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ABSTRACT. A finite population of agents playing a 2 x 2 symmetric game evolves
by adaptive best response. The assumption that players make mistakes is dropped
in favour of one where players differ, via payofl heterogeneity. Arbitrary mutations
are thus replaced with an economically justified specification. The depth as well as
the width of basins of attraction is important when determining long-run behaviour.
With vanishing noise and balanced payofl variances, the risk dominant equilibrium
is selected. Unbalanced variances may result in the selection of other equilibria,
including the payoff dominant. The ergodic extrema correspond exactly to the
Bayesian Nash equilibria of the underlying trembled stage game. This enables an
analysis of the ergodic distribution for non-vanishing noise and larger populations.

1. INTRODUCTION

“That was excellently observed,” say I when I read a passage in another
where his opinion agrees with mine. When we differ, then I pronounce
him to be mistaken.

Jonathan Swift: Thoughts on Various Subjects.

The Nash equilibrium concept in strategic form games requires players to choose
payoff maximising actions, given their beliefs, and further imposes a consistency
requirement on the beliefs of all players. This concept, however, places strong ra-
tionality and epistemic requirements on players.! Furthermore, many games have
multiple Nash equilibria, leading to an equilibrium selection problem if the play of a
particular game is to be predicted.

Motivated in part by dissatisfaction with the requirements of Nash equilibrium
and with a desire to select among a multiplicity, a research programme has devel-
oped aiming to model the dynamics of boundedly rational agents. Influenced by the
evolutionary literature, pioneering papers such as Kandori, Mailath and Rob (KMR,
[8]) and Young [14] specify adaptive dynamics in which finite populations of players
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2 MYATT AND WALLACE

revise their strategies periodically. They observe the distribution of strategies in the
population and proceed to play a best response.? A purely deterministic dynamic re-
mains path-dependent, and the search for sharper conclusions leads these authors to
study perturbed Markov processes. Following the specification of a base non-ergodic
dynamic, perturbations are introduced, yielding irreducible Markov chains. The as-
sociated ergodic distribution is then characterised as the perturbations die away. For
generic games with strict Nash equilibria, the limiting process places all weight on a
single equilibrium. Within the class of 2 X 2 symmetric games, these models focus
on the Harsanyi-Selten [6] risk-dominant equilibrium.

These models involve naive belief formation and also drop the maximisation hy-
pothesis. The base dynamic specifies payoff maximisation given beliefs. Beliefs are
based merely on observed frequencies, and players are thus required only to know
their own payoffs. Such a process is path-dependent. For example, consider a 2 x 2
coordination game. An entrant to a population uniformly playing one strategy will
respond with the same, resulting in the critical nature of the initial population state.
To obtain an ergodic process, KMR, [8] and Young [14], among others, introduce
mutations, hence ensuring the irreducibility of the Markov chain. The interpretation
is that players make mistakes when updating their strategies. Long-run selection
results are obtained when these mutations are allowed to vanish in the limit. These
results are therefore based upon a weakening of payoff maximisation which is integral
to the notion of Nash equilibrium.

The roéle of such perturbations is critical but, absent a reasonable model, the spec-
ification of state-independent mutations is arbitrary. State-independent mistakes
imply that an agent fails to play an optimal response with the same probability ir-
respective of strategy frequencies, an unnatural feature in a coordination scenario.
This observation is central to an elegant critique by Bergin and Lipman [2|. They
demonstrate that mutations may be chosen such that any stationary distribution of
the base process is the limiting ergodic distribution of a perturbed process. In par-
ticular, any strict Nash equilibrium of a strategic form game is selected for a suitable
mutation model. In the light of this result, they argue (with good reason) that any
specific model of mutations must be justified; an arbitrary model will not suffice.

Intuitively, the basin of attraction for each equilibrium drives long-run selection.
Uniform mutation rates ensure that such a basin has constant depth. Hence the width
of the basin governs long-run behaviour. Mutation rates that differ by state result
in varying basin depth. It is then the overall volume of the attraction basin that
determines the long-run outcome.

The essence of the irreducibility of the adaptive process is that for a given state,
different entering or revising players may take different actions. KMR [8] and Young
[14] generate this by assuming that entrants may fail to optimise through occasional
error. The weakening of payoff maximisation via mistakes is premature. It is more
plausible to maintain the maximisation hypothesis and instead allow players to differ
in their preferences over outcomes. The best response of two distinct agents in an
identical situation may therefore be different.

2In fact, KMR [8] allow a wider class of underlying deterministic dynamics, and Young [14] allows
new or revising players to sample from a truncated history of play.



ADAPTIVE DYNAMICS 3

This paper presents an adaptive response model with payoff heterogeneity. Trem-
bles are added to a mean payoff matrix, and allowed to vary across strategy profiles.
This captures the idiosyncratic preferences of individuals. Notions of balanced and
unbalanced trembles are introduced, corresponding to the relative variability of pay-
offs. Facing a strategy frequency, an agent plays a best response without error. To the
observer, however, the action may appear mistaken relative to mean payoffs. Appar-
ent “mutations” arise as a natural consequence of this procedure. The approach has
a strong economic justification and moreover generates state-dependent mutations.?
These mutations have attractive properties, in particular they are small for uniform
populations. Payoff trembles are fully parametrised using the normal, yielding precise
results. Furthermore, this distributional assumption is intuitively appealing.

In the adaptive response dynamic employed, a finite population is subject to
turnover. Fach period, a randomly selected agent is replaced. The new entrant,
equipped with a trembled payoff matrix, plays a best response to the existing strat-
egy frequency. Implicit to this schema, an underlying renewal process is envisioned in
which players periodically revise their strategies or are replaced in continuous time.
Binmore and Samuelson [3] develop this approach more formally. Note that in a
continuous time framework, simultancous revisions (such as those used in KMR [8])
would be a measure-zero event.

The analysis uses the graph-theoretic techniques of Freidlin and Wentzell [5], so
profitably employed in earlier work, to characterise the stationary distribution of
the associated Markov process. The limit is taken as tremble variances fall to zero.
Although these converge to zero at the same rate, they endogenously give rise to
mutations converging to zero at different rates. Hence the observations of Bergin
and Lipman [2] are pertinent. The parametric specification of the model allows
a convenient decomposition of transition probabilities into densities and hazards.
Asymptotic properties of hazard rates enable the derivation of an exact criterion for
equilibrium selection. This condition relies solely on mean payoffs and the balance
of the trembles. Heuristically, the mean payoffs determine the width of attraction
basins whilst the trembles determine the depth.

For balanced trembles in the 2 X 2 coordination game, the dynamic selects the risk-
dominant equilibrium as heterogeneity vanishes. This reinforces the conclusions of
previous authors for this class of games. If trembles are unbalanced, however, the risk-
dominated equilibrium may be selected. A concept of generalised-risk-dominance is
introduced that better predicts the long-run outcome for small trembles. This concept
captures the role of payoff variability in determining the riskiness of equilibria. If an
equilibrium is both risk-dominant and generalised-risk-dominant, then it is selected.

A further issue to address is the relevance of the ergodic distribution. As noted by
Ellison [4] and others, for small mutations and large populations, the transition times
between long-run equilibria are large. Ellison markedly reduces transition times by
introducing local interaction of players, which here is analogous to a small population.
With this in mind, results for vanishing heterogeneity are particularly applicable when

3Binmore and Samuelson [3] also present a model with state-dependent mutations. They proceed
directly to the specification of the elements of a tridiagonal Markov matrix in a single-revision
dynamic. Hence their approach lacks an explicit economic justification.
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the population is small. For larger populations, the limiting results continue to hold,
but are of less interest. For such populations the ergodic distribution is only of
interest for non-vanishing noise.

Following this observation, the ergodic distribution is examined for fixed posi-
tive heterogeneity. The judicious choice of a parametric specification allows such an
approach. This type of analysis has been absent from previous research. With pos-
itive noise, the distribution places positive weight on all states and no equilibrium
is “selected”. Hence, the extrema of the invariant distribution are determined. A
convenient integral approximation to rooted tree weights is available, which becomes
exact for a larger population — precisely the case of interest. This approximation
is employed to show that the extrema of the ergodic distribution correspond to the
Bayesian Nash equilibria of the underlying trembled stage game. Therefore, a strong
relationship between adaptive behaviour and rational play is revealed. This relation-
ship is further explored in a companion paper, Myatt and Wallace [11].

Typically, the trembled stage game has either one or three Bayesian Nash equilibria.
For sufficiently small heterogeneity, there are three. As heterogeneity vanishes, they
converge to the two pure and one mixed Nash equilibria of the unperturbed stage
game.* The novel approach taken here allows an inspection of the close relationship
between the Bayesian Nash equilibria and the ergodic distribution of the adaptive
response dynamic. The two Bayesian Nash equilibria that correspond to the pure
equilibria lie at the modal points of the ergodic distribution. The “mixed” Bayesian
Nash equilibrium corresponds to a local minimum. As heterogeneity grows, all but
one of these Bayesian Nash equilibria eventually vanish. The remaining equilibrium
corresponds to the risk-dominant pure Nash equilibrium. Thus a bimodal ergodic
distribution becomes unimodal for sufficiently large heterogeneity, and the surviving
mode lies close to the risk-dominant strategy.

The argument proceeds as follows. In Section 2, the model with payoff perturba-
tions is presented, together with a motivating example of PC adoption. This example
is in a similar vein to that given by Kandori and Rob [9]. The analysis takes place
in Section 3. The stationary distributions for vanishing heterogeneity are charac-
terised in Section 3.3. Using the payoff assumptions the long-run selection criterion
is obtained. In Section 3.4 the results for non-vanishing noise are presented and the
ergodic distribution for this case characterised. Returning to the example in Section
4, the results are discussed and illustrated. These elements are drawn together along
with some concluding remarks in Section 5. For convenience, omitted results are
collected in an appendix.

4This is analogous to the purification argument of Harsanyi [7].
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2. THE MODEL

Section 2.1 describes the trembled stage game played by the agents. The dynamic
via which the population evolves is outlined in Section 2.2. To illustrate this model,
an example is presented in Section 2.3.

2.1. The Trembled Stage Game. The starting point for the analysis is the familiar
symmetric 2 X 2 strategic form game with generic payoffs:

1 2
a c

b d

2 c d

Notice that this game can be represented by a 2 X 2 matrix.

Definition 1. The mean payoff matrix is defined as:
a b
=]t
A player equipped with payoffs A, entering a population is a mean payolfl entrant.

Coordination games will be of particular interest, and will be the focus of subsequent
analysis. This is when a > ¢ and d > b. Such a game has two pure Nash equilibria,
(1,1) and (2,2) with associated security payoffs b and c¢. The symmetric mixed
equilibrium entails mixing probabilities of [z*, 1 — z*| where:

(d =)
(d=b)+(a—c)
Note that equilibrium (1,1) risk-dominates (2,2) if and only if a — ¢ > d — b, corre-
sponding exactly to z* < %

The payoffs A may be viewed as the mean payoffs for any entering player. Any
particular agent has heterogeneous preferences which are generated by the addition of
payofl trembles. Each payofl is subject to an independent Gaussian disturbance.® The
variances of these disturbances may be strategy profile specific, with a common scaling
factor which is allowed to vanish for limiting results. Clearly these disturbances
have a fully-parametric form. This, however, is a natural representation of differing
payoffs across players. In particular, one might view differences over a particular
payoff to be the resulting sum of many individual idiosyncratic factors, yielding the
normal distribution as a natural specification.® Furthermore, this formulation allows
clear closed-form results to be obtained. In the light of Bergin and Lipman [2],
full generality of trembles, particularly allowing trembles to vary by state, leads to
inconclusive results, and hence the approach is justified.

A

5The independence assumption is further discussed in Appendix A.1. The results are unaffected
by tremble correlation.

8The later analysis demonstrates that the key features are the asymptotic properties of the
densities and hazard rates of the disturbances. Thus any other distribution sharing these features
will lead to similar results.
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Definition 2. Define the payoff heterogeneity matrix ¥ as:
[
O, 0Og

An entrant has trembled payoff matrix A where:

7\:[ b

b ] _ l a+oe, b+ os ]
where g; ~ N (0,02), with E[g;2;] =0 fori # j and o is a common scaling factor.

o Q2

d c+oe, d+ ogy

Note that the payoff heterogeneity matrix ¥ determines the relative size of the payoff
trembles. The overall size is determined by the scaling factor . For later convenience,
the following definitions are introduced.

Definition 3. The payoff balance of A and the tremble balance of U are respectively:

_ * (a_c) o (034‘03)
A s ey S 5 e O e e

A game has balanced trembles if ¢ = % Otherwise it has unbalanced trembles.

Definition 4. Strategy 1 generalised-risk-dominates strateqy 2 whenever:
a—c d—>b

Using the notions of balance, this is equivalent to A/(1 — X) > /¢ /(1 — ). Assem-

bling these components yields the trembled stage game:

Definition 5. Define the trembled stage game G as the triple:
g=(AV,0)

Notice that G also represents a Bayesian game of incomplete information. This ob-
servation will prove useful in Section 3.4.

2.2. The Adaptive Response Dynamic. Take a finite population of n players.
During a period each player repeatedly plays randomly selected opponents from the
remaining n — 1 players. Their strategies are fixed during each period. Denote the
number of players using strategy 1 in a particular period as z, a member of the
finite state space Z = {0,... ,n}. At the end of each period, a randomly selected
member of the population leaves, and is replaced by another player with a newly
trembled payoff matrix A. This player observes the strategy distribution among the
incumbents and selects a best response to this frequency.

Although the dynamic is described via the entry of new players, an equivalent
scenario is one where members of the population periodically revise their strategy. In
this interpretation it is assumed that the preferences of an updating individual will
have changed since the last revision. This is represented as a fresh draw of the payoff
matrix A. For small noise this is a reasonable assumption. In the results, behaviour
in the limit as 0 — 0 is examined, corresponding exactly to this case. However,
the analysis also considers non-vanishing o. Here, the procedure can be justified by
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noting that players are more likely to revise their strategy whenever their preferences
change. In actual fact, this is a reasonable interpretation for any size of ¢, and so is
the preferred one.

A second issue is the assumption that only a single player revises their strategy
each period. In KMR [8], however, all players in the population revise simultaneously.
Lone revisions are more realistic. To see this, embed the model in a continuous
time framework. Consider individual players revising periodically according to an
underlying Poisson process. In this case, during any small period of time, at most
one revision will be observed with high probability. This is the approach of Binmore
and Samuelson [3].

2.3. An Ilustrative Example. A simple example is outlined which will later illus-
trate the main results. In spirit, this follows a leading example of Kandori and Rob
[9]. Consider a population of n academics in a research institution. All members use
personal computers (PCs) to conduct their work, and may adopt either the IBM or
Apple Macintosh (Mac) standards. Institution members interact during the course
of their work, and receive payoffs according to their PC and that adopted by their
colleagues. The strategic form game for mean payoff agents is:

IBM Mac
5 2

IBM 5 4
4 6

Mac 9 6

The payoffs are chosen as a stylised representation of the following criteria: Players
benefit from compatibility; given compatibility, Mac adoption results in higher pro-
ductivity than IBM adoption; the loss from incompatibility is less severe for IBM
users than Mac users due to wider outside support for the IBM standard. This game
has two pure strategy Nash equilibria corresponding to the two standards. Note that
although Mac is payoff dominant, IBM is risk-dominant (z* = % < %) The game is
thus a Rousseau [12] stag-hunt.

Using the formal notation of Section 2.1, this becomes the trembled stage game
Gre = (Apc, Upe, o). Of particular interest are the cases Upo € {Up, Uy} where:

3
@B:lg é‘| and\IJU:[g 61

corresponding to balanced and unbalanced respectively. The second configuration is
specified to reflect the increased risk of being a lone Mac user.

Fach period a randomly selected member leaves the institution and a replacement
chooses their computer system. As an alternative interpretation, researchers peri-
odically replace their PCs. At replacement time, however, it is assumed that the
requirements of the researcher are different from those at the time of the original
purchase, and hence payoffs are a fresh draw from the payoff distribution.
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3. ANALYSIS

The analysis begins by examining the play of a new entrant, and concludes that the
adaptive response dynamic is an irreducible Markov chain on the state space Z. Using
familiar graph-theoretic techniques, the invariant distribution is characterised. Limits
are taken as heterogeneity falls. Finally the case of non-vanishing heterogeneity is
analysed.

3.1. Entrant Response and Markov Properties. Consider a new entrant. Rep-
resent the fraction of the n — 1 incumbents playing strategy 1 as x. The payoffs from
strategies 1 and 2 are respectively:

y1 = za+(1—2)b=xa+ (1 —x)b+xe,+ (1 — )2
Yy, = 2i+(1—2)d=xc+ (1—2)d+xe,+ (1 —2)ey
so that:
yi—ye=x(a—c)— (1 —2)(d—>b)+x(cq —2c) + (1 — z)(gp — 4) (1)

An entrant chooses strategy 1 whenever y; > 1, or equivalently y; — yo > 0. Rear-
ranging Fquation (1) this occurs whenever:

2(ee — o) + (1 —2)(ea— &) <2x(la—c)— (1 —2z)(d —b) (2)

The left hand side of Equation (2) is normally distributed with zero mean and variance
o? (22 (02 4+ 02) + (1 — x)% (07 + 02)). Facing frequency z, the probability that the
entrant responds with strategy 1 is:

[2(a—c) — (1 - 2)(d — )]
Pr(llz] =&
[1]] (U\/xz(gg+gg)+(1—x)2(02+0§)>

where ® represents the standard Gaussian distribution. If i of the incumbents play
strategy 1, then x = i/(n —1). The notation is simplified by the following definition:

Definition 6. Define the basin depth as x? where k; salisfics:
B lifa—c)—(n—1i—1)(d—b)]
C VR + (=i = 1) (0] + )
Using this notation, strategies 1 and 2 are chosen with probabilities ® (k;/0) and
® (—k;/0) respectively.
The best response probabilities depend only on the strategy frequency among in-
cumbents. By assumption, the player leaving each period is chosen at random. The

(3)

new strategy frequency thus depends only on the previous state. Since the normal
distribution has full support, either strategy may chosen. Hence any state may be
reached in a finite number of steps with positive probability. Summarising;:

Proposition 1. The adaptive response dynamic is a homogeneous Markov process
on the finite state space Z. Moreover, it has a unique invariant (ergodic) distribution.

Proof. No states are transient. Standard results show that the process has a unique
invariant distribution — see for instance Theorem 11.2 of Stokey and Lucas [13].
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The transition matrix P corresponds to the Markov chain on 7. The following lemma
gives a convenient characterisation.

Lemma 1. The transilion probabilities p;; of the Markov matriz P salisfy:

[i/n] D (—k; 1/0) j=i—1
pij =1 [i/n] @ (ki1/0) +[(n— 1) /n] @ (—kifo) j=i (4)
[(n—1) /n] @ (k;/o) j=1i+1

and are zero elsewhere.

Proof. Start in state i. The process cannot move to j <i—1or j > i+ 1, since there
is a lone replacement. A move to state i+ 1 requires the loss of a strategy 2 player and
the gain of a strategy 1 player. The former occurs with probability (n —i)/n. The
best response of an entrant to the frequency i/(n — 1) is strategy 1 with probability
® (k;/0). A similar argument establishes the cases j =i and j =i — 1.

Example 1. The complete Markov matrix for the case n =3 and 0 =1 1is:

30 (—ko) 3P (ko) 0 0
P — 1 D (—KZ()) D (KZ()) + 29 (—Iil) 29 (Iil) 0
o 3 0 29 (—Iil) 29 (Iil) —I—q)(—KZQ) q)(I{Q)
0 0 3P (—KZQ) 3P (KQ)

3.2. The Ergodic Distribution. The Markov matrix is characterised by its main,
sub and super diagonals. Given this convenient tridiagonal form, the stationarity
equation P = p may be solved for the ergodic distribution. Following previous
work, however, the graph-theoretic approach of Freidlin and Wentzell [5] is employed.
These techniques were used by KMR [8], Young [14] and Ellison [4] among others,
and allow an immediate and intuitive closed solution.

The Freidlin and Wentzell [5] approach constructs a directed graph on the state
space / with edge weights corresponding to Markov transition probabilities. The
directed edge set F C Z x Z, has weights p : ' +— R', where the first and second
coordinates represent source and target nodes respectively. A tree rooted at z is a set
of edges h C 7 x Z such that each node 7 # z has a unique successor. All sequences
of edges lead to z, which has no successor. The collection of trees rooted at z is H,.
The weight of such a tree h is then:

Wp = H Dij
(i.5)€h
Following a standard notation, sum over all trees rooted at z to obtain:
heH,

At each step of the Markov chain, a route opens from each node to another. This
yields a directed edge set on the state space. Restricting to rooted trees gives route
sets which eventually lead to a specified node z. Appendix B gives a derivation
and explanation of the following lemma, due to Freidlin and Wentzell [5, Chapter 6,
Lemma 3.1] and briefly discussed in KMR [8].
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Lemma 2. The invariant distribution p satisfies:

q. ZheHz H(z‘,j)ehpij

po = =
Yovrez T > oiez EheHz/ H(i,j)eh Pij

This lemma provides an immediate closed form for the invariant distribution. The
relative weights of any two states in this distribution may be assessed by considering
the ratio q,/q... Appendix B also contains more detailed discussion of this technique.

In the context of the adaptive response dynamic, FEquation (5) takes a simple
form. Since the transition matrix P is tridiagonal, observe that associated to each
state there is a unique positively weighted rooted tree.

Lemma 3. For the adaptive response dynamic:

4z = H Pii+1) H Pii-1)
0<i<z z2<2<n
Proof. Begin at state 0. With positive probability the directed graph can remain at
0 (creating a loop) or proceed to state 1. From state 1, returning to state 0 again
creates a loop, and hence the only positively weighted path entails proceeding to node
2. Node z is reached eventually. A symmetric argument holds beginning at node n.

Vo T eeh
p(0.1) 1)
Lo (4,2

F1GURE 1. Tree Rooted at 2 = 1 with Zero Weight

p(0,1) p(2,1) P(3,2) p(4,3)
0 > 1 - 2<— 3 = 4

F1GURE 2. Tree Rooted at z = 1 with Positive Weight

Figures 1 and 2 illustrate this result graphically. Figure 1 depicts a tree for the case
n = 4 rooted at z = 1 with zero weight. Two of the edges leapfrog nodes, resulting
in a zero element in the product of the transition probabilities. Figure 2 shows the
unique positively weighted rooted tree for this node.

Combine Lemma 3 with the transition probabilities from Equation (4) to obtain:

1 ) K . K(i—1)
0= W n=oe (0) T1 o (-57) ©)
0<i<z z2<i<n
This characterisation simplifies further for the extreme states n and 0. These corre-
spond to the products of super and sub-diagonal elements respectively.
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Lemma 4. At the extreme states z € {0,n}, the invariant distribution satisfies:

I{Z/U ® (k;/0)
H D ( H 1—®(k;/0) (7)

0<i<n—1 KZ/U) 0<i<n—1

Proof. The power and factorial terms cancel. Re-index the equation to yield (7).

3.3. Long-Run Equilibrium with Vanishing Heterogeneity. Although Equa-
tions (6) and (7) give convenient forms for the invariant distribution, tighter results
are available in the limit. Previous authors have considered the limit of the ergodic
distribution as the probability of a mistake falls to zero. The analogue in this model
is vanishing heterogeneity, taking ¢ — 0. FExact conditions are established for the
selection of an equilibrium with vanishing trembles.

Focus throughout will be on the case of two pure strategy Nash equilibria. Recall
that the optimal response for a mean payoff entrant is to play strategy 1 when facing
a frequency x > z*. For convenience define i* = [z*(n — 1)], the least integer i such
that i > z*(n — 1). A mean payoff entrant plays strategy 1 when ¢ > i* incumbents
play strategy 1. As ¢ — 0 the system places more weight on certain states. The
following terminology formalises this notion:

Definition 7. For vanishing heterogeneity, z dominates 2’ whenever linéqz /q = 0.
ag—

The following lemma will also be of use:
Lemma 5. {/{i}?;ol satisfy a single crossing property. Generically k; > 0 < i > i*.7
Proof. The sign of k; is determined by the numerator of (3), and the result holds.

Consider the recurrent classes of an unperturbed Markov chain. It is standard that
for suitably perturbed processes the ergodic distribution focuses all weight on these
classes as perturbations go to zero. The recurrent classes correspond to the extreme
states z € {0,n}. Hence a mixture state is dominated for vanishing heterogeneity:

Proposition 2. z € {0,n} dominates any mizture state for vanishing heterogeneity.

Proof. For z > i* use Equation (6) to form g,/q,. Re-indexing the denominator:

lim 4n _ — lim Hz<i<n(n — )@ (k;/0) o (17;0 H (n—1) @(ki/o)

= lim ,
a-0(, UHOHZ<Z<n i® (—kKg-1)/0) eien (i+1)1—®(k;/0)

Now k; > 0 and hence ® (k;/0) — 1 as ¢ — 0. The denominator in each term tends
to zero, and hence lirr(l)qn/qz = 00. For z < %, compare ¢, to qp.
a—

The main result determines which of the extreme states is dominant. Former models
have shown that the strategy with the widest basin of attraction is selected. In the
current model the depth of the basin, k2, also plays a key réle. Therefore, the basin
volume is of critical importance:

7All the results hold for non-generic cases, in which x;+ = 0.
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Definition 8. Decfine the basin volume for strategies 1 and 2 respectively as:

B?:% Z k?  and ng:%Zli?

*<i<n—1 0<4<z*

The equilibrium selected is determined by the relative weight of the extreme rooted
trees. The weight of such a tree is the product of one step transition probabilities.
Each of these probabilities is a cumulative normal term ® or 1 — ®. These may be
rewritten as the ratio of a normal density and a hazard rate. Employing asymptotic
properties of these elements, the main result obtains:

Proposition 3. For vanishing heterogeneity, the strateqy with the largest basin vol-
ume 1s selected. That is, strateqy 1 dominates strateqy 2 if and only if BY > BJ.

Proof. Separate the product of Equation (7) to obtain:
@ _ s @ (ki/0) [Lics @ (xi/0)
G Ilicy 1= (5i/0)) [ 1155 (1 = @ (ki/0))
Using the single crossing property from Lemma 5, the numerator and denominator of

the left hand term tend to unity. Strategy selection is thus determined by the limit
of the right hand term:

i Hi<i* D (ki/0)

im

o0 [ 1550 (1 = @ (Ki/0))

Notice that both numerator and denominator tend to zero. Re-write this ratio as:

Hi<i* P(ki/0) . Hi<i* P(Ki/0) HiZi* P(ri/o)/ (1 — D(k;/0))

Do 0= @(5/0))  [low omi/0) " lior 0(5i/0)/®(w:/0)

The first term is explicitly:

2 _ 2
Hi<i* ¢(K1/O_) _ (27_[_)(71,21'*)/2 exp | — Zi<i* K ZZZZ* K (8>
HiZi* ¢(ki/0)

Consider a typical element in the numerator of the second term:

. P(ki/o) . Ki

1 = lim — 9

013(1)1—(1)(/@-/0) o0 0 ©)
Recall the hazard rate ¢(u)/(1 — ®(u)) of the normal distribution. By a standard

result this is asymptotically linear as u — 00.® Since k; > 0 for i > i*, (9) holds. An
identical argument holds for the denominator, where x; < 0. Hence:

lim [[ici ¢(ki/0)/P(ki/0) — lim o [l i

o=0] ;s @(i/0)/ (1 — @(k;/0)) o—0gn [Tis i (—5s)

which is polynomial in o. The first term (8) is exponential in 0. The limit becomes:

n—2%*
n V2 ; ,*;{?— ii*;{? (i K
limq— = lim (—ﬂ> exp (— EKZ 2 2 ) HKZ " (10)

o-0qy 00 o 202 Hizi* (_Ki)

8This result is reproduced in Appendix A.2 as Lemma 6.
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The exponential term dominates asymptotically, and hence the limit diverges when-
ever the numerator of the fractional term in the exponent is negative. We conclude:

lim 4n(7) = 400 @Z/{ >Z/{

g—0
qo( 1> <3 *

which is exactly the required inequality.

Equation (10) involves polynomial and exponential terms in o. If the selected equi-
librium (for example, strategy 1) is risk-dominant, then both terms diverge to +oo,
reinforcing selection. If the selected equilibrium is not risk-dominant (n < 2i*), how-
ever, then these terms compete. Therefore, a smaller ¢ is required to approximate
the limit. For the two player case the result is particularly clear.

Corollary 1. Forn = 2 strategy 1 dominates for vanishing heterogeneily whenever
it 18 generalised-risk-dominant. Fquivalently:
d—>b a—c

Vot ool

Proof. If n = 2 then ¢* = 1. The basin volumes are then:

Kl lla—c¢)? k2 1(d—b)?

— a pyp="t0_2V¥Z0)
2 202402 o > 2 202402

(11)

By =

which upon inspection yield the desired inequality.

Irom Equation (11) it is clear that in a game with balanced trembles (¢ = %),
equilibrium (1, 1) is selected if and only if 2* < % This corresponds exactly to risk-
dominance. The following corollary shows that this holds for the general n player
population. The proof is relegated to Appendix A.3.

Corollary 2. Consider a coordination game with balanced trembles. Strategy 1 dom-
nates for vanishing heterogeneity if and only if it is risk-dominant.

For balanced trembles this reaffirms the results of previous authors. However, the
selection of a risk-dominant equilibrium may fail via the introduction of asymmetry
in payoff heterogeneity. In Section 4 an illustration of this property is provided.

These results are particularly applicable to small populations, where transition
times are low. Intuitively, a small number of contrarian entrants is sufficient to
tip the process toward the opposing basin of attraction. With larger populations
transition times can escalate. Formally, however, the results of this section continue
to hold. Moreover, the basin volume condition of Proposition 3 is well approximated
by an integral for sufficiently large n. The following definition is useful:

Definition 9. The asymptotic basin depth is x(x)?, where:

o) = —lra=0) — 0 -y
Va2 + o) + (L= o) (o] +3)

Hence r; = k(i/(n — 1)). Similarly:
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Definition 10. The asymptotic basin volumes for strategies 1 and 2 respectively are:

*

1 T

By = / k(z)%dr and By = / w(z)2dx
z* 0

Notice that lim, .. B} = By and lim,_,,, Bf = B3°. For sufficiently large popu-

lations, strategy 1 is selected whenever B{® > B3°. The explicit solutions to these

integrals are given in Appendix A.4. They depend only on the payoff balance A and

the tremble balance .

0.9 1

Strategy 2
Selected

0.7 1

\
|
|
|
|
0.81 ‘ //
|
|
\
l
0.6 \
|
|

0.5 1

0.4 1

0.31 Strategy 1

Selected

0.2 1

0.1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3. Strategy Selection Regions and Boundaries for Varying n.

Figure 3 illustrates the selection criterion for various population sizes. A trembled
stage game G is characterised by its payoff balance A and its tremble balance .
The line plotted for each n represents B = BJ. To the right of this line strategy
1 is selected. Strategy 1 is risk-dominant to the right of the vertical line. It is
generalised-risk-dominant to the right of the line for n = 2. Notice that if a strategy is
both risk-dominant and generalised-risk-dominant then it is selected. Risk-dominance
continues to provide a reasonable basis for selection, but the generalised dominance
property is needed for sufficiency. There are regions of the balance space for which
a risk-dominant strategy is not selected, irrespective of population size. Selection
depends upon n in the region between the lines for n = 2 and n = .

3.4. Long-Run Equilibrium with Non-Vanishing Heterogeneity. As the Fl-
lison [4] critique makes clear, taking mutations (or in this case, heterogeneity) to the
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limit greatly amplifies the transition times between the long-run equilibria. This is
particularly acute for large populations. A large number of idiosyncratic entrants is
required to tip the population out of a basin of attraction. For small noise and large
populations, initial conditions are a more appropriate focus of attention. Hence, in
this section heterogeneity is fixed at some ¢ > 0. The ergodic distribution is char-
acterised for larger n, as this allows a convenient integral approximation to the tree
weights. Following this method, the modes of the distribution are calculated and the
shape of the distribution is examined.

Recall that the ergodic distribution is determined by the relative weights of rooted
trees. Define x; = i/n. The weight ¢, of the unique rooted tree at node z is given by
Equation (6). Denoting ¢, = q(z,,n):

alwn) = ]| G-w)2 <@> [ wo <_@>

0<i<an nr<i<n

~ exp ( 3 log(l - )@ <@> + ) logx® <—@>)

0<i<an rn<i<n

The summations in the exponent are well approximated by integrals for larger n.
Hence, fixing n, q(x,n) is approximately g(x):

o= (o[ [ st () ay s [ oo (-2) ) 2

Differentiating to find the extrema of the ergodic distribution obtains:

Proposition 4. For larger n, the extrema of the ergodic distribution correspond ex-
actly to the Bayesian Nash equilibria of the trembled stage game G.

Proof. Facing a frequency x, a player’s optimal response is strategy 1 with probability
® (k(x)/0). Bayesian Nash equilibria correspond to fixed points of x — @ (k(x)/0).
Consider now the extrema of Equation (12). The first derivative is zero when:

log(1 — z)® <@> — logz <1 — <@>> &z =3 (k(z)/o)

o
Thus the first order condition is satisfied at fixed points of @ (k(x)/0).

Proposition 5. Downcrossings of ® (k(x)/o) correspond to local mazima, upcross-
ings to local minima.

Proof. Fvaluating the second derivative of ¢(z) at a fixed point gives:

J'(2)20e <i+ : :/E> <'{/f>¢ <Kf>> - 1> >0

The sign is determined by the second term in this expression. A downcrossing (up-
crossing) of @ (k(z) /o) occurs exactly when this term is negative (positive).

Hence, to examine the modes of the ergodic distribution it is sufficient to analyse the
Bayesian Nash Equilibria of G. The following proposition is taken from Myatt and
Wallace [11], and establishes some of the properties of these equilibria. The proof is
contained in Appendix A.5.
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Proposition 6. For o sufficiently small there are three Bayesian Nash equilibria.
For o sufficiently large there is a single equilibrium.

Heuristically, suppose that strategy 1 is risk-dominant, so that z* < % Then there
is always at least one fixed point above z*. The other fixed points (if any) lie below
x*. To see this, notice that k(z*) = 0. Hence ® (k(z*)/0) = % for all 0. Clearly,
® (k(x*)/o) > z*, and thus there is a fixed point above z*. This is apparent from
Figure 4 which plots ® (k(x*)/0) and its fixed points for two different values of o.

1

/
0.9 1
e
0.8 - ’
Fixed Points //
A
0.7 1 /////
//// s
0.6 1 -7
B 4 —— Small Noise
0.5 ---Large Noise
Fixed Point — y =X
0.4 -

0.3 1

0.2+

0.1+

|
\
|
\
|
\
|
0O 01 02 03 04 05 06 07 08 09 1

FIGURE 4. Fixed Points of @ (k(x)/0).

The downcrossings of ® (k(z)/0) correspond to the modes of g(x). An upcrossing
corresponds to a local minimum. When strategy 1 is risk-dominant there is a single
mode to the right of x* for large o. For small ¢ there is also a local minimum and a
mode to the left. Thus, for sufficiently small o, the ergodic distribution is bimodal.
These modes correspond to the two extreme Bayesian Nash equilibria, which in turn
correspond to the pure strategy Nash equilibria as heterogeneity vanishes. There is
a local minimum between the two modes, corresponding to the third Bayesian Nash
equilibrium. As heterogeneity vanishes, this converges to the mixed strategy Nash
equilibrium of the unperturbed stage game. As o grows two of the Bayesian Nash
equilibria eventually disappear. The ergodic distribution becomes unimodal. The
only mode to survive is the one to the right of z*. Recall that this is the mode
that corresponds to the risk-dominant equilibrium as heterogeneity vanishes. These
properties are best discussed with reference to an example. In Section 4 ergodic
distributions are plotted for the examples introduced in Section 2.3.
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4. DISCUSSION

Here the results of the previous section are discussed and illustrated. Section 4.1 con-
siders the case of vanishing heterogeneity. Basins of attraction are graphed for both
balanced and unbalanced trembles, using the example Gpo of section 2.3. Section 4.2
considers this same example for non-vanishing heterogeneity. Graphical illustrations
clearly demonstrate the connection between ergodic distributions and Bayesian Nash
equilibria.

4.1. Vanishing Heterogeneity. Consider first the case of balanced trembles (¥ p).
Following Corollary 2, the risk-dominant equilibrium (IBM) is selected for vanishing
heterogeneity.

Population Share of IBM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mac

Basin Depth

FIGURE 5. Asymptotic Basins of Attraction for Balanced Trembles W g

The asymptotic basins of attraction are illustrated in Figure 5, clearly showing that
IBM has the larger basin and is thus dominant. Following the analysis so far, it is
clear that the balanced tremble PC adoption game is equivalent to a pure coordination
game with:

A/Pczlg g] and \IJB:l(l) (1)]
Using this formulation, an intuitive explanation for the result is available. First focus
on a two player population. Consider a researcher entering an institution with an
incumbent IBM user. For the entrant to adopt Mac, the researcher’s idiosyncratic
preference for lone Apple use must exceed 3. If the IBM user exits at the end of
the period, the process tips into the Mac equilibrium. Beginning with an incumbent
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Mac user, however, the idiosyncratic preference of the entrant has only to exceed 2
to enable the tip.

The conclusions are reversed for the case of unbalanced trembles (¥yr). The payofl-
dominant equilibrium (Mac) is selected for vanishing heterogeneity, for all population
sizes. Note that this is the generalised-risk-dominant equilibrium.

Population Share of IBM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Basin Depth

FIGURE 6. Asymptotic Basins of Attraction for Unbalanced Trembles Uy.

As can be seen from Figure 6, although the IBM basin is wider, the Mac basin is far
deeper, leading to Mac dominance. Once again, this result may be understood using
a transformation to a pure coordination game:

3 0 0 0.75
A’PcleQ] and \II’U:lQ 01

A new entrant facing an IBM incumbent still has a high hurdle to jump in order to
adopt the Mac standard. However, lone Mac users are now more idiosyncratic, so
that the probability of an entrant selecting against the incumbent standard is higher
for IBM incumbents than for Mac. It is thus easier to tip out of an IBM equilibrium.
Heterogeneity may be reinterpreted in a mutation framework. Recall that in state
i > 1" a mean-payoff entrant adopts strategy 1. In this model a “mutation” occurs
when the entrant plays strategy 2. This is not a mistake; rather the player has
sufficiently idiosyncratic preferences. This happens with probability 1 — @ (k; /o).
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Proposition 7. The model generates state-dependent “mutations”.

Proof. For states j > i > i*, consider the ratio of mutation probabilities:

S TS I L
1=®(k;/0)  ¢(rifo) /(1 =@ (ki/0)) 207
Let 0 — 0. As in Proposition 3, the hazard terms are asymptotically linear, hence

the exponential term dominates. Generically x? # /{? and so the exponential term is
0 or oo in the limit. Thus “mutations” do not converge to zero at the same rate.

Bergin and Lipman [2] have shown that the presence of state-dependent mutations can
influence the equilibrium selected. In order to make useful predictions therefore, they

suggest that a reasonable economic model should underlie the “mutation” process.
This is such a model.

4.2. Non-Vanishing Heterogeneity. The selection results discussed in the previ-
ous section provide good predictions for small populations. Figure 7 plots various
ergodic distributions for the PC adoption game with unbalanced trembles. For n =5
as 0 — 0 the distribution quickly places large weight on the selected strategy.

| /\\
\ s\

Share of IBM (sigma = 1 Share of IBM (n = 5)

n=30----- n =:60— - *n:90‘ ‘Dsigma:1Isigma:1.25l:|sigma:1.5‘

FicurEk 7. Ergodic Distributions for Wy .

For larger populations, however, the limiting results are less useful. For o = 1, allow-
ing the population to grow shifts weight back towards the risk-dominant equilibrium.
The results of Section 3.4 are more applicable under these circumstances.

Figure & fixes the population size at n = 30 in the PC adoption game with un-
balanced trembles. The ergodic distribution is plotted for three values of . Below,
the fixed points of ® (k;/0) are graphed. The close connection between the Bayesian
Nash equilibria and the ergodic distribution as derived in Proposition 4 is illustrated.
Upcrossings correspond to the modes and downcrossings to local minima. This has
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an intuitive explanation. Consider an incumbent population with frequency com-
position such that proportion z plays strategy 1, a Bayesian Nash equilibrium. An
entrant has variable payoffs, and therefore plays strategy 1 with probability . Thus
the population composition is not expected to change. Furthermore, if the incum-
bent frequency is close to a downcrossing, then the response probability will be even
closer. The population composition is thus expected to move toward the Bayesian
Nash equilibrium. The opposite applies to an upcrossing. Hence the former are
modes and the latter minima of the ergodic distribution.

Frgodic
Distributions

----sigma = 1.

—_— sigma = 1.

— - sigma = 2.

Bayesian Nas
Fquilibria

FIGURE 8. Ergodic Distributions and Bayesian Nash Equilibria (n = 30).

When risk-dominance coincides with generalised-risk-dominance (for example, when
trembles are balanced), the selected equilibrium with vanishing heterogeneity co-
incides with that under non-vanishing heterogeneity. When risk-dominance and
generalised-risk-dominance diverge, however, predictions are less clear-cut. Although
the generalised-risk-dominant equilibrium may be selected for small ¢ or small n,
when the population is large and noise is non-zero, risk-dominance is once again the
criterion of choice. By inspection of Figures 7 and 8, the ergodic mode that lies
closer to the risk-dominant equilibrium gains weight as the population increases. As
o grows, this is the only mode to survive.
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5. CONCLUSION

This paper is motivated by the belief that individuals differ rather than err. Although
players certainly make mistakes on occasion, different strategy selections in identical
scenarios are more likely due to idiosyncratic preferences. Drawing on both nonco-
operative and evolutionary game theory, the adaptively rational approach taken by
other authors is a profitable one. However, dropping the assumption that players
maximise is premature in a modelling context.

A simple model of adaptive dynamics is posited. It captures the notion of dif-
fering preferences via the introduction of payoff trembles. By specifying reasonable
parametric distributions for these trembles, a highly tractable model with sharp con-
clusions is obtained. In particular, the relative variability of payoffs can be critical
to equilibrium selection in 2 X 2 symmetric coordination games. The model endoge-
nously generates state-dependent “mutations” which converge to zero at different
speeds in different states. Hence the critique of Bergin and Lipman [2] is applica-
ble. The risk-dominant equilibrium need not be selected therefore, but in fact in
the presence of reasonable economically derived assumptions, it continues to play an
important roéle.

Previous models examine equilibrium selection as mutation rates tend to zero.
Here, vanishing heterogeneity is analogous. For balanced trembles the results support
those obtained by KMR [§] and Young [14], with the selection of the risk-dominant
equilibrium. With unbalanced trembles, however, this may not be the case. An
exact condition is derived for an equilibrium to be selected. It is not merely the
width of attraction basins that is critical, but also the depth of such basins. In
consequence, generalised-risk-dominance is a more appropriate criterion. It is best
applied in scenarios with small populations where transition times are reasonable.

Ergodic distributions are examined for non-vanishing heterogeneity. For larger
populations it is shown that the ergodic modes correspond to Bayesian Nash equilibria
of the trembled stage game. Using this result for larger noise, risk-dominance becomes
the key determinant of long-run behaviour, further strengthening the conclusions of
earlier work.

The approach taken here maintains the assumption that agents maximise payoffs.
Players are not fully rational however, as they play a best response to an incumbent
frequency. This is reasonable, as players engage in repeated play in a slowly evolving
population. KMR [8] may be interpreted similarly. If agents play only once following
an observation of history (as in Young [14]), then this is less appropriate. In such
an environment greater rationality on the part of the players might be expected. In
related work, Myatt and Wallace [11] allow for greater sophistication. In that paper,
players use history as a starting point for iterative reasoning. This process leads to
the selection of a Bayesian Nash equilibrium contingent on the past. History, which
provides the context for decision making, evolves as a result. The methods of Section
3 prove useful in the subsequent analysis.

In conclusion, for too long evolutionary game theory has followed its biological
roots in economic application. Commonality of payoffs may be appropriate in a bi-
ological context. As Maynard Smith [10] argues: “...Darwinian fitness provides a
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natural and genuinely one-dimension scale.

MYATT AND WALLACE

” Uniform preferences are a less reason-

able premise in an economic framework. State-independent mutation of strategies
is also a sensible component of a biological model. Neither state independence nor
“mutation” of strategies can be supported by empirical observation in economics.
This paper constitutes an attempt to ground evolutionary results in economic as-
sumption. Despite the change in modelling paradigm due to these alterations, the
result is not so different. The consequence is a renewed emphasis on risk-dominance,
and consensus is reached.

[1]
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APPENDIX A. OMITTED RESULTS

This appendix provides proofs omitted from the main text.

A.1. Correlated Trembles. It is clear that the trembled stage game is equivalent
to a pure coordination game with payoff and tremble matrices:

a 0 o, 0
A:lOdl and \Il:lo Ud}

Retain the earlier assumptions, except correlate £, and ¢4 with coefficient p. Facing
a frequency x, an entrant responds with strategy 1 whenever:

(1—2)eqg —xe, <za— (1 —2x)d
The left hand side is now distributed as:
N (0,0 (202 + (1 — 2)%07; — 22(1 — 2)p0aoy))
Basin depth x? now satisfies x; = & (i/(n — 1)) where:
B za— (1 —2x)d
V202 + (1 — 1)20% — 22(1 — 3)po,04

Using this generalisation, all the results continue to hold.

r(z)

A.2. Asymptotic Linearity of Normal Hazards.
Lemma 6. The hazard ¢(x)/(1 — ®(x)) is asymplotically linear as x — co.
Proof. Applying I'Hopital’s rule:

. o(z) o Plr) —2(1 - B(x) . D) -1
fim {W”}‘Jlﬂo 1— &() —JL%T@)—O

which gives the desired result.

T—00

A.3. Corollary 2 — Selection with Balanced Trembles.

Proof. For simplicity of exposition, and without loss of generality, take ¢ = b = 0.
With balanced trembles, the basin volume condition becomes:

ia — (n—i—1)d)* ia — (n—i—1)d)*
Z( ( )d) - Z ( ( )d)

24 (n—i—1) 24+ (n—i—1)?

0<4<z* t*<i<n-—1

Consider the right hand term. Make a change of variable j =n —i — 1 to yield:

ia — (n—i—1)d)* n—j—1)a— jd)?
Z( ( )d) 3 ((n—j—1)a— jd)

; ; < ; ;
oS UHmim P L P g1

If strategy 1 is risk-dominant, then a > d and i* < n—1—14*. The condition becomes:

ia—(n—i—1)d)*—((n—i— 1)a—id)* ia—(n—i—1)d)*
Z( ( )d)"—(( ) )< Z (ta—( )d)

24 (n—i—1) 24+ (n—i—1)?

0<4<s* *<i<n—1-—2*
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The right hand side of this expression is positive. Multiply out the numerator in each
of the left hand terms:

(ia —(n—i—1)d)? = ((n—i—1a—id)® = (i (n—i—1)?)(a® — d?)

This is negative since a® > d? and i*> < (n —i — 1)? for i < i*. In conclusion then;
the inequality holds, yielding sufficiency. Necessity follows since if a < d the same
procedure establishes the dominance of strategy 2.

A.4. Asymptotic Basin Volume. In Section 3.3, the asymptotic basin volume is
considered. Recall B{® = fml* k(x)*dz and B° = fom k(x)%dz. Using the terminology
of Section 2, the asymptotic basin depth of Definition 9 is proportional to:

s Qe— (=N —w)
) = A=) e )

Using this formulation, an explicit form for the integral [ k(z)%dx is available.

Proposition 8. The basin volume satisfies:
X - v o2+ 21/}2 arctan {M}
(1 —1p) (1 =)
+ (A=) log (va* + (1 — ¥)(1 — 2)®) + constant

Proof. Differentiate the above to obtain the expression from Equation (13).

/%(a:)Qda: =2+

Using this explicit form, the basin volumes B{® and B3° may be calculated. The plot
of Figure 3 for n = +00 is obtained by solving B{® = B3° for values A and .

A5, Proposition 6 — Fixed Points of ® (k(z)/0).
Proof. Fixed points of @ (k(x)/0) correspond to roots of:

fo-e (1)

Notice that f'(x) = ¢ (k(z)/0) K (x)/o —1. As 0 — oo, f'(z) — —1 uniformly for
x € [0,1]. Thus, for sufficiently large o, f (z) is decreasing everywhere. Hence f ()
only has one root local to x = 3.

When 0 — 0, f(z) =1 -z if 2 > 2* and [ (2) - —z if x < 2%, so there cannot
be a fixed point unless it is local to {0,2*,1}. Consider the interval 0 < z < e.
For sufficiently small o, f (x) is decreasing in this interval. Moreover, f (0) > 0 and
f(g) < 0. Therefore there is exactly one root in this interval. A similar argument
appliesstol —e <z < 1.

Now consider z* — ¢ < & < 2" + . Then f(z*—¢) < 0 and f(z*4+¢) > 0.
Again there is at least one root in the interval. ® (k(x)/0) is strictly increasing. A
fixed point of ® (k(x)/0) corresponds to a fixed point of its inverse. Local to x*
the derivative of the inverse is less than one. This locality expands as ¢ gets small.
Within this region there can be only one fixed point of the inverse and hence in this
interval the root of f (x) is unique.

ND [
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APPENDIX B. ERGODIC DISTRIBUTIONS AND ROOTED TREES
Here a brief explanation of the graph-theoretic methods used in Section 3 is provided.

B.1. Maps between Markov states. Consider a homogeneous Markov chain on
the state space Z = {0,1,... ,n} with generic member z. Represent the transition
probabilities by the (n+ 1) x (n+ 1) Markov matrix P = |p;;], satisfying p;; > 0 and
>.;pij = 1 for all 4, where as usual p;; = Pr[241 = j|ze = 1.

FIGURE 9. A function g: Z +— Z forn =5

Construct a function g : 7 +— Z from the state space into itself, and denote the set
of all such functions as G. An event at time ¢ may be viewed as a selection of a map
from the set G, as illustrated in Figure 9. Taking the power set 2¢ as the appropriate
algebra, a finite measure may be constructed on this space:

plgl = 1] pue
icZ
A notion of weight is immediate.

Definition 11. Define the weight of a function g € G by the measure p |g|.

This extends to give u;; = u{g: g(i) = j}, the total weight of all functions which
map 7 to j. Using this:

pii= Y oy =ps Y [1peow

g:g(d)=j keZ g:9(i)=j k#i
Clearly, the following lemma obtains.
Lemma 7. The measure p on {G, 2%} satisfies p; = pg;/ > ta-
Proof. Since the terms of the summation do not depend on the restriction of g(i):
Hij &Zg:g(i):j Hk;éipkg(k) _ by
Pig  Pik Dgigiyn L Lizi Pio)  Pin
The result clearly follows.
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B.2. Graph Representation. The map g may be re-interpreted graph-theoretically.
Construct a directed graph on the nodes formed by the Markov states. Then G rep-
resents the set of all directed graphs such that each node has a unique successor.
This re-formulation is illustrated in Figure 10, where the graph corresponding to the
function g of Figure 9 is illustrated. Similarly, p [g] is the weight of the tree g.

FicUurE 10. Graph representation of g : Z +— 7

Notice, however, that the graph of Figure 10 contains two cycles. Hence the nodes
present in the limit depend on the starting node. This is not true, however, if a
restriction to directed paths with a unique closed loop is imposed.

Definition 12. Define G, as the set of directed graphs with unique successors for
each node, such that the unique closed loop contains the state z.

FicUurE 11. Graph with a unique closed loop containing states 0,1, 2,3

In Figure 11 modifications are made to Figure 10, giving a graph with a single closed
loop. Note that this closed loop contains the nodes 0, 1, 2 and 3 and hence g € G, for
z in this range. Intuitively, at each time coordinate in the process, an event occurs
corresponding to g € G. If g € GG, then the resulting path leads toward state z.
Consider now the weight of g € G,:

2 [9] = Hpig(i) = Pzg(z) Hpig(i)

icZ itz
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Notice that the product in this second expression is the weight of the graph formed
by dropping the edge z — ¢(2). This yields a tree rooted at z; starting from any node
the directed edges form a path leading to node 2. Denote such a tree as:

he H, & h={(ig(i)) :i# 2.9 € G,}
Thus H, gives the set of trees rooted at z. This leads to:
p(h) = [ piocy

giving the weight associated with the tree. Furthermore, the total weight of all trees

rooted at z is:
q: = Z Hpih(i)

heH, iz

where the notation h(i) is equivalent to ¢g(i) with the exception of node z, for which
it is not defined. It is easy to see, then, that corresponding to any g € (G, there is a
unique tree rooted at z such that:

2 [9] = Pzg(2) sz‘h(z‘)
Moreover, any tree rooted at z may be extended to an appropriate member of GG, by
adding an edge from z. This is illustrated in Figure 12. The solid edges depict a tree
rooted at node z = 2, and the broken edges represent possible extensions to form a
member of (.

FIGURE 12. A tree h € H, rooted at z = 2 and some extensions

Clearly, such an extension procedure may be undertaken for any tree rooted at node

z. Hence:
G. = |J J{hu (=)}

heH, itz
To obtain the weight of all graphs in G, sum to obtain:

p|G,] = Z plgl = Z szi Hpih(i) = sziqz

geG, heH, i#z £z 1£z
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FIGURE 13. A tree h € Hj rooted at z = 3 and an extension to g € G4

A tree was obtained from g € G, by deleting an edge leading from z. Notice than an
alternative would be to remove an edge leading fo 2. For instance:

plol = 1] pioty = Prooy | [ Po
ez 24

It is clear, then, that G, may be constructed by considering sets of trees rooted at
other nodes, and the adding an edge from the root node of each of these trees to the
node z. This idea is illustrated in Figure 13. Thus:

G =J | {(hui 2}

i#2 he H;
and:
plG.] = Z plgl = Z Z Diz Hpkh(k) = sz‘z%
geEG, itz heH; ks itz

Notice then that Zi# D2y = Zi# Pi»q;. This becomes:
Forming the vector ¢ = [q,| this expression is ¢ = Pg. But then ¢ is a scaled ergodic
distribution. The following lemma (due to Freidlin and Wentzell [5]) is obtained.

Lemma 8. The ergodic distribution of the Markov chain p* satisfies:
i, = 9= _ ZheHz Hk;«éz Prh(r)
DY DY EheHi Hj;éi Pjn(y)
Notice that an ergodic process is required, since otherwise all rooted trees would have
zero weight, and the above expression would be ill-defined.
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