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Abstract. Two essential intuitions about the concept of multidimensional inequality have
been highlighted in the emerging body of literature on this subject: first,
multidimensional inequality should be a function of the uniform inequality of a
multivariate distribution of goods or attributes across people (Kolm, 1977); and, second,
it should also be a function of the cross-correlation between distributions of goods or
attributes in different dimensions (Atkinson and Bourguignon, 1982; Walzer, 1983).
While the first intuition has played a major role in the design of fully-fledged
multidimensional inequality indices, the second one has only recently received attention
(Tsui, 1999); and, so far, multidimensional generalized entropy measures are the only
inequality measures known to respect both intuitions. The present paper proposes a
general method of designing a wider range of multidimensional inequality indices that
also respect both intuitions, and illustrates this method by defining two classes of such
indices: a generalization of the Gini coefficient, and a generalization of Atkinson's one-
dimensional measure of inequality.
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1. Introduction

The concern of the present paper is the problem of multidimensional inequality
measurement. Suppose we are asked to evaluate the overall level of inequality in
society not just on the basis of one good/attribute -- or a one-dimensional item of
information -- for each person or household (e.g. each person's or household's
income), but on the basis of several goods/attributes -- or a multidimensional vector of
information -- for each person or household (e.g. a vector whose different components
represent a person's or households's income, level of education, level of access to
health care etc.). Given different multidimensional distributions (each of which
assigns to each person or household in society a corresponding vector of
goods/attributes), the problem of multidimensional inequality measurement is, in
essence, to specify what it means to say that one such distribution is more unequal
than another and, as far as possible, to rank different distributions in an order of
inequality.

To illustrate, consider the following four distributions:

 education   health income education   health income

         person 1   9   10 11          person 1   5   10   1
X1 =  person 2   5     7   2  ,   X2 =  person 2   3     5 11  ,
               person 3  (3     5   1 )          person 3  (9     7   2 )
     

 education   health income education   health income

         person 1   7.0   8.4 7.2          person 1   5.4   8.4  3.2
Y1 =  person 2   5.4   7.2 3.6  ,   Y2 =  person 2   4.6   6.4  7.2   .
               person 3  (4.6   6.4 3.2)          person 3  (7.0   7.2  3.6)
     

What can we say about the relative levels of inequality in these distributions? Using
traditional one-dimensional methods of inequality measurement (for a comprehensive
survey, see Sen, 1997), we can probably say that, if we consider each of the three
dimensions of education, health and income separately, the Y-distributions are less
unequal than the X-distributions. But can we say more?

The problem of multidimensional inequality measurement can be -- and, historically,
has been -- approached in two stages. Stage (i) is to state certain dominance criteria
that specify the conditions under which one multidimensional distribution should be
taken to be "clearly" at least as equal as another. In many cases, however, these
dominance criteria may induce only partial orderings on the set of alternative
distributions. So, if one requires rankings even in cases which are left undecided by
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the specified dominance criteria, stage (ii) is to define an inequality index, consistent
with these dominance criteria, that maps each multidimensional distribution to a real
number and thereby induces a complete ordering on the set of alternative distributions.

The study of multidimensional inequality was pioneered by Fisher (1956), who
developed the idea of a multidimensional distribution matrix, and, more recently, by
the seminal contributions of Kolm (1977), Atkinson and Bourguignon (1982) and
Walzer (1983). Amongst Kolm's proposals with regard to stage (i) are the criteria that
have become known as uniform majorization (in essence, a multidimensional
generalization of the well-known Pigou-Dalton criterion) and directional/price
majorization (a criterion that involves multiplying multidimensional distributions by
price vectors and comparing the resulting one-dimensional distributions). These
criteria are primarily sensitive to the uniform inequality of a multidimensional
distribution across people. Kolm's criteria capture the idea that distribution Y1 is less
unequal than distribution X1, and that distribution Y2 is less unequal than distribution
X2. Atkinson and Bourguignon have drawn our attention to the intuition that
multidimensional inequality also depends on how systematic the correlation between
distributions of different goods/attributes (and especially between inequalities in
different dimensions) is and have developed appropriate dominance criteria. Since
inequalities in different dimensions are more systematically cross-correlated in
distributions X1 and Y1 than in distributions X2 and Y2, respectively, distribution X2

should thus be considered less unequal than distribution X1, and distribution Y2 should
be considered less unequal than distribution Y1. In a similar spirit, the political theorist
Walzer developed the conception of complex equality, according to which overall
equality consists not so much in local equality within each dimension (distributive
sphere in Walzer's terminology), but in the extent to which local inequalities in
different dimensions cancel each other out, by advantaging and disadvantaging
different people in different dimensions. So complex equality would be better realized
in distributions X2 and Y2 than in distributions X1 and Y1, respectively. Note that
separate one-dimensional inequality evaluation in each dimension is insufficient to
take account of problems of cross-correlation: distributions X1 and X2 have identical
local levels of inequality in each of the three separate dimensions, and so do
distributions Y1 and Y2.

Although these pioneers primarily addressed stage (i), their work inspired subsequent
proposals as to how one could approach stage (ii) and construct fully-fledged
multidimensional inequality indices (e.g. Maasoumi, 1986; Tsui, 1995, 1999;
Koshevoy and Mosler, 1997). While all these proposed inequality measures make use
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of the dominance criteria proposed by Kolm, the Atkinson-Bourguignon-Walzer
intuition that a multidimensional inequality measure should also be sensitive to the
cross-correlation between inequalities in different dimensions has only recently
received explicit attention in the design of such measures2. Tsui (1999) formally
introduced a correlation-sensitive majorization criterion into the debate and showed
that this new criterion, together with Kolm's uniform majorization criterion and a
standard set of axioms, leads to the class of multidimensional generalized entropy
measures. However, Tsui's result uses a version of the somewhat controversial axiom
of (additive) decomposability, which, by requiring us to ignore some -- arguably
useful -- information in a distribution, is known to rule out all but entropy-based
measures in various economic and information-theoretic contexts (see Sen, 1997,
chapter A.5, for a discussion of this axiom).

It is therefore worth asking whether it is possible to design other multidimensional
inequality measures that satisfy both Kolm's criteria and the correlation-sensitive 
majorization criterion introduced by Tsui, thereby respecting the intuition that (a)
uniform inequalities across people and (b) cross-correlations between inequalities in
different dimensions matter (i.e. the intuition that (a) Y1 is more equal than X1, and Y2

is more equal than X2, and (b) X2 is more equal than X1, and Y2 is more equal than Y1).

The present paper seeks to answer this question. Its purpose is methodological and
substantive. On the methodological side, the paper presents a rather general way of
defining multidimensional inequality indices by first transforming multidimensional
distributions into suitable 'welfare-concentration curves' (a term from Kolm, 1977)
and then constructing a multidimensional inequality index on the basis of a suitable
one-dimensional aggregation function that takes these 'welfare-concentration curves'
as its input and that respects the generalized Lorenz-ordering of these curves. On the
substantive side, this method is then used to construct two examples of
multidimensional inequality indices, and it is shown that these indices satisfy all of the
above mentioned desiderata. One example is a generalization of the Gini coefficient,
the other is a generalization of Atkinson's one-dimensional measure of inequality
(Atkinson, 1970). It is also shown that an extension of Kolm's less frequently invoked

                                                       
2In terms of the conditions stated below, it can easily be verified that condition (CIM)

is violated by the inequality indices proposed in Tsui's 1995 paper subtitled, somewhat
misleadingly in view of Atkinson & Bourguignon (1982), "The Atkinson-Kolm-Sen
Approach": Tsui's relative inequality index (1995, theorem 1.), for instance, can assign a
lower value to X1 than to X2 and a lower value to Y1 than to Y2, contrary to the Atkinson-
Bourguignon-Walzer intuition that systematic cross-correlations between inequalities in
different dimensions increase overall inequality.
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criterion, directional/price majorization, namely non-negative directional/price
majorization, already captures the Atkinson-Bourguignon-Walzer intuition about
cross-correlation: we shall prove that the correlation-sensitive majorization criterion
introduced by Tsui (1999) is in fact a (proper) sub-criterion of non-negative
directional/price majorization.

After some basic definitions (section 2.), it will be requisite to survey various
dominance criteria and explore their logical interrelations (section 3.); we shall then
explain the present use of 'welfare-concentration curves' (section 4.), and we shall
finally turn to the construction of fully-fledged inequality indices (section 5.).

2. Definitions and Basic Axioms

Let N = {1, 2, ..., n} be a set of persons or households (for simplicity, hereafter
'persons'), and K = {1, 2, ..., k} a set of goods/attributes, dimensions or distributive
spheres.

A multidimensional distribution is an n×k matrix X = (xij) over the non-negative real
numbers such that the sum of each column is non-zero, where xij represents person i's
share of good/attribute j. Let M (n,k) be the set of all such matrices. The row vectors
x1, x2, ..., xn represent different persons' vectors of goods/attributes. The distributions
X1, X2, Y1 and Y2 above are examples of multidimensional distributions for n=3 and
k=3.

A multidimensional inequality index is a function In : M (n,k) →  R, where In(X) ≥ In(Y)
is interpreted to mean "the overall level of multidimensional inequality in distribution
X is at least as great as that in distribution Y".

The following basic axioms are straightforward generalizations of their familiar one-
dimensional counterparts (see Tsui, 1999):

CONTINUITY (C). In is a continuous function.

ANONYMITY (A). For any n×n permutation matrix Π permuting the rows of X, In(X) =
In(ΠX).
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NORMALIZATION (N). If all rows of a distribution X are identical (i.e. the distribution
in each dimension is perfectly equal), In(X) = 0.

REPLICATION INVARIANCE (RI). Given a n×k distribution matrix X, let Y be the
n*r×k distribution matrix defined by

     X
Y =    X       (with r 'replications' of X).

                  (⋅⋅⋅)
      X

Then In*r(Y) = In(X).

RATIO-SCALE INVARIANCE (RS). For any n×n diagonal matrix Λ=diag(λ1, λ2, ..., λn)
(with each λi>0), In(ΛX) = In(X).

These axioms by themselves, however, are insufficient to guarantee that a
multidimensional inequality index is in any substantive sense 'egalitarian', i.e. that it
respects the various intuitions about multidimensional inequality briefly introduced in
the introduction. For this reason, our present list of axioms needs to be supplemented
with the dominance criteria capturing these intuitions.

3. Dominance Criteria

In the present section, we will survey some of the most important dominance criteria
proposed in the literature and explain how they are logically interrelated. In this
context, we will prove a new result showing that the correlation-sensitive criterion
introduced by Tsui (1999) is a subcriterion of non-negative directional majorization.

Each of the dominance criteria to be stated represents a proposed answer to the
question of when a distribution X is "clearly" at least as equal as, and can therefore be
said to (at least weakly) dominate, a distribution Y.

The first two dominance criteria to be stated have been suggested by Kolm (1977) and
are essentially generalizations of the one-dimensional Pigou-Dalton criterion,
according to which any transfer from a poorer person to a richer person increases
inequality, other things remaining equal. Accordingly, if a distribution X can be
obtained from a distribution Y by uniformly redistributing attributes so as to reduce
the 'inequality-gap' between two or more persons, then X dominates Y. Define a
Pigou-Dalton matrix to be an n×n matrix P = λ*E + (1-λ)*Q, where E is the n×n
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identity matrix and Q is a permutation matrix which transforms other matrices by
interchanging two rows.

UNIFORM PIGOU-DALTON MAJORIZATION (UPD). (X,Y)∈UPD and XºUPDY
("distribution X dominates distribution Y according to (UPD)") if and only if X = TY
where T is a finite product of Pigou-Dalton matrices. XÂUPDY ("distribution X strictly
dominates distribution Y according to (UPD)") if, in addition, X cannot be derived
from Y by permuting the rows of Y.

Define a bistochastic matrix to be an n×n matrix B = (bij) such that, for all j, ∑ ibij=1,
and for all i, ∑ jbij=1.

UNIFORM MAJORIZATION (UM). (X,Y) ∈UM and XºUMY if and only if X = BY,
where B is a bistochastic matrix. XÂUMY if, in addition, X cannot be derived from Y
by permuting the rows of Y.

It is easily verified that, for the examples of multidimensional distributions given in
the introduction, Y1ÂUMX1 and Y2ÂUMX2.

Moreover, (UPD) is a subrelation of (UM):

Proposition 3.1. (Kolm, 1977; Tsui, 1999) UPD⊆UM (whenever k≤2, UPD=UM).

To introduce Kolm's criterion of directional/price majorization (1977), we first need
to introduce the one-dimensional concept of generalized Lorenz-dominance, in short
GL-dominance.

We shall say that the vector (s1, s2, ..., sn) ∈ Rn GL-dominates3 the vector (t1, t2, ...,
tn) ∈ Rn if, for all j,

∑ i∈{1, 2, ..., j}s'i ≥ ∑  i∈{1, 2, ..., j}t'i ,

                                                       
3This is the concept of generalized Lorenz-dominance because, when we compare the

vectors (s1, s2, ..., sn) and (t1, t2, ..., tn) here, we do not consider their normalized Lorenz
curves as in the standard definition of Lorenz-dominance, i.e. we do not normalize (s1, s2, ...,
sn) and (t1, t2, ..., tn) by multiplying them by the inverses of the means of the si and of the ti,
respectively. For a discussion of generalized Lorenz dominance, see Shorrocks (1983) and
Sen (1997, appendix A.3).
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where (s'1, s'2, ..., s'n) and (t'1, t'2, ..., t'n) are permutations of (s1, s2, ..., sn) and (t1, t2, ...,
tn), respectively, such that s'1≤s'2≤...≤s'n and t'1≤t'2≤...≤t'n. The relation of GL-
dominance is said to be strict if at least one of the above inequalities is strict.

Intuitively, the generalized Lorenz curve of an (income) vector (s1, s2, ..., sn) can be
obtained by, firstly, rewriting the vector (s1, s2, ..., sn) as (s'1, s'2, ..., s'n) such that the
incomes of the n persons are arranged in an increasing order s'1≤s'2≤...≤s'n; secondly,
by plotting the proportion of persons j/n, ranging from 0 = 0/n to 1 = n/n, on the x-axis
against the total income ∑ i∈{1, 2, ..., j}s'i controlled by the poorest j/n of society (the
poorest j persons) on the y-axis and connecting these points with line-segments. Then
(s1, s2, ..., sn) GL-dominates (t1, t2, ..., tn) if the generalized Lorenz curve of (s1, s2, ...,
sn) lies nowhere below that of (t1, t2, ..., tn), and the dominance is strict if the two
curves do not coincide.

DIRECTIONAL/PRICE MAJORIZATION (DM). (X,Y) ∈DM and XºDMY if and only if,
for all price vectors a∈Rk, the vector Xa GL-dominates the vector Ya. XÂDMY if, in
addition, X cannot be derived from Y by permuting the rows of Y.

The logical connection between the previous dominance criteria and directional/price
majorization is characterized by the following proposition:

Proposition 3.2. (Kolm, 1977; Bhandari, 1995) UM⊂ DM.

We can extend the dominance relation of (DM) by restricting the set of relevant price
vectors to all non-negative ones.

NON-NEGATIVE DIRECTIONAL/PRICE MAJORIZATION (DM+). (X,Y) ∈DM+ and
XºDM+Y if and only if, for all price vectors a∈R+

k, the vector Xa GL-dominates the
vector Ya. XÂDM+Y if, in addition, X cannot be derived from Y by permuting the rows
of Y.

Obviously, DM⊆DM+. Below we shall in fact see that DM⊂ DM+.

Tsui (1999) introduced a dominance criterion that explicitly captures the Atkinson-
Bourguignon-Walzer intuition about cross-correlation. If the only difference between
two multidimensional distributions X and Y is that there is a stronger positive
correlation between advantaged positions within different dimensions and also
between disadvantaged positions within different dimensions under Y than under X



- 8 -

(i.e. under Y, someone who is well-off in one dimension is more likely to be well-off
across the board than under X; and, under Y, someone who is badly off in one
dimension is more likely to be badly off across the board than under X), then X
dominates Y:

Define a correlation increasing transfer as follows (Boland & Proschan, 1988). Given
two row vectors x = (x1, x2, ..., xk) and y = (y1, y2, ..., yk), let x ∧  y = (min(x1, y1),
min(x2, y2), ..., (min(xk, yk)), and let x ∨ y = (max(x1, y1), max(x2, y2), ..., max(xk, yk)). A
distribution Y can be derived from a distribution X by a correlation increasing transfer
if, for some row indices i and j (i≠j), yi = xi ∧  xj and yj = xi ∨ xj, and, for all m∉ {i, j},
xm = ym. Such a transfer is strict if Y≠X and Y is not just the result of swapping the
rows i and j in X.
 
CORRELATION INCREASING MAJORIZATION (CIM). (X,Y) ∈CIM and XºCIMY if and
only if Y can be derived from X by a permutation of rows and a finite sequence of
correlation increasing transfers. XÂCIMY if, in addition, at least one of these
correlation increasing transfers is strict.

For the examples of multidimensional distributions given in the introduction, X1 and
Y1 can be derived, respectively, from X2 and Y2 by a sequence of strict correlation
increasing transfers, whence X2ÂCIMX1 and Y2ÂCIMY1.

The following proposition shows that (UM) (including its subrelation (UPD)) and
(CIM) are logically independent.

Proposition 3.3. (Tsui, 1999) UM∩ CIM={(X,Y) : X can be derived from Y by a
permutation of rows}, i.e. there exists no pair of distributions X and Y such that
XÂUMY and XÂCIMY.

We will now prove that (CIM) defines a subrelation of (DM+), but not of (DM), a
logical connection that may not be at first sight obvious (whence DM≠DM+ and, since
DM⊆DM+, DM⊂ DM+).

Proposition 3.4. CIM⊂ DM+.

Proof. Since UM⊄ CIM, but UM⊂ DM+, CIM≠DM+. It is thus sufficient to prove that
CIM⊆DM+. Suppose XºCIMY, i.e. there exists a finite sequence X = QX0, X1, ..., Xm =
Y such that, for each i, Xi+1 can be derived from Xi by a correlation increasing transfer
and Q is a row-permutation matrix. We need to show that, for all price vectors a∈R+

k,
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Xa GL-dominates Ya. Let a∈R+
k. Since X can be obtained from X0 by a permutation of

rows, the generalized Lorenz curves of Xa and X0a are identical, and, trivially, Xa
(weakly) GL-dominates X0a. We will now show that, for each i, Xia GL-dominates
Xi+1a. Write Xi = (bij) and Xi+1 = (cij). Now there exist row-indices p and q (p≠q) such
that, for each j, cpj = min(bpj, bqj) and cqj = max(bpj, bqj) and, for all r∉ {p, q} and all j,
crj = brj. Then, for all r∉ {p, q}, the rth components of Xia and Xi+1a conincide and
equal br1a1+br2a2+...+brkak. However,

pth component of Xi+1a = min(bp1,bq1)a1+min(bp2,bq2)a2+...+min(bpk,bqk)ak

       ≤ pth component of Xia = bp1a1+bp2a2+...+bpkak ,
qth component of Xia = bq1a1+bq2a2+...+bqkak

       ≤ qth component of Xi+1a = max(bp1,bq1)a1+max(bp2,bq2)a2+...+max(bpk,bqk)ak.
Hence the generalized Lorenz curve of Xi+1a lies nowhere above that of Xia, and Xia
GL-dominates Xi+1a. But GL-dominance is transitive, and so X GL-dominates Y. Since
this holds for any a∈R+

k, XºDM+Y. If, in addition, XÂCIMY, then X and Y cannot be
permutations of each other, and thus XÂDM+Y, too. Q.E.D.

Proposition 3.5. CIM⊄ DM. In fact, whenever Y can be obtained from X by a strict
correlation-increasing transfer, (X,Y)∉ DM.

Proof. Suppose Y can be obtained from X by a strict correlation-increasing transfer.
Then there exist row indices i and j (i≠j) such that yi = xi ∧  xj and yj = xi ∨ xj, and, for
all m∉ {i, j}, xm = ym. Moreover, Y≠X and Y is not just the result of swapping the rows i
and j in X. Then, for at least two column indices, p and q, it must be the case that
xip>xjp and xiq<xjq (if necessary swap the labels i and j). Assume, for a contradiction,
(X,Y)∈DM. Then, for all a∈Rk, Xa GL-dominates Ya. Consider the price vector a
whose pth and qth components equal (-ap) and aq, respectively, where ap, aq > 0 (e. g.
ap=aq=1) and whose other entries are all 0. By assumption, Xa GL-dominates Ya (note
that Xa and Ya differ from each other only in rows i and j). This implies that
either

row i of Ya = yip(-ap) + yiqaq = xjp(-ap) + xiqaq

       ≤ row i of Xa = xip(-ap) + xiqaq ,
row j of Xa = xjp(-ap) + xjqaq

       ≤ row j of Ya = yjp(-ap) + yjqaq = xip(-ap) + xjqaq

or
row j of Ya = yjp(-ap) + yjqaq = xip(-ap) + xjqaq

       ≤ row i of Xa = xip(-ap) + xiqaq ,
row j of Xa = xjp(-ap) + xjqaq

       ≤ row i of Ya = yip(-ap) + yiqaq = xjp(-ap) + xiqaq
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From the first set of inequalities, we get
(i) xjp≥xip, xiq≤xjq ,

and, from the second set of inequalities, we get
(ii) xjq≤xiq, xip≥xjp.

Now (i) contradicts xip>xjp, and (ii) contradicts xiq<xjq. Consequently, (X,Y)∉ DM.
Q.E.D.

To summarize, the logical connections between the stated dominance criteria are as
follows:

UPD ⊆  UM ⊂  DM
          ⊂  DM+ (with UPD=UM whenever k≤2).
 CIM

In particular, (DM+) is the only one of the stated dominance criteria that is sensitive
both to the uniform inequality of a multidimensional distribution across people and to
the cross-correlation between inequalities in different dimensions of goods/attributes.

4. Welfare Concentration Curves

We have already defined what it means to say that one vector in Rn GL-dominates
another. Given a distribution matrix X, the basic idea of the present section is, first, to
use a suitable function u : R+

k →  R+ to aggregate each person's row-vector of
goods/attributes into an overall evaluation figure for this person (representing how
well-off this person is in terms of his or her share of goods across the different
dimensions) and, second, to assess the resulting vector of evaluation figures by
considering its generalized Lorenz curve, to be called the welfare concentration curve
of the distribution X for the aggregation function u.

For any two distribution matrices X and Y and an aggregation function u, we can then
ask whether the corresponding welfare concentration curve of X lies nowhere below
that of Y, i.e. whether (u(x1), u(x2), ..., u(xn)) GL-dominates (u(y1), u(y2), ..., u(yn)).

The following three propositions give us some important information about what
properties the aggregation function u : R+

k →  R+ must satisfy in order for the relation
of GL-dominance between corresponding welfare concentration curves to include UM
(including UPD), CIM and DM+ (including DM).
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Let X and Y be two multidimensional distribution matrices with row vectors x1, x2, ...,
xn and y1, y2, ..., yn, respectively. Given a function u : R+

k →  R+, we shall say that X
(strictly) u-dominates Y if (u(x1), u(x2), ..., u(xn)) (strictly) GL-dominates (u(y1), u(y2),
..., u(yn)).

Proposition 4.1. (Kolm, 1977) Let u : R+
k →  R+ be continuous, increasing and strictly

concave. If XºUMY, then X u-dominates Y; and if XÂUMY, then X strictly u-dominates
Y.

A function u : R+
k →  R+ is said to be L-superadditive if, for any two vectors x and y in

R+
k, u(x∧ y) + (x∨y) ≥ u(x) + u(y). It can be shown that, if the second partial derivatives

of u exist, u is L-superadditive if and only if, for all i, j (i ≠ j),

∂2u(t1, t2, ..., tk)        ≥ 0
        ∂ti∂tj

(Marshall & Olkin, 1979; Tsui, 1999).

Proposition 4.2. (Tsui, 1999) Let u : R+
k →  R+ be increasing, L-superadditive and of

the form u(t) = f(t1) + f(t2) + ... + f(tk), for all t∈R+
k (with f : R+ →  R+). If XºCIMY, then

X u-dominates Y; and if XÂCIMY, then X strictly u-dominates Y.

Proposition 4.3. Let u : R+
k →  R+ be continuous, increasing, strictly concave and of

the form u(t) = f1(t1) + f2(t2) + ... + fk(tk), for all t∈R+
k (with fj : R+ →  R+, for each j). If

XºDM+Y, then X u-dominates Y; and if XÂDM+Y, then X strictly u-dominates Y.

Proof. Let u : R+
k →  R+ be any increasing concave function of the form u(t) = f1(t1) +

f2(t2) + ... + fk(tk), for all t∈R+
k. Suppose that X dominates Y according to (DM+).

Then, for all price vectors a∈R+
k, the vector Xa GL-dominates the vector Ya. In

particular, for each j in {1, 2, ..., k}, putting aj = (δ1, δ2, ..., δk) with δi = 1 for i=j and δi

= 0 for all i≠j, Xaj = (x1j, x2j, ..., xnj) GL-dominates Yaj = (y1j, y2j, ..., ynj), and, for any
increasing and concave function fj, ∑ ifj(xij) ≥ ∑ ifj(yij). Then ∑ if1(xi1) + ∑ if2(xi2) + ... +
∑ ifk(xik) ≥ ∑ if1(yi1) + ∑ if2(yi2) + ... + ∑ ifk(yik), and thus ∑ iu(xi) ≥ ∑ iu(yi). But since this
holds for any increasing concave u of the form u(t) = f1(t1) + f2(t2) + ... + fk(tk), X is
"weakly more equal" than Y according to Kolm's definition (1977), and by Kolm's
theorem 7., for the relation "weakly more equal" (see Kolm's remark on p. 8), (u(x1),
u(x2), ..., u(xn)) GL-dominates (u(y1), u(y2), ..., u(yn)) for any such u, including any u
satisfying the conditions of proposition 4.3.. If, in addition, u is strictly concave, as
assumed in proposition 4.3., the generalized Lorenz curves of (u(x1), u(x2), ..., u(xn))
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and (u(y1), u(y2), ..., u(yn)) coincide only if X and Y are permutations of each other.
Q.E.D.

Is it possible to find a function u such that the corresponding relation of u-dominance
includes all of UM (including UPD), DM+ (including DM) and CIM? By propositions
4.1., 4.2. and 4.3., a function u has the required properties if it is continuous,
increasing, strictly concave, L-superadditive and of the form u(t) = f(t1) + f(t2) + ... +
f(tk), for all t∈R+

k. More generally, since UM, CIM ⊂  DM+ (see section 3.), whenever
u satisfies the conditions of proposition 4.3., the relation of u-dominance already
includes all of DM+, CIM, DM, UM, UPD.

Are these conditions satisfiable? The answer to this question is positive: the function
u(t) = ∑ j∈{1, 2, ..., k}tj

r (with 0 < r < 1) satisfies the conditions of propositions 4.1., 4.2.
and 4.3.4, and u(t) = ∑ j∈{1, 2, ..., k}tj

rj (with 0 < rj < 1, for each j), satisfies the conditions
of proposition 4.3..

We are now in a position to define a partial ordering on the set of all multidimensional
distributions which includes all of the majorization criteria discussed in section 3.: let
u(t) = ∑ j∈{1, 2, ..., k}tj

rj (with 0 < rj < 1, for each j) and define X to be "at least as equal as"
("more equal than") Y if X (strictly) u-dominates Y, i.e. if (u(x1), u(x2), ..., u(xn))
(strictly) GL-dominates (u(y1), u(y2), ..., u(yn)).

5. Defining Multidimensional Inequality Indices

For each of the dominance criteria (UPD), (UM), (DM), (CIM) and (DM+), we shall
say that a multidimensional inequality index In satisfies the given criterion if, for any
two distributions X and Y, In(Y) ≥ In(X) whenever X dominates Y according to the
given criterion, and In(Y) > In(X) whenever X strictly dominates Y according to this
criterion.

The main question of this paper can now be formulated more precisely: How, if at all,
can we define a multidimensional inequality index satisfying all of (C), (A), (N), (RI),
(RS), (UPD), (UM), (CIM), (DM) and (DM+)? From Tsui (1999), we know that this
set of axioms -- excluding (DM) and (DM+), which Tsui did not consider -- is
                                                       

4The function u is clearly increasing, continous and of the required additive form. Its
strict concavity can be shown by observing that its Hessian matrix D2u(t) is a diagonal matrix
which has strictly negative eigenvalues and is thus negative definite for every t∈R+

k. Its L-
superadditivity can be shown by observing that, for all i≠j, ∂2u(t1, t2, ..., tk)/∂ti∂tj = 0.
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consistent, for it is possible to define a suitable class of multidimensional inequality
measures satisfying all of them, Tsui's example being a class of multidimensional
generalized entropy measures. But, as briefly mentioned above, Tsui also invokes an
axiom of decomposability which requires that, for any partition of the set of persons N
into two subgroups N1 and N2, overall inequality be a function of (weighted) within-
group inequality for each of N1 and N2 and between-group inequality determined on
the basis of the mean distributions (vectors of column means) for each of N1 and N2.
While useful for many purposes, inequality indices satisfying decomposability must
ignore certain types of information about a distribution (see Sen, 1997, chapter A.5,
for a discussion). In particular, in the case of multidimensional inequality
measurement (and especially on a Walzerian conception of (in)equality), the question
of how well-off each person in each dimension of goods/attributes is in comparison
with every other person may be as important as the question of how well-off a person
is in relation to a subgroup of society and how well-off this group, in aggregate, is in
relation to other groups. A decomposable inequality index, however, cannot use the
former type of information. For this reason, the present section seeks to explain how
to construct multidimensional inequality indices other than those derived by Tsui
using decomposability, yet respecting all of the above stated desiderata.

Essentially, the idea is to use the above defined function u to convert each
multidimensional distribution X into a one-dimensional distribution (u(x1), u(x2), ...,
u(xn)) and then to apply a suitable generalized-Lorenz-consistent aggregation
function5 to map (u(x1), u(x2), ..., u(xn)) to a real number, to be interpreted as the
overall level of inequality In(X) under X. By the generalized-Lorenz-consistency of the
aggregation function, we would have In(Y)≥ In(X) whenever (u(x1), u(x2), ..., u(xn))
GL-dominates (u(y1), u(y2), ..., u(yn)), i.e. whenever X is considered to be at least as
equal as Y by the partial ordering defined at the end of the previous section.

However, an inequality index constructed like this would violate (RS): it would not be
invariant under positive linear transformations of the column vectors of a distribution.
In order to capture the idea of relative inequality measurement represented by (RS), an
inequality index must be sensitive only to the relative distribution of goods within
each dimension and not to the total size of the 'cake' in each dimension. Thus, when
we evaluate the overall level of inequality in a distribution X, what we are really

                                                       
5An aggregation function f : Rn →  R is generalized-Lorenz-consistent if, for all

vectors (s1, s2, ..., sn) and (t1, t2, ..., tn), whenever (s1, s2, ..., sn) GL-dominates (t1, t2, ..., tn),
f(s1, s2, ..., sn) ≤ f(t1, t2, ..., tn) (in fact, this is the definition for an 'inequality'-context; in a
'welfare'-context, '≤' would be replaced with '≥ ').
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looking at is the level of inequality in an adjusted matrix Xc, where Xc is the result of
scaling the column vectors in X in such a way that the mean of each column equals 1:

Given a distribution X = (xij), let µ1, µ2, ..., µk be the means of the k columns of X, i.e.
for each j, µj = 1/n*∑ i∈{1, 2, ..., n}xij. Then X induces a compensation matrix Xc defined by
Xc = (xij/µj). The i,j-th entry in Xc represents the proportion of good/attribute j held by
person i.

We shall say that an inequality index In : M (n,k) →  R is u-dominance-consistent with
respect to a given function u : R+

k →  R+ if, for all distributions X and Y, In(X)≥ In(Y)
whenever Yc u-dominates Xc and In(X)> In(Y) whenever Yc strictly u-dominates Xc.

It is important to note that, for each of the dominance criteria (UPD), (UM) and
(CIM), the dominance of a matrix X over a matrix Y is logically sufficient for the
dominance of the adjusted matrix Xc over the adjusted matrix Yc.

Proposition 5.1. For each of the dominance criteria (UPD), (UM) and (CIM) and any
two distributions X and Y, if X (strictly) dominates Y according to the chosen
criterion, then Xc (strictly) dominates Yc according to the same criterion.

Proof. First of all, note that, under each of (UPD), (UM) and (CIM), a necessary (but
clearly not sufficient) condition for a distribution X to dominate a distribution Y is that
the means of the k columns of X, µ1, µ2, ..., µk, are identical to those of Y (the
transformations induced by Pigou-Dalton matrices, bistochastic matrices and
correlation increasing transfers preserve the sums of column vectors).
If X can be obtained by permuting the rows of Y, the same row-permutation(s) can be
used for transforming Yc into Xc. We may therefore turn directly to strict dominance.
Suppose XÂUPDY (or XÂUMY). Then X = TY, where T is a finite product of Pigou-
Dalton matrices (or T is a bistochastic matrix) and X cannot be obtained by permuting
the rows of Y. Let x•1, x•2, ..., x•k and y•1, y•2, ..., y•k be the column vectors of X and Y,
respectively. For each j, x•j = Ty•j, and hence (1/µj)x•j = (1/µj)Ty•j = T((1/µj)y•j), i.e. Xc

= TYc, hence XcºUPDYc (or XcºUMYc) Moreover, this dominance is strict: Xc
 = (xc

ij)
cannot be obtained by permuting the rows of Yc = (yc

ij), since the same row-
permutation(s) would then be suitable for transforming Y = (yc

ijµj) into X = (xc
ijµj),

contradicting the assumption that XÂUPDY (or XÂUMY).
Suppose XÂCIMY. Then Y can be derived from X by a permutation of rows and a finite
sequence of correlation increasing transfers at least one of which is strict. Now, for
each column vector x•j of X, the ordering of this vector's components is invariant
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under multiplication by (1/µj), and hence Xc = (xij/µj) can be transformed into Yc =
(yij/µj) by the same correlation increasing transfers (one of which is strict) and row-
permutations by which X can be transformed into Y. Hence XcÂCIMYc. Q.E.D.

If X dominates Y according to (DM) (or (DM+)), on the other hand, this does not in
general imply that Xc also dominates Yc according to (DM) (or (DM+)). For instance,
if Y=2X, then YÂDM+X, but Xc=Yc, whence it is not the case that YcÂDM+Xc. However,
if our main focus is on the relative distribution of goods within each dimension rather
than the total amount of goods in each dimension, we can use the following criteria
instead of (DM) and (DM+):

DIRECTIONAL/PRICE MAJORIZAION OF COMPENSATION MATRICES (DMC).
(X,Y)∈DMC if and only if (Xc, Yc)∈DM.

DIRECTIONAL/PRICE MAJORIZAION OF COMPENSATION MATRICES (DM+C).
(X,Y)∈DM+C if and only if (Xc, Yc)∈DM+.

Proposition 5.1. and the results of section 3. are easily seen to imply that

UPD ⊆  UM ⊂  DMC

          ⊂  DM+C (with UPD=UM whenever k≤2).
 CIM

But then proposition 5.1. and the results of section 4. imply that, whenever u : R+
k →

R+ is continuous, increasing, strictly concave and of the form u(t) = f1(t1) + f2(t2) + ... +
fk(tk), for all t∈R+

k, a u-dominance-consistent inequality index satisfies (UM)
(including (UPD)), (CIM) and (DM+C) (including (DMC))6.

We will now define two u-dominance-consistent inequality indices satisfying (C), (A),
(N), (RI), (RS), (UPD), (UM), (DMC), (DM+C) and (CIM).

The first one is a generalization of the well-known one-dimensional Gini coefficient.
As before, let u(t) = ∑ j∈{1, 2, ..., k}tj

rj (with 0 < rj < 1, for each j).

First note the following lemma:

                                                       
6Such an inequality index will not, in general, satisfy (DM) and (DM+). But if -- as

emphasized -- our focus is on relative distributions, rather than the total amounts, of goods,
and if compensation matrices rather than unadjusted distribution matrices should therefore
form the basis for inequality comparisons, it is plausible (indeed requisite) to replace (DM)
and (DM+) with (DMC) and (DM+C), respectively.
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Lemma 5.2. If u : R+
k →  R+ is continuous, increasing and strictly concave,

max{1/n*∑ iu(xc
i) : xc

1, xc
2, ..., xc

n are the row-vectors of some Xc}
exists and equals µu-max = u(t), where t = (1, 1, ..., 1).

Proof. Let B be the bistochastic n×n matrix all of whose entries equal 1/n. Given any
Y=(yij) ∈ M (n,k), note that BYc = X = (xij), where X (=Xc) is the n×k matrix all of
whose entries equal 1. But, since u is continuous, increasing and strictly concave,
theorem 3 in Kolm (1977) implies that ∑ iu(xc

i) ≥ ∑ iu(yc
i). Thus n*u(1, 1, ..., 1) ≥

∑ iu(yc
i), and u(1, 1, ..., 1) ≥ 1/n*∑ iu(yc

i). Q.E.D.

Given a distribution X, with row-vectors x1, x2, ..., xn, let xc
1, xc

2, ..., xc
n be the row-

vectors of the compensation matrix Xc induced by X. Consider the area between the
generalized Lorenz curve of (u(xc

1), u(xc
2), ..., u(xc

n)) and the line of perfect equality,
also definable as the generalized Lorenz curve of (u(1, 1, ..., 1), u(1, 1, ..., 1), ..., u(1,
1, ..., 1)), representing a perfectly equal distribution (from lemma 5.2., we can infer
that the former generalized Lorenz curve lies below that line); then define the
generalized Gini-coefficient to be the ratio between this area and the entire triangular
area underneath the line of perfect equality.

Some algebraic manipulation yields the following definition:

Definition 5.3. The multidimensional generalized Gini coefficient is the function In :
M (n,k) →  R, defined by

  µu
      In(X) = 1 -   * (1-G(u(xc

1), u(xc
2), ..., u(xc

n)))  µu-max  

(where u(t) = ∑ j∈{1, 2, ..., k}tj
r, µu = 1/n*∑ iu(xc

i), µu-max = u(1, 1, ..., 1), and G : R+
n →  R+

is the one-dimensional Gini-coefficient, defined by
   1G(t1, t2, ..., tn) = 1 -     * ∑ i∈{1, 2, ..., n}∑ m∈{1, 2, ..., n}min(ti, tm),                  n2  * 1/n*∑ iti

see Sen, 1997, chapter 2)

   1/n*∑ i(∑ j∈{1, 2, ..., k}fj(xij/µj))
   = 1 -             * (1-G(u(xc

1), u(xc
2), ..., u(xc

n))
           ∑ j∈{1, 2, ..., k}fj(1)

(expanding the Gini-coefficient)
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               ∑ i∈{1, 2, ..., n}∑ m∈{1, 2, ..., n}min(∑ j∈{1, 2, ..., k}fj(xij/µj), ∑ j∈{1, 2, ..., k}fj(xmj/µj))
    = 1 -                           

           ∑ j∈{1, 2, ..., k}fj(1)*n2

(putting u(t) = ∑ j∈{1, 2, ..., k}tj
rj, with 0 < rj < 1, for each j)

                          ∑ i∈{1, 2, ..., n}∑ m∈{1, 2, ..., n}min(∑ j∈{1, 2, ..., k}(xij/µj)rj, ∑ j∈{1, 2, ..., k}(xmj/µj)rj)
     = 1 -                             .
                                                            k*n2

Theorem 5.4. The multidimensional generalized Gini coefficient satisfies (C), (A),
(N), (RI), (RS), (UPD), (UM), (DMC), (DM+C) and (CIM).

Proof. (C): Consider the formulation

    µu
      In(X) = 1 -   * (1-G(u(xc

1), u(xc
2), ..., u(xc

n))),  µu-max  

and note that the function which maps each X to Xc and the functions which map each
Xc to the vector (u(xc

1), u(xc
2), ..., u(xc

n)) and to µu, and G are all continuous (and µu-max

is constant), and hence, by the chain rule for continuity, so is In.
(A): Given an n×n permutation matrix Π permuting the rows of X, first note that (ΠX)c

= ΠXc. But now it is sufficient to observe that both µu = 1/n*∑ iu(xc
i) and G(u(xc

1),
u(xc

2), ..., u(xc
n)) are invariant under permutations of xc

1, xc
2, ..., xc

n.
(N): If all rows of a distribution X are identical, Xc is the matrix all of whose entries
equal 1. Then µu = µu-max and G(t, t, ..., t) = 0 with t = u(1, 1, ..., 1), whence In(X) = 0.
(RI): Given a n×k matrix X, let Y be the n*r×k matrix defined by

     X
Y =    X       (with r 'replications' of X),

                  (⋅⋅⋅)
      X

and first note that

     Xc

          Xc =    Xc        (with r 'replications' of Xc).
                  (⋅⋅⋅ )

      Xc

Now let yc
1, yc

2, ..., yc
r*n be the row-vectors of Yc; then, for each j∈{0, 1, ..., r-1} and

each i∈{1, 2, ..., n}, yc
j*n+i = xc

i, and

         1/r*n*∑ i∈{1, ..., r*n}u(yc
i)

      Ir*n(Y) = 1 -           * (1-G(u(yc
1), u(yc

2), ..., u(yc
r*n))),        ∑ j∈{1, 2, ..., k}fj(1)   
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     1/n*r*(r*∑ i∈{1, ..., n}u(xc
i))

     = 1 -           * (1-G(u(xc
1), u(xc

2), ..., u(xc
n))),

        ∑ j∈{1, 2, ..., k}fj(1)

(since G is replication invariant -- see Sen (1997), pp. 139 / 140)

     = In(X).
(RS): It is sufficient to observe that, for any n×n diagonal matrix Λ=diag(λ1, λ2, ..., λn)
(with each λi>0), (ΛX)c = Xc.
To prove that In satisfies (UPD), (UM), (DMC), (DM+C) and (CIM), it is sufficient to
prove that In is u-dominance-consistent. Given our definition of u, In will then satisfy
(DM+C), including (DMC), (UM), (UPD) and (CIM), as established above. But it is
known that, for any s = (s1, s2, ..., sn), t = (t1, t2, ..., tn) ∈ Rn, whenever s GL-dominates
t, (1/n*∑ isi)*(1-G(s1, s2, ..., sn)) ≥ (1/n*∑ iti)*(1-G(t1, t2, ..., tn)) ('>' if the dominance is
strict) (see Sen (1997), pp. 136 / 137). This implies that 1/n*∑ iu(xc

i)*(1-
G(u(xc

1),u(xc
2),...,u(xc

n))) ≥ 1/n*∑ iu(yc
i)*(1-G(u(yc

1),u(yc
2),...,u(yc

n))) whenever Xc u-
dominates Yc ('>' if the u-dominance is strict); and hence In(X)≤ In(Y) whenever Xc u-
dominates Yc ('>' if the u-dominance is strict). Thus In is u-dominance-consistent as
required. Q.E.D.

The second u-dominance-consistent inequality index to be defined can be interpreted
as a generalization of Atkinson's one-dimensional measure of inequality. In the
present case, the idea is to define a social evaluation function W which maps each
compensation matrix Xc to an 'equally distributed equivalent compensation figure', i.e.
a strictly positive real number µe such that W(Xc) = µe = W(Y), where Y is the n×k
matrix all of whose entries equal µe. The overall level of inequality under a
distribution X is then identified with the normalized difference between the 'equally
distributed equivalent compensation figure' of a perfectly equal distribution and the
'equally distributed equivalent compensation figure' of Xc.

The function W will be required to be a suitable 'social extension' of the (personal)
aggregation function u : R+

k →  R+. Define W : M (n,k) →  R+ as follows. This time, let
u(t) = ∑ j∈{1, 2, ..., k}tj

r (with 0 < r < 1). Given a distribution matrix X with row-vectors x1,
x2, ..., xn, let

W(X) = (1/n*∑ i(1/k*u(xij))s)1/(r*s) = (1/n*∑ i∈{1, 2, ..., n}(1/k*∑ j∈{1, 2, ..., k}xij
r)s)1/(r*s)

where 0 < r, s < 1. Then W satisfies the demanded properties: in particular, for any
matrix X, W(X) = µe = W(Y), where Y is the n×k matrix all of whose entries equal µe.
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Before we can define the inequality index, we need to state two lemmas:

Lemma 5.5. If w : R+ →  R+ is continous, increasing and strictly concave and C is a
fixed strictly positive constant,

max{1/n*∑ iw(ti) : t = (t1, t2, ..., tn) ∈  R+
n, where ∑ iti ≤ C}

exists and equals w(C/n).

Proof. Let B be the bistochastic n×n matrix all of whose entries equal 1/n. Given any t
= (t1, t2, ..., tn) such that ∑ iti ≤ C, let ε = (C-∑ iti)/n, and let t' = (t'1, t'2, ..., t'n) with t'i =
ti+ε. Then ∑ it'i = C, and since w is increasing, 1/n*∑ iw(t'i) ≥ 1/n*∑ iw(ti). Note that B(t'1,
t'2, ..., t'n)=(C/n, C/n, ..., C/n), where the vectors are interpreted as column vectors. But
since w is continuous, increasing and strictly concave, standard results (e.g. Sen, 1997,
theorem 3.1) imply that ∑ iw(C/n) ≥ ∑ iw(t'i), and therefore w(C/n) = 1/n*∑ iw(C/n) ≥
1/n*∑ iw(t'i) ≥ 1/n*∑ iw(ti). Q.E.D.

Lemma 5.6. Wmax:= max{W(Xc) : Xc is a compensation matrix} = 1.

Proof. By lemma 5.2.,

max{∑ iu(xc
i) : xc

1, xc
2, ..., xc

n are the row-vectors of some Xc}
= u(1, 1, ..., 1) = n*k,

whence, by lemma 5.5.,

max{1/n*∑ iu(xc
i)s : xc

1, xc
2, ..., xc

n are the row-vectors of some Xc}
= max{1/n*∑ iw(ti) : t = (t1, t2, ..., tn) ∈  R+

n, where ∑ iti ≤ n*k}
= (n*k/n)s  = ks, (with w(t) = ts)

and some easy manipulation yields the desired result. Q.E.D.

Lemma 5.6. confirms our intuition that the maximal value attained by the function W
for some compensation matrix Xc equals 1, which is the 'equally distributed equivalent
compensation figure' of the matrix all of whose entries equal µ1 = µ2 = ... = µk = 1.

Definition 5.7. A multidimensional generalization of Atkinson's one-dimensional
inequality index is given by the function In : M (n,k) →  R, where

        W(Xc)
 In(X) = 1 -     = 1 - (1/n*∑ i∈{1, 2, ..., n}(1/k*∑ j∈{1, 2, ..., k}(xij/µj)r)s)1/(r*s),
                   Wmax

where 0 < r, s < 1.
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Theorem 5.8. The above defined multidimensional generalization of Atkinson's one-
dimensional inequality index satisfies (C), (A), (N), (RI), (RS), (UPD), (UM), (DMC),
(DM+C) and (CIM).

Proof. (C): Consider the formulation

In(X) = 1 - (1/n*∑ i∈{1, 2, ..., n}(1/k*∑ j∈{1, 2, ..., k}(xij/µj)r)s)1/(r*s)

and note that the function which maps each X to Xc, as well as all other 'components'
of this function are themselves continuous functions; by the chain rule for continuity,
In is continuous.
(A): The invariance of In under permutations of the row-vectors x1, x2, ..., xn,
equivalent to permutations of the n terms (1/k*∑ j∈{1, 2, ..., k}(xij/µj)r), is obvious.
(N): If all rows of a distribution X are identical, again note that Xc is the matrix all of
whose entries equal 1. But we have seen above that, in this case, W(Xc) = 1, and hence
In(X) = 0.
(RI): Given a n×k matrix X, define Y and Yc as in the proof of theorem 5.4. (just use p
instead of r to denote the number of replications of X). Then

Ir*n(Y) = 1 - (1/p*n*∑ i∈{1, ..., p*n}(1/k*∑ j∈{1, 2, ..., k}(yc
ij)r)s)1/(r*s)

         = 1 - (1/p*n*p*∑ i∈{1, ..., n}(1/k*∑ j∈{1, 2, ..., k}(xc
ij)r)s)1/(r*s)

         = 1 - (1/n*∑ i∈{1, ..., n}(1/k*∑ j∈{1, 2, ..., k}(xc
ij)r)s)1/(r*s) = In(X).

(RS): As before, it is sufficient to observe that, for any n×n diagonal matrix
Λ=diag(λ1, λ2, ..., λn) (with each λi>0), (ΛX)c = Xc.
To prove that In satisfies (UM), (UPD), (DM+C), (DMC) and (CIM), it is again
sufficient to prove that In is u-dominance-consistent. First define E : R+

n →  R+ be the
function

E(t) = 1/n*∑ iti
s, with 0 < s < 1.

Now a result by Shorrocks (1983) implies that, since E(t) is symmetric, replication
invariant, increasing, strictly concave, and additive, the following holds: for any s, t ∈
R+

n, E(s) ≥ E(t) whenever s GL-dominates t ('>' if the dominance is strict). But this
means that 1/n*∑ iu(xc

i)s ≥ 1/n*∑ iu(yc
i)s (and hence In(Y) ≥ In(X)) whenever Xc u-

dominates Yc ('>' if the dominance is strict), and thus In is u-dominance consistent.
Q.E.D.
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6. Conclusion

In the present paper, I have first surveyed a number of dominance criteria representing
different answers to the question of when one multidimensional distribution is more
unequal than another: uniform Pigou-Dalton majorization (UPD), uniform
majorization (UM), directional/price majorization (DM(c)), non-negative
directional/price majorization (DM+(c)) and correlation increasing majorization (CIM),
and I have shown that they are logically interrelated in the following way ("⊆" ("⊂ ")
means "is a (proper) subrelation of"):

UPD ⊆  UM ⊂  DM(c)

          ⊂  DM+(c) (with UPD=UM whenever k≤2).
 CIM

It is important to note that, whilst (UPD), (UM) and (DM(c)) are sensitive to the
uniform inequality of a multidimensional distribution across people, only (CIM) and,
as I have shown, (DM+(c)) are sensitive to the cross-correlation between inequalities
in different dimensions.

I have secondly proposed a new method of constructing multidimensional inequality
indices. Given a multidimensional distribution matrix (subsequently normalized such
that the mean of each column, i.e. dimension of goods/attributes, equals 1), the first
step is to use a suitable function u : R+

k →  R+ to aggregate each person's row-vector of
goods/attributes into an overall evaluation figure for this person (representing how
well-off this person is in terms of his or her share of goods across the different
dimensions) and thus to transform a multidimensional distribution into a one-
dimensional distribution of evaluation figures. The second step is to note that, for our
definition of u, the generalized Lorenz ordering of these one-dimensional distributions
of evaluation figures respects all of the dominance criteria (for the original
multidimensional distributions) surveyed above. The third step is to define a
multidimensional inequality index (and thereby to extend the dominance-induced
partial orderings on the set of all multidimensional distributions to a complete
ordering) by using a suitable generalized-Lorenz-consistent aggregation function to
map each one-dimensional distribution of evaluation figures to a single real number,
representing the overall level of inequality in the given multidimensional distribution.

To illustrate the proposed method, I have defined two new classes of
multidimensional inequality indices:
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(a) a multidimensional generalization of the Gini-coefficient:
     for each distribution X = (xij) ∈  M (n,k) with column means µ1, µ2, ..., µk,

                          ∑ i∈{1, 2, ..., n}∑ m∈{1, 2, ..., n}min(∑ j∈{1, 2, ..., k}(xij/µj)rj, ∑ j∈{1, 2, ..., k}(xmj/µj)rj)
      In(X) = 1 -                             ,
                                                            k*n2

     where 0 < rj < 1, for each j; and

(b) a multidimensional generalization of Atkinson's one-dimensional inequality
     index:
     for each distribution X = (xij) ∈  M (n,k) with column means µ1, µ2, ..., µk,

      In(X) = 1 - (1/n*∑ i∈{1, 2, ..., n}(1/k*∑ j∈{1, 2, ..., k}(xij/µj)r)s)1/(r*s),

      where 0 < r, s < 1.

Both (a) and (b) satisfy continuity, anonymity, normalization (in fact, they always take
values in the interval [0, 1]), replication invariance and ratio-scale invariance.
Moreover, they respect all of (UM), (UPD), (DMC), (DM+C) and (CIM) and thereby
capture both Kolm's and Atkinson, Bourguignon and Walzer's intuitions about
multidimensional inequality: firstly, they are sensitive to how uniformly unequal the
distribution of goods/attributes across people is (by virtue of satisfying (UPD), (UE)
and (DMC)), and, secondly, they are sensitive to how systematically inequalities in
different dimensions are cross-correlated (by virtue of satisfying (CIM) and (DM+C)).

The results of this paper may thus point towards new ways of operationalizing the
ideas pioneered by Kolm (1977), Atkinson and Bourguignon (1982) and Walzer
(1983).
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