A(r). Because, as we observed earlier (Proposition 1), the supermodu-

lar ordering is invariant with respect to monotonic coordinate changes, we take, without loss of

generality, the support of each variable to be {1, . . . ,m}.

For mixture distributions of the form just described, greater importance of the aggregate shock

16This additive-normal structure has been used, e.g., to examine how interdependence in agents’ information affects

behavior in “beauty-contest” coordination games (Myatt and Wallace, 2012) and in voting games (Myatt, 2007).
17To see this, note that all upper-orthant and lower-orthant indicator functions are supermodular, and observe that

for p > (<) 1
2
, P (Y1 ≥ 3, Y2 ≥ 3) > (<)P (X1 ≥ 3, X2 ≥ 3) and P (Y1 ≤ −3, Y2 ≤ −3) < (>)P (X1 ≤ −3, X2 ≤ −3).

18In the statistics literature, distributions generated as described below are often referred to as unidimensional

latent variable models (Holland and Rosenbaum, 1986).
19The analysis can easily be extended to accommodate non-uniform distributions of the index i, by appropriate

replication of the rows of the matrix.
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relative to the idiosyncratic shocks should correspond, for each matrix A(r), to the rows being

more different from one another, holding the average of the rows of each A(r), and hence holding

the unconditional distribution of each Xr, fixed.

The following terminology and notation will be useful to formalize this idea. A matrix A is row-

stochastic if each row represents a probability distribution. For any matrix A, the entries of the

(upper) cumulative-sum matrix Ā of A are defined by Āi,j =
∑m

k=j Ai,k. Thus, Āi,j is decreasing

in j. If A is row-stochastic, the first column of Ā has all entries equal to 1. Clearly, there is a

one-to-one mapping between row-stochastic matrices and their cumulative-sum equivalents.

A row-stochastic matrix A is stochastically ordered if for each k, Āi,k is weakly increasing in i.

This is equivalent to the requirement that for all i ∈ {2, . . . , q}, the ith row of A dominates the

(i− 1)th row in the sense of first-order stochastic dominance, so that high-index aggregate shocks

are more likely to yield high outcomes for the variable X generated by A. Given a row-stochastic

matrix A, the stochastically-ordered version of Ā, denoted Āso, is the stochastically-ordered matrix

obtained from Ā by reordering each of its columns from the smallest to the largest element. If A

is itself stochastically ordered, then Āso = Ā, and in this case we will use the expressions “A is

stochastically ordered” and “Ā is stochastically ordered” interchangeably.

Before introducing our ordering of matrices, we recall Hardy, Littlewood, and Polya’s (1934, 1952)

definition of majorization, which formalizes greater dispersion in the elements of a vector.

Definition 1 A vector a majorizes a vector b of identical dimension if i) the sums of the elements

of a and b are equal, and ii) for all k, the sum of the k largest entries of a is weakly greater than

the sum of the k largest entries of b .

We now present our ordering of matrices, which we term “cumulative column majorization”, that

formalizes the idea that the rows of a matrix A are “more different” from one another than the

rows of B (holding the average of the rows fixed).

Definition 2 Given two row-stochastic matrices A and B of dimension q × m, A dominates B

according to the cumulative column majorization criterion, denoted A �CCM B (or equiva-

lently Ā �CCM B̄), if for all k ≤ m, the kth column vector of Ā majorizes the kth column vector of

B̄. Equivalently, A �CCM B if for for all l ≤ q and k ≤ m,
∑q

i=l Ā
so
i,k ≥

∑q
i=l B̄

so
i,k, with equality

holding for l = 1, for all k ≤ m.

Note that the definition of A �CCM B requires that Ā and B̄ have equal column sums. Hence,

if random variable X is generated by matrix A and random variable Y by B, A �CCM B implies

that the unconditional distributions of X and Y are identical.

The condition that A �CCM B says that, for each point in the support {1, . . . ,m}, the q-vector

of upper cumulative probabilities corresponding to the q possible conditional distributions (rows of
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the matrix) is more dispersed for matrix A than for matrix B. In turn, the fact that the q possible

conditional distributions are everywhere more diverse for matrix A than for matrix B, while the

unconditional distribution is the same, implies that the aggregate shock is more important in the

mixture distribution generated by A than in the mixture distribution generated by B.

The main result of this section is the following theorem.

Theorem 5 Let (A(1), . . . , A(n)) and (B(1), . . . , B(n)) be two sets of row-stochastic matrices gen-

erating the random vectors (X1, . . . , Xn) and (Y1, . . . , Yn), respectively. Suppose that, i) for each r ∈
N , A(r) is stochastically ordered, and ii) for each r ∈ N , A(r) �CCM B(r). Then (X1, . . . , Xn) �SPM
(Y1, . . . , Yn).

We have examples showing that Theorem 5 does not hold if we drop either condition i) or condition

ii).20 We conjecture that Theorem 5 can be extended to the case where the aggregate shock or the

random vectors have continuous supports.21

The condition that for each r, A(r) �CCM B(r) says that the realization of the aggregate shock is

relatively more informative about what the realizations of {Xr}r∈N will be than about what the

realizations of {Yr}r∈N will be.

In the special case where both A(r) and B(r) are stochastically ordered, A(r) �CCM B(r) reduces

to
q∑
i=l

m∑
j=k

Ai,j(r) =

q∑
i=l

Āi,k(r) ≥
q∑
i=l

B̄i,k(r) =

q∑
i=l

m∑
j=k

Bi,j(r) ∀l ≥ 2, k ≥ 2, (15)

coupled with the condition that A(r) and B(r) have matching column sums. Inequality (15) can be

read as saying that the matrix A(r) dominates B(r) in the sense of “upper-orthant dominance”.22

20Jogdeo (1978) showed that for any stochastically ordered row-stochastic matrices {A(r)}, the distribution of

(X1, . . . , Xn) generated from them displays association, a widely-used dependence concept defined in Esary, Proschan,

and Walkup (1967). It follows from this and Theorem 2 of Meyer and Strulovici (2012) that the distribution of

(X1, . . . , Xn) dominates its independent counterpart (the independent distribution with identical marginals to X)

according to the supermodular ordering. Jogdeo’s result, weakened to supermodular dominance, corresponds to the

special case of Theorem 5 where for each r, the matrix B(r) consists of q identical rows.
21If sequences of random vectors {Xn} and {Yn} satisfy Xn �SPM Yn for all n and respectively converge in law

to X and Y , then X �SPM Y . To handle, say, an aggregate shock that was uniformly distributed on [0, 1], the

strategy would be to construct sequences of matrices {A(r)n} and {B(r)n}, representing finer and finer discrete

uniform distributions of the aggregate shock, and to apply Theorem 5 to the sequences of random vectors {Xn} and

{Yn} generated by these matrices. For the continuous analogues of the matrices A(r) and B(r), it is straightforward

to define the continuous analogue of condition i) in Theorem 5, and the definition of cumulative column majorization

can be replaced with a notion of cumulative column Lorenz dominance. One would then need to show that given

these conditions on the continuous analogues of A(r) and B(r), each pair of discretizations A(r)n and B(r)n satisfies

the conditions of Theorem 5.
22Athey and Levin (2001) compared information structures (joint distributions of signal and state of the world) for

“monotone decision problems”. For the special case where both A(r) and B(r) are stochastically ordered, the partial

ordering A(r) �CCM B(r) is formally very similar to the partial ordering on information structures that Athey and
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To provide some insight into the proof of Theorem 5, we focus on the special case where the random

vectors X and Y have symmetric mixture distributions: this is the case where A(r) and B(r) do

not vary with r. Denote by Ā (resp. B̄) the common cumulative-sum matrix generating the Xr’s

(resp. the Yr’s). Then we seek to show that for all supermodular w,

Ew(X1, . . . , Xn) =
1

q

q∑
i=1

E[w(X1, . . . , Xn)|Āi,•) ≥
1

q

q∑
i=1

E[w(Y1, . . . , Yn)|B̄i,•) = Ew(Y1, . . . , Yn),

(16)

where Āi,• (resp. B̄i,•) denotes the ith row of Ā (resp. B̄).

Let p̄ ≡ (p̄1, . . . , p̄m) denote an arbitrary upper-cumulative vector corresponding to a discrete

distribution on support {1, . . . ,m}. We have p̄1 = 1 and p̄k−1 ≥ p̄k for all k. For any supermodular

objective function w on Rn, define w̄(p̄) by

w̄(p̄) = E[w(X1, X2, . . . , Xn)|p̄].

Using this definition, (16) can be rewritten as

Ew(X1, . . . , Xn) =
1

q

q∑
i=1

w̄(Āi,•) ≥
1

q

q∑
i=1

w̄(B̄i,•) = Ew(Y1, . . . , Yn). (17)

The function w̄ is defined on a convex lattice of Rm and, importantly, inherits several properties

from the supermodularity of w, as shown in the following lemma.23 A function h(x1, . . . , xj , . . . , xm)

is componentwise convex if, when considered as a function of just xj , it is convex, for each j ∈
{1, . . . ,m}, for all values of the other m− 1 arguments.24

Lemma 1 If w is supermodular, w̄ is supermodular and componentwise convex.

Now suppose that the aggregate shock takes only two possible values, so both the matrices Ā

and B̄ have only two rows (q = 2). The following lemma shows how Lemma 1, in conjunction

with stochastic ordering of A and A �CCM B, ensures that (17) holds. With q = 2, condition

i) in Lemma 2 implies that A is stochastically ordered, and conditions ii) and iii) are equivalent

to A �CCM B. Recall that for all row-stochastic matrices, the first column of the corresponding

cumulative-sum matrix has all entries equal to 1.

Lemma 2 Suppose that q = 2 and that there exists a nonnegative vector ε such that for all

k ∈ {2, . . . ,m}, i) Ā2,k ≥ Ā1,k + εk; ii) B̄1,k = Ā1,k + εk; and iii) B̄2,k = Ā2,k − εk. Then

(X1, . . . , Xn) �SPM (Y1, . . . , Yn).

Levin showed to correspond to preference by all decision-makers with payoff functions supermodular in the state

and the action. Both orderings have the interpretation that one set of (first-order) stochastically ordered conditional

distributions is more dispersed than the other.
23The domain of w̄ is a simplex and is clearly convex. Moreover, the inequalities p̄1 ≥ p̄2 ≥ · · · p̄m reduce to

pairwise inequalities of the form p̄i ≥ p̄j , and define a lattice, as is well known (Topkis, 1968, 1978).
24Functions that are both supermodular and componentwise convex have been studied by Marinacci and Montruc-

chio (2005) and by Müller and Scarsini (2012), where they are termed “ultramodular”.
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Proof. The function w̄ is polynomial in p̄ and hence twice differentiable. Moreover, by Lemma 1,

it is supermodular and componentwise convex, which implies that all of its second-order derivatives

are everywhere nonnegative on its domain. Letting p̄ (resp. q̄) denote the first (resp. second) row

of Ā, we need to show that for any m-vectors p̄, q̄, and ε ≥ 0 such that p̄ + ε ≤ q̄ and ε1 = 0, the

following inequality holds

w̄(p̄) + w̄(q̄) ≥ w̄(p̄+ ε) + w̄(q̄ − ε).

Equivalently, we need to show that

w̄(p̄+ ε)− w̄(p̄) =

∫ 1

0

m∑
k=2

w̄k(p̄+ αε)εkdα ≤
∫ 1

0

m∑
k=2

w̄k(q̄ − ε+ αε)εkdα = w̄(q̄)− w̄(q̄ − ε),

where w̄k denotes the kth partial derivative of w̄. Let δ = q̄ − ε− p̄ ≥ 0. For each k ∈ {2, . . . ,m},

w̄k(q̄ − ε+ αε)− w̄k(p̄+ αε) =

∫ 1

0

m∑
k̃=2

w̄kk̃(p̄+ αε+ βδ)δk̃dβ ≥ 0,

where the inequality holds since, by Lemma 1, all second-order derivatives of w̄ are nonnegative.

Summming these inequalities over k and integrating with respect to α then yields the result. �

Starting from the stochastically ordered matrix Ā, the matrix B̄ described in Lemma 2 is obtained

by a simple transformation that shifts a small amount of weight from the stochastically dominant

row (row 2) to the dominated row (row 1), in (possibly) every column except the first. Such a

transformation clearly makes the rows of the cumulative-sum matrix more similar, while keeping

the column sums fixed, thus reducing the importance of the aggregate shock while leaving the

unconditional distribution of each variable unchanged. The proof of Theorem 5 for the case of

symmetric mixture distributions is completed by showing that, given any A and B such that

A is stochastically ordered and A �CCM B, Ā can be converted into B̄ through a sequence of

simple transformations of the form in Lemma 2, affecting only two of the q rows. From (16), the

unconditional expectation of any objective function w is the average of the q possible expected values

of w, conditional on the realization of the aggregate shock, i.e. the average of the q possible values

of w̄, as in (17). Therefore, given Lemma 1, for any supermodular w each simple transformation

in the sequence reduces the average value of w̄ and hence reduces the expected value of w.

Example 3 Consider the n-dimensional random vectors X, Y , Z, and V with symmetric mixture

distributions on support L = {1, 2, 3}n, generated by the 2×3 matrices A, B, C, andD, respectively:

A =

(
1
2

1
2 0

0 1
2

1
2

)
B =

(
1
2

1
4

1
4

0 3
4

1
4

)
C =

(
1
4

3
4 0

1
4

1
4

1
2

)
D =

(
0 1 0
1
2 0 1

2

)

The rows of each matrix have the same arithmetic average, (1
4

1
2

1
4), which represents the common

marginal distribution of each Xr, Yr, Zr, and Vr. A, B, and C are stochastically ordered, so in

each, the first (second) row umambiguously corresponds to a low (high) realization of the aggregate
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shock. D, however, is not stochastically ordered. It is easily checked that A �CCM B, A �CCM C,

and A �CCM D. These conditions formally capture the fact that in A, the distribution of the

variables conditional on the low (high) realization of the aggregate shock is more concentrated on

low (high) values, compared to any of B, C, and D. Hence Theorem 5 implies that for any n,

(X1, . . . , Xn) dominates (Y1, . . . , Yn), (Z1, . . . , Zn), and (V1, . . . , Vn) according to �SPM .

For symmetric mixture distributions generated from matrices with only two rows, and for any n,

we can show that the pair of conditions in Theorem 5 are necessary as well as sufficient for the

random vectors to be supermodularly ordered. To illustrate this result, observe first that matrices

B and C above cannot be ranked according to �CCM . It follows from the necessity of the �CCM
condition that Y and Z cannot be ranked according to �SPM , whatever the value of n ≥ 2. In

fact, because the third column of C̄ majorizes (strictly) the third column of B̄, we can deduce

that for w(x) = I{x1≥3,x2≥3}, we have Ew(Z) > Ew(Y ), and because the second column of B̄

majorizes (strictly) the second column of C̄, we can deduce that for w(x) = I{x1≥2,x2≥2}, we have

Ew(Y ) > Ew(Z). Second, observe that even though D �CCM B, because D is not stochastically

ordered, it follows that V does not supermodularly dominate Y ; this can be checked by taking

w(x) = I{x1≥3,x2≥2}.

Example 2 (revisited) Let Xi = θ + εi, where θ equals 1 or -1 with probability p and 1 − p,
respectively, and εi equals 2 or -2 with probability 1−p and p, respectively. Similarly, let Yi = θ′+ε′i,

where θ′ equals 2 or -2 with probability 1 − p and p, respectively, and ε′i equals 1 or -1 with

probability p and 1 − p, respectively. Set p = 2
3 . The random vectors X and Y have symmetric

mixture distributions on L = {−3,−1, 1, 3}n, generated by the 3×4 matrices P and Q, respectively:

P =


2
3 0 1

3 0

0 2
3 0 1

3

0 2
3 0 1

3

 Q =


1
3

2
3 0 0

1
3

2
3 0 0

0 0 1
3

2
3


Both P and Q are stochastically ordered. The duplication of the bottom two rows in P and the top

two rows in Q reflects the fact that the aggregate shock θ is twice as likely to be high in P as low

and twice as likely to be low in Q as high. The rows of P and Q have a common arithmetic average,

confirming that X and Y have identical marginal distributions. However, neither P �CCM Q nor

Q �CCM P holds: the third column of P̄ is majorized by the third column of Q̄, while the reverse

is true for the second columns of P̄ and Q̄. As we noted above, the random vectors X and Y

cannot be ranked according to �SPM , because for w(x) = I{x1≥3,x2≥3}, Ew(X) < Ew(Y ), while

for w(x) = I{x1≤−3,x2≤−3}, Ew(X) > Ew(Y ).

5 The Symmetric Supermodular Ordering

Symmetric objective functions play an important role in many economic applications. For example,

if the objective function is an ex post welfare function, imposing symmetry amounts to assuming
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a form of ex post anonymity across individuals: permutations of the vector of realized incomes

leave welfare unchanged. In finance and insurance contexts, losses may be evaluated according to

a convex function of the total loss across all assets or all insurance policies. Any convex function

of the sum of outcomes across random variables is both symmetric and supermodular.

A lattice L = ×ni=1Li is symmetric if Li = Lj for all i 6= j. A real-valued function f on a symmetric

lattice L is symmetric on L if f(x) = f(σ(x)) for all x ∈ L and for all permutations σ(x) of x.

Given two distributions g and f on a symmetric lattice L, g dominates f according to the sym-

metric supermodular ordering, written f ≺SSPM g, if and only if w ·f ≤ w ·g for all symmetric

supermodular functions w on L.

For any function f defined on a symmetric lattice L, the symmetrized version of f , denoted fsymm,

is defined by

fsymm(x) =
1

n!

∑
σ∈Σ(n)

f(σ(x)), (18)

for any x, where Σ(n) is the set of all permutations of {1, . . . , n}. If w is a supermodular func-

tion, then wsymm is supermodular. The following equivalence result was proved in Meyer and

Strulovici (2012, Section 2.3.1):

Proposition 4 Given distributions f, g defined on a symmetric lattice, f ≺SSPM g if and only if

fsymm ≺SPM gsymm.

Proposition 4 states that one can characterize the symmetric supermodular ordering in terms of

the supermodular order applied to symmetrized distributions.

Meyer and Strulovici (2012) showed that the symmetric supermodular ordering has a very simple

form for random vectors for which each component has a binary support {0, 1}, so the lattice is

L = {0, 1}n. For such a random vector X = (X1, . . . , Xn), define c(X) ≡
∑n

i=1 I{Xi=1}. The

“count function” c(X) gives the number of components of X for which the realization takes the

value 1. For random variables Z and V with support S ⊆ R, we say Z dominates V according

to the (univariate) convex ordering, written V ≺X Z, if Ew(V ) ≤ Ew(Z) for all convex functions

w : S → R.25 The convex ordering is equivalent to the ordering of greater riskiness studied by

Rothschild and Stiglitz (1970).

Proposition 5 For random vectors Y and X distributed on L = {0, 1}n, X ≺SSPM Y if and only

if c(X) ≺X c(Y ).

This proposition is easily proved, by noting, first, that any symmetric function w defined on L =

{0, 1}n can be written as w(X1, . . . , Xn) = φ(c(X1, . . . , Xn)), for some φ : {0, 1, . . . , n} → R, and

second, that a function w of this form is supermodular if and only if φ(·) is convex.

25A function defined on S ⊂ R is convex if it can be extended to a convex function on R.

21



The next section applies these results on the symmetric supermodular ordering to develop a gener-

alization of well-known results in the statistics literature concerning the variability of distributions

of the number of successes in independent trials, when success probabilities differ across trials.26

6 Comparing Distributions Generated from Heterogeneous Lot-

teries

Let (X1, . . . , Xn) ∈ {0, 1}n (resp., (Y1, . . . , Yn) ∈ {0, 1}n) denote the outcomes of n independent

Bernoulli trials, where the probability of success (outcome=1) on trial i is ai (resp., bi). If
∑n

i=1 ai =∑n
i=1 bi, so the expected number of successes is the same for the random vector X as for Y , what

can be said about the relative variability of the distributions of c(X) and c(Y )?27 Karlin and

Novikoff (1963) showed that if (a1, . . . , an) majorizes (b1, . . . , bn), then c(X) ≺X c(Y ).

To develop an intuition for why a less dispersed vector of success probabilities generates greater

variability of the total number of successes, consider the case where n = 2, (a1, a2) = (1, 0), and

(b1, b2) = (3
4 ,

1
4). Then c(X) = 1 with probability 1, while c(Y ) takes the values {0, 1, 2} with

probabilities { 3
16 ,

5
8 ,

3
16}.

Propositions 4 and 5, combined with Karlin and Novikoff’s result, imply that if (a1, . . . , an) ma-

jorizes (b1, . . . , bn), then i) (X1, . . . , Xn) ≺SSPM (Y1, . . . , Yn) and ii) the symmetrized version of the

distribution of X is dominated by the symmetrized version of the distribution of Y according to

the supermodular ordering.

In what follows, let X ′ = (X ′1, . . . , X
′
n) denote the random vector whose distribution matches

the symmetrized distribution of the random vector X, and define Y ′ similarly. In the example

above, the distribution of (X ′1, X
′
2) places probability 1

2 on (1, 0) and (0, 1), while that of (Y ′1 , Y
′

2)

places probability 5
16 on (1, 0) and (0, 1) and probability 3

16 on (1, 1) and (0, 0). These two joint

distributions have identical (uniform) marginals on {0, 1}. Clearly, (X ′1, X
′
2) ≺SPM (Y ′1 , Y

′
2), since

the distribution of Y ′ is obtained from that of X ′ by an elementary transformation (as defined in (3))

of size 3
16 . Moreover, whereas the distribution of (Y ′1 , Y

′
2) displays some negative dependence, the

distribution of (X ′1, X
′
2) displays perfect negative dependence. Finally, note that had we started with

a uniform vector of success probabilities for the independent trials, then the resulting multivariate

outcome distribution would have been symmetric, so even after symmetrization it would have

displayed independence.

What are the lessons of this example for n independent Bernoulli trials, when the expected number

of successes is held fixed but the vector of individual success probabilities is varied? The example

shows that lower dispersion in the vector of success probabilities corresponds not only to higher

26This topic has been explored by Hoeffding (1956), Karlin and Novikoff (1963), and Gleser (1975), among others.
27As in Section 5, c(·) denotes the count function.
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variability of the total number of successes, but also to symmetric supermodular dominance of the

n-dimensional outcome distribution. Furthermore, when an independent distribution on {0, 1}n

with unequal marginals is symmetrized, the symmetrized version displays negative interdependence,

and is more negatively interdependent the more different from one another are the marginals of the

original, independent distribution.

In this section, we focus on multivariate distributions representing the outcome of n independent

lotteries, each with an arbitrary finite support. Our objective is to explore in greater generality the

connections between lower dispersion in the (marginal) distributions of the independent lotteries,

the symmetric supermodular ordering on the joint distribution of lottery outcomes, and the degree

of negative interdependence in the symmetrized versions of these joint distributions. Given two

sets of n independent lotteries, we present in Theorem 6 sufficient conditions for their outcome

distributions to be rankable according to the symmetric supermodular ordering, or equivalently, for

the degree of negative interdependence of the symmetrized versions of their outcome distributions to

be rankable according to the supermodular ordering. Theorem 6 can be used to compare different

production designs in the presence of complementarity among tasks, and it can also be used to

compare ex post inequality of reward schemes under uncertainty (see Section 7.1).

We will compare random vectors (X1, . . . , Xn) and (Y1, . . . , Yn) that are generated by n×m row-

stochastic matrices A and B, respectively, as follows. The ith row of A (resp. B) represents

the marginal distribution of Xi (resp. Yi) on support {1, . . . ,m}, and the {Xi} (resp. {Yi}) are

independent.28 Just as above we compared sets of n independent Bernoulli trials with the same

average success probability, here we want to compare sets of n independent lotteries with the same

average distribution over the m prizes. This constraint translates into the requirement on the

matrices A and B that for each j, the jth column of A has the same sum as the jth column of B.

As above, denote by (X ′1, . . . , X
′
n) and (Y ′1 , . . . , Y

′
n) the random vectors whose distributions match

the symmetrized distributions of (X1, . . . , Xn) and (Y1, . . . , Yn), respectively. The common marginal

distribution of the {X ′i} is the average of the rows of matrix A. Hence, our requirement that the

matrices being compared have matching column sums implies that the marginal distribution of the

{X ′i} is identical to the marginal distribution of the {Y ′i }.

In the Bernoulli example above, dispersion of the n-vector of success probabilities was captured by

majorization. For lotteries with m-point supports represented by the n rows of a matrix, we want

a generalization of majorization to formalize the idea of the rows of a matrix being more different

from one another, holding the average of the rows fixed. Our cumulative column majorization

ordering defined in Section 4 again turns out to be key.

Theorem 6 Let A and B be n × m row-stochastic matrices generating the independent random

28The symmetric supermodular ordering is invariant to monotonic coordinate changes that preserve the symmetry

of the lattice, so it is without loss of generality to take the support of each marginal distribution to be {1, . . . ,m}.
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vectors (X1, . . . , Xn) and (Y1, . . . , Yn), respectively. Let (X ′1, . . . , X
′
n) and (Y ′1 , . . . , Y

′
n) have distri-

butions matching the symmetrized distributions of (X1, . . . , Xn) and (Y1, . . . , Yn), respectively. Sup-

pose that i) A is stochastically ordered, and ii) A �CCM B. Then (X1, . . . , Xn) ≺SSPM (Y1, . . . , Yn)

and (X ′1, . . . , X
′
n) ≺SPM (Y ′1 , . . . , Y

′
n).

As with Theorem 5, we have examples showing that Theorem 6 does not hold if we drop either

condition i) or condition ii).29

The proof of Theorem 6 closely parallels that of Theorem 5. As in Section 4, it is convenient to

work with the cumulative-sum matrices Ā and B̄ corresponding to A and B, respectively. The

following lemma plays a role analogous to that of Lemma 2 in the proof of Theorem 5:

Lemma 3 Suppose that n = 2 and that there exists a nonnegative vector ε such that for all

k ∈ {2, . . . ,m}, i) Ā2,k ≥ Ā1,k + εk; ii) B̄1,k = Ā1,k + εk; and iii) B̄2,k = Ā2,k − εk. Then

(X1, X2) ≺SSPM (Y1, Y2) and (X ′1, X
′
2) ≺SPM (Y ′1 , Y

′
2).

Proof. Proposition 4 implies that (X1, X2) ≺SSPM (Y1, Y2) if and only if (X ′1, X
′
2) ≺SPM (Y ′1 , Y

′
2).

We will prove that (X ′1, X
′
2) ≺SPM (Y ′1 , Y

′
2). Conditions ii) and iii) in the statement of the lemma

imply that the column sums of B̄ match those of Ā, from which it follows that the common marginal

distribution of X ′1 and X ′2 matches the common marginal distribution of Y ′1 and Y ′2 . As discussed

in Section 3.4, for bivariate distributions with identical marginals, supermodular dominance is

equivalent to upper-orthant dominance. For any k, l ∈ {2, . . . ,m},

2[P (Y ′1 ≥ k, Y ′2 ≥ l) − P (X ′1 ≥ k,X ′2 ≥ l)]

= P (Y1 ≥ k, Y2 ≥ l) + P (Y1 ≥ l, Y2 ≥ k)− P (X1 ≥ k,X2 ≥ l)− P (X1 ≥ l,X2 ≥ k)

= B̄1kB̄2l + B̄2kB̄1l − Ā1kĀ2l − Ā2kĀ1l.

Substituting for B̄1k, B̄1l, B̄2k, and B̄2l using conditions ii) and iii), and then simplifying, yields

2[P (Y ′1 ≥ k, Y ′2 ≥ l)− P (X ′1 ≥ k,X ′2 ≥ l)] = εk[Ā2l − (Ā1l + εl)] + εl[Ā2k − (Ā1k + εk)]. (19)

Condition i) ensures that both of the terms in square brackets in (19) are nonnegative. Hence

the distribution of (Y ′1 , Y
′

2) dominates that of (X ′1, X
′
2) according to upper-orthant dominance and

therefore also according to the supermodular ordering. �

The transformation in Lemma 3 converting the matrix Ā into B̄ shifts a small amount of weight

from the stochastically dominant row 2 to the dominated row 1, in (possibly) every column except

29Hu and Yang (2004, Theorem 3.4) showed that for any stochastically ordered row-stochastic matrix A, the

symmetrized version of the distribution of X displays negative association (a concept of negative dependence defined

in Joag-Dev and Proschan (1983)), which in turn implies that this symmetrized version is supermodularly dominated

by its independent counterpart (the independent symmetric distribution with identical marginals). This latter result

corresponds to the special case of Theorem 6 where the rows of the matrix B are all identical.
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the first. This transformation clearly makes the independent lotteries represented by the rows of

the matrix more similar to one another, while keeping the column sums fixed. The lemma shows

that this increasing similarity of the lotteries translates into symmetric supermodular dominance of

the distribution of the lottery outcomes, or equivalently, into less negative interdependence of the

symmetrized distribution of the lottery outcomes. The proof of Theorem 6 is completed by showing

that given any n ×m matrices A and B such that A is stochastically ordered and A �CCM B, Ā

can be converted into B̄ through a sequence of simple transformations of the form in Lemma 3,

affecting only two of the n rows. The following lemma, combined with Lemma 3, then ensures

that each of these transformations raises the expected value of any symmetric and supermodular

objective function.30

Lemma 4 Suppose that X and Y are 2-dimensional random vectors such that X ≺SSPM Y and

that Z is a p-dimensional random vector independent of X and Y . Then for any p, the (p + 2)-

dimensional random vectors (X,Z) and (Y,Z) satisfy (X,Z) ≺SSPM (Y,Z).

Proof. We need to check that Ew(X,Z) ≤ Ew(Y, Z) for all w symmetric and supermodular. For

each z in Rp, let r(z) = Ew(X, z) and s(z) = Ew(Y, z). For each z, the function w(·, z) is symmetric

and supermodular in its two arguments. Therefore, X ≺SSPM Y implies that r(z) ≤ s(z) for all

z. Since also Z is independent of X and Y , it follows that E[w(X,Z)] = E[E[w(X,Z)|Z]] =

E[r(Z)] ≤ E[s(Z)] = E[E[w(Y,Z)|Z]] = E[w(Y, Z)]. �

As an application of Theorem 6, suppose that each row i of A and B represents the distribu-

tion of performance, over m possible levels, on one of n tasks, and that performance levels are

independently distributed across tasks. Suppose that the production function is symmetric and

supermodular in the performance levels on the different tasks, reflecting interchangeability and

complementarity among tasks. Suppose that an organization designer can choose how to allo-

cate resources across the different tasks, thereby shifting the distributions of performance, subject

to a constraint on the average distribution over all tasks. Theorem 6 identifies conditions under

which expected production is higher in one setting than the other for all symmetric supermodular

production functions.

Bond and Gomes’s (2009) multi-task principal-agent model embeds the special case of this problem

where m = 2. An agent chooses a level ei ∈ [e, e] of effort for each task, incurring a total effort cost∑n
i=1 ei. Performance on each task is binary, with ei the probability of success. The interesting

case is when the principal’s benefit is a convex function of the number of successes. For a given∑n
i=1 ei, Bond and Gomes show that the socially efficient allocation of this total effort involves

equal effort on all tasks. However, the optimal contract rewarding the agent as a function of the

number of successes may well induce the agent to exert minimal effort e on a subset of tasks and

30Although Lemma 4 is stated for 2-dimensional random vectors X and Y , it would hold for any (common)

dimensionality of X and Y greater than or equal to 2.
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maximal effort e on the remainder. In this case, given the total effort exerted, the agent’s effort

allocation actually minimizes expected social surplus.

Theorem 6 implies these conclusions about the effort allocations that maximize and minimize

expected social surplus. With binary task outcomes, a convex function of the sum of successes is a

symmetric supermodular function of the vector of outcomes (see Proposition 5 and the argument

following it). The effort allocation determines an n×2 row-stochastic matrix, the second column of

which is the vector of success probabilities, and holding the total effort fixed corresponds to fixing

the column sums of the matrix. With two columns, any row-stochastic matrix can be converted

into a stochastically ordered one by reordering rows (an operation which will have no effect on the

expected value of a symmetric objective function). Therefore, with m = 2, Theorem 6 implies that,

holding total effort fixed, if the vector of success probabilities from one effort allocation majorizes

the vector from another, then the former allocation generates lower expected social surplus, for

all symmetric supermodular benefit functions.31 The final step is to observe that a vector of

equal success probabilities is majorized by all vectors with the same total; and one in which all

probabilities are either minimal or maximal (e or e) majorizes all vectors with the same total.

Using Theorem 6, we can examine, for the case of arbitrary m and n, the existence, in the sense

of the symmetric supermodular ordering, of a best and worst set of independent lotteries, holding

fixed the average distribution over the prizes. Because the symmetric supermodular ordering is a

partial ordering, one should not generally expect the existence of a best and a worst distribution.

However, for the class of distributions considered here, we have the following positive results.

Proposition 6 For any row-stochastic matrix A (B), let X (Y ) denote a random vector whose

components are independently distributed and generated by the rows of A (B). Given any m-

dimensional probability vector p, and any n, i) there exists a unique n×m row-stochastic matrix A

whose jth column, for each j, sums to npj, such that for all n×m row-stochastic matrices B with

the same column sums as A, (X1, . . . , Xn) ≺SSPM (Y1, . . . , Yn);

ii) for the n×m matrix B with all rows equal to the probability vector p and for any stochastically

ordered row-stochastic matrix A whose jth column sums to npj, (X1, . . . , Xn) ≺SSPM (Y1, . . . , Yn).

The “optimal” matrix B identified by part ii) of Proposition 6 is the one in which all of the lotteries

are identical. In the production context described above, for example, this corresponds to allocating

resources symmetrically across tasks. The “worst” matrix A identified by part i) is the one in which

the stochastically ordered lotteries described by the rows are as disparate as possible, subject to

their average equaling the vector p. The lottery represented by row i assigns positive probability

either to a single outcome (i.e. it is degenerate) or to a set of outcomes with adjacent (column)

indices, and there is at most one outcome to which the lotteries in rows i and i + 1 both assign

31Bond and Gomes’s conclusions also follow from Karlin and Novikoff’s (1963) result for Bernoulli trials, discussed

above.
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positive probability. In the production context described above, this matrix allocates resources to

the various tasks as differently as is feasible, given the overall resource constraints. 32

7 Applications

7.1 Welfare and Inequality

Comparisons of Inequality in the Presence of Uncertainty

A first application of the supermodular ordering concerns welfare economics. In many group settings

where individual outcomes (e.g. rewards) are uncertain, members of the group may be concerned,

ex ante, about how unequal their ex post rewards will be.33 As argued by Meyer and Mookher-

jee (1987), an aversion to ex post inequality can be formalized by adopting an ex post welfare

function that is symmetric and supermodular in the realized utilities of the individuals. Given

two mechanisms for allocating rewards (formally, two joint distributions of utilities), when can we

be sure that one mechanism generates higher expected welfare than the other, for all symmetric

and supermodular ex post welfare functions? Our characterization results allow us to answer this

question.

Consider a specific illustration. Intuitively, when groups dislike ex post inequality, tournament

reward schemes, which distribute a fixed set of rewards among individuals, one to each person,

should be particularly unappealing, since they generate a form of negative interdependence among

rewards: if one person receives a higher reward, this must be accompanied by another person’s

receiving a lower reward. This reasoning suggests the conjecture that tournaments should be dom-

inated, in the sense of the symmetric supermodular ordering, by reward schemes that provide each

individual with the same marginal distribution over rewards but determine rewards independently.

Meyer and Mookherjee (1987) proved this conjecture for an arbitrary number of individuals (di-

mensions), but only for the special case of a symmetric tournament (one in which each individual

has an equal chance of winning each of the rewards), and their method of proof was laborious.

Theorem 6 can be applied to generalize this result to tournaments that are arbitrarily asymmetric

32Note that in part i) of the proposition, A yields a distribution that is dominated according to �SSPM by that

from any other matrix with matching column sums, while in part ii), B yields a distribution that is guaranteed

to dominate only those from stochastically ordered matrices with matching column sums. Let p = ( 1
4
, 1
2
, 1
4
), let

B equal the 2 × 3 matrix both of whose rows match p, and let A be the 2 × 3 matrix whose first row is ( 1
2
, 0, 1

2
)

and whose second row is (0, 1, 0). A and B have matching column sums, but A is not stochastically ordered. The

bivariate distributions generated from A and B cannot be ranked according to �SSPM : For w(z1, z2) = I{z1≥3,z2≥2}+

I{z1≥2,z2≥3}, Ew(X1, X2) = 1
2
> 1

4
= Ew(Y1, Y2), while for w(z1, z2) = I{z1≥3,z2≥3}, Ew(X1, X2) = 0 < 1

16
=

Ew(Y1, Y2).
33See Meyer and Mookherjee, 1987; Meyer, 1990; Ben-Porath et al, 1997; Gajdos and Maurin, 2004; Kroll and

Davidovitz, 2003; Adler and Sanchirico, 2006; Chew and Sagi, 2012. This concern is distinct from concerns about

the mean level of rewards and about their riskiness.
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across individuals.

With n individuals and n distinct prizes, a “tournament” reward scheme allocates each of the

prizes to exactly one individual, and it is fully described by the probability it assigns to each of

the n! possible prize allocations. A symmetric tournament is the special case in which each of the

n! allocations is equally likely. For welfare computations, a tournament may be summarized by

a matrix B that is bistochastic (both its columns and its rows sum to 1), where the ith row of

B describes individual i’s marginal distribution over the n prizes. The more asymmetric across

individuals the tournament is, the more disparate are the rows of the corresponding matrix B.

Given any tournament, consider the associated reward scheme (which is not a tournament, except

for extreme cases) which gives each individual the same marginal distribution over rewards as he

receives in the tournament but which determines rewards independently. For any tournament,

however asymmetric, we now show that expected ex post welfare under the tournament is less than

or equal to expected ex post welfare under the independent joint distribution of rewards sharing

the same set of marginals, for all symmetric and supermodular ex post welfare functions.34

Proposition 7 For any number n of individuals, given any tournament, the joint distribution of

prizes under the tournament is dominated, according to the symmetric supermodular ordering, by

the independent joint distribution sharing the same set of marginals.

Proof. Given an arbitrary tournament, let it be summarized by a bistochastic matrix B, whose

ith row describes individual i’s marginal distribution over the n prizes. For any symmetric ex

post welfare function, the realized ex post welfare under the tournament is independent of the

allocation of prizes, since by assumption, each prize must be allocated to exactly one individual.

Therefore, the expected ex post welfare generated by any tournament is the same as that generated

by the (degenerate) tournament summarized by the n× n identity matrix I—in this tournament,

individual i receives the prize of rank i with probability 1. Moreover, this degenerate tournament

coincides with the degenerate independent joint distribution where individual i receives the prize

of rank i with probability 1. For proving the proposition, it is therefore sufficient to show that the

independent joint distribution with marginals represented by the rows of I is dominated according

34For a symmetric tournament, the joint distribution of rewards is dominated according to the supermodular

ordering by the independent joint distribution sharing the same set of marginals. To see why, when analyzing

tournaments that are arbitrarily asymmetric, we need to impose symmetry of the ex post welfare function, consider

the following tournament with n = 3: with probability 1
2
, prizes h, m, and l, where h > m > l, are allocated to

individuals 1, 2, and 3, respectively, and with probability 1
2
, h, m, and l are allocated to individuals 3, 1, and 2,

respectively. In this tournament, the rewards to 1 and 2 are positively dependent, even though the rewards to 1 and

3 (as well as the rewards to 2 and 3) are negatively dependent. The positive dependence of the rewards to 1 and 2

implies that the tournament reward distribution is not supermodularly dominated by the corresponding independent

distribution. When we impose symmetry of the ex post welfare function, in addition to supermoduarlity, we are

comparing the “average” degree of negative interdependence across the whole set of individuals. Equivalently, as

Proposition 4 showed, we are comparing the interdependence of the symmetrized versions of the tournament reward

distribution and of the independent joint distribution with the same marginals.
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to the symmetric supermodular ordering by the independent joint distribution summarized by any

bistochastic matrixB. Now the identity matrix I is stochastically ordered and clearly dominates any

other bistochastic matrix according to the cumulative column majorization criterion. Theorem 6

therefore yields the result.

Multidimensional Poverty and Multidimensional Deprivation

A second application in welfare economics concerns comparisons of poverty and deprivation when

individual-level data are available on different dimensions of economic status, for example, on at-

tributes such as income, health, and education.35 In such a context, as noted by Atkinson (2003),

there are two alternative approaches to comparisons of multidimensional poverty and deprivation

between two datasets (e.g. two countries, two time periods). One approach is to compare depriva-

tion in the two datasets dimension by dimension. Another is to first aggregate across dimensions to

generate a deprivation measure for each individual in each dataset and then to sum these measures

to generate an aggregate deprivation measure for the whole dataset. Importantly, under the second

approach, deprivation comparisons will be sensitive to the degree of interdependence displayed by

the joint distributions of attributes in the two datasets.

Pursuing the second approach, one might classify an individual as multidimensionally poor if and

only if his “achievement level” xi on each dimension i falls below a threshold level zi. This method

of identifying those who are deprived in a multidimensional context has been termed the “inter-

section approach” (Alkire and Foster, 2011, and Atkinson, 2003). Such an individual deprivation

measure would have the form d(x1, . . . , xn) = I{xi≤zi ∀i}. Since this is a lower-orthant indicator

function, it is a supermodular function of (x1, . . . , xn). Therefore, if one population joint distri-

bution of achievement levels in the different dimensions is more interdependent than another, in

the sense of the supermodular ordering, the aggregate level of deprivation obtained by summing

this deprivation measure over individuals will be higher in the former case than in the latter. Al-

ternatively, the “union approach” classifies an individual as poor if and only if there is at least

one dimension i in which xi ≤ zi. In this approach, the individual deprivation measure would

have the form d(x1, . . . , xn) = 1− I{xi≥zi ∀i}, which is a submodular function of (x1, . . . , xn), since

the supermodular upper-orthant indicator function appears with a negative sign in front of it.

With individual deprivation identified in this manner, lower interdepedence in the multidimen-

sional distribution of achievement levels, in the sense of the supermodular ordering, will imply

lower aggregate deprivation.

In the intersection approach, there is a complementarity among the different dimensions in the

determination of individual deprivation. A natural generalization of this approach which retains this

complementarity would make individual deprivation an increasing convex function of the number

35See Atkinson and Bourguignon, 1982, Bourguignon and Chakravarty, 2002, the Symposium in Honor of Amartya

Sen in the Journal of Public Economics, Vol. 95, 2011, and the Symposium on Inequality and Risk in the Journal of

Economic Theory, Vol. 147, 2012.
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of dimensions in which xi falls below the threshold zi:

d(x1, . . . , xn) = φ(

n∑
i=1

I{xi≤zi}), (20)

where φ is increasing and convex. Similarly, a natural generalization of the union approach which

retains the substitutability among the different dimensions would express individual deprivation in

the form (20) where φ is increasing and concave. In either case, we can regard the binary variables

x′i ≡ I{xi≤zi} as coarsened versions of the original data. For φ convex (concave), the deprivation

function in (20) is a symmetric supermodular (symmetric submodular) function of (x′1, . . . , x
′
n).

Therefore, for a given vector of thresholds (z1, . . . , zn), aggregate deprivation will be lower in one

population than another, for all deprivation measures in the class in (20) with φ convex (concave),

if and only if the distribution of (x′1, . . . , x
′
n) in one population is more (less) interdependent, in the

sense of the symmetric supermodular ordering, than in the other. Proposition 5 then shows that

in this context, symmetric supermodular dominance is equivalent to univariate convex dominance

for distributions of
∑n

i=1 x
′
i =

∑n
i=1 I{xi≤zi}.

7.2 Search and Voting in Committees with Conflicting Interests

There are many contexts where it is of interest to assess the degree of alignment in the preferences

(Boland and Proschan, 1988; Baldiga and Green, 2013) or information (Prat, 2002) of members of

decision-making groups. In a strategic model of consensus-building within a committee, Caillaud

and Tirole (2007) study how the degree of interdependence of members’ ex ante uncertain payoffs

from a proposal affects the proposer’s optimal persuasion strategy. In a strategic model of search

and voting, Moldovanu and Shi (2012) examine how the degree of alignment in committee members’

preferences affects their equilibrium search strategy and welfare. In both of these latter papers,

however, in order to carry out comparative statics analysis with respect to the degree of alignment in

individuals’ preferences, restrictive assumptions are made. First, both papers analyze only the case

where the voting rule requires unanimous approval by committee members. In addition, Caillaud

and Tirole (2007) restrict attention to payoff distributions where each member’s payoff can assume

only two different values, and Moldovanu and Shi (2012) focus on a parametric family of payoff

functions in which the degree of alignment of preferences is represented by a single parameter. Here,

we use the supermodular ordering as a non-parametric, n-dimensional ordering of interdependence

in preferences and adapt and generalize Moldovanu and Shi’s analysis of search and voting.

Job candidates are interviewed sequentially, without recall, by an n-person committee. The period-

t candidate has attribute vector Xt = (X1t, . . . , Xnt), where Xt is i.i.d. across periods and has a

known distribution. Committee member i’s utility equals Xit if the period-t candidate is hired (in

which case search stops), and i incurs search cost ci of evaluating attribute i for each new candidate.

We suppose initially that unanimous approval is required for a candidate to be hired, otherwise
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search continues. If (Y1, . . . , Yn) ∼ g, (X1, . . . , Xn) ∼ f , and the distribution of (Y1, . . . , Yn)

dominates the distribution of (X1, . . . , Xn) according to the supermodular ordering, we will say that

members’ interests are more aligned when the values of the attributes are distributed according to

g than when they are distributed according to f .

In equilibrium, each member i chooses a reservation level zi for attribute i, and the equilibrium

reservation levels (z1, . . . , zn) satisfy the n simultaneous equations

ci = E
[
(Xi − zi)I{Xj≥zj∀j}

]
, i = 1, . . . , n. (21)

Each member i equates his cost of one more search with the expected gain from one more search,

assessed relative to stopping now and obtaining zi. Since search will stop next period if and only if

all members approve the next candidate, the expected gain to member i depends on the reservation

levels of the others via the factor I{Xj≥zj∀j} multiplying (Xi − zi).

The key observation is that the gain to each member i from one more search, i.e. the expression

in square brackets on the right-hand side of (21), is a supermodular function of (X1, . . . , Xn), for

all (z1, . . . , zn). To confirm this, observe that we can rewrite this expression as
∏n
j=1 rj(Xj , zj),

where each rj(Xj , zj) is nonnegative and increasing in Xj . Hence, if committee members’ interests

become more aligned, each member’s expected gain from one more search increases, for any vector

of reservation levels. Since the right-hand side of the equilibrium condition is also decreasing in

zi, it follows that when alignment of interests increases, member i’s optimal zi increases, for all

z−i. Consequently, we can show that, for any number n of committee members, if the committee is

symmetric (ci = c for all i and the distributions of attributes are symmetric across members), then

when interests become more aligned, the common equilibrium reservation value increases (that is,

the members become choosier).

To examine how the voting rule affects the comparative-static analysis of changes in the alignment

of members’ interests, suppose now that a candidate is hired if and only if at least m of the n

members vote to stop searching. For a given (z1, . . . , zn), define K(z1, . . . , zn) ≡ {k|Xk ≥ zk}.
Then the equilibrium reservation levels satisfy

ci = E
[
(Xi − zi)I{|K|≥m}

]
, i = 1, . . . , n. (22)

When unanimity is required to reject a candidate (m = 1), the expression in square brackets on the

right-hand side of (22) can be written as (Xi−zi)+ |Xi−zi|I{Xj<zj∀j}, which is again supermodular

in (X1, . . . , Xn), for all (z1, . . . , zn).36 Consequently, for this alternative voting rule, the comparative

statics result derived above continues to hold. However, for voting rules intermediate between the

two extremes (unanimity required for acceptance or unanimity required for rejection), the realized

gain from one more search is not everywhere a supermodular function of the realized values of the

36It is the sum of two supermodular functions, the second of which is supermodular because it can be written as∏n
j=1 rj(Xj , zj), where each rj(Xj , zj) is nonnegative and decreasing.
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attributes. To see why supermodularity can fail, observe that when two other committee members

both switch their vote from “no” to “yes”, this may be enough to hire a candidate such that i’s

realized gain, Xi− zi is strictly negative, even when a switch by just one of the other two members

would not be enough to get that candidate hired, in which case i’s realized gain would be 0. This

failure of supermodularity can have a bite: we have examples for three-person committees for which,

for the intermediate voting rule requiring two or more yes votes for a candidate to be accepted,

an increase in the alignment of members’ interests results in lower, rather than higher, equilibrium

reservation values (that is, committee members become less choosy).

7.3 Systematic and Systemic Risk

Macroeconomists need to be able to gauge and compare levels of “systematic risk”. At the level of

a single country, this involves assessing the degree of covariation among levels of output in different

sectors, while at the level of the world economy, it involves assessing the degree of interdependence

among output levels in different countries. Hennessy and Lapan (2003) have proposed using the

supermodular ordering to make such comparisons. In the actuarial literature, the supermodular

ordering has recently received considerable attention as a means of comparing the degrees of depen-

dence among claims in a portfolio of insurance policies (see Müller and Stoyan, 2002, and Denuit,

Dhaene, Goovaerts, and Kaas, 2005). In finance, this ordering has been proposed as a method

for assessing both the dependence among asset returns in a portfolio (Epstein and Tanny, 1980)

and the interdependence between a single institution’s portfolio and the market as a whole (Pat-

ton, 2009). Our Theorem 5 provides a flexible method for generating or modeling distributions

that are comparable according to the supermodular ordering, by changing the relative importance

of common and idiosyncratic shocks.

Moreover, the recent financial crisis has stimulated the development of measures of interdependence

for the components of the financial system as a whole (measures of “systemic risk”) and not just for

individual assets. For example, Adrian and Brunnermeier (2009) and Acharya et al (2010) develop

measures of association between negative events for an individual firm and negative events for the

market, while Diebold and Yilmaz (2011) develop measures of connectedness for the system. Beale

et al (2011) and Allen, Babus, and Carletti (2012) focus on understanding the interplay between

the effect of diversification at the level of the financial institution, which lowers individual risk, and

increasing similarity of institutions’ portfolios, which raises systemic risk.

Allen, Babus, and Carletti (2012) model a particular diversification strategy of banks, namely asset-

swapping, and they examine how the pattern of asset swaps, in conjunction with the maturity of

bank debt, affect market outcomes and welfare. Here we generalize a stylized version of their model,

focusing on how different patterns of asset swaps (represented by different networks) generate

multivariate distributions of bank failures with different degrees of interdependence. We use the

symmetric supermodular ordering as a measure of systemic risk.
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Consider, for example, the six banks in the model of Allen et al (2012) and the two networks of

asset swaps they analyzed, the “clustered” and the “unclustered”. Each bank i ∈ {1, . . . , 6} funds

a project, whose return, θi ∈ {L,H}. The returns θi are independent and identically distributed,

with P (θi = H) = p. In the clustered network, banks 1,2, and 3 swap assets among themselves so

that each of them holds an identical portfolio with return Y ′i = 1
3

∑3
j=1 θj for i ≤ 3, and similarly

for banks 4,5, and 6, Y ′i = 1
3

∑6
j=4 θj for i ≥ 4. In the unclustered network, banks are arranged

in a circle, and each bank swaps one-third of its assets with each of its two neighbors. In that

case, therefore, X ′i = 1
3(θi−1 mod 6 + θi + θi+1 mod 6) for all i. The marginal distribution of each

bank’s return is the same in the two networks, but the degree of interdependence of bank returns

differs. Thus, this is a setting where the degree of diversification is held fixed, and only systemic

risk varies. Suppose a bank fails (default status=1) if its return is less than or equal to some level

d ∈ [L,H), otherwise it is solvent (default status=0). Let banks’ default statuses in the clustered

network be described by (Y1, . . . , Y6) ∈ {0, 1}6, so Yi = I{Y ′i≤d}, and in the unclustered network by

(X1, . . . , X6) ∈ {0, 1}6, so Xi = I{X′i≤d}.

To compare the interdependence in the distribution of bank failures across the two different net-

works, we adopt a systemic cost function which is a supermodular and symmetric function of banks’

default statuses: supermodularity reflects the judgment that the additional cost to the system from

two bank failures is higher than the sum of the marginal costs from each individual failure, and

symmetry reflects the fact that the banks in this setting are of equal size. Since the vectors of de-

fault statuses are binary random vectors, Proposition 5 implies that the distribution of (Y1, . . . , Y6)

dominates the distribution of (X1, . . . , X6) according to the symmetric supermodular ordering if

and only if the total number of bank defaults in the clustered network dominates the total number

in the unclustered network according to the univariate convex ordering. It is straightforward to

use this equivalence to show that, for any probability of project success p and for any common

failure threshold d for banks, (X1, . . . , X6) ≺SSPM (Y1, . . . , Y6). Hence for any supermodular and

symmetric systemic cost function, expected systemic cost is higher under the clustered than under

the unclustered network.37 38

37It is not the case that (X1, . . . , X6) ≺SPM (Y1, . . . , Y6). To see why, observe that in the clustered network, banks

1 and 6 are in different clusters, so Y1 and Y6 are independent; but in the unclustered network, banks 1 and 6 directly

swap assets, so X1 and X6 are positively dependent, and hence, since the support of (X1, X6) and (Y1, Y6) is {0, 1}2,

(X1, X6) �SPM (Y1, Y6). By using a symmetric supermodular function for comparisons of expected systemic cost,

we are comparing the “average” degree of interdependence across the whole set of banks. Compare the remark in the

footnote immediately preceding Proposition 7.
38Allen et al (2012) restrict attention to the case where p = 1

2
and where a bank defaults if and only if the return

on all three of the projects in its portfolio is L (i.e. d = L). Their model involves additional features, such as different

maturities of debt, through which interdependence of banks’ returns indirectly influences welfare.
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7.4 Prediction and Parameter Estimation

The supermodular ordering may be used to compare the “richness” of data samples to estimate

parameters. This section makes a first step in this direction. The question is approached from

the viewpoint of an expert who gets rewarded based on the accuracy of his prediction, θ̃, about

the value of an unknown parameter θ. The parameter θ is revealed after the expert has made his

prediction. For example, one may compare predicted and realized earnings of a firm. The expert

gets an “accuracy payment” π(θ̃ − θ), where π is concave and maximized at 0, and receives utility

u(π(θ̃ − θ)), where u is increasing and concave. The expert’s prediction is based on some data

(X1, . . . Xn), where the distribution Fi(·|θ) of Xi, conditional on θ, lies in some fixed support Li.
We focus, for this illustration, on the case in which the estimator θ̃ is an affine function of the

observed variables:39 θ̃ =
∑
κiXi for some nonnegative weights {κi}i=1,...,n.

Our objective is to find an ordering for the “richness” of the dataset used by the expert, holding

fixed the marginal distributions Fi(·|θ) for each individual observation. Intuitively, the dataset is

“rich” if it comes from multiple independent sources about the value of θ, instead of synthesizing

closely related opinions or sources of information. The next proposition shows that if one dataset

displays more interdependence than another in the sense of the supermodular ordering, for all true

θ’s, then the more interdependent dataset is less valuable to the expert.

Proposition 8 Let the datasets (X1, . . . , Xn) and (Y1, . . . , Yn) be generated by joint distributions

F (·|θ) and G(·|θ), respectively. Suppose that F (·|θ) ≺SPM G(·|θ) for all θ. Then, E[u(π(θ̃−θ))|θ] ≥
E[u(π(θ̃ − θ))|θ] for all {κi}, u(·), π(·), and θ.

Proof. The function −u◦π is convex, as is easily shown. Therefore, (x1, . . . , xn) 7→ −u(π(
∑

i κixi−
θ)) is supermodular in (x1, . . . , xn), for all θ and nonnegative vectors {κi}. The conclusion follows

from the definition of the supermodular ordering. �

Proposition 8 has a purely statistical interpretation, as a special case. One possible objective for

the expert is to minimize (θ̃ − θ)2 (letting u be the identity and π(z) = −z2), or more generally,

(θ̃ − θ)2p for any integer p. Proposition 8 then implies that the variance, as well as any even

higher-order moment of the error, is lower under F than it is under G.

8 Conclusion

The supermodular ordering is relevant for both theoretical and empirical work. In empirical work,

the constructive methods developed in this paper allow comparisons of portfolios according to the

interdependence among their assets’ returns, of systemic risk in financial sectors according to the

39While special, affine estimators are pervasive in statistics and econometrics. If, for example, (X1, . . . , Xn) are

exchangeable and have mean θ, then θ̃ will be the sample average of those variables.

34



interdependence among the returns of banks, and of multidimensional inequality across countries or

time periods by taking into account the interdependence among the different dimensions affecting

economic wellbeing. The ordering is also relevant for econometrics: We have shown that it bears a

close relation to the study of copulas and that it can be used to compare the richness of datasets

for parameter estimation.

In economic theory, we have illustrated how our characterization results for the supermodular

ordering can be used to rank reward schemes in the presence of uncertainty according to the

amount of ex post inequality they generate. The supermodular ordering is also well suited for

comparing the efficiency of two-sided or many-sided matching mechanisms when the outcomes of

the matching process are subject to frictions. While applications to two-sided matching problems

have received some attention,40 multi-dimensional applications remain largely unexplored.41

This paper has focused primarily on comparing multivariate distributions according to the value

that their degree of interdependence provides to agents or to a social planner. Another important

question concerns the relationship between increased interdependence and the comparative statics

of decisions.42 We provided an example of this type of investigation in a multidimensional context

in Section 7.2, when we analyzed the impact of greater alignment in preferences, in the sense of

the supermodular ordering, on the search and voting behavior of committees of arbitrary size.43

A more systematic exploration of the role of the supermodular ordering in comparative statics

analysis of decisions should be a fruitful area for future research.

In their influential work on monotone comparative statics, Milgrom and Shannon (1994) empha-

size in their conclusion the need for a better theory of what “more correlated” means, and they

suggest that supermodularity of objective functions may be a promising approach for constructing

such theory. By characterizing the supermodular ordering in terms of elementary transformations,

extending it to the symmetric and increasing supermodular orderings, and providing, in Sections 4

and 6, general methods for constructing distributions comparable according to these orderings, we

have taken a new step in this direction.

40Fernandez and Gali (1999) use the known bivariate characterization of the supermodular ordering (Levy and

Paroush, 1974) to compare the efficiency losses from markets and tournaments as allocative mechanisms in an economy

with borrowing constraints. Meyer and Zeng (2013) employ the ordering to compare assignment mechanisms when

qualities are ex ante uncertain and different mechanisms generate and use different information.
41One exception is Prat (2002), but he compares only a perfectly positively dependent joint distribution with an

independent one.
42The literature on affiliation (introduced into economics by Milgrom and Weber, 1982) is relevant here, but this

literature is limited by the facts that affiliation is an extremely stringent condition (see de Castro, 2009) and that

there is no widely accepted notion of “greater affiliation”.
43Gollier (2011) applies the supermodular ordering in the bivariate case to study how the efficient discount rate in

an extended Ramsey-type model depends on the interdependence between initial consumption and the growth rate

of consumption.
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Appendices

A Proof of Theorem 2

The equivalence of conditions 2) and 3) follows from Theorem 1, the definition of γ, and the decomposition

result in (8). It is obvious that 2) implies 1). We now show that 1) implies 3). For any supermodular w, let

w0(z) = w(z)−
n∑
i=1

w(ziei) + (n− 1)w(0),

where ziei is the vector with ith component equal to zi and all other components equal to 0. Clearly,

w0(ziei) = 0 for all i and zi, and therefore, since γ(z) = 0 for all z 6= ziei for some i and some zi, w
0 · γ = 0.

Moreover, w0 is supermodular, since it is the sum of supermodular functions, and w0 is increasing, since for

any z ∈ L and i such that z + ei ∈ L, supermodularity of w0 yields

w0(z + ei)− w0(z) ≥ w0((zi + 1)ei)− w0(ziei) = 0.

Letting δ = g − f , g �ISPM f implies, therefore, that w0 · δ ≥ 0 and hence, since w0 · γ = 0, we have

w0 · (δ − γ) ≥ 0. Furthermore,

(w − w0) · (δ − γ) =
∑
z∈L

[
(δ(z)− γ(z))

(
n∑
i=1

w(ziei)− (n− 1)w(0)

)]

=
∑
z∈L

[
(δ(z)− γ(z))

(
n∑
i=1

w(ziei)

)]

=

n∑
i=1

mi−1∑
k=0

( ∑
z:zi=k

(δ(z)− γ(z))

)
w(kei)

= 0,

where the second line follows since
∑
z∈L(δ(z) − γ(z)) = 0 and the final equality follows since (10) holds

for all i and all k. Thus, since w0 · (δ − γ) ≥ 0, it follows that w · (δ − γ) ≥ 0, proving the first part of

condition 3). Finally, taking, for each i ∈ N and k ∈ {1, . . . ,mi − 1}, w(z) = I{zi≥k}, g �ISPM f implies

that
∑
z:zi≥k g(z) ≥

∑
z:zi≥k f(z), proving the second part of 3). �

B Proof of Theorem 3

Suppose that on L, f ≺SPM g. By Theorem 1, this implies the existence of nonnegative coefficients αt such

that

g = f +
∑

t∈T (L)

αtt, (23)

where T (L) is the set of elementary transformations on L. Let Φ denote the operator which to any function

w on L associates the function on L̃ defined by Φ(w)(x̃) =
∑
x∈L:φ(x)=x̃ w(x). Φ is a linear operator, and by

construction, f̃ = Φ(f). Applying Φ to (23) yields

g̃ = f̃ +
∑

t∈T (L)

αtΦ(t).
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For any t = txi,j ∈ T (L), either Φ(t) belongs to T (L̃), which is the case if and only if φ(x), φ(x+ei), φ(x+ej),

and φ(x+ ei + ej) are all distinct, or Φ(t) is everywhere equal to zero. Therefore,

g̃ = f̃ +
∑

t̃∈T (L̃)

α̃t̃t̃,

for some nonnegative coefficients {α̃t̃}t̃∈T (L̃). Applying Theorem 1 again, but in the reverse direction, proves

that f̃ ≺SPM g̃. �

C Proof of Proposition 3 (For Online Appendix)

Without loss of generality, we prove the claim for the case where Li = {0, 1, . . . ,mi − 1} (other cases

are treated with an obvious modification of the function w below). Consider a point x ∈ L and a pair of

dimensions i, j such that the elementary transformation t∗ ≡ tx−ei−eji,j is well-defined. Suppose that, contrary

to the claim, there exist nonnegative coefficients αs such that

t∗ =
∑

s∈T \{t∗}

αss. (24)

Define the function w on L by w(x) = ( 3
4 )2

∑
k xk and, for y 6= x, w(y) = 2

∑
k yk . It is easy to check that

w is supermodular. Moreover, w makes a strictly positive scalar product with all t ∈ T except for those of

the form tx−ek−elk,l for some dimensions k, l. Since t∗ is one of the elementary transformations of this form,

taking the scalar product of w with both sides of (24) yields

0 =
∑

s∈T \{t}

αs(w · s).

This equation in turn implies that αs = 0 for all transformations s ∈ T \ {t} except possibly those of the

form tx−ek−elk,l for some k, l. However, t∗ cannot be a positive linear combination of only transformations

of this form. To see this, observe that any s 6= t∗ of the form tx−ek−elk,l for some k, l must take value 0 at

x− ei − ej , whereas t∗ evaluated at x− ei − ej equals 1. �

D Constructive Methods for Comparing Distribution Interdepen-

dence using the Supermodular Ordering

D.1 The Linear Programming Approach: Comparing Two Specific Distribu-

tions

From Theorem 1, f ≺SPM g if and only there exist nonnegative coefficients {αt}t∈T such that g − f =∑
t∈T αtt. Given a specific pair of distributions f and g, we can formulate the problem of determining

whether such a set of coefficients exists as a linear programming problem. Let T = |T | denote the number of

elementary transformations on L, and let E denote the d× T -matrix whose columns are the d-dimensional

vectors consisting of all elementary transformations of L. Theorem 1 can be re-expressed as f ≺SPM g if and

only if there exists α ∈ RT such that i) α ≥ 0 and ii) Eα = g − f . Now define the d-dimensional vector δ+
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such that δ+
i = |(g−f)i|, and let E+ denote the matrix whose ith row, denoted E+

i , satisfies E+
i = (−1)εiEi,

where εi = 1 if (g − f)i < 0 and 0 otherwise. The condition Eα = g − f can be re-expressed as E+α = δ+.

Now consider the following44 linear program (A):

min
(α,β)∈RT×Rd

d∑
i=1

βi

subject to

E+α+ β = δ+, α ≥ 0, β ≥ 0.

Theorem 7 (Pairwise Comparison) The linear program (A) always has an optimal solution. f ≺SPM g

if and only if the optimum value is zero, and in that case g = f +
∑
t∈T α

∗
t t, where (α∗, β∗) is any minimizer

of (A) and β∗ = 0.

Proof. There always exists a feasible vector (α, β), namely (α, β) = (0, δ+). Moreover, the value function

is nonnegative since the feasibility constraints require that β have nonnegative components, and therefore

the optimum is nonnegative. If f ≺SPM g, there exists α∗ ≥ 0 such that E+α∗ = δ+, so the optimum value

of program (A) must indeed be zero, since that value is achieved by (α, β) = (α∗, 0). Reciprocally, if there

exists (α∗, β∗) such that the value of the program is zero, then necessarily β∗ = 0 and E+α∗ = δ+. �

D.2 The Double Description Method

The linear programming approach just described has the drawback of requiring a new program to be solved

each time a new pair of distributions is to be compared.

When many distributions are to be compared, for example as part of a larger optimization problem, it is

more convenient to have an explicit representation of the supermodular ordering for the common support

of these distributions. We present a method for generating such a representation in the form of a list of

inequalities that are satisfied by the vector g − f if and only if f ≺SPM g. For any given finite support L,

this method computes these inequalities once and for all, a computation made possible by the support’s

finiteness.

Recall that f ≺SPM g if g − f makes a nonnegative scalar product with all supermodular functions on L,

seen as vectors of Rd. This condition can be reduced to a finite set of inequalities by exploiting the geometric

properties of S. S is a convex cone characterized by the fact that w is supermodular (i.e., belongs to S) if

and only if it makes a nonnegative scalar product with all elementary transformations on L as defined by (3).

In matrix form, S = {w ∈ Rd : Aw ≥ 0}, where A = E′ is the matrix whose rows consist of all elementary

transformations (i.e., the transpose of the matrix E introduced in the previous subsection). A is called

the representation matrix of the polyhedral cone S. Minkowski’s theorem states that to any representation

matrix corresponds a generating matrix R such that

Ax ≥ 0 ⇔ x = Rλ for some λ ≥ 0.

44This corresponds to the auxiliary program for the determination of a basic feasible solution described in Bertsimas

and Tsitsiklis (1997, Section 3).
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The columns of the matrix R are the extreme rays of the cone S. There exist a finite number of such extreme

rays. The stochastic supermodular ordering is entirely determined by the extreme rays:

E[w|f ] ≤ E[w|g] ∀w ∈ S ⇔ R′(g − f) ≥ 0.

Minkowski’s theorem thus proves the existence, for any finite support L, of a finite list of inequalities that

entirely characterize the supermodular ordering on L. How can we determine the extreme rays of the cone

of supermodular functions? The double description method, conceived by Motzkin et al. (1953) and imple-

mented by Fukuda and Prodon (1996) and Fukuda (2004), builds on Minkowski’s and Weyl’s representation

theorems for polyhedral cones. A polyhedral cone can be represented either by a set of inequalities (i.e., by

the intersection of a number half-spaces) or by extreme rays. The double description method provides an

algorithm to determine one description from the other. The set of elementary transformations defined by (3)

is trivially computable, and can be automatically generated for any given support L. From this input, the

double description method can compute the set of extreme supermodular functions. Using Fukuda’s algo-

rithm for the double description method, we have computed the inequalities characterizing the supermodular

order for a range of problems that are intractable by hand.

D.3 Complexity of the Double Description Method (For Online Appendix)

Although the double description method is very useful in theory, its computational complexity is unsurpris-

ingly exponential in the size of L. We now provide an exact computation of the algorithm’s complexity.

Avis and Bremner (1995) show that the double description algorithm described by Motzkin et al. (1953)

has complexity O(pbd/2c) where d is the dimension of the space and p is the number of inequalities defined

by the representation matrix. Given a finite lattice L = ×ni=1Li of Rn with |Li| = mi, the dimension of

the vector space generated by associating a dimension to each node of L is d =
∏n
i=1mi. To compute the

number p of inequalities, first recall Proposition 3, which states that all of the elementary transformations

t ∈ T are extreme, so it is impossible to reduce the number of inequalities required to check supermodu-

larity by removing redundant elementary transformations. Therefore, p equals the number of elementary

transformations on L, which it is straightforward to calculate:

p =
∑

1≤i<j≤n

(mi − 1)(mj − 1)Πk/∈{i,j}mk.

Suppose, for example, that mi is exactly m for each of the n dimensions. Then

p =
n(n− 1)

2
(m− 1)2mn−2 ∼ n(n− 1)

2
mn and d = mn.

Therefore, the double description method has complexity O(exp(mn(n logm+ 2 log n))). In practice, there-

fore, the inequalities characterizing the supermodular ordering can be computed via this method only for

“small-size” problems. However, the “size” of a problem can be reduced by aggregating data into coarser

categories, and as Theorem 3 showed, aggregation of data preserves the supermodular ordering. Thus, with

an appropriate degree of coarsening of categories, the double description method can be used to achieve a

tractable comparison of distributions according to the supermodular ordering.
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E Continuous Support: Proof of Theorem 4

For the “only if” part, choose any coarsening L̃ and supermodular function w̃ on L̃. The function w on L
defined by w(x) = w̃(x̃(x)), where x̃(x) is the hyperrectangle containing x, is also supermodular. Therefore,

E[w|G] ≥ E[w|F ]. Equivalently, E[w̃|G̃] ≥ E[w̃|F̃ ]. Since the inequality holds for any w̃, we conclude that

G̃ �SPM F̃ .

For the “if” part, consider, for any N > 1, the coarsening L(N) of L in which each Li is partitioned into N

intervals of equal length. Given any supermodular function w on L, let wN , FN , GN denote the coarsened

versions of w,F,G on L(N). We first show that wN is supermodular. For any x̃ ∈ L(N) and dimensions i, j

such that x̃+ ei + ej belongs to L(N), we must show that

wN (x̃) + wN (x̃+ ẽi + ẽj) ≥ wN (x̃+ ẽi) + wN (x̃+ ẽj). (25)

Given the equal spacing of the chosen partition, the denominator arising in (14) is the same for all x̃’s.

Therefore, (25) reduces to showing that45∫
x∈x̃

(w(x) + w(x+ di + dj)− w(x+ di)− w(x+ dj))dx ≥ 0,

where di = |Li|/N is the length of each hyperrectangle along dimension i (with a similar definition for

αj). The inequality holds by supermodularity of w, which proves that wN is supermodular. As a result,

E[wN |GN ] ≥ E[wN |FN ] for all N . There remains to show that E[wN |FN ] converges to E[w|F ] as N → +∞.

We have

E[wN |FN ]− E[w|F ] =
∑
x̃∈LN

∫
x∈x̃

(wN (x̃)− w(x))f(x)dx.

By construction,
∫
x∈x̃ w(x)dx =

∫
x∈x̃ wN (x̃)dx. Therefore, letting χ(x̃) denote any element of x̃,∣∣∣∣∫

x∈x̃
(wN (x̃)− w(x))f(x)

∣∣∣∣ =

∫
x∈x̃
|(wN (x̃)− w(x))(f(x)− f(χ(x̃)))|dx. (26)

Fix ε > 0. The density f of F is continuous, and hence uniformly continuous on the compact domain L.

Therefore, there exists N̄ such that for all N > N̄ , |f(x)− f(y)| < ε for all x, y of L belonging to the same

hypercube of L(N). This, combined with (26), implies that∣∣∣∣∫
x∈x̃

(wN (x̃)− w(x))f(x)

∣∣∣∣ < ε

∫
x∈x̃

(|wN (x̃)|+ |w(x)|)dx.

Integrating over L(N), we get

|E[wN |FN ]− E[w|F ]| < ε(‖w‖1 + ‖wN‖1).

It remains to show that ‖wN‖1 is bounded above, uniformly in N . This is implied by

‖wN‖1 =
∑

x̃∈L(N)

|wN (x̃)| ≤
∑

x̃∈L(N)

∫
x∈x̃
|w(x)|dx = ‖w‖1 <∞.

45Because the distributions F and G are absolutely continuous, it is not necessary to specify in which elements of

the partition the boundaries of these elements are located.
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F Proofs for Section 4

Proof of Lemma 1: Changing any component p̄k of p̄ affects all of the Xi’s and hence has a complicated

effect on w̄. It is therefore useful to consider, as an intermediate step, a setting where each of the independent

variables Xi has its own upper-cumulative distribution vector p̄i, so p̄ir = P (Xi ≥ r), r ∈ {1, . . . ,m}. Define

ŵ(p̄1, . . . , p̄n) = E[w(X1, . . . , Xn)|p̄1, . . . , p̄n]. (27)

We will use the following lemma both now and in Section F.1.3, when we consider asymmetric distributions.

Lemma 5 For any supermodular w, ŵ(p̄1, . . . , p̄n) has the following properties:

∂2ŵ

∂p̄ir∂p̄
i
s

= 0 for all i ∈ N and r, s ∈ {1, . . . ,m},

∂2ŵ

∂p̄ir∂p̄
j
s

≥ 0 for all i 6= j ∈ N and r, s ∈ {1, . . . ,m}.

Proof. The first part of the lemma is standard, and comes from the linearity of the objective with respect

the probability distribution, which holds also in terms of the cumulative distribution vector. The second

part comes from supermodularity of w. Indeed, by the discrete equivalent of an integration by parts,46 we

have
∂ŵ

∂p̄ir
= E[w(X−i, r)− w(X−i, r − 1)],

and, applying the same transformation to the (difference) function w(x−i, r)− w(x−i, r − 1),

∂2ŵ

∂p̄ir∂p̄
j
s

= E[w(X−(i,j), r, s) + w(X−(i,j), r − 1, s− 1)− w(X−(i,j), r − 1, s)− w(X−(i,j), r, s− 1)],

which is nonnegative, by supermodularity of w. �

To conclude the proof of Lemma 1, observe that w̄(p̄) = ŵ(p̄, . . . , p̄). Second-order derivatives of w̄ involve

only second-order derivatives of ŵ. Lemma 5 then yields the result.

F.1 Proof of Theorem 5

The proof proceeds in three steps. We first establish the result for the case of symmetric distributions (i.e.,

A(r) and B(r) are independent of r) and when B is stochastically ordered (Step 1). We then generalize it

to the case where B is not stochastically ordered (Step 2). Finally, we prove it for the case of asymmetric

distributions (i.e., A(r) and B(r) depend on r).

Let A and B denote q ×m row-stochastic matrices and Ā and B̄ their cumulative-sum equivalents, so Āi,k

and B̄i,k lie in [0, 1] and are decreasing in k, and for each i, Āi,1 = B̄i,1 = 1. Let Ā be stochastically ordered,

so Āi,k is increasing in i. Finally, let A �CCM B, so for each k, the column vector Ā•,k majorizes the column

vector B̄•,k.

46The equivalent continuous integration by parts is
∫
u(x)dG(x) =

∫
u′(x)F (x), where G is the usual cumulative

distribution and F is the upper cumulative distribution.
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F.1.1 Step 1: Proof when B̄ is stochastically ordered

When B̄ is stochastically ordered, its entries are nondecreasing with the row index and nonincreasing in

the column index. Throughout the proof, we exclude the first column of ones from cumulative probability

matrices, which play no role in the analysis. Having removed that column, we will first consider the case in

which B̄ has strictly monotonic entries across row and column indices, so that

χ = min
i,k
{B̄i+1,k − B̄i,k, B̄i,k − B̄i,k+1} > 0.

Analysis when B̄ has strictly monotonic entries

The proof consists in building, by induction on k, a sequence of matrices whose first k columns are identical

to those of B̄ and which are dominated by Ā according to the supermodular ordering. Let k denote the

smallest column index such that the kth columns Ā•,k and B̄•,k of Ā and B̄ are distinct.

Lemma 6 There exists a stochastically ordered cumulative-probability matrix C such that i) C•,k̃ = B̄•,k̃
for all k̃ ≤ k; ii) for all k, C•,k majorizes B̄•,k; and iii) the mixture distribution corresponding to C is

SPM-dominated by that corresponding to Ā.

Proof. Let C solve the optimization problem

inf
E

∑
i≥2

∑
j≥i

Ej,k

 (28)

subject to the following constraints:

1. Ei,k ∈ [0, 1] for all i, k;

2. E satisfies row monotonicity (the entries in each row of E are decreasing in the column index);

3. E is stochastically ordered (the entries of E are increasing in the row index);

4. E dominates B̄ according to the cumulative column criterion (i.e., each column of E majorizes the

corresponding column of B̄);

5. the mixture distribution corresponding to E is SPM-dominated by that corresponding to Ā;

6. E•,k̃ = B̄•,k̃ for all k̃ < k.

The set of E’s satisfying these constraints is compact (as a closed, bounded subset of a finite dimensional

space) and nonempty (since Ā belongs to it), and the objective (28) is continuous. Therefore, its minimum

is reached by some C.

We will show that C•,k is equal to B̄•,k, which will prove the lemma. Suppose, by contradiction, that

C•,k 6= B̄•,k. Since C•,k majorizes B̄•,k and C•,k 6= B̄•,k, there must exist a row i such that47

Ci,k ≤ B̄i,k and Ci+1,k > B̄i+1,k. (29)

47The set I(k) = {i :
∑

j≥i Cj,k >
∑

j≥i B̄j,k} is nonempty. Let ī = max I(k). It suffices to take i = max{j < ī :

Cj,k ≤ B̄j,k}.
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We will show that it is possible to increase Ci,k by a small amount ε, and decrease Ci+1,k by the same

amount and modify some other entries, in such a way that the resulting matrix D satisfies all the constraints

of the minimization problem (28). Such change only affects the i + 1 partial sum of (28), and decreases it

by an amount ε, which will yield the desired contradiction.

Let k̄ denote the largest column index such that Ci+1,k̃ = Ci+1,k for all k̃ ∈ [k, k̄],48 and let D denote the

matrix that is identical to C for all rows other than i and i+ 1 and for all columns outside of [k, k̄], and such

that

1. Di,k̃ = Ci,k̃ + ε

2. Di+1,k̃ = Ci+1,k̃ − ε = Ci+1,k − ε

for all k̃ ∈ [k, k̄], for some small positive constant ε that we will determine later.

We first check D is row-monotonic for ε small enough. First, D inherits this property from C for all

rows other than i and i + 1. For row i, we need to check that adding ε to Ci,k does not raise it above

Ci,k−1 (if k = 1, there is nothing to check). This comes from the fact that Ci,k ≤ Ci,k−1 − χ, since

Ci,k ≤ B̄i,k ≤ B̄i,k−1 − χ = Ci,k−1 − χ. For i+ 1, we must check that reducing Ci,k̄ by some small amount

does not take it below Ci,k̄+1. This comes from the definition of k̄.49

Second, we check that D is stochastically ordered. This is clearly true for all columns outside of [k, k̄], where

D inherits this property from C. For columns k̃ ∈ [k, k̄], we use that Ci,k + ε ≤ Ci+1,k − ε for all ε ≤ χ/2,50

which yields the inequalities

Di,k̃ ≤ Di,k = Ci,k + ε ≤ Ci+1,k − ε = Di+1,k̃.

We now show that the columns of D majorize those of B̄. It suffices to check that∑
j≥i+1

Dj,k̃ ≥
∑
j≥i+1

B̄j,k̃ (30)

for all k̃ ∈ [k, k̄]. All other majorization inequalities hold trivially since D has the same relevant partial sums

as C for columns outside of [k, k̄] and for row indices other than i+ 1. By construction, we have∑
j≥i+2

Dj,k̃ =
∑
j≥i+2

Cj,k̃ ≥
∑
j≥i+2

B̄j,k̃ (31)

For k̃ > k, we have

Di+1,k̃ = Ci+1,k − ε ≥ B̄i+1,k − ε ≥ B̄i+1,k̃

where the last inequality holds for ε ≤ χ. For k̃ = k, we have, for ε < Ci+1,k − B̄i+1,k (which is strictly

positive, by our choice of i, see (29)),

Di+1,k = Ci+1,k − ε ≥ B̄i+1,k

48Possibly, k̄ is equal to the number of columns of C.
49If k̄ equals the number of columns of C, we note that, necessarily, Ci+1,k ≥ B̄i,k + χ > 0, so we can indeed

decrease the entries of C’s (i+ 1)-row by an amount ε < χ without creating negative entries.
50Indeed, we have Ci,k ≤ Ci+1,k − χ from both inequalities of (29) and strict monotonicity of B̄.
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Combining this with (31) implies (30).

Finally, because the rows i and i+ 1 of the matrices C and D satisfy the assumptions of Lemma 2, it follows

that the mixture distribution corresponding to C SPM-dominates that corresponding to D.51 By transitivity,

this implies that the mixture distribution corresponding to Ā SPM-dominates that corresponding to D.

Therefore, D satisfies all of the constraints of the minimization problem above and, compared to C, improves

the objective by ε, thus providing the desired contradiction. �

To conclude the proof of Step 1 of Theorem 5, it suffices to apply Lemma 6 iteratively, transforming the first

column of Ā into that of B̄, then the second, until Ā is entirely converted into B̄.

Proof when B̄ is not strictly monotonic

When B̄ is not strictly monotonic, we approximate Ā and B̄ by a sequence of cumulative matrices Ā(N), B̄(N)

with the following properties: i) Ā(N), B̄(N) are strictly monotonic (and, in particular, stochastically or-

dered), with minimal increase χN = 1/N , ii) Ā(N) majorizes B̄(N), and iii) Ā(N) and B̄(N) converge,

respectively, to Ā and B̄ as N →∞. The previous analysis shows that the mixture distribution correspond-

ing to Ā(N) SPM-dominates that corresponding to B̄(N) for each N . Taking the limit as N goes to infinity

then shows the result.

To show that this approximating sequence exists for N large enough, we scale down the entries of Ā and B̄

by a factor 1 − (q + (m − 1))/N where q × (m − 1) are the matrix dimensions of Ā and B̄,52 and add the

matrix E(N) such that E(N)i,j = 1
N (i + (m − j)) to the scaled down matrices to obtain Ā(N) and B̄(N).

By construction, and given the hypotheses on Ā and B̄, these matrices are strictly increasing with minimal

increase 1/N and have entries less than 1. Moreover, one may easily check, for each N , each column of Ā(N)

still majorizes the corresponding column of B̄(N), since the scaling and addition operations do not affect

the ranking of those partial sums.

F.1.2 Step 2: Proof when B̄ is not stochastically ordered

Let B̄so denote the stochastically ordered version of B̄, whose kth column consists of the entries of the kth

column of B̄, ordered from the smallest to the largest. B̄so is also row monotonic. Indeed, B̄soi,k is the ith

smallest entry in the column B̄•,k. Since B̄ is row monotonic, that entry must be larger than the ith smallest

entry in the column B̄•,k+1, which is equal to B̄soi,k+1. Moreover, majorization comparisons are the same

between columns of Ā and B̄so as they were with Ā and B̄. Therefore, Ā dominates B̄so according to the

cumulative column criterion and, applying the previous analysis to Ā and B̄so, we conclude that the mixture

distribution corresponding to Ā SPM-dominates that corresponding to B̄so. It then suffices to show that

the mixture distribution corresponding to B̄so SPM-dominates that corresponding to B̄.

We convert B̄so to B̄ by a sequence of pairwise row transformations, of the form defined in Lemma 2.

To clarify the exposition of the algorithm, for each column of B̄so, we refer the cardinal values of the

ordered entries, in rows 1, 2, . . . , q, by their ordinal values 1, 2, . . . , q, and we use the same cardinal-to-ordinal

51Lemma 2 concerns matrices with only two rows. However, by construction of the mixture distribution, the

objective is linearly separable in the rows of the cumulative matrix generating the distribution, and gives equal

weight to each row. Therefore, Lemma 2 applies to arbitrarily many rows, as long as only two rows are changed.
52Recall that we have excluded the first column of ones that may appear in cumulative matrices.
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transformation to label the entries in each column of B̄.53 Starting from the last row, q, of B̄so, whose entries

are equal to q after the cardinal-to-ordinal transformation, we will move these ’q’-labeled entries upwards,

gradually, so as to position them as in B̄. We do this by a sequence of entry permutations between rows q

and i, for i starting from q−1 until i reaches 1. This will be done so that, after the step involving rows q and

i, the rows with indices strictly below q remain stochastically ordered, and the qth row continues to be row

monotonic and to stochastically dominate each of the rows with indices strictly below i. This guarantees that

the application of Lemma 2, at each step, is valid. Each transformation results in a matrix corresponding

to a mixture distribution that is SPM-dominated by the mixture distribution corresponding to the previous

matrix. By transitivity, therefore, the mixture distribution corresponding to B̄ is SPM-dominated by that

corresponding to B̄so.

Starting with rows q and q − 1, we flip entries of B̄so for each column j in which B̄q,j 6= q. The result is

that some entries in the last row of the matrix are now equal to q− 1, with the corresponding entries in row

q − 1 equal to q, for exactly those columns where B̄q,j 6= q. As a result, the q and q − 1 rows of B̄so are

no longer stochastically ordered, but both rows still (stochastically) dominate all rows with indices less than

q − 2. The next step is to flip entries between rows q and q − 2 of the new resulting matrix, for columns in

which the qth-row entry does not match qth-row entry of B̄. As a result, the qth row now (possibly) contains

entries labeled ‘q− 2’ while row q− 2 row may contain some ‘q− 1’ entries. Notice that, i) rows q, q− 1, and

q − 2 still dominate all rows with indices less than q − 3, and ii) row q − 1 dominates row q − 2. Point ii)

holds because row q − 2 inherited a ‘q − 1’ only if row q − 1 inherited a ‘q’ entry. Proceeding systematically

by decreasing, at each step, the index i of the row whose entries are swapped with those of row q, the result

after these q − 1 steps is that the qth row now has the same entries as the qth row of B̄, and that the first

q − 1 rows of the resulting matrix are still stochastically ordered.

The next stage of the algorithm leaves the new qth row untouched. In q−2 steps analogous to the q−1 steps

in the first stage, it transforms row q − 1 into row q − 1 of B̄; it does so while preserving at each step the

stochastic ordering of the first q− 2 rows and guaranteeing that row q− 1 dominates rows with which it has

not yet been flipped. Applying this larger algorithmic loop to each row q− 1, q− 2, . . . 2, in decreasing index

order, we eventually transform B̄so into B̄ through a sequence of steps, each of which generates a matrix

corresponding to a mixture distribution that is SPM-dominated by the previous one.

Finally, we must check that each step preserves row monotonicity, that is, the property that entries in each

row are weakly decreasing in the column index. This is necessary because Lemma 2 applies only to pairs of

rows that satisfy this condition. Consider the first stage of the conversion from B̄so to B̄, which consists of

a series of pairwise transformations between the qth row of B̄so and its ith row, for i decreasing from q − 1

to 1. Let D(i) denote the matrix that results after the step involving rows q and i, and let D = D(1) denote

the resulting matrix at the end of this entire first stage. The submatrix of D where the last row has been

removed is the stochastically ordered version of the submatrix of B̄ where the last row has been removed. In

particular, the former submatrix satisfies row monotonicity. Moreover, row j of D(i) is identical to row j of D

for j ≥ i and j 6= q, and is equal to the jth row of B̄so for j < i. All rows j of D(i) with j < q thus satisfy row

monotonicity. It remains to show that row q of D(i) also satisfies row monotonicity. Observe that D(i)q,k is

equal to the ith largest entry, B̄soi,k, of B̄so•,k if Dq,k is smaller than B̄soi,k, and to Dq,k otherwise. Now consider

53For example, if the second column of B̄ has entries B̄1,2 = .3, B̄2,2 = .4, and B̄3,2 = .1, so that B̄so
1,2 = .1,

B̄so
2,2 = .3, and B̄so

3,2 = .4, then entries are converted to B̄1,2 = 2, B̄2,2 = 3, and B̄3,2 = 1, so that B̄so
1,2 = 1, B̄so

2,2 = 2,

and B̄so
3,2 = 3. If there are ties, the way ties are broken does not matter, as is clear from the algorithm.
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any two consecutive columns k − 1 and k. We must show that D(i)q,k−1 ≥ D(i)q,k. If D(i)q,k = Dq,k,

then we use the fact that Di,k−1 ≥ Dq,k−1 ≥ Dq,k. If, instead, D(i)q,k = B̄soi,k, then we use the fact that

D(i)q,k−1 ≥ B̄soi,k−1 ≥ B̄soi,k. This demonstrates row monotonicity of D(i), for all i ∈ {1, . . . , q − 1} and,

hence, the applicability of Lemma 2 for each transformation described in the algorithm above.

F.1.3 Step 3: Asymmetric Distributions

Using the definition of the function ŵ in (27), we can write

Ew(X1, . . . , Xn) =
1

q

q∑
i=1

ŵ(Ā(1)i,•, . . . , ᾱ(n)i,•)

Ew(Y1, . . . , Yn) =
1

q

q∑
i=1

ŵ(B̄(1)i,•, . . . , B̄(n)i,•), (32)

where Ā(r)i,• denotes the ith row of Ā(r) and B̄(r)i,• the ith row of B̄(r).

For each r, let B̄(r)soi,• denote the ith row of B̄so(r), the stochastically ordered version of B̄(r). The argument

proceeds by first transforming Ā(1) into B̄(1)so, in a manner analogous to what we did for the symmetric

case in Step 1. We need to check that Lemma 2 can be applied as in Step 1. To do so, pick two realizations, i

and j, of the aggregate shock, and consider the ith and jth rows of the matrices {Ā(r)}1≤r≤n. Using notation

analogous to that used in the proof of Lemma 2, we must check that

ŵ(p̄, p̄(2), . . . , p̄(n)) + ŵ(q̄, q̄(2), q̄(n)) ≥ ŵ(p̄+ ε, p̄(2), . . . , p̄(n)) + ŵ(q̄ − ε, q̄(2), . . . , q̄(n)), (33)

where, for r ≥ 2, p̄(r) = Ā(r)i,• and q̄(r) = Ā(r)j,•. Generalizing the argument used to prove Lemma 2, we

have

ŵ(p̄+ ε, p̄(2), . . . , p̄(n))− ŵ(p̄, p̄(2), . . . , p̄(n)) =

∫ 1

0

m∑
k=2

∂ŵ

∂p̄1
k

(p̄+ αε, p̄(2), . . . , p̄(n))εkdα,

and similarly,

ŵ(q̄, q̄(2), . . . , q̄(n))− ŵ(q̄ − ε, q̄(2), . . . , q̄(n)) =

∫ 1

0

m∑
k=2

∂ŵ

∂p̄1
k

(q̄ − ε+ αε, q̄(2), . . . , q̄(n))εkdα.

Letting δ(1) = q̄ − ε− p̄ and δ(r) = q̄(r)− p̄(r) for r ≥ 2, we have, for each k ∈ {2, . . . ,m},

∂ŵ

∂p̄1
k

(q̄ − ε+ αε, q̄(2), . . . , q̄(n)) − ∂ŵ

∂p̄1
k

(p̄+ αε, p̄(2), . . . , p̄(n)) (34)

=

∫ 1

0

n∑
r=1

m∑
k̃=2

∂2ŵ

∂p̄1
kp̄
r
k̃

(p̄+ αε+ βδ(1), βδ(2), . . . , βδ(n))δk̃(r)dβ

≥ 0,

where the inequality follows from the fact, as established in Lemma 5, that all cross-partial derivatives of ŵ

are nonnegative. Summing (34) over k and integrating over α then shows that (33) holds.

Inequality (33) in turn ensures that, when we convert Ā(1) into B̄(1)so, in a manner analogous to Step 1

above, for every transformation in the sequence Lemma 2 can be applied. Therefore,

q∑
i=1

ŵ(Ā(1)i,•, Ā(2)i,•, . . . , Ā(n)i,•) ≥
q∑
i=1

ŵ(B̄(1)soi,•, Ā(2)i,•, . . . , Ā(n)i,•).
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Iterating this conversion for r = 2, . . . , n, we get the chain of inequalities

q∑
i=1

ŵ(Ā(1)i,•, Ā(2)i,•, . . . , Ā(n)i,•) ≥
q∑
i=1

ŵ(B̄(1)soi,•, Ā(2)i,•, . . . , Ā(n)i,•) (35)

≥
q∑
i=1

ŵ(B̄(1)soi,•, B̄(2)soi,•, . . . , Ā(n)i,•) (36)

≥ · · · (37)

≥
q∑
i=1

ŵ(B̄(1)soi,•, B̄(2)soi,•, . . . , B̄(n)soi,•). (38)

Finally, we use the algorithm described in Section F.1.2 to convert B̄so(r) into B̄(r) for all r simultaneously.

Supermodularity and componentwise-convexity of ŵ ensure that

q∑
i=1

ŵ(B̄(1)soi,•, B̄(2)soi,•, . . . , B̄(n)soi,•) ≥
q∑
i=1

ŵ(B̄(1)i,•, B̄(2)i,•, . . . , B̄(n)i,•).

Combining this with (35) and (32) then yields Ew(X1, . . . , Xn) ≥ Ew(Y1, . . . , Yn) for all supermodular w.

G Proof of Theorem 6 and Proposition 6

The proof of Theorem 6 is closely related to the proof of Theorem 5, using, almost without change, the

arguments of Sections F.1.1 and F.1.2. There are two key differences. The first is to replace Lemma 2 by

Lemma 3. Following on from this, the second is that wherever, in the statement or proof of Theorem 5, the

relation �SPM appears, at the corresponding point in the proof of Theorem 6, the relation ≺SSPM must

appear instead.

Step 1: Proof that the distribution corresponding to Ā is SSPM-dominated by that corre-

sponding to B̄so. We use the proof of Section F.1.1. The condition that the distribution corresponding to

Ā SPM-dominates that corresponding to E is replaced by the condition that the distribution corresponding

to Ā is SSPM-dominated by that corresponding to E. The proof that the distribution generated by the

constructed matrix D SSPM-dominates that generated by C is based on Lemma 3, instead of Lemma 2.

Because each row now represents the distribution of a different random variable, and random variables are

independently distributed, Lemma 4 guarantees that the result of Lemma 3 pertaining to changes to the

distributions of variables i and i+ 1 extends to the multivariate distributions over all n random variables.

Step 2: Proof that the distribution corresponding to B̄so is SSPM-dominated by that cor-

responding to B̄. We use the proof of Section F.1.2, again replacing Lemma 2 by Lemma 3. Because

each step preserves row monotonicity, as shown in Section F.1.2, all rows correspond to actual probability

distributions. This ensures that once again, Lemma 4 can be applied at every step to extend the result of

Lemma 3 to the multivariate distributions over all n variables.

G.1 Proof of Proposition 6 (For Online Appendix)

Proof of i): Assume that pj > 0 for all j ∈ {1, . . . ,m}. (If for some j, pj = 0, then all entries in the jth

column of A would necessarily equal 0.) Given the one-to-one mapping between row-stochastic matrices
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and their cumulative-column equivalents, it is sufficient to prove the existence of a unique cumulative-sum

matrix Ā satisfying the claim.

Let bxc denote the largest integer below x, and for a vector v, let v′ denote its transpose. Given a probability

vector (p1, . . . , pm), define p̄k =
∑m
j=k pj . Note that p̄1 = 1 and p̄k is strictly decreasing in k. Consider

the cumulative-column matrix Ā whose first column consists of all 1’s and whose kth column has the form

(0, . . . , 0, λk, 1, . . . , 1)′, where λk ≡ np̄k − bnp̄kc ∈ [0, 1) and where the index of the row in which λk appears

is ik ≡ n− bnp̄kc. Note that since bnp̄kc is weakly decreasing in k, ik is weakly increasing in k.

By construction, the kth column of Ā sums to λk + 1(bnp̄kc) = np̄k, as required. By construction also, all

entries of Ā are in [0, 1]. To confirm that Ā is a valid cumulative-column matrix, we need to confirm that

for each row, the entries are weakly decreasing in the column index k. If ik < ik+1, then this is clearly true,

since for i < ik, the entries in columns k and k + 1 are both 0, for i = ik, the entry in column k is λk while

the entry in column k is 0, for i = ik+1, the entry in column k is 1 while that in column k+ 1 is λk, and for

i > ik+1, the entries in column k and k + 1 are both 0. If, instead, ik = ik+1, then we need to check that

λk ≥ λk+1. Now given the definition of ik, ik = ik+1 implies that bnp̄kc = bnp̄k+1c, and since p̄k > p̄k+1, it

then follows from the definition of λk that λk > λk+1.

By construction, for each column k of Ā, the entries are weakly increasing in the row index, so Ā is stochas-

tically ordered. Since for each k ≥ 2, all but at most one element of column k equals 0 or 1, it is clear

that for each k, the kth column of Ā majorizes all vectors whose components lie in [0, 1] and sum to np̄k.

Furthermore, among all such vectors, the kth column of Ā is the unique vector with increasing components

which majorizes all others. Therefore, for any other cumulative-column matrix B̄ whose kth column sums

to np̄k, A �CCM B, and Ā is the unique matrix for which this statement is true. The claim in part i) then

follows from Theorem 6.

Proof of ii): Since each row of the matrix B described in part ii) is identical, every column of B̄ consists of

a vector all of whose components are equal. Thus, the kth column of B̄ is majorized by any vector whose

components lie in [0, 1] and sum to np̄k, so for any other cumulative-column matrix Ā whose kth column

sums to np̄k, we have A �CCM B. With A stochastically ordered, the claim in part ii) then follows from

Theorem 6.
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