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Abstract

This paper looks at the problem of performing likelihood inference for limited dependent
processes. Throughout we use simulation to carry out either classical inference through a
simulated score method (simulated EM algorithm) or Bayesian analysis.

A common theme is to develop computationally robust methods which are likely to
perform well for any time series problem. The central tools we use to deal with the time
series dimension of the models are the scan sampler and the simulation signal smoother.

Some key words: Disequilibrium models, Gibbs sampler, Markov chain Monte Carlo, Scan
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1 INTRODUCTION

1.1 General problem

Suppose s ∈ Rn×p×q is jointly Gaussian with a density fS(s; θ) indexed by a finite dimensional

parameter θ. The task is to use likelihood methods to infer about θ in problems where there

is a form of time dependence in stij, t = 1, ..., n, i = 1, ..., p, j = 1, ..., q. The difficulty will be

that we observe only a coarse version of s, h(s), which we call y, where the support of y is a

proper subset of the support of s. Recently there has been extensive work in the econometric

literature on the use of simulation to estimate these types of coarse models in contexts where

the time dimension n is typically small and, conditional on some explanatory variables, the stij

are independent over j. This very interesting literature is reviewed by Hajivassiliou and Ruud

(1994). Our exposition will typically suppress the third subscript in stij as it adds nothing new

to the discussion.

In this paper we will focus mainly on time series problems, although some of the methods we

develop could be helpful in panel data contexts. We take n as the length of the p dimensional

time series and we suppose that n is typically large compared to p. Our desire is to develop

methods which typically deliver likelihood based estimators in O(np4) computations. We will

be able to carry this out by exploiting the common structure of time series models.

To focus ideas we will write down a general Gaussian model for s, which will be assumed

to follow a Gaussian state space form (see, for example, Harvey (1989) and de Jong (1989)).

This allows us to efficiently handle all Gaussian time series models except those which are

fractional. The structure of the model will be that s = (s′1, ..., s′n)′, where st = (st1, ..., stp)
′ is a

p-dimensional vector. Then

st = ct + Ztαt + Gtut, t = 1, · · · , n,
αt+1 = dt + Ttαt + Htut, ut ∼ NID(0, σ2I),
α0 = 0.

Typically ct, Zt, Gt,Ht, dt, Tt and Ht will be assumed to be fixed and indexed by a small dimen-

sional parameter θ, while we will write the signals ct +Ztαt as µt. We call the st the latent time

series. Examples of models which can be put in this framework are VARs, structural time series,

continuous time models observed irregularly and moving averages (Harvey (1989)). Notice that

st can be, and will in practice often be, non-stationary.

The advantage of insisting that the time series part of the model is placed into a Gaussian

state space form (SSF) is that it automatically means that a number of computational problems

have been solved allowing us to generically compute in O(np3) the following: (1) the joint density

fS(s; θ) by the Kalman filter (de Jong (1989)), (2) simulate from α|s, or µ|s using the simulation
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state and signal smoothers (de Jong and Shephard (1995)), (3) simulate with replacement from

st|s1, ..., st−1, st+1, ..., sn using the scan sampler (de Jong (1996)). Each of these algorithms will

prove to be helpful in dealing with non-Gaussian problems. The first two are detailed in the

Appendix, while the scan sampler will be introduced in Section 2 of the paper.

1.2 Limited dependent processes

We call yt a Gaussian limited dependent process if yt = h(st), and h() is not a one-to-one

function. If yt is multivariate then the process could include some variables which are identical

to elements of the st vector. The following subsections give examples of this setup.

1.2.1 Tobit structures

The univariate Tobit model is extensively studied and writes yt = max(0, st).

1.2.2 Probit structures

The univariate Probit model writes yt = I(st > 0), while a trivariate system might have

yt =


I(s1t − s2t > δ1)
I(s1t − s2t < δ2)
s2t

 ,

where st is bivariate. Here some of st is observed, while the others are subject to the typical

Probit cutoff. A simple case of this is where s1t and s2t are both nonstationary but obey a

cointegrating relationship with s1t − s2t being stationary. An interesting empirical example of

this situation is that of the interest rate charged by building societies in the United Kingdom

(see, for example, Anderson and Hendry (1984)) which moves only periodically and only when

it becomes significantly out of line with rates charged or offered by its competitors.

1.2.3 Disequilibrium processes

Models which allow for markets not to instantaneously clear have a long tradition in economics.

One econometric formulation of this phenomena is the disequilibrium model where the univariate

output, yt, is the minimum of demand and supply. Quandt (1982) reviews the econometric

literature on this topic. Suppose st = (s1t, s2t)′ contains supply and demand. Then

yt = min(s1t, s2t).

Recent work in this area includes Laroque and Salanie (1993) and Lee (1995a).
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1.2.4 Bid/ask price dynamics

In most markets assets are traded only at a fixed number of prices. An example of this is the

New York Stock Exchange where some stocks have tick sizes of as much as 1/8th of a dollar.

For high frequency data such discretisations could considerably distort the econometric analysis

and we have to explicitly model this institutional feature of the data.

In a recent paper Hasbrouck (1996) suggested a Gaussian limited dependent process for the

analysis of the dynamic behaviour of bid and ask quotes. Let µt denote the unobserved implicit

efficient price of a security, µt − βt be the bid price in the absence of discreteness restrictions

and µt + αt is the corresponding ask price. Here βt, αt reflects the non-negative cost of quote

exposure for small trades.

As the market prices occur on a discrete mesh the observed bid and ask prices are

bt = Floor(µt − βt), at = Ceiling(µt + αt),

where the Floor function rounds down to a whole integer and Ceiling rounds up. Hasbrouck

(1996) assumed µt follows a random walk, while αt was assumed to be an log-autoregression of

the form

{log (αt)− γ} = φ {log (αt−1)− γ}+ vαt,

where the error term was Gaussian. A similar model was specified for βt. Thus we have that

st = {µt, log (αt) , log (βt)}′ and

yt =

{
Floor(s1t − exp s3t)
Ceiling(s1t + exp s2t)

}
.

1.3 Likelihood inference

1.3.1 Simulated EM algorithm

In general it is easy to state what we must carry out to perform likelihood inference. The score

function is given by the usual EM algorithm result due to Louis (1982). We write the complete

data likelihood as fS(s; θ) while we will work with respect to the posterior distribution of the

complete data FS|Y (s|y; θ). Importantly this distribution has only positive probability at the

points s such that y = h(s). Then

∂ log f(y; θ)
∂θ

=
∫

y=h(s)

∂ log f(s; θ)
∂θ

dF (s|y; θ).

Generally FS|Y (s|y; θ) is intractable, however it will be seen that we can simulate from it, giving

the possibility of unbiasedly estimating the score. We will write in general

Q(θ, θ1) = ̂log f(y; θ) =
1
R

R∑
j=1

log f(sj; θ), where sj ∼ F (s|y; θ1).
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Iterating
∂Q

{
θ(k+1), θ(k)

}
∂θ

=
∂Q

{
θ, θ(k)

}
∂θ

∣∣∣∣∣∣
θ=θ(k+1)

= 0,

performs a series of stochastic EM updates. This is studied in Qian and Titterington (1991)

and Chan and Ledolter (1995), while earlier work on this subject includes Bresnahan (1981),

Wei and Tanner (1990) and Ruud (1991). A nice textbook exposition of this material is given in

Tanner (1996, Ch. 4). Typically this literature considers the use of simulation as a convenient

way of approximating the expectation step of the EM algorithm and so intends the applied

worker to take the number of simulations R as being very large in empirical examples.

Another literature has also grown up using this technique which suggests this procedure is

useful when R is small. This works off the result that averaging over possible simulations from

F (s|y; θ0) and data sets the expected value of ∂Q(θ0, θ0)/∂θ is zero, where θ0 is the true value of

the parameter. This extends the usual result that the score at the true value has zero expectation

and can be used to construct an estimating equation. If we assume that the simulations will be

smooth as a function of θ then1 the estimating equation

0 =
1
R

R∑
j=1

∂ log f(sj; θ)
∂θ

∣∣∣∣∣
θ=θ̂

, where sj ∼ F (s|y; θ̂),

gives a consistent estimator θ̂ which is typically asymptotically normal with a covariance matrix

which depends on the information matrix and the amount of simulation. The suggestion of using

this approach with a finite R and allowing n →∞ to produce approximate distribution theory

seems to have first occurred in the econometrics literature due to the work of Hajivassiliou and

McFadden (1996). This style of estimator is called a simulated scores estimator in econometrics,

although it is exactly a simulated EM algorithm with R being held fixed. As R →∞ it becomes

fully efficient and is an EM algorithm.

The requirement that the simulations from F (s|y; θ) be smooth in θ is quite restrictive as it

means that we cannot use rejection type methods to generate the simulations. Of course it can

be removed if we were to smooth the estimated score in some way — in very early work on the

use of simulation to perform inference Diggle and Gratton (1984) perform a sort of smoothing

to remove the non-differentiability in their estimated likelihood function. However, this will not

be discussed here as it reduces the simplicity of the approach.

1.3.2 Bayes estimator

An alternative likelihood approach is to advocate the use of a Bayes estimator, which focuses on

the posterior density of θ|y. This density is basically intractable when tackled directly, however
1This is quite a restrictive assumption, basically ruling out the use of rejection.
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again the use of simulation delivers easy methods. Suppose we can simulate from F (s|y; θ) and

in addition that we can simulate from f(θ|s). This second task is usually possible (although

it is often difficult) as s|θ is Gaussian and can be evaluated using the Kalman filter. Then we

can set up a simple Markov chain Monte Carlo (MCMC) sampler to analyse these problems.

A booklength review of this literature is given in Gilks, Richardson, and Spiegelhalter (1996).

Using this setup the sampler will proceed as follows:

1. Initialize θ.

2. Sample s ∼ F (s|y; θ).

3. Sample θ ∼ f(θ|s).

4. Goto 2.

This type of algorithm will, under some rather weak regularity, converge to a draw from

(s′, θ′)′ |y using Markov chain Monte Carlo results. Averaging subsets of these simulations will

lead to likelihood based Bayes estimators of the parameters. The resulting estimators, based

on the mean, median or mode of the posterior density of θ|y, are typically efficient (if viewed

as estimators from a sampling viewpoint) as shown by, for example, Barndorff-Nielsen and Cox

(1994, Ch. 4) for a wide class of prior distributions. Further, if the prior distributions are

believed then this approach gives a completely self contained method of performing inference.

Sometimes the sampling from θ|s is generically difficult (although in special cases it may not

be), even though we can evaluate the likelihood f(s; θ) and can sample from the conditionals

one at a time rather than the full density.

An alternative would be to add another line of simulation and so switch to the sampler

1. Initialize θ, s.

2. Sample s|y; θ.

3. Sample α|s, θ.

4. Sample θ|α, s.

5. Goto 2.

This procedure’s advantage is that it is usually easy to sample θ|α, s and is the approach we

advocate in this paper for the generic problem.
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1.4 Outline of paper

In the next section we will discuss various ways of constructing general algorithms for simulating

from s|y; θ. A key role will be given to the scan sampler. Section 3 will then discuss parameter

estimation in the context of a Tobit model, while Section 4 looks at a simple dynamic disequi-

librium model. Section 5 concludes. Finally, the Appendix details various algorithms featured

in the paper.

2 SIMULATING FROM s|y; θ

2.1 Conditional structure

The task will be to simulate from s|y; θ where we will assume s follows the Gaussian state space

form and each st has the deterministic constraint that yt = h(st). This is a particular form of

the non-Gaussian SSF, where the ‘measurement equation’ is a deterministic and non-invertible

function of a Gaussian SSF. As such, methods developed to efficiently handle non-Gaussian

stochastic measurement time series, such as Shephard and Pitt (1997), will not to very helpful

and there is a need for a new strategy.

Our suggestion is to design Markov chain Monte Carlo methods to handle these types of

problems. These methods will attempt to be as general as we can make them and be reasonably

efficient across a wide variety of problems.

The basic structure of our approach is that we intend to sample with replacement a single

st at a time given all the other latent points s\t = (s1, ..., st−1, st+1, ..., sn)′ and the observations

y, repeating this operation for t = n, ..., 1. However, this simplifies due to the structure of the

model as

Pr(st|s\t, y; θ) ∝ Pr(st|s\t; θ) Pr(yt|st; θ) = Pr(st|s\t; θ), ∀ st s.t. yt = h(st),
= 0, elsewhere,

and the model sets yt = h(st). Hence the problem reduces to one of simply efficiently computing

the Gaussian distribution of st|s\t; θ and then sampling from the constrained space induced by

knowing yt.

2.2 Scan sampler

At first sight the problem of evaluating the density of st|s\t; θ is the jackknife problem for SSF

and was solved by de Jong (1989). This is a mistake. The problem here is to evaluate this

density and sample with replacement, carrying this out for t = n, ..., 1 in only O(np3). Hence,

for example, if we evaluate sn|s\n; θ and then sample s
(1)
n from sn|s\n, yt; θ the next draw we
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have to make requires us to evaluate the distribution of

sn−1|s1, ..., sn−2, s
(1)
n ; θ.

Thus for each density evaluation the conditioning variable will change. This is a much harder

problem to solve than jackknifing which, if directly applied, would deliver an O(n2p3) operation.

Luckily for us this type of problem has recently been solved by de Jong (1996) in a result he

called the scan sampler. We believe this is a very important result and deserves some attention

in the econometrics literature. It has the following form in order to repeatedly sample from

st|s\t; θ with replacement:

Scan sampler (due de Jong (1996))

1. Requires that F−1
t , vt and Kt be stored from the Kalman filter on s1, ..., sn.

2. Set t = n, rn = 0 and Nn = 0 and then run for t = n, ..., 1.

3. Compute with Lt = Tt −KtZt

et = F−1
t vt −K ′

trt, sn
t ∼ N(st −D−1

t et,D
−1
t )

rt−1 = Z ′
tF

−1
t vt + L′

trt − V ′
t (st − sn

t ) , Nt−1 = Z ′
tF

−1
t Zt + L′

tNtLt,
(1)

where

Dt = F−1
t + K ′

tNtKt, Vt = F−1
t Zt −K ′

tNtLt.

4. Let t = t− 1. Goto 3 if t > 1.

The result is a new latent time series sn which comes about from a complete sweep of the

scan sampler. The scan sampler has close similarities to both the jackknife of de Jong (1989)

and the simulation signal smoother of de Jong and Shephard (1995) which draws µ|s; θ.

It is important to note that this sampler derives random variables st|s\t; θ from a density

which is strictly positive on Rp under the simple and very weak assumption that there does

not exist linear combinations of sj which are perfectly predictable from s\j for any j. If such a

model did exist then it is likely that we could reformulate it to satisfy the condition.

Of course the scan sampler we have just stated is an unconditional sampler, but we can

amend it in a straightforward way by simply replacing the sampling step

sn
t ∼ N(st −D−1

t et,D
−1
t ) = f(sn

t |s1, ..., st−1, s
n
t+1, ..., s

n
n),

by the more involved sampling problem of drawing from

Pr(sn
t |s1, ..., st−1, s

n
t+1, ..., s

n
n, yt; θ) ∝ Pr(sn

t |s1, ..., st−1, s
n
t+1, ..., s

n
n; θ), ∀ st s.t. yt = h(st),

= 0, elsewhere.
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Hence the only issue left is simply one of carrying out this slightly more involved sampling

problem: sampling from a normal distribution with a constrained support. Thus the scan

sampler has completely dealt with the time series aspect of the problem of handling these

models. We will return to this constrained sampling problem after the next subsection.

2.3 Alternatives to the scan sampler

The use of MCMC methods means that it is possible to use a huge variety of different methods

which will provide simulations from s|y; θ. Although each alternative will have a geometric

rate of convergence, under some weak assumptions, to s|y; θ it does not mean that they are all

equally good or general. Here we highlight two alternatives which are in general inferior to the

use of scan sampling but could be used in this context. A thorough empirical comparison of

their relative performance for the examples given below is given in detail in Manrique (1997).

Here we just mention the results.

2.3.1 Signal simulation smoothing

In some recent work, de Jong and Shephard (1995) showed how to efficiently sample in O(np3)

computations without iteration or rejection from the np dimensional normal distribution of

µ|s; θ. Clearly if GtG
′
t > 0 for all t then we might use the following scheme to sample form

s|y; θ.

1. Initialize s

2. Sample µ ∼ µ|s; θ.

3. Sample s ∼ s|µ, y; θ

4. Goto 2.

The advantage of this scheme is that Pr(s|µ, y) =
∏n

t=1 Pr(st|µt, yt; θ), which should be

relatively easy to sample. The difficulty with this approach would come if GtG
′
t was close to

zero, then knowing µ is very close to knowing s and so we might expect the sampler to converge

quite slowly. In the limit as |GtG
′
t| → 0 it would not converge at all. This is not a toy example,

for if st was an autoregression moving average of any order, then this is exactly the situation we

have just described. Indeed an algorithm based on the simulation signal smoother will only work

on models with explicit measurement error. This can be compared to the situation encountered

in Shephard and Pitt (1997) where the non-Gaussian measurement densities provided enough

non-Gaussian error to allow this style of argument to work.
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2.3.2 State sampler

The same problem occurs when we work with a MCMC sampler for the states, as suggested

by Carlin and Polson (1992) in this context. Their idea, following the more general methods

discussed in Carlin, Polson, and Stoffer (1992), was to use the conditional independence structure

of the states and sample in the following way

1. Initialize s and α.

2. Sample s|α, y; θ

3. Sample αt|αt−1, αt+1, st; θ, for t = 1, ..., n

4. Goto 2.

This sampler is uniformly worse than the simulation signal smoothing algorithm just de-

scribed as it performs an unnecessary Gibbs sampler at step 3. Further, it does not overcome

the measurement error difficulties we mentioned that can cause problems for these types of

samplers.

2.4 Sampling st|yt, s\t; θ

The use of scan sampling has reduced the problem of sampling from s|y; θ down to the task

of drawing from the multivariate normal distribution st|s\t ∼ N(γt,Σt) subject to constraints

that yt = h(st). For some simple problems this can be carried out by directly drawing from

this distribution. In general we have to rely on a Markov chain Monte Carlo technique to make

suggestions for possible new samples for st|s\t or for elements of that vector.

In general this is a difficult problem and has itself generated its own literature. A review of

this literature is given in Hajivassiliou and Ruud (1996).

There has been a great deal of recent work on the special case of this problem where yt = h(st)

can be represented by the requirement that

a0(yt) ≤ Ast ≤ a1(yt),

This setup covers important cases such as the multinomial Probit and Tobit models, although

we cannot put disequilibrium models and the bid/ask price model discussed above into this

framework. The simplest of general procedures, which can be carried out without rejection,

is to sequentially use truncated Gaussian draws inside a Gibbs sampler. This is discussed in

Hajivassiliou and Ruud (1996, p. 110-1). Notice there is no need to iterate until convergence

this sampler if the scan sampler is being used as the scan sampler is itself a Gibbs sampler.
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For more complicated functions yt = h(st) it seems difficult to be very prescriptive, rather

we will deal with it in an ad hoc way. However, it may be inevitable that we will not be able

to smoothly simulate from st|yt, s\t; θ, which will mean classical methods will become difficult

and we will typically resort to Bayesian methods. Indeed this will be what we do when we work

with the disequilibrium models in Section 4.

3 EXAMPLE: TOBIT

3.1 Basics

The model yt = max(0, st), for a linear regression model for st was suggested in pioneering work

by Tobin (1958). A review of much of the existing literature on this topic is given in Maddala

(1983). This section will extend this work to allow for a long time series dimension in st.

Chib (1992) proposes a MCMC method for the Tobit regression model, where st = x′tβ + εt,

where εt ∼ NID(0, σ2) and the regressors are thought of as being strongly exogenous. Now

θ = (β′, σ2)′ and Chib studied setting µt = x′tβ and then running

• Initialize s.

• Draw θ|s, and then construct µ.

• Draw s|µ, θ, y

• Goto 2.

This sampler is exactly of the form of the simulation signal smoother based algorithm dis-

cussed in the previous Section for the time series extension of this regression model. It will

generally work if σ2 > 0 which is not an unreasonable assumption in the context of this model.

However, this assumption becomes less convincing in the time series context.

3.2 Sampling st|s\t, yt; θ

For the Tobit model the sampling from st|s\t, yt; θ is straightforward, for

st|s\t, yt = yt, if yt > 0,

and, writing st|s\t; θ ∼ N(γt,Σt),

st|s\t, yt; θ ∼ TNst<0(µt,Σt), if yt ≤ 0.

Here the notation TNst<0 means that st has a truncated normal distribution and st < 0. As

we can sample smoothly from truncated normal distributions, the resulting Gibbs sampler will
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be smooth in the parameters and will converge to s|y; θ assuming st is not perfectly predictable

from s\t. In all our experiments we will always initialize st = yt if yt > 0 and −0.5 otherwise.

To illustrate the relative performance of the possible MCMC samplers for this problem, we

consider a simple experiment on the following model, where we assume |φ| < 1,

st = β + αt + εt, εt ∼ NID
(
0, σ2

ε

)
,

αt+1 = φαt + ηt, ηt ∼ NID(0, σ2
η),

α1|S0 ∼ N
{
0, σ2

η/
(
1− φ2

)}
.

We assume εt and ηt are mutually uncorrelated, while S0 denotes the information available about

α1 at time 0.

The experiment uses a data set of size 50 generated by this model using the parameter values

β = −0.5, φ = 0.95, σ2
ε = 0.1 and σ2

η = 0.1. The expected number of censored observations

is 34 while the actual number in the sample is 30. We run three different Gibbs sampler for

50, 000 iterations, discarding the first 1, 000 results, for the above set of parameter values. The

three samplers are the scan sampler, multi-move and the single move algorithms discussed in

Section 2. The resulting drawings from s4|y (y4 = 0) were inputted into a correlogram and are

reported in Figure 1. The idea is to represent the correlation in the sampler once it has reached

equilibrium. As we expected, the results show that the single-move sampler has a higher degree

of correlation than the multi-move sampler, which in turn, is more correlated than the scan

sampler. In all cases the correlation is modest, but that is because we are considering a very

simple model.

3.3 Estimation

3.3.1 Bayesian inference

Likelihood inference is straightforward for these truncated models as the simulator is smooth in

the parameters. The Bayesian solution was spelt out in the introduction of this paper and no

new issues arise. The generic algorithm takes on the form

1. Initialize θ, s,

2. Sample st|s\t, yt; θ, t = 1, ..., n,

3. Sample α|s, θ,

4. Sample θ|α, s,

5. Goto 2.
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Figure 1: Correlograms of y4|Y50. Indicates rate of convergence. From top to bottom: scan
sampler, multi-move sampler and single-move sampler

3.3.2 Quasi-maximum likelihood estimation

Although the Bayesian approach is computationally attractive, it requires the specification of a

prior distribution, which may be difficult to write (and inferences may be sensitive to) in some

cases. This makes the simulated EM algorithm attractive for this problem.

For censored time series models the simulated EM algorithm takes on a simple form. The

log-likelihood for any latent s can be computed as log f(θ; s) can be evaluated by the Kalman

filter. Therefore, the function to be maximised, possibly numerically, in the M-step, is

Q̃(θ, θi; s) =
1
R

R∑
j=1

log f(θ; sj), where sj ∼ F (s|y; θi).

The solution to this maximization problem will give θi+1. The process will be iterated until

convergence. We further notice that Q̃(θi, θi; s) is an unbiased estimator of the actual score for

the implicitly defined likelihood model for y.

It is important to point out that the same underlying random variates are used to simulate

from the conditional distribution s|y, θi throughout the iterative process, and so, the sampler is

smooth, i.e., is continuous on the parameters of the model θ, and hence, standard optimisation

methods can be used to compute the resulting estimator.
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3.4 A Monte Carlo study

In this subsection we will illustrate likelihood inference on the structure

st = x′tβ + αt + εt, εt ∼ NID
(
0, σ2

ε

)
,

αt+1 = φαt + ηt, ηt ∼ NID(0, σ2
η),

(2)

with |φ| < 1, εt and ηt mutually uncorrelated, and α1|S0 ∼ N
{
0, σ2

η/
(
1− φ2

)}
.

Example 1 We take xt = 1 for all t in the measurement equation, the states follow an autore-

gressive process of order 1, and the variances of both the measurement and transition disturb-

ances are time invariant. The artificial set of data is generated according to (2) with α0 = 0 for

different values of the parameters values.

Our approach is to perform both Bayesian and classical inference on the parameters of the

model, which in this case are given by θ = (β, σ2
ε , σ2

η , φ)′.

3.4.1 Bayesian inference

When we update the parameters we use the following conditional structure (1) β|s, α, σ2
ε , (2)

σ2
ε |s, α, β, (3) σ2

η |α, φ, and (4) φ|α, σ2
η . The first three have straightforward conjugate distri-

butions which we use. In particular, we use a flat Gaussian distribution for β, take χ−2
p S0 for

σ2
ε |y∗, α, β, and χ−2

q S1 for σ2
η |α, φ. Throughout we take q = p = 5 and S0 = p×1 and S1 = q×1.

We use 2Be(φ1, φ2)−1 as a prior family for φ, following Shephard and Pitt (1997) and Kim,

Shephard, and Chib (1996). This implies E(φ) = {2φ1/(φ1 + φ2)}− 1. We take φ1 = 10, φ2 = 2

so that φ has a prior mean of 0.66 and a standard deviation of 0.207. It could be argued that

our prior should be closer to a unit root for high persistence cases. To sample φ we adopt the

procedure used in Shephard and Pitt (1997) and Kim, Shephard, and Chib (1996), although a

more general procedure such as Chib and Greenberg (1994) could have been used.

The rate of the convergence of the sampler will vary depending on the true parameter values.

When the noise in the measurement equation is small, the sampler will converge slowly, especially

for small sample sizes, because the data hardly helps to discriminate between β and the states.

We also expect slower convergence of the sampler as the autoregression coefficient and/or the

noise in the transition equation increase, and for negative values of β, as the expected proportion

of censored observations in a sample is given by n × Φ
(
−β/

√
σ2

ε + σ2
η/ (1− φ2)

)
, where Φ (·)

denotes the cumulative distribution function of the standard normal.

Figure 2 and Table 12 present the results of the multi-move Gibbs sampler for a censored

model given in (2) with β = 0.25, σ2
ε = 0.5, σ2

η = 0.1, and φ = 0.95 using a sample of size 200.
2The summary statistics of Table 1 report the inefficiency factors of the sampler. These are estimated as

the variance of the sample mean from the MCMC sampling scheme relative to a hypothetical sampler which
draws independent random variables from the posterior. This ratio is estimated using a Parzen window (see, for
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Figure 2: Multi-move Gibbs sampler for a censored model with β = 0.25, σε = 0.707, ση = 0.316,
φ = 0.95. Sample size n = 200. Left graphs: the simulation against iteration number. Middle
graphs: histograms of the resulting marginal distributions and estimated densities. Right graphs:
the corresponding correlograms for the iterations

The initial parameter values are β = −0.2, σ2
ε = 0.4, σ2

η = 0.1, and φ = 0.9. We iterated the

Gibbs sampler on the states for 500 iterations and then the parameters and states for 1, 000

more iterations before recording any answers. The next 100, 000 iterations are recorded. The

number of censored observations in the sample is 76.

The results suggest that the sampler is reasonably efficient, for inefficiency factors in the

region of 30 suggest that the model can be quite precisely analyse in about 3000 iterations of

the MCMC algorithm. An interesting feature of the result is that the regression coefficient β is

not particularly well estimated, while φ is really poorly estimated.

example, Priestley (1981, Ch. 6)) with

R̂BM = 1 +
2BM

BM − 1

BM∑
i=1

K
(

i

BM

)
ρ̂(i),

where ρ̂(i) is an estimate of the autocorrelation at lag i of the MCMC sampler, BM represents the bandwidth,
and K the Parzen kernel given by

K(z) = 1− 6z2 + 6z3, z ∈ [0, 1
2
],

= 2(1− z)3, z ∈ [ 1
2
, 1],

= 0, elsewhere.

15



TRUTH Mean MCse Ineff Covariance and Correlation
β|y .25 .2920 .003578 23.9 .0536 -.0496 -.046 .092
σε|y .707 .6823 .000519 7.2 -.000701 .00372 -.360 .275
ση|y .316 .3827 .000979 19.4 -.000753 -.00155 .00495 -.571
φ|y .95 .8610 .000579 11.3 .00116 .000913 -0.00218 .00296

Table 1: Summaries of Figure 2. Sample size n = 200. MCse denotes the Monte Carlo standard
error of the simulation estimator of mean of the posterior density. Throughout these standard
errors are computed using 250 lags and 100, 000 iterations. Numbers in italics are correlations
rather than covariances. Ineff denotes the estimated inefficiency factor.

Example 2 Our second set of experiments deals with a censored model where the latent variable

st is defined by equations (2) with a 2-dimensional β = (β1, β2)′. For each t, xt = (x1t, x2t)
′ is a

2×1 matrix of exogenous variables. In our experiment, x1t = 1 for all t, and x2t are iid. U(0, 1)

random variables. As usual, α0 = 0 is imposed in the transition equation to generate the states.

The true parameter values are β = (0.25, 0.5)′ , σ2
ε = 0.5, σ2

η = 0.1, φ = 0.95. Results are

given only for the case where the sample size is n = 200.

The initial parameter values in the sampler are set to β = (0.1, 0.4)′ , σ2
ε = 0.4, σ2

η = 0.1, and

φ = 0.9. We iterated the Gibbs sampler on the states for 500 iterations and then the parameters

and states for 1, 000 more iterations before recording any answers. The next 100, 000 iterations

are recorded. Results for a sample of size 200 are given in Figure 3. The number of censored

observations in the sample is 62. The posterior means, covariance and correlation matrices, as

well as the Monte Carlo standard errors, are presented in Table 2.

TRUTH Mean MCse Ineff Covariance and Correlation
β1|y .25 .2432 .00790 30 .206 -.243 -.0440 -.0243 -.0518
β2|y .5 .4519 .000994 2 -.02449 .0490 .0150 .0384 -.00219
σε|y .707 .7487 .000428 5 -.00120 .000199 .00357 -.240 .186
σ2

η|y .316 .3270 .000838 19 -.000671 .000517 -.000870 .00369 -.537
φ|y .95 .9400 .000286 10 -.000659 -1.36e-005 .000311 -.000912 .000783

Table 2: Summaries of Figure 3. Sample size n = 200. MCse denotes the Monte Carlo standard
error of the simulation estimator of mean of the posterior density. Throughout these standard
errors are computed using 250 lags and 100, 000 iterations. Numbers in italics are correlations
rather than covariances. Ineff denotes estimated ineffiency factor

The results suggest that the sampler does not change its behaviour very much with small

changes in the model. Again this model could be reasonably analysed in 3, 000 iterations, while

the regression coefficients are again poorly estimated.
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Figure 3: Multi-move Gibbs sampler for a censored model with β = (0.25, 0.5)′, σ2
ε = 0.5,

σ2
η = 0.1, φ = 0.95. Sample size n = 200. Top graphs: the simulation against iteration num-

ber. Middle graphs: histograms of the resulting marginal distributions and estimated densities.
Bottom graphs: the corresponding correlograms for the iterations

3.4.2 Classical inference

To compute maximum likelihood estimators of the parameters we use the scan sampler inside a

simulated EM algorithm.

Example 3 (Special case of Example 1) The true parameter values are β = 0.25, σ2
ε = 0.5,

σ2
η = 0.1, and φ = 0.95 in the high persistence case and φ = 0.6 in the low persistence case.

Non-negativity constraint for the variances are imposed by the reparameterisations σ2
ε =

exp(θ1) and σ2
η = exp(θ2), and the stationarity constraint for φ is imposed by the reparameter-

ization φ = θ3/(1 + θ3). The parameter β is unconstrained.

For each data set yt, the initial value of θ is set to be θ(0) = (0, 1, 1, 0)′ . We check that the

results of the experiment are independent of these initial values.

The M-step of the simulated EM algorithm

1
R

R∑
j=1

log f(θ; sj), where sj ∼ f(s|y; θi)

is maximised using the BFGS method. Analytical first derivatives, derived by Koopman and

Shephard (1992), were used combined with a linear line search if necessary. The maximum
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number of iterations used in this maximization routine is 250. When convergence fails after 250

iterations, the estimates are reported as equal to zero. However, this case is very rarely. Once

we get the updated value of θ, θ(i) the scan sampler is applied to get s ∼ s|y; θ. Iteration of this

algorithm until convergence makes up the procedure.
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Figure 4: EM estimates against iteration number for 10 samples of size 200 taking R = 5 scan
draws. Illustrates the rapid convergence of the simulated EM algorithm

Results for R = 1, R = 5 and R = 10 are presented in Table 3. We use 250 replications. We

find that in this simple case there is little gain in taking R much bigger than 10. For each data

set, we consider 20 iterations of the algorithm. However, as Figure 4 shows, in most cases a

fairly small number is enough in the sense that after say i steps, θ(i+1) = θ(i). This suggests, by

using the scan sampler we have setup the EM algorithm to have only a small amount of missing

data.

The results of an experiment using 200 data sets and R = 5 scan draws for different sample

sizes are reported in Table 4. For each data set, we consider a maximum of 25 iterations of the

algorithm, except for n = 100 and φ = 0.95, when 50 iterations were required to get convergence

for 10 samples. The simulated EM algorithm very often estimates σ2
ε as zero, especially for

the low persistence case and small sample sizes. The variance of the estimates of β are much

higher for φ = 0.95 than for φ = 0.6. In the low persistence case, the algorithm yields very high

variance estimates of the autoregression coefficient.
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R Converge β σε ση φ
1 100 .2449 .6963 .3471 .9056

(.400) (.114) (.108) (.065)

5 100 .2539 .6966 .3370 .9091
(.382) (.078) (.080) (.055)

10 99.6 .2532 .6933 .3362 .9056
(.382) (.0829) (.082) (.080)

TRUTH .25 .707 .316 .95

Table 3: 250 Monte Carlo replications as an experiment to study the sampling behaviour of the
simulated EM algorithm. Sample size n = 200. Uses a variety of values of R. Converge denotes
the proportion of replications which converged.

n Converge β σε ση φ Converge β σε ση φ

100 99.6 .2852 .6450 .3667 .8479 97.5 0.2426 0.4146 0.4855 0.3582
(.499) (.167) (.143) (.138) (.117) (.325) (.263) (.346)

200 100 .2539 .6966 .3369 .9091 98 0.2354 0.4979 0.4537 0.4057
(.382) (.078) (.080) (.055) (.089) (.304) (.245) (.340)

500 100 .2262 .7043 .3246 .9351 100 0.2443 0.6152 0.3737 0.5573
(.274) (.045) (.052) (.024) (.052) (.225) (.196) (.223)

TRUTH .25 .707 .316 .95 .25 .707 .316 .6

Table 4: 250 Monte Carlo replications as an experiment to study the sampling behaviour of the
EM algorithm. Uses R = 5 scan draws. Converge denotes the percentage of optimisations which
converged

In our second experiment, the true parameters values are taken to be β = (0.25, 0.5)′ ,

σ2
ε = 0.5, σ2

η = 0.1, φ = 0.95. The initial values of the parameters are set to θ(0) = (0, 0, 1, 1, 0)′ .

The sampler is performed as in Example 1 but in this case the BFGS method to maximised the

log-likelihood for the ‘augmented’ data uses numerical derivatives and at each step, we consider

R = 10 scan samples. For each data set, the algorithm is iterated until convergence for a

maximum of 50 times. In Table 5 we only report results for n = 200. The sampler gets very

high variance estimates of the regression coefficient.
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β1 β2 σε ση φ

mean .2656 .4965 .6910 .3314 .9130
standard deviation (.400) (.225) (.065) (.071) (.049)
TRUTH .25 .5 .707 .316 .95

Table 5: 250 Monte Carlo replications as an experiment to study the sampling behaviour of the
EM algorithm. Sample size n = 200. Uses R = 10 scan draws.

4 EXAMPLE: GAUSSIAN DYNAMIC DISEQUILIBRIUM

4.1 Modelling framework

We consider in this section a dynamic single-market disequilibrium model specified by a demand

function, a supply function and a minimum condition

yt = min (s1t, s2t)

where yt denotes the quantity transacted at period t, s1t the quantity demanded at period t,

s2t denotes the quantity supplied at period t. We assume that st, which includes s1t, s2t as

elements, follows a Gaussian SSF. This process is generally called a linear Gaussian dynamic

disequilibrium model. This framework could be extended to allow yt to be multivariate with

yjt = sj+1t, j = 1, ..., P , where now st is a Gaussian SSF. This would be a time series system

which allowed a component to be the result of a disequilibrium. For simplicity of exposition we

remove this possibility here as the generalization to cover that problem is technically trivial.

The scan sampler can be used on this problem to deal with the time series aspect of the

model leaving the only unresolved difficulty being

Pr(st|s\t, y) ∼ Pr(st|s\t) Pr(yt|st),

which has a complicated support. Sampling from Gaussian static disequilibrium models involves

simply sampling which of s1t and s2t is exactly equal to yt and then sampling the other according

to a truncated normal distribution. In our problem we have

λt = Pr
[
s1t < s2t

∣∣∣s\t,min(s1t, s2t) = yt

]
=

fs1t|s\t
(y1t)×Pr(s2t>s1t|s\t,s1t=y1t)

fs1t|s\t
(yt)×Pr(s2t>s1t|s\t,s1t=yt)+fs2t|s\t

(yt)×Pr(s1t>s2t|s\t,s2t=yt)

and then conditional on s1t < s2t

s2t|s\t, s1t = yt ∼ TNs2t>s1t(µt,Σt).

An important point is that this simulator will not be continuous in the parameters, as λt depends

on the parameters under estimation.
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4.2 Previous work

Due to computational complexity and to the lack of computationally tractable statistical meth-

ods, disequilibrium models have mostly been specified and estimated without dynamic structures

(with the exceptions of Laroque and Salanie (1993), Lee (1995a) and Hajivassiliou and McFad-

den (1996)). Classic papers in this context include Fair and Jaffee (1972), Goldfeld and Quandt

(1975), Goldfeld and Quandt (1978), Maddala and Nelson (1974) and Hartley and Mallela

(1977). A common difficulty revealed by this literature is that there can be a very significant

problem of ML parameter estimates which occur on boundaries, while there are often multiple

maximums in the likelihood function.

Simulation methods can be devised to avoid the need for high dimensional integration and

so open up the ability to look at dynamic models. The simulated scores method developed

by Hajivassiliou and McFadden (1996), directly simulates the derivatives of the log-likelihood

function. Since maximum likelihood estimation is asymptotically efficient, simulated scores

should be used for the class of models for which it yields fast simulators that are smooth with

respect to the parameters. However, this is not possible here. For dynamic disequilibrium

models, simulated pseudo maximum likelihood methods have been suggested in Laroque and

Salanie (1993), and some simulated likelihood estimators based on sequential evaluations of the

likelihood as proposed by Hendry and Richard (1992) have been considered in Lee (1995b).

4.3 Illustration

To illustrate these points, we will apply the sampler to the following disequilibrium model:

s1t = a1x1t + φ1s1,t−1 + σ1ε1t,
s2t = a2x2t + σ2ε2t,
yt = min (s1t, s2t) ,

(3)

where yt is an observable variable, for t = 1, ..., n, st = (s1t, s2t)
′ is a latent endogenous variable,

ε1t and ε2t are independent, serially uncorrelated disturbances with N(0, 1) distributions, and

|φ1| < 1 to ensure stationarity. Finally, xt = (x1t, x2t)
′ is strongly exogenous, which will be

taken to be
x1t = 2.5 (1 + νt) ,
x2t = 5

(4)

with νt ∼ N(0, 1) and uncorrelated with (ε1t, ε2t). This is precisely the model considered by

Laroque and Salanie (1993). We will interpret s1t as latent demand. Demand depends on its

lagged value. The true parameters are set to a1 = 1, a2 = 1, σ2
1 = 1, σ2

2 = 1 and φ1 = 0.5. This

set-up ensures that E(s1t) = E(s2t), so that there is a roughly equal mix of regimes. Finally,
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s10 was drawn from the stationary distribution for s1t, i.e.,3

s10 ∼ N

(
2.5a1

1− φ1
,

σ2
1

1− φ2
1

)
. (5)

0 5 10 15 20 25 30 35 40 45 50

0

5

Obseved series

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15
Latent series

Demand Supply

-4 -2 0 2 4 6 8 10 12

0

5

10

15
Latent series

Demand x Supply x 

Figure 5: Observed and latent series

Figure 5 gives a plot of the simulated series with n = 50, which will be used in our illustration.

For this series the minimum was equal to supply 25 times. The top graph plots the observed

series, yt = min (s1t, s2t). The middle graph plots the unobserved latent series s1t (demand) and

s2t (supply). The bottom graph draws demand and supply against the demand variable. The

points in the bisecting line correspond to the 50 values of the demand variable, although they

are not time ordered. At any time t, s1t is the point on the bisecting line and s2t is the point

on the vertical line through s1t. By looking at this graph, we see that the observed variable is

equal to demand for observations on the left side of the graph, where s2t > s1t, and is equal to

supply for observation on the right side, where s2t < s1t.

The sampler4 is iterated I = 100 times in order to estimate the regime probabilities and the

excess supply series. Results are reported in Figure 6. The top left graph plots the true values

of the regime probabilities,
1 if yt = s2t,
0 if yt = s1t.

3In Laroque and Salanie’s paper, s10 is generated as (1 − φ1)
−1 [a1x10 + σ1ε10] .

4Initial conditions for the Kalman filter are set to be the unconditional mean and unconditional variance,
respectively although it would equally have been possible to use a diffuse initial condition here.
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Figure 6: True and fitted regime probabilities and excess supply series

The simulated regime probabilities are plotted in the bottom left graph. They are obtained as

the empirical probabilities, i.e., Pr(s2t > s1t|y) is estimated as ̂Pr(s2t > s1t|y) = nt/I, where

nt denotes the number of iterations where s2t > s1t. The top right graph plots the true excess

supply values (s2t − s1t) . The bottom right graph plots the fitted excess supply values which

are obtained as
1
I

I∑
i=1

{
s
(i)
2t − s

(i)
1t

}
where s

(i)
1t ,s(i)

2t denotes the value of s1t, s2t at the i-th iteration. As we have said before, either

s
(i)
1t or s

(i)
2t must be equal to the observed yt.

In most cases, the estimated probabilities are meaningful in the sense that they are quite

close to unity when the true probability was 1 and close to zero when the true probability was

0. However, the seventh observation is clearly misclassified ̂Pr(s27 > s17|y) = 0.16, and in 18 per

cent of the observations, the simulated probabilities belong to [0.4, 0.6] which makes it difficult to

distinguish between demand and supply observations. With respect to the fitted excess supply

series, we see that it picks out reasonably well the behaviour of the actual series, particularly

the peaks and lows after the first 12 observations. These results are quite encouraging as they

will allow us to forecast some economic indicators, although we need to bear in mind that we

have used the true parameter values.
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The same experiment was carried out with different number of iterations. The results do not

vary substantially, the simulated probabilities and excess supply series differ from the ones repor-

ted here by less than 0.05 and 0.25 respectively. Table 6 presents the percentages of observations

correctly classified for different number of iterations (I = 100, 200, 500). Approximately, 85%

of the demand observations are classified on the demand curve, 80% of the supply observations

are classified on the supply curve, and 83% of the total observations are correctly classified.

100 scan iterations
Demand 85.64
Supply 80.08
Total 82.86
200 scan iterations
Demand 85.80
Supply 80.64
Total 83.22
500 scan iterations
Demand 85.83
Supply 80.46
Total 83.14

Table 6: Percentages of observations correctly classified

We will return to this example at the end of the next subsection.

4.4 Parameter estimation

The first paper to use simulation techniques for the estimation of dynamic disequilibrium models

is Laroque and Salanie (1993), who propose the use of dynamic simulated pseudo-maximum like-

lihood methods. This technique relies on using dynamic simulations of the endogenous variables

conditionally on the exogenous variables to compute the first and second order moments of the

endogenous variables, and maximizing the resulting pseudo likelihood function to estimate the

parameters.5 It requires the exogenous variables to be strongly exogenously for the parameters

of interest.

An alternative technique has been proposed by Lee (1995b) who considers the use of simu-

lated likelihood methods based on factorizations of the sequential joint density of the observables

and latent dependent variables, as suggested by Hendry and Richard (1992). We will not report

this method here, although it has some advantages in this context.

We start this section by revising the Laroque and Salanie (1993) approach. Then, we suggest
5This technique is therefore related to the method of simulated moments developed by McFadden (1989) and

Pakes and Pollard (1989).

24



how to perform Bayesian inference using the sampler introduced above. The next subsection

will compare the two approaches in a Monte Carlo experiment.

Throughout this section, for any variable y, yt will denote (y1, ..., yt).

4.4.1 Dynamic Simulated Pseudo Maximum Likelihood Method

Laroque and Salanie (1993) propose a dynamic simulated pseudo maximum likelihood method

to deal with a very general class of dynamic non linear models, which encompasses LDV models

with lagged endogenous variables, both observed and latent, with or without serial correlation.

This paper extends some earlier work for static disequilibrium models (Laroque and Salanie

(1989)).

In short, dynamic pseudo-maximum likelihood (PML) methods consist in, using dynamic

simulations of the model, computing a pseudo likelihood function that depends only on the first

two moments of the endogenous variables. Specifically, we start from the following reduced form

model,
yt = g(xt, yt−1, s

∗
t−1, εt, b0)

s∗t = g(xt, yt−1, s
∗
t−1, εt, b0)

εt = R0εt−1 + ut

where yt is the vector of observed endogenous variables, s∗t is a vector of latent variables, xt is a

vector of strongly exogenous variables and εt are the structural disturbances. It is assumed that

the innovations ut are iid with known distribution. The parameter θ0 = (b0, R0) fully describes

the data generation process.

Laroque and Salanie (1993) focus on the so-called dynamic PML2 estimator which minimizes

ln(θ) =
1
2n

n∑
t=1

[{
Yt − Ft(xt, θ)

}′
Vt(xt, θ)−1

{
Yt − Ft(xt, θ)

}
+ log detVt(xt, θ)

]

over θ, where (gt) is a sequence of functions which represent the output of dynamic simulations

of the model, starting at period 1 with given initial values for period 0 and replacing lagged

dependent variables with their simulated values,6

Yt = vec(yt, ..., yt−k),
Gt(xt, ut, θ) = vec

{
gt(xt, ut, θ), ..., gt−k(xt−k, ut−k, θ)

}
,

for some integer k ≥ 0, and Ft, Vt are the first two moments of Gt conditional on xt, that is,

Ft(xt, θ) = E
{
Gt(xt, ut, θ)|xt

}
Vt(xt, θ) = V ar

{
Gt(xt, ut, θ)|xt

}
.

Notice that xt needs to be strongly exogenous so that in the conditional expectations that

we compute, the distribution of ut can be taken independent of the conditioning variables.
6The function gt takes as arguments the path of exogenous variables xt and of innovations ut as well as the

initial values (y0, y
∗
0 , η0).
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Under standard regularity conditions, this estimator is consistent and has satisfactory asymptotic

properties. However, these conditions may not hold when some variables are not stationary.

As it will generally be impossible to write down an analytical form for the dynamic simula-

tions Gt and their moments Ft and Vt, the function ln(θ) can be approximated by simulations.

This leads to the dynamic simulated pseudo-maximum likelihood (SPML) method.

Thus, at each period t, we draw H values of the innovations ut, uh
t . These draws, that must

be independent over t and over h, will be held fixed during the minimization of the criterion

function. For each h = 1, ...,H, we then compute recursively a dynamic simulation path for the

endogenous variables yh
t . The dynamic SPML2 estimator minimizes

lHT (θ) =
1

2T

T∑
t=1

[{
Yt − FH

t (xt, θ)
}′

V H
t (xt, θ)−1

{
Yt − FH

t (xt, θ)
}

+ log det V H
t (xt, θ)

]

over θ, where FH
t (xt, θ) and V H

t (xt, θ) stand for the empirical moments of (Y h
t )h=1,...,H.

Despite the generality and simplicity of the dynamic SPML method (the only requirements

for applying it are that one can draw the innovations from their distribution and that it is possible

to solve the model for the values of the endogenous variables) this technique yields simulators

that are only as differentiable as the functions g and g∗ with respect to the parameters, and so,

they are discontinuous even in Probit models.

Laroque and Salanie (1989) study consistency and the asymptotic distribution of the static

SPML2 estimator. Further study is required to extend those theoretical results to the dynamic

SPML2 estimator.

Laroque and Salanie (1993) test the dynamic simulated pseudo maximum likelihood method

on Monte Carlo generated data for the disequilibrium model defined by equations (3). They

report estimation results from 200 randomly generated 50-observations samples, where the first

two moments are approximated using 10, 20, or 50 dynamic simulations. The method appears

to be quite tractable and it converges in most samples. However, it is rather difficult to ob-

tain accurate estimates of the standard errors. To avoid the numerical computation of second

derivatives Laroque and Salanie use an approximation that relies on first derivatives but it is

only valid when both the sample size and the number of simulations are infinite. Unfortunately,

this yields mean estimates of the standard errors that are appreciably lower than the empirical

standard deviation of the estimated parameters. In an earlier unpublished version of the paper,

the authors apply the dynamic PML method to dynamic variants of the disequilibrium model

of the US labour market with wage and price adjustment of Quandt and Rosen (1986).
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4.4.2 Bayesian estimation

The unknown parameters in the model, say θ, can be estimated with Gibbs sampling by cycling

over the steps

θ ∼ θ|s, y and s ∼ s|y, θ.

We use the scan sampler to draw from y|s, θ. After assuming a known prior for θ, the Gibbs

sampling algorithm (with data augmentation) proceeds as follows:

• 1. Initialize θ.

• 2. For t = n, ..., 1 draw st|s\t, yt; θ using the scan sampler described in Section 2.

• 3. Draw θ from θ|s.

• 4. Goto 2.

4.5 A Monte Carlo study

4.5.1 Monte Carlo design

For sake of simplicity, we focus on the simple disequilibrium model given in (3), (4) and (5),

where xt = (x1t, x2t)
′ is strongly exogenous. In this framework θ = (a1, a2, φ1, σ

2
1 , σ

2
2)

′. In the

Bayes estimators the updating of the parameters θ|y, s follows exactly the same pattern as given

in the section on Tobit models.

Our experiment deals with the model defined by equations (3), which is precisely the model

analysed by Laroque and Salanie (1993). The true parameter values are a1 = 1, a2 = 1,

σ2
1 = 1, σ2

2 = 1 and φ1 = 0.5. The number of periods n is equal to 50 while we will employ

500 replications throughout. The aim of this section will be to replicate the results of Laroque

and Salanie (1993) and then compare them, in a simple Monte Carlo experiment, to the Bayes

estimator we advocate in this situation.

In order to start the algorithms we need to set initial values for the parameters. These

values were established in the same way as in Laroque and Salanie’s paper. Thus, they were

drawn from the uniform distributions on [0.5, 1.5] for a1, a2, σ1 and σ2, and from the uniform

distribution on [0.25, 0.75] for φ1.

4.5.2 Laroque and Salanie (1993) method

For small samples lHT (θ) is not particularly well behaved. Laroque and Salanie (1993) identify

three possible source of spurious minima when applying the dynamic simulated pseudo-maximum

likelihood to estimate this disequilibrium model, the ‘zero-variance’ minima, when the algorithm
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strays in a region in which σ2
1 and/or σ2

2 is close to zero, the ‘one-sided’ minima, when all

observations are classified to belong to the same regime, and the cases where the autoregressive

coefficient being equal or greater than 1 in absolute value. All three occur not infrequently in

the Monte Carlo experiment.

To try to be as kind as we could possibly be to the Laroque and Salanie (1993) procedure

we tried to eliminate these problems as much as we could7. We bounded the variances to

be greater than or equal to 0.1, we imposed |φ| < 1 and when we had numerical convergence

problems or boundary estimates we typically double H and then applied the method again (until

H = 50 when we stopped changing the parameters). Using this method we managed to get the

percentage of non-converging simulation experiments to be much lower than that reported in

Laroque and Salanie (1993).

Using 500 replications we get the following results reported in Figure 7 and Table 7. The

results indicate that typically the estimators become more precise as H increases, but that in the

cases of a1, σ1 and σ2 the parameters are not very precisely defined. The numerical optimisation

procedure continues to fail a worryingly large percentage of the time, although this also falls as

H increases.

H Converge a1 σ1 φ a2 σ2

10 97.2 1.029 1.019 0.5098 1.012 1.064
(.234) (.281) (.082) (.100) (.323)

20 99.8 1.058 0.9597 0.5012 1.008 1.024
(.357) (.256) (.061) (.096) (.366)

50 100.0 1.030 0.9276 0.4996 1.005 0.9847
(.205) (.219) (.059) (.068) (.260)

TRUTH 1.0 1.0 0.5 1.0 1.0

Table 7: Summaries of Figure 7. Laroque and Salanie’s method for various values of H.
Throughout we use n = 50 and perform 500 replications. Figures in brackets are the estim-
ated standard errors of the method, computed using the simulation. Converge calculates the
proportion of replications for which the procedure converged.

4.5.3 Bayes method

To start the scan sampler we need to set the initial values of demand and supply, st = (s1t, s2t)
′ ,

for the whole sample period. We do this by fixing both demand and supply equal to their

observed minimum value.

After i iterations of the Gibbs sampler, a sequence of parameter values θ1, θ2, ..., θi is

generated using each of the conditional posterior distributions listed above.
7Our Ox code for this experiment is available upon request from Aurora Manrique.
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Figure 7: Histograms of the 500 replications of the Laroque and Salanie’s estimator of the
disequilibrium model using n = 50. Top graphs have H = 10, middle H = 20 and bottom
H = 50. The true parameters are 1.0, 1.0, 0.5, 1.0 and 1.0 as we go from the left to the right.

Illustration We first look at a Monte Carlo experiment on a single data set. Later we will

look at the sampling experiment for 500 replications.

Figure 8 and Table 8 give the results. We iterated the sampler on the demand and supply

series for 500 iterations and then on the parameters and demand and supply series for 1, 000

more iterations before recording and answers. The next 10, 000 iterations are recorded. The

inefficiency factors of less than 10 for all the parameters, suggest that these models can be

estimated reasonably precisely with only about 1,000 iterations of the scan sampler.

When analysing the results of the experiment for the disequilibrium model, we see that most

of the estimates of a2 is bigger than unity, while most of the estimates of φ1, σ2 are lower than

the true values. The histogram for σ1 is centered around 1. The correlograms die out very

quickly. The sampler yields quite big posterior variances.

Once the parameters in both the demand and supply equations have been estimated, one

may like to estimate the probability of each observation being on the demand or on the supply

curve. We perform 100 iterations of the scan sampler to simulate both the regime probabilities

Pr(s2t > s1t|y) and the excess supply series (s2t − s1t) setting the parameters equal to their

estimates after 5, 000 and 10, 000 iterations of the sampler. Results are presented in Figure
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Figure 8: Gibbs sampler for a dynamic disequilibrium model with a1 = 1, σ1 = 1, φ1 = 0.5,
a2 = 1 and σ2 = 1. Left graphs: the simulation against iteration number. Middle graphs:
histograms of the resulting marginal distributions and estimated densities. Right graphs: the
corresponding correlograms for the iterations

9. The actual series is the same as used in Figure 6. Using the parameter estimates after

5, 000 iterations the graphs of simulated values very much replicate the ones obtained with the

true parameter values. Using the parameter estimates after 10, 000 iterations, nothing changes

substantially. Despite the flat part of the bottom left graph at t = 9, 10, 11 compared to the

small peak in the middle left graph, the simulated excess supply series follow the same pattern

for all the simulated probabilities at those points in time were quite close to 0.5. As before, the

simulated excess supply series fits the actual series quite well.

Sampling behaviour of Bayes estimators Now we repeat the experiment 500 times to see

the sampling behaviour of the parameter estimates. We use exactly the same data as used in

the previous section on the Laroque and Salanie (1993) procedure. Hence the only difference

in the estimates is due to the use of different procedures and the fact that both are simulation

based estimators.

Table 9 and Figures 10 give the results from the experiment. The results are exactly com-

parable with the earlier Table 7 reported for the Laroque and Salanie estimator. The results

indicate that the Bayes estimator is much more precise. A general figure seems to be about 2
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TRUTH Mean MCse Inefficiency
a1|y 1.0 1.051 .00208 6.7
σ1|y 1.0 1.009 .00342 5.4
φ1|y .5 .4708 .000596 2.8
a2|y 1.0 1.050 .00109 6.4
σ2|y 1.0 .8808 .00306 4.4

Covariance and Correlation
a1|y .00649 .171 -.398 -.220 .0188
σ1|y .00203 .0217 .0573 -.0742 -.0628
φ1|y -.00115 .000302 .00128 -.0735 -.0316
a2|y -.000762 -.000471 -.000113 .00186 .0339
σ2|y .000222 -.00136 -.000166 .000214 .0215

Table 8: Summaries of Figure 8. MCse denotes the Monte Carlo standard error of the simulation
estimator of mean of the posterior density. Throughout these standard errors are computed using
500 lags and 10,000 iterations. Numbers in italics are correlations rather than covariances

or 3 times as efficient. Further, the Bayes estimator was computed without any problems of

convergence.

a1 σ1 φ a2 σ2

0.9833 1.027 0.5139 1.014 1.054
(.131) (.132) (.048) (.074) (.161)

TRUTH 1.0 1.0 0.5 1.0 1.0

Table 9: Summaries of Figure 10. Bayes estimator using 1,000 iterations. Throughout we use
n = 50 and perform 500 replications. Figures in brackets are the estimated standard errors of
the method, computed using the replications.

5 PANEL DATA MODELS

In principle the time series models we have studied in this paper can be extended to panel data

contexts where we analyse many conditionally independent time series. The structure of the

model becomes yit = h(sit), where

sit = cit + Zitαit + Gituit, t = 1, · · · , n, i = 1, ...,N,
αit+1 = dit + Titαit + Hituit, uit ∼ NID(0, σ2

i I),
αi0 = 0,

where cit, Zit, Git,Hit, dit, Tit, σ
2 and Hit will be assumed to be deterministic functions of the

small dimensional panel random variable θi. Then si = (si1, ..., sin)|θi will be assumed to

be independent time series. We will learn about the individual series effects θi by making
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Figure 9: Regime probabilities and excess supply series. Top graphs: true values. Simulated
series with parameter values equal to their estimates after 5, 000 iterations in middle graphs and
after 10, 000 iterations in bottom graphs

an assumption that the θi are independent draws from some density f(θi|θ). We call θ the

parameters of the model.

Given θi the model raises no new issues for we can simulate from si|yi; θi using the methods

we developed in previous sections. Likewise we can simulate from θi|si or possibly from θi|αi, si

if this is particularly convenient by simply taking into account the prior density f(θi|θ).

6 CONCLUSION

This paper has set out a likelihood analysis of some Gaussian limited dependent processes. The

analysis is rather simple, based around a result called the scan sampler. This is completely

natural for these types of models.

Although the Gaussian assumption looks restrictive, it can in fact be generalized by allowing

the introduction of mixing type effects which allow heavy tailed models and level shifts. This

follows in spirit the work of, for example, Carter and Kohn (1994) and Shephard (1994).
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7 COMPUTATIONAL APPENDIX

This section details the algorithms given in this paper for general Gaussian state space form for

the time series st :

st = ct + Ztαt + Gtut, t = 1, · · · , n,
αt+1 = dt + Ttαt + Htut, ut ∼ NID(0, σ2I),
α0 = 0.

Typically ct, Zt, Gt,Ht, dt, Tt and Ht will be assumed to be fixed and indexed by a small dimen-

sional parameter θ, while we will write the signals ct + Ztαt as µt.

7.1 Kalman filter

The Kalman filter has the following form

Kalman filter (see, for example, de Jong (1989)).

1. Initialise t = 0, a1|0 = 0, and P1|0 = H0H
′
0

2. Compute

vt = st − Ztat|t−1, Ft = ZtPt|t−1Z
′
t+GtG

′
t,

Kt = TtPt|t−1Z
′
tF

−1
t ,

at+1|t = dt + Ttat|t−1 + Ktvt, Pt+1|t = TtPt|t−1T
′
t −KtFtK

′
t + HtH

′
t.

(6)
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3. Write t = t + 1. Goto 2 if t ≤ n.

Here Kt is called the Kalman gain, while vt and σ2Ft are the one-step ahead prediction

error (or innovation) and its mean square error, respectively. The scaled innovations F
− 1

2
t vt (or

generalised least squares residuals) are NID with zero mean and constant covariance matrix in

a correctly specified model.

The KF outputs allows the computation of the log-likelihood function via the prediction

decomposition, for, ignoring constants

log f(s1, ..., sn;ϕ) =
n∑

t=1

log f(st|s1, ..., st−1;ϕ) = −1
2

n∑
t=1

log |Ft| − 1
2

n∑
t=1

v′tF
−1
t vt. (7)

7.2 Simulation state smoother

Set Rt to equal to the non-zero rows of the Ht matrix. An example of this is an AR(2) with

measurement error. Using an obvious notation:

zt =
(

1 0
)

, Gt =
(

σε 0
)

, Tt =

(
φ1 1
φ2 0

)
,Ht =

(
0 ση

0 0

)
, Rt =

(
0 ση

)
.

Then the simulation state smoother draws from α|s. It has the form:

Simulation state smoother (due de Jong and Shephard (1995)).

1. Requires that vt, Ft and Kt be stored from the KF run on s1, ..., sn.

2. Set t = n, rn = 0 and Nn = 0.

3. Compute with Lt = Tt −KtZt

Ct = RtR
′
t (I −Nt) RtR

′
t, εt ∼ N(0, Ct),

rt−1 = Z ′
tD

−1
t vt + L′

trt − V ′
t C

−1
t εt, Nt−1 = Z ′

tF
−1
t Zt + L′

tNtLt + V ′
t C

−1
t Vt,

(8)

where

Vt = RtR
′
tNtLt.

4. Record ηt = RtR
′
trt + εt. Repeat for t = n, ..., 1.

The resulting η1, ..., ηn can the be padded out to produce a draw from the η̃1 = H1u1, ..., η̃n =

Hnun|s.
Once the disturbances of the states are drawn it is possible to reconstruct the state via the

running of the forward recursion

at+1|n = dt + Ttat|n + η̃t.
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7.3 Simulation signal smoother

The simulation signal smoother (de Jong and Shephard (1995)) draws from

(c1 + Z1γ1, ..., cn + Znγn) |s.

Setting rn = 0 and Nn = 0, for t = n, ..., 1 , and writing Dt = F−1
t +K ′

tNtKt, nt = F−1
t vt−K ′

trt

Ct = Σt −ΣtDtΣt, κt ∼ N(0, Ct),
rt−1 = Z ′

tF
−1
t vt + L′

trt − V ′
t C−1

t κt, Vt = Σt (DtZt −K ′
tNtTt) ,

Nt−1 = Z ′
tF

−1
t Zt + L′

tNtLt + V ′
t C

−1
t Vt.

(9)

Then st − Σtnt − κt is a draw from the signal ct + Ztγt|s.
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