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Abstract

This paper analyses the recently suggested particle approach to filtering time series.
We suggest that the algorithm is not robust to outliers for two reasons: the design of the
simulators and the use of the discrete support to represent the sequentially updating prior
distribution. Both problems are tackled in this paper. We believe we have largely solved the
first problem and have reduced the order of magnitude of the second.

In addition we introduce the idea of stratification into the particle filter which allows
us to perform on-line Bayesian calculations about the parameters which index the models
and maximum likelihood estimation. The new methods are illustrated by using a stochastic
volatility model and a time series model of angles.

Some key words: Filtering, Markov chain Monte Carlo, Particle filter, Simulation, SIR, State
space.
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1 INTRODUCTION

1.1 The model

In this paper we model a time series yt, t = 1, ..., n, as being conditionally independent given

an unobserved sufficient state αt, which is itself assumed to be Markovian. The task will be to

use simulation to carry out on-line filtering — that is to learn about the state given contempor-

aneously available information. We do this by estimating the difficult to compute density (or

probability distribution function) f(αt|y1, ..., yt) = f(αt|Yt), t = 1, ..., n. In a later section we

will extend this model to the case where lagged observations affect both the measurement and

transition equations and to where yt depends on both αt and αt−1.

We assume parametric forms for both the ‘measurement’ density f(yt|αt) and the ‘transition’

density of the state f(αt+1|αt). The state evolution is initialized by some density f(α0).

Filtering can be thought of as the repeated application of a two stage procedure. First the

current density has to be propagated into the future via the transition density f(αt+1|αt) to

produce the prediction density

f(αt+1|Yt) =
∫

f(αt+1|αt)dF (αt|Yt). (1)

Second, we move to the filtering density via Bayes theorem

f(αt+1|Yt+1) =
f(yt+1|αt+1)f(αt+1|Yt)

f(yt+1|Yt)
, f(yt+1|Yt) =

∫
f(yt+1|αt+1)dF (αt+1|Yt). (2)

This implies the data can be processed in a single sweep, updating our knowledge about the

states as we receive more information. When the integrals cannot be analytically solved then

numerical methods have to be used. These typically require us to be able to evaluate both

f(yt|αt) and f(αt+1|αt). We will see that the most basic of the methods developed in this paper

will only require that we can simulate from f(αt+1|αt) and evaluate f(yt|αt). If we can evaluate

f(αt+1|αt) then this knowledge can be used to improve the efficiency of the procedures.

There have been numerous attempts to provide algorithms which approximate the filtering

densities. Important recent work includes Kitagawa (1987), West (1992b), West (1992a), Ger-

lach, Carter, and Kohn (1996) and those papers reviewed in Harvey (1989, Section 3.7) and

West and Harrison (1997, Ch. 13 and 15).

This paper uses simulation to perform filtering following an extensive recent literature. Our

approach is to develop the particle filter which has recently been suggested independently by

various authors. In particular it is used by Gordon, Salmond, and Smith (1993) on non-Gaussian

state space models. The same algorithm, with extensions to the smoothing problem, has been

independently proposed by Kitagawa (1996) for use in time series problems. It reappears and
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is then discarded by Berzuini, Best, Gilks, and Larizza (1997) in the context of a real time

application of the sequential analysis of medical patients. It is again proposed by Isard and

Blake (1996), in the context of robustly tracking motion in visual clutter, under the name of the

“condensation” algorithm. Similar ideas are used on the blind deconvolution problem by Liu and

Chen (1995). Some statistical refinements of this class of algorithm, generically called particle

filters, is given in a paper by Carpenter, Clifford, and Fearnhead (1997). The idea of calling this

class of algorithm ‘particle filters’ is due to Carpenter, Clifford, and Fearnhead (1997), although

the use of the phrase ‘particles’ appears in Kitagawa (1996).

Our paper will discuss the particle filtering literature and extend it in a number of directions

so that it can be used in a much broader context.

The outline of the sections of this paper is as follows. In Section 2 we analyse the statistical

basis of particle filters and focus on its weaknesses. In Section 3 we introduce our main contribu-

tion, which is an auxiliary particle filter method. This is as simple and as general as the original

particle filter, but it is much more efficient when we deal with difficult problems. Further, it can

be extended conveniently in cases where the transition and measurement densities of the state

space model are analytically tractable. In Section 4 we generalize the particle filter approach

to what we call a fixed lag filtering algorithm, where we update the discrete distribution due to

the arrival of blocks of data. In addition we discuss the use of stratification in this context. In

Section 5 we apply the particle filters to estimating unknown parameters using a Bayesian and

maximum likelihood approach. Section 6 applies this work to a stochastic volatility model. Sec-

tion 7 extend the methods to allow for feedback. Section 8 concludes, pointing out the remaining

weaknesses of our new method.

2 PARTICLE FILTERS

2.1 Discrete support makes filtering easier

Importantly, if the support of αt is finite set of known discrete points, rather than continuous,

then the problem of approximating the integrals required to evaluate the filtering densities

disappears. In particular the prediction density, (1), becomes

f(αt+1|Yt) =
∑
αt

Pr(αt+1|αt)f(αt|Yt),

which weighs all propagated points by the transition density. Likewise the filtering density, (2),

is

f(αt+1|Yt+1) =
f(yt+1|αt+1)f(αt+1|Yt)∑

αt+1
f(yt+1|αt+1)f(αt+1|Yt)

,
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which weighs each state by the likelihood. Hence discrete state space models are easier to handle

than continuous ones.

2.2 The definition of particle filters

Particle filters are the class of simulation filters which recursively approximate the filtering

random variable αt|Yt = (y1, ..., yt)′ by the cloud of points or ‘particles’ α1
t , ..., α

M
t , with discrete

probability mass of π1
t , ..., π

M
t respectively. Hence a continuous variable is approximated by

a discrete one with a random support. These discrete points are thought of as samples from

f(αt|Yt). In the literature all the πj
t are assumed to all equal 1/M , so the samples can be thought

of as a random sample, but here we will allow more flexibility. Throughout M is taken to be

very large. Then we assume that as M → ∞, the particles can be used to increasingly well

approximate the density of αt|Yt.

Particle filters treat the discrete support generated by the particles as the true filtering

density (this is similar to the bootstrap which treats the empirical distribution function as the

true data generation process (see, for example, Efron and Tibshirani (1993, pp. 35-37))). This

allows us to produce an approximation to the prediction density, (1), via the results on discrete

filters. We call

f̂(αt+1|Yt) =
M∑

j=1

f(αt+1|αj
t )π

j
t , (3)

the ‘empirical prediction density’. This can be combined with the measurement density to

produce, up to proportionality,

f̂(αt+1|Yt+1) ∝ f(yt+1|αt+1)
M∑

j=1

f(αt+1|αj
t )π

j
t , (4)

the ‘empirical filtering density’ as an approximation to the true filtering density (2). Generically

particle filters then sample from this density to produce new particles α1
t+1, ..., α

M
t+1 with weights

π1
t+1, ..., π

M
t+1. This procedure can be repeated allowing us to progress through the data. We will

call a particle filter ‘exact’ if it produces independent and identically distributed samples from

the empirical filtering density.

If the particle filter can be made to work it could be used in a number of different contexts.

First, it can be used in on-line tracking problems, which are important in many branches of

applied science. Second, it is sometimes useful to be able to estimate the one-step ahead density

f(yt+1|Yt) and so, via the prediction decomposition, the joint density of the observation. This

can be carried out in its simplest form by computing

M∑
j=1

{
1
K

K∑
k=1

f(yt+1|αj,k
t+1)

}
πj

t , where αj,k
t+1 ∼ αt+1|αj

t , k = 1, ...,K,
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where the αj,1
t+1, ..., α

j,K
t+1 are drawn from αt+1|αj

t . If attention focuses on this quantity it may

be worthwhile setting K to be larger than one. In addition the use of importance sampling or

antithetic and control variables could be useful in this context if we have sufficient knowledge

of the transition density to be able to employ them.

Third, a particularly useful diagnostic measure of fit for non-Gaussian statistical problems

is to compute

P̂r(yt+1 ≤ yobst+1|Yt) =
M∑

j=1

{
1
K

K∑
k=1

Pr(yt+1 ≤ yobst+1|αj,k
t+1)

}
πj

t ,

where αj,k
t+1 ∼ αt+1|αj

t , k = 1, ...,K, and where yobst+1 denotes the observation made at time t+1,

as each estimate is estimating a random variable which should be uniformly and independently

distributed on the 0, 1 interval (Rosenblatt (1952)). This allows the development of a whole

portfolio of exact diagnostic tests via the routine application of Monte Carlo test (see, for

example, Ripley (1987, pp. 171-4)). The use of this distribution function is emphasized in

the work of Dawid (1982) and Smith (1985), Shephard (1994) and Gerlach, Carter, and Kohn

(1996) in the time series context. Shephard (1994), Geweke (1994) and Gerlach, Carter, and

Kohn (1996) give O(n2) algorithms for estimating this probability using the output from a

Markov chain Monte Carlo (MCMC) algorithm, although the algorithm by Gerlach, Carter,

and Kohn (1996) is typically quite fast for many models even when n is moderately large.

Particle filters are at first sight less useful in performing parameter estimation, due to the

availability of MCMC methods for solving the much easier problem (as it involves no iterative

approximations) of simulating from the joint density of the parameters and states given the

whole of the data y1, ..., yn. Examples of this include, Albert and Chib (1993), McCulloch and

Tsay (1993), McCulloch and Tsay (1994), Carter and Kohn (1994), Carter and Kohn (1996),

Shephard (1994), Fruhwirth-Schnatter (1994), West (1995), Carpenter, Clifford, and Fearnhead

(1996) and Shephard and Pitt (1997). For a review, see West and Harrison (1997, Ch. 15).

However, particle filters do offer the hope of allowing estimation in models where evaluating the

transition density is difficult or impossible, as well as allowing on-line parameter estimation. To

the authors knowledge designing MCMC algorithms for such problems is an open question as

the Metropolis rejection rate generally involves the transition density.

2.3 Sampling the empirical prediction density

One way of sampling from the empirical prediction density is to think of
∑M

j=1 f(αt+1|αj
t )π

j
t

as a ‘prior’ density f̂(αt+1|Yt) which is combined with the likelihood f(yt+1|αt+1) to produce

a posterior. Then we have already assumed that we can simulate from f(αt+1|αj
t ), so we can

5



sample from f̂(αt+1|Yt) by choosing αj
t with probability πj

t and then drawing from f(αt+1|αj
t ).

If we can also evaluate f(yt+1|αt+1) up to proportionality this leaves us with three sampling

methods to draw from f(αt+1|Yt+1) : sampling/importance resampling, acceptance sampling

and Markov chain Monte Carlo. In the rest of this section we write the prior as f(α) and the

likelihood as f(y|α), abstracting from subscripts and conditioning arguments, in order to briefly

review these methods in this context.

2.3.1 Sampling/importance resampling (SIR)

This method (due to Rubin (1987), Rubin (1988) and Smith and Gelfand (1992)) can be used

to simulate from a posterior density f(α|y), given an ability to:

1. simulate from the prior f(α);

2. evaluate (up to proportionality) the conditional likelihood f(y|α) which is assumed to vary

smoothly with α.

The idea is to draw proposals α1, ..., αR from f(α) and then associate with each of these

draws the weights πj where

wj = f(y|αj), πj =
wj∑R
i=1 wi

, j = 1, ..., R.

Then the weighted sample will converge, as R →∞, to a non-random sample from the desired

posterior f(α|y) as
∑R

i=1 wi
p→ f(y). Intuitively we would expect that the speed of convergence

will depend upon the variability of these weights, so if the variability of the weights is small

convergence will be quite rapid. The non-random sample can be converted into a random sample

by resampling the α1, ..., αR using weights π1, ..., πR to produce an independent and identically

distributed sample of size M . This requires R → ∞ and R >> M . A major attraction of the

SIR method is that it can be run efficiently on a massively parallel computer with a large amount

of memory as each part of the computations can be carried out separately. A disadvantage of

the method is that it typically requires R to be large and so is quite demanding in terms of

storage.

The use of this method has been suggested in the particle filter framework by Gordon,

Salmond, and Smith (1993), Kitagawa (1996), Berzuini, Best, Gilks, and Larizza (1997) and

Isard and Blake (1996).

To understand the efficiency of the SIR method it is useful to think of the SIR method as

an approximation to the importance sampler of the moment

Efπ {h(α)} =
∫

h(α)π(α)dF (α),
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by
1
R

R∑
j=1

h(αj)π(αj), α ∼ f(α), π(α) =
f(y|α)
f(y)

.

Notice that this setup implies Ef {π(α)} = 1. The approximation comes about due to the SIR’s

πj having a scaling factor which is a sum rather than an integral. Liu (1996) has recently studied

the variance of this type of importance sampler and suggested that when h(α) does not vary

very quickly with α then the variance is approximately proportional to

1 + varf {π(α)}
R

=
Ef

{
π(α)2

}
R

.

Hence the SIR method will become very imprecise when the πj become very variable. This will

happen if the likelihood is highly peaked compared to the prior.

Example Consider α ∼ N (0, 1), y|α ∼ N
(
α, σ2

)
. Then E

(
wk

j

)
equals (using the moment

generating function of a non-central chi-squared)

Eα exp
{
− k

2σ2
(y − α)2

}
=

(
1 +

k

σ2

)−1/2

exp

{
−ky2

σ2
/

(
1 +

k

σ2

)}

=
(

1 +
k

σ2

)−1/2

exp

{
− ky2

(σ2 + k)

}
.

Hence

E
{
π(α)2

}
= E

(
wj

E(wj)

)2

=

(
1 + 1

σ2

)
(
1 + 2

σ2

)1/2
exp

{
2y2

(σ2 + 2) (σ2 + 1)

}

increases exponentially in y2, while it increases without bound as σ2 → 0. This confirms the

above impresion of the fragility of the SIR method to outliers and to highly peaked likelihoods.

Of course, for many problems the prior will be much more spread out than the likelihood and

so the second of these problems should not be typically important. However, the sensitivity to

aberrant observations will be important.

2.3.2 Rejection sampling

The SIR method has some similarities with rejection sampling (see, for example, Ripley (1987,

pp. 60-62) and Smith and Gelfand (1992)), which is based on simulating from f(α) and accepting

with probability π(α) = f(y|α)/f(y|αmax), where αmax = arg maxα f(y|α). Again the rejection

becomes worse if the varf {π(α)} is high. A fundamental difference is that rejection sampling

produces a random sample regardless of the size of M , while the SIR’s sample are dependent

and only valid as M →∞. This means that the rejection sampler is generally preferable as it is

easier to determine how much simulation to perform on a particular problem, but it requires us

to compute αmax which in high dimensional problems can be computationally demanding.
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If the varf {π(α)} is high it is sometimes possible and worthwhile to adapt both SIR and

rejection sampling to improve their behaviour by taking some of the variability of the f(y|α)

into the proposal density. A simple example of this for SIR is where f(α) is Gaussian and the

log f(y|α) is concave. In this case we can adapt the proposal. In particular, we might Taylor

expand the log f(y|α) to second order to give log g(α) and then sample from the Gaussian density

proportional to f(α)g(α). Then π(α) becomes proportional to f(y|α)/g(α). This may greatly

reduce the variability of the SIR method. More generally, if we can (instead of step 1. given

above)

1a. evaluate f(α);

1b. sample from g(α|y);

1c. evaluate g(α|y);

then we could draw α ∼ g(α|y) and let π(α) = f(y|α)f(α)/g(α|y). Of course the choice of

g(α|y) will be critical in this context and will usually be chosen to be close to f(α|y) but with

fatter tails.

Adapting the rejection sampling or SIR in these ways, whilst ensuring coverage in the re-

jection case, can be useful in a number of problems where there is substantial knowledge of the

form of the likelihood. However, such adaption is not always possible and so the SIR method is

vulnerable to difficult problems.

Finally, adaption comes at quite a considerable cost in the context of filtering. In particular

evaluating f(α) =
∑M

j=1 f(αt+1|αj
t )π

j
t means we have to be able to calculate f(αt+1|αj

t ). Further,

even if we can do this calculating f(α) means we have to evaluate M densities which can be

expensive if M is large.

2.3.3 Markov chain Monte Carlo

Another alternative to SIR is the use of a Markov chain Monte Carlo (MCMC) method (see Gilks,

Richardson, and Spiegelhalter (1996) for a review). In this context the MCMC method accepts

a move from a current state αi to αi+1 ∼ f(α) with probability min
{
1, f(y|αi+1)/f(y|αi)

}
,

otherwise it sets αi+1 = αi. This procedure produces, after it is iterated until convergence,

a stationary sequence whose marginal distribution is the required posterior f(α|y). Again if

the likelihood is highly peaked there may be a large amount of rejection which will mean the

Markov chain will have a great deal of dependence. This will mean it takes a large number of

iterations until it converges to its equilibrium distribution and determining the point at which
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it has reached the equilibrium can be difficult. This suggests adapting, when this is possible,

the MCMC method to draw from g(α|y) and then accept these draws with probability

min

{
1,

f(y|αi+1)f(αi+1)
f(y|αi)f(αi)

g(αi|y)
g(αi+1|y)

}
.

Again the problem with this is that having to evaluate f(α) can be troublesome.

2.4 Particle filter’s weaknesses

The propagation of samples through the empirical prediction density (3) and then sampling from

the empirical filtering density (4) provides a general, simple and powerful approach to filtering

time series.

The particle filter works well for standard problems where the model is a good approximation

to the data and the conditional densities f(yt|αt) are reasonably flat in αt, but when we have

very severe outliers there are problems. In this context the fact that the particle filter is very

difficult to adapt is an enormous weakness of the method.

To illustrate the potential problem we assume the observations arise from an autoregression

observed with noise
yt = αt + εt, εt ∼ NID(0, 1)
αt+1 = φαt + ηt, ηt ∼ NID(0, σ2),

(5)

where φ = 0.9, σ2 = 0.01 and εt and ηt are independent white noise processes. The model is

initialised by αt’s stationary prior. Set n = 6 and let the first five observations arise from the

above autoregression observed with noise model (5) and then assign to the sixth observation the

value 20. We observe the series

y = (−0.65201,−0.34482,−0.67626, 1.1423, 0.72085, 20.000) ′ .

The last observation is around twenty standard deviations away from that predicted by the

model. We run a SIR (recall section 2.3.1) based particle filter on this problem using a variety

of values of M and R, averaging over 125 replications and always taking πj = 1/M . Table 1

displays the average simulation-based estimate of E (α6|Y6) and the true values computed using

the Kalman filter. Hence the Table’s focus is on the bias of the simulation procedure. The

Table shows that the SIR based particle filter grossly underestimates the values of the states

even when M and R are very large.

The particle filter based on SIR has two basic weaknesses. The first is well known and repeats

the discussion of SIR given in section 2.3.1. When there is an outlier, the weights πj will be very

unevenly distributed and so it will require an extremely large value of R for the draws to be close

to samples from the empirical filtering density. This is of particular concern if the measurement
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Particle Auxiliary particle
R TRUTH M = 1, 000 10,000 50,000 1,000 10,000 50,000
50 .90743 .43523 .42183 .43504 .52630 .54516 .54920
250 .90743 .55188 .55829 .55579 .65437 .65274 .66682
2,000 .90743 .65164 .65384 .66269 .71899 .77279 .76714
10,000 .90743 .71235 .73396 .73382 .72653 .79637 .82569
25,000 .90743 .73433 .77206 .76071 .73043 .81076 .83324
100,000 .90743 .73083 .79238 .81929 .74424 .81975 .85721

Table 1: SIR based particle and SIR based auxiliary particle algorithms. Recorded are the means
of 125 independent replications of the SIR based particle and auxiliary particle filters run on
the fixed y using a variety of values of M and R. Thus the Table demonstrates the bias of the
methods.

density f(yt+1|αt+1) is highly sensitive to αt+1. Notice this is not a problem of having too small

a value of M . That parameter controls the accuracy of (3). Instead, the difficulty is, given

that degree of accuracy, how to efficiently sample from (4)? Can SIR be improved upon in

this problem? This paper will show that we can answer this question positively, with no added

assumptions and little extra computational expense.

The second weakness holds in general for particle filters which have their πj equal and who

update the states one period at a time. As R → ∞, so the weighted samples can be used to

arbitrarily well approximate (4). However, the tails of (3) usually only poorly approximate the

true tails of αt+1|Yt due to the use of the mixture approximation. As a result (4) can only ever

poorly approximate the true f(αt+1|Yt+1) when there is an outlier. Hence the second question

is how do we improve the empirical prediction density’s behaviour in the tails? Section 4 of this

paper partially deals with this much harder problem.

3 AUXILIARY VARIABLE

3.1 The basics

A fundamental problem with existing particle filters is that its mixture structure means that

it is difficult to improve the simulation performance of the SIR, rejection or MCMC sampling

methods due to the expense of evaluating the empirical prediction density (3). We call the

generic process of changing the sampling mechanism adaption.

The lack of adaptability makes particle filters less attractive for difficult problems where

their naive application is less effective. Here we argue that many of these problems are reduced

when we perform particle filtering in a higher dimension.

Our task will be to sample from the joint density f(αt+1, k|Yt+1), where k is an index on the
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mixture in (3). Define

f(αt+1, k|Yt+1) ∝ f(yt+1|αt+1)f(αt+1|αk
t )π

k, k = 1, ...,M, (6)

and we draw from this joint density and then discard the index we produce a sample from the

empirical filtering density (4) as required. We call k an auxiliary variable as it is present simply

to aid the task of the simulation. Generic particle filters of this type will be labelled auxiliary

particle filters.

We can sample from f(αt+1, k|Yt+1) using SIR, rejection or MCMC. We first of all deal with

a very basic SIR. We approximate (6) by

g(αt+1, k|Yt+1) ∝ f(yt+1|µk
t+1)f(αt+1|αk

t )πk, k = 1, ...,M,

where µk
t+1 is the mean, the mode, a draw, or some other likely value associated with the density

of αt+1|αk
t . The form of the approximating density is designed so that

g(k|Yt+1) ∝ πk
∫

f(yt+1|µk
t+1)dF (αt+1|αk

t ) = πkf(yt+1|µk
t+1).

Thus we can sample from g(αt+1, k|Yt+1) by simulating the index with probability λk, which

is proportional to g(k|Yt+1), and then sampling from the transition density given the mixture

f(αt+1|αk
t ). We call the λk the first stage weights.

The implication is that we will simulate from particles which are associated with large pre-

dictive likelihoods. Having sampled the joint density of g(αt+1, k|Yt+1) R times we perform

a reweighting, putting on the draw (αj
t+1, k

j) the weights proportional to the so-called second

stage weights

wj =
f(yt+1|αj

t+1)

f(yt+1|µkj

t+1)
, πj =

wj∑R
i=1 wi

, j = 1, ..., R.

The hope is that these second stage weights are much less variable than for the original SIR

method. We might resample from this discrete distribution to produce a sample of size M .

This auxiliary variable based SIR requires only the ability to propagate and evaluate the like-

lihood, just as the original SIR suggestion of Gordon, Salmond, and Smith (1993). In practice,

it runs slightly less quickly that the Gordon, Salmond, and Smith (1993) suggestion as we need

to evaluate g(k|Yt+1) and to perform two weighted bootstraps rather than one weighted and one

unweighted bootstrap. However, the gains in sampling will usually dominate these small effects.

By making proposals which have high conditional likelihoods we reduce the costs of sampling

many times from particles which have very low likelihoods and so will not be resampled at the

second stage of the process. This improves the statistical efficiency of the sampling procedure

and means that we can reduce the value of R substantially.
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To measure the statistical efficiency of these procedures we argued in the first section that

we could look at minimizing E
{
π(α)2

}
. Here we compare a standard SIR with a SIR based on

our auxiliary variable. For simplicity we set πk = 1/M in both cases.

For a standard SIR based particle filter, for large M ,

E
{
π(α)2

}
=

1
M

∑M
k=1

∫
f(yt+1|αt+1)2dF (αt+1|αk

t ){
1
M

∑M
k=1

∫
f(yt+1|αt+1)dF (αt+1|αk

t )
}2 =

M
∑M

k=1 λ2
kfk(∑M

k=1 λkf
∗
k

)2 ,

where

fk =
∫ {

f(yt+1|αt+1)
f(yt+1|µk

t+1)

}2

dF (αt+1|αk
t ) and f∗

k =
∫ {

f(yt+1|αt+1)
f(yt+1|µk

t+1)

}
dF (αt+1|αk

t ).

The same calculation for a SIR based auxiliary variable particle filter gives

E
{
πα(α)2

}
=

∑M
k=1 λkfk(∑M

k=1 λkf
∗
k

)2 ,

which shows an efficiency gain if

M∑
k=1

λkfk < M
M∑

k=1

λ2
kfk.

If fk does not vary over k then the auxiliary variable particle filter will be more efficient as∑M
k=1 λk

1
M = 1

M ≤ ∑M
k=1 λ2

k. More likely is that fk will depend on k but only mildly as

f(αt+1|αk
t ) will be typically quite tightly peaked (much more tightly peaked than f(αt+1|Yt))

compared to the conditional likelihood.

To assess the effectiveness of the SIR based auxiliary particle filter, the right hand sides

of Table 1 replicate the earlier SIR studies on simulated Gaussian data using the auxiliary

algorithm. Table 1, which reports the results of an experiment in which there is a very extreme

outlier, suggests a very significant improvement due to the use of the auxiliary particle filter.

In particular our simulations suggest that if we keep M fixed, that for the same value of R,

auxiliary algorithm is an order of magnitude more efficient than SIR for outlier problems. As a

result the auxiliary algorithm reduces the bias by an amount which would take many times the

computational effort for the SIR to improve by the same degree.

Rejection sampling can also be used for the auxiliary particle filter so long as αt+1,max =

arg maxαt+1 f(yt+1|αt+1) can be found. The task is to draw from

f(αt+1, k|Yt+1) ∝ f(yt+1|αt+1)f(αt+1|αk
t )πk ≤ f(yt+1|αt+1,max)f(αt+1|αk

t )π
k,

and so we can sample from the density by drawing k with probability πk and then accepting

αt+1 ∼ f(αt+1|αk
t ) with probability f(yt+1|αt+1)/f(yt+1|αt+1,max). This is likely to perform

quite poorly for some problems as this ratio can be very small.

12



The MCMC variate of the auxiliary particle filter designs a Metropolis chain with an equi-

librium distribution of the form f(αt+1, k|Yt+1). If we make proposals from α
(i+1)
t+1 , k(i+1) ∼

g(αt+1, k|Yt+1), where g(αt+1, k|Yt+1) is some arbitrary density, then these moves are accepted

with probability

min

1,
f(yt+1|α(i+1)

t+1 )f(α(i+1)
t+1 |αk(i+1)

t )

f(yt+1|α(i)
t+1)f(α(i)

t+1|αk(i)

t )

g(α(i)
t+1, k

(i)|Yt+1)

g(α(i+1)
t+1 , k(i+1)|Yt+1)

 .

In the special case where g(αt+1, k|Yt+1) ∝ g(k|Yt+1)f(αt+1|αk
t ), this simplifies to

min

1,
f(yt+1|α(i+1)

t+1 )

f(yt+1|µk(i+1)

t+1 )

f(yt+1|µk(i)

t+1)

f(yt+1|α(i)
t+1)

 ,

which is extremely convenient as it involves just the evaluation of the measurement density.

Hence this approach is particularly useful when it is not possible to evaluate the transition

density.

3.2 Adaption

In this subsection we will show that these three sampling procedures are now easy to adapt.

3.2.1 Non-linear Gaussian model

In the Gaussian measurement case, the absorption of the measurement density into the transition

equation is particularly convenient. Consider a non-linear transition density with αt+1|αt ∼
N
{
µ (αt) , σ2 (αt)

}
and yt+1|αt+1 ∼ N(αt+1, 1). Then

f(αt+1, k|Yt+1) ∝ f(yt+1|αt+1)f(αt+1|αk
t ) = gk(yt+1)f(αt+1|αk

t , yt+1),

where

f(αt+1|αk
t , yt+1) = N(µp,k, σ

2
pk), µp,k = σ2

p,k

µ
(
αk

t

)
σ2 (αt)

+ yt+1

 , σ−2
p,k = 1 + σ−2

(
αk

t

)
.

This implies that the first stage weights are

gk(yt+1) ∝ exp

 µ2
p,k

2σ2
p,k

−
µ
(
αk

t

)2

2σ2 (αt)

 .

The Gaussian measurement density implies the second stage weights are all equal and so a

weighted bootstrap at this stage is not required as all the draws would have equal weight.

Consequently we say that the auxiliary particle filter has been fully adapted to the problem and

it makes sense to take R = M . Of course in many problems full adaption is not realistic, but

some form of adaption can be used and will improve the efficiency and reliability of the method.

In many cases it is unnecessary, however it can be helpful when we come across very difficult

problems.
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Example: ARCH with error Consider the simplest Gaussian ARCH model (see, for ex-

ample, Bollerslev, Engle, and Nelson (1994) for a review) observed with independent Gaussian

error. So we have

yt|αt ∼ N(αt, σ
2), αt+1|αt ∼ N(0, β0 + β1α

2
t ).

This model is exactly adaptable. It has received a great deal of attention in the econometric

literature as it has some attractive multivariate generalizations: see the work by Diebold and

Nerlove (1989), Harvey, Ruiz, and Sentana (1992) and King, Sentana, and Wadhwani (1994).

As far as we know no likelihood methods exist in the literature for the analysis of this type of

model (and its various generalizations) although a number of very good approximations have

been suggested.

Extended example: factor GARCH A more difficult example of this class of problem,

following the work of King, Sentana, and Wadhwani (1994), is the bivariate factor GARCH

model where

yt+1 = γε1t+1σ1t+1 +

(
ε2t+1σ2t+1

ε3t+1σ3t+1

)
, εit+1 ∼

iid
NID(0, 1),

and σ2
it+1 follows a GARCH(1,1) type volatility process σ2

it+1 = βi0 + βi1σ
2
it + βi2εit. If we write

αt+1 =
(
σ2

1t+1, ε1t+1, ..., σ
2
3t+1, ε3t+1

)′, then

f̂(αt+1, k|Yt+1) ∝ I

{
yt+1 = γε1t+1σ1t+1 +

(
ε2t+1σ2t+1

ε3t+1σ3t+1

)}
f(ε1t+1, ..., ε3t+1 |αk

t )

= c(k)f(ε1t+1, ..., ε3t+1|αk
t , yt+1).

Here

c(k) ∝ f(y1t+1 = γε1t+1σ1t+1 + ε2t+1σ2t+1|αk
t )f(y2t+1 = γε1t+1σ1t+1 + ε3t+1σ3t+1|αk

t , y1t+1).

Thus we can draw k with probability proportional to c(k) and then sample ε1t+1, ..., ε3t+1

from a constrained multivariate normal distribution. Hence in this example adaption is again

exact. This argument generalizes to any factor GARCH model.

3.2.2 Log-concave measurement densities

Suppose that f(αt+1|αk
t ) is Gaussian, then we might extend the above argument by Taylor

expanding log f(yt+1|αt+1) to a second order term, again around µk
t+1, to give the approximation

log g(yt+1|αt+1, µ
k
t+1) = log f(yt+1|µk

t+1) +
(
αt+1 − µk

t+1

) ∂ log f(yt+1|µk
t+1)

∂αt+1

+
1
2

(
αt+1 − µk

t+1

)′ ∂2 log f(yt+1|µk
t+1)

∂αt+1∂α′
t+1

(
αt+1 − µk

t+1

)
,

14



then

g(αt+1, k|Yt+1) ∝ g(yt+1|αt+1;µk
t+1)f(αt+1|αk

t ).

Rearranging, we can express this as

g(αt+1, k|Yt+1) ∝ g(yt+1|µk
t+1)g(αt+1|αk

t , yt+1;µk
t+1),

which means we could simulate the index with probability proportional to g(yt+1|µk
t+1) and then

draw from g(αt+1|αk
t , yt+1, µ

k
t+1). The resulting reweighted sample’s second stage weights are

proportional to the hopefully fairly even weights

wj =
f(yt+1|αj

t+1)f(αt+1|αkj

t )

g(yt+1|µkj

t+1)g(αj
t+1|αkj

t , yt+1, µ
k
t+1)

=
f(yt+1|αj

t+1)

g(yt+1|αj
t+1;µ

kj

t+1)
, πj =

wj∑R
i=1 wi

, j = 1, ..., R.

Thus, we can exploit the special structure of the model, if available, to improve upon the auxiliary

particle filter.

3.2.3 Stochastic volatility and rejection sampling

The same argument carries over when we use a first order Taylor expansion to construct

g(yt+1|αt+1, µ
k
t+1), but in this case we know that g(yt+1|αt+1, µ

k
t+1) ≥ f(yt+1|αt+1) for any

value of µk
t+1 due to the assumed log-concavity of the measurement density. Thus

f(αt+1, k|Yt+1) ≤ g(αt+1, k|Yt+1) ∝ g(yt+1|αt+1;µk
t+1)f(αt+1|αk

t ) = g(yt+1|µk
t+1)g(αt+1|αk

t , yt+1;µk
t+1).

Thus we can perform rejection sampling from f(αt+1, k|Yt+1) by simply sampling k with prob-

ability proportional to g(yt+1|µk
t+1) and then drawing αt+1 from g(αt+1|αk

t , yt+1;µk
t+1). This

pair is then accepted with probability f(yt+1|αt+1)/g(yt+1|αt+1;µk
t+1).

This argument applies to the non-linear time series model of evolving scale: the stochastic

volatility (SV) model

yt = εtβ exp(αt/2), αt+1 = φαt + ηt, (7)

where εt and ηt are independent Gaussian processes with variances of 1 and σ2 respectively.

Here β has the interpretation as the modal volatility, φ the persistence in the volatility shocks

and σ2
η is the volatility of the volatility. This model has attracted much recent attention in the

econometrics literature as a way of generalizing the Black-Scholes option pricing formula to allow

volatility clustering in asset returns; see, for instance, Hull and White (1987), Harvey, Ruiz, and

Shephard (1994) and Jacquier, Polson, and Rossi (1994). MCMC methods have been used on

this model by, for instance, Jacquier, Polson, and Rossi (1994), Shephard and Pitt (1997) and

Kim, Shephard, and Chib (1998).

For this model log f(yt+1|αt+1) is concave in αt+1 so that
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log g(yt+1|αt+1;µk
t+1) = −1

2
αt+1 − y2

t

2β2
exp(−µk

t+1)
{
1−

(
αt+1 − µk

t+1

)}
.

The implication is that

g(αt+1|αk
t , yt+1;µk

t+1) = N

[
µk

t+1 +
σ2

2

{
y2

t

β2
exp(−µk

t+1)− 1

}
, σ2

]
= N(µp,k

t+1, σ
2).

Likewise

g(yt+1|µk
t+1) = exp

{
1

2σ2

(
µp,k2

t+1 − µk2
t+1

)}
exp

{
− y2

t

2β2
exp(−µk

t+1)
(
1− µk

t+1

)}
.

Finally the log-probability of acceptance is

− y2
t

2β2

[
exp(−αt+1)− exp(−µk

t+1)
{
1−

(
αt+1 − µk

t+1

)}]
.

Notice that as σ2 falls to zero so the acceptance probability goes to one.

If an adapted SIR method had been applied here exactly the same calculations would have

been applied except that no suggestion would be rejected and instead the second stage bootstrap

weights would be the same as the acceptance rates.

3.2.4 Limited dependent processes

A less trivial example of exact adaption is a special cases of limited dependent processes, where

the observations are deterministic functions of the states. A simple example of this is a Probit

time series where yt = I(αt > 0), where αt is Gaussian and univariate and I(.) denotes an

indicator function. Then if yt+1 = 1 we have, exactly,

Pr(αt+1, k|Yt+1) ∝ wk Pr
(
αt+1|αk

t , αt+1 > 0
)

, wk = Pr
(
αt+1 > 0|αk

t

)
.

Hence we choose k with probability proportional to wk and then draw from a truncated dis-

tribution conditional on k. If yt+1 is negative then the weights wk would be Pr
(
αt+1 < 0|αk

t

)
while the truncated draw would be from Pr

(
αt+1|αk

t , αt+1 < 0
)
. This style of argument carries

over to ordered Probit and censored models where we observe, for example, min(0, αt).

Adaption can be very important in these types of models for naively implemented particle

and auxiliary variable filters are generally vulnerable to tightly peaked measurement densities.

In the censored model, where yt+1 = min(0, αt+1), the measurement density is degenerate when

yt+1 > 0 and so the particle filter will degenerate to give all of its mass on the simulation which

is closest (but because they are simulated from Pr
(
αt+1|αk

t

)
not equal) to yt+1. Adaption

overcomes this problem instantly.
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3.2.5 Disequilibrium models

Adaption is also essential for the following problem. Suppose αt+1|αt is Gaussian, αt+1 is

bivariate and that we observe yt+1 = min(αt+1). Such models are called disequilibrium models

in economics (recent work in this area includes Laroque and Salanie (1993) and Lee (1995)).

Then

Pr(αt+1, k|Yt+1) ∝ Pr(yt+1|αt+1) Pr(αt+1|αk
t ).

Then we have that wk should be proportional to the probability of αt+1|αk
t having its minimum

exactly at yt+1. This can be shown to be exactly

wk = fαk
1,t+1|αt

(yt+1)
{
1− Pr α2,t+1|αt

(yt+1)
}

+ fα2,t+1|αt
(yt+1)

{
1− Pr α1,t+1|αt

(yt+1)
}

,

while having selected k we sample

α1,t+1 = yt+1 with probability λt+1 =
fα

1,t+1|αk
t

(yt+1)
{
1− Pr α2,t+1|αk

t
(yt+1)

}
wk

,

and then from

α2,t+1|α1,t+1 = yt+1, α
k
t , α2,t+1 > yt+1.

Likewise α2,t+1 = yt+1 with probability 1− λt+1.

3.2.6 Mixtures of normals

Suppose f (αt+1|αt) is Gaussian, but the measurement density is a discrete mixture of normals∑P
j=1 λjfj(yt+1|αt+1). Then we can perfectly sample from f(αt+1, k|Yt+1) by working with

f(αt+1, k, j|Yt+1) ∝ λjfj(yt+1|αt+1)f
(
αt+1|αk

t

)
= wj,kfj(αt+1|αk

t , yt+1).

Then we sample from f(αt+1, k, j|Yt+1) by selecting the index k, j with probability proportional

to wj,k and then drawing from fj(αt+1|αk
t , yt+1). The disadvantage of this approach is that

the complete enumeration and storage of wj,k involves PM calculations. This approach can

be trivially extended to cover the case where f (αt+1|αt) is a mixture of normals. MCMC

smoothing methods for state space models with mixtures have been studied by, for example,

Carter and Kohn (1994), Carter and Kohn (1996) and Shephard (1994). The special case of an

autoregression with additive and innovative outliers, as well as mean shifts, can also be put in

this framework. Again there is an extensive MCMC literature on this topic starting with Albert

and Chib (1993) and then further developed and popularised by McCulloch and Tsay (1993)

and McCulloch and Tsay (1994). Filtering via MCMC methods is developed in Gerlach, Carter,

and Kohn (1996), although their methods are O(n2).
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3.3 Existing literature

The above auxiliary variable particle filter seems to be a new idea. However, there are some

similarities with a recent paper by Berzuini, Best, Gilks, and Larizza (1997) (BBGL). In Section

4 of BBGL, the method of Gordon, Salmond, and Smith (1993) reappears and is then studied in

some detail before being rejected as being inefficient. Then in Section 5 BBGL do not propose

sampling the index k with equal weight (as in SIR), or sampling with weights proportional to

f(yt+1|µk
t+1) (as in SIR in the context of a auxiliary particle filter). Instead they use a uniform

distribution as a proposal density for a MCMC algorithm which updates k given the current

value of the state αt+1. Their MCMC algorithm is completed by using a MCMC suggestion

for the state αt+1 given the mixture. This delivers a simulation whose equilibrium distribution,

f(αt+1, k|Yt), is the same as advocated above.

We believe our approach is superior for a number of reasons. Making uniform proposals for

moving k means that BBGL make enormous numbers of draws which are irrelevant in cases

where the measurement density is highly peaked. In particular, it can take a long time until

a single sensible value of k is chosen. Our method is much simpler and immediately achieves

the desired goal of sampling the important indices. Further, the index k and state αt+1 may

be quite highly correlated given past information. Hence the MCMC algorithm may converge

very slowly. Indeed, in the special case of a model with no measurement error this sampler will

never converge. We avoid this by integrating out the index. In most cases we avoid MCMC

altogether and just use SIR on the auxiliary particle filter, which is helpful as this is then simpler

to monitor.

3.4 Example: a time series of angles

3.4.1 The model

In this section we will compare the performance of the particle and auxiliary particle filter

methods for an angular time series model; the bearings-only model. Typically, the model is

used for the problem of tracking a ship by using only angular information, hence the term

“bearings-only”. We are provided with no information about range.

We consider the simple scenario described by Gordon, Salmond, and Smith (1993). The

observer is considered stationary at the origin of the x− z plane. A simple model for the ship is

obtained by assuming that the ship gradually accelerates or decelerates randomly over time. We

use the following discretisation of this system provided by Carpenter, Clifford, and Fearnhead
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(1996), where αt = (xt, vxt, zt, vzt)′,

αt+1 =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

αt +ση


0 0
1 0
0 0
0 1

ut, ut ∼ NID(0, I). (8)

In obvious notation xt, zt represent the ship’s horizontal and vertical position at time t and vxt,

vzt represent the corresponding velocities. The state evolution is thus a VAR(1) of the form

αt+1 = Tαt + Hut. The model indicates that the source of state evolution error is due to the

accelerations being white noise. The velocities therefore follow a random walk. The initial state

describes the ship’s starting positions and velocities α1 ∼ NID(a1,P1). This prior together with

the state evolution of (8) describes the overall prior for the states.

The measurements consist of the true angle of the ship corrupted by a wrapped Cauchy error

term. Hence we have,

yt|µt ∼ WC(µt, ρ), µt = tan−1(zt/xt). (9)

The density for the two parameter wrapped Cauchy distribution; WC(µ, ρ), see Fisher (1993, p.

46), is of the following form,

f(yt|µ) =
1
2π

1− ρ2

1 + ρ2 − 2ρ cos(yt − µ)
, 0 ≤ yt < 2π, 0 ≤ ρ ≤ 1, (10)

where µ is the mean direction and ρ is termed the mean resultant length. We choose the

wrapped Cauchy as this allows very heavy tails which models the aberrant measurements which

occasionally arise from radar systems.

3.4.2 Particle filters

The proposal density for the auxiliary particle filter (projected just one step ahead) is exactly

correct for particular expansion values in the mixture as

f(αt+1, k|Yt+1) ∝ f(yt+1|αt+1)f(αt+1|k) = f(yt+1|α̂k
t+1)f(αt+1|k), (11)

where α̂k
t+1 = T α̂k

t , α̂k
t representing the component of the mixture k at the time t. Hence the

auxiliary approximation to the joint empirical filtering density is exact for the bearings-only

model. This equality arises because the sufficient state elements for the measurement density

are the position elements αt+1,1, αt+1,3. However, since these elements are projected without

noise through the state equation then (αt+1,1, αt+1,3)′ = (α̂k
t+1,1,α̂

k
t+1,3)

′.

For the bearings-only model the equality is extremely useful. Since we can exactly sample

from the empirical filtering density we can dispense with the reweighting procedure. Hence we

have only one weighted bootstrap, of size M , to perform at each time step. By contrast it can

immediately be seen that for fixed M the particle filter approach requires R → ∞ in order to

obtain the same accuracy.
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Figure 1: Plot of the angular measurements from origin, the true trajectory (solid line, crosses),
the particle filtered mean trajectory (dashed line, boxes) and the auxiliary particle mean trajectory
(dotted line, circles). Ship moving South-East. T = 10, M = 300, R = 500.

3.4.3 The simulated scenario

In order to assess the relative efficiency of the particle filter and auxiliary method we have closely

followed the setup described by Gordon, Salmond, and Smith (1993). They consider ση = 0.001

and σε = 0.005, where zt|µt ∼ NID(µt, σ
2
ε). We choose ρ = 1 − σ2

ε (yielding the same circular

dispersion) for our wrapped Cauchy density. The actual initial starting vector of this is taken

to be α1 = (−0.05, 0.001, 0.2,−0.055)′ . By contrast with Gordon, Salmond, and Smith (1993),

we wish to have an extremely accurate and tight prior for the initial state. This is because we

want the variance of quantities arising from the filtered posterior density to be small enabling

reasonably conclusive evidence to be formulated about the relative efficiency of the auxiliary

method to the standard method. We therefore take a1 = α1 and have a diagonal initial variance

P1 with the elements 0.001 × (0.52, 0.0052, 0.32, 0.012) on the diagonal.

Figure 1 illustrates a realization of the model for the above scenario with T = 10. The ship is

moving in a South-Easterly direction over time. The trajectories given by the posterior filtered

means from the particle method (M = 300, R = 500) and the auxiliary method (M = 300) are

both fairly close to the true path despite the small amount of simulation used.
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3.4.4 Monte Carlo comparison

The two methods are now compared using a Monte Carlo study of the above scenario with

T = 20. The number of scenario replications, REP say, is set to 20. The “true” filtered mean

is calculated for each replication by using the auxiliary method with M = 80, 000. Within each

replication the mean squared error for the particle method for each component of the state over

time is evaluated by running the method, with a different random number seed, S times and

recording the average of the resulting squared difference between the resulting particle’ estimated

mean and the “true” filtered mean. Hence for replication i, state component j, at time t we

calculate

MSEP
i,j,t =

1
S

S∑
s=1

(αi
t,j,s − α̃i

t,j)
2,

where αi
t,j,s is the particle mean for replication i, state component j, at time t, for simulation s

and α̃i
t,j is the “true” filtered mean replication i, state component j, at time t. The log mean

squared error for component j at time t is obtained as

LMSEP
j,t = log

1
REP

REP∑
i=1

MSEP
i,j,t.

The same operation is performed for the auxiliary method to deliver the corresponding quantity

LMSEAM
j,t . For this study we use M = 2000, REP = 20 and S = 20. Figure 2 shows the relative

performance of the two methods for each component of the state vector over time. For each

component j, the quantity LMSEAM
j,t −LMSEP

j,t is plotted against time. The four plots in each

box indicate the different values of R, for the particle method, which are M/4,M,M × 4, and

M × 16. Values close to 0 indicate that the two methods are broadly equivalent in performance

whilst negative values indicate that the auxiliary method performs better than the standard

particle filter.

The graphs give the expected result with the auxiliary particle filter typically being more

precise, but with the difference between the two methods falling as R increases. Note the

computational burden for the auxiliary particle filter is proportional to M , while for the particle

filter is roughly proportional to M + R.

4 GENERALIZATIONS

4.1 Fixed lag filtering

The auxiliary particle filter method can also be used when we update the estimates of the

states not by a single observation but by a block of observations. Again suppose that we

approximate the density of αt|Yt = (y1, ..., yt)′ by a distribution with discrete support at the
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Figure 2: Plot of the relative mean square error performance (on the log-scale) of the particle
filter and the auxiliary based particle filter for the bearings only tracking problem. Numbers below
zero indicate a superior performance by the auxiliary particle filter. In these graphs R takes on
the values M/4, M , 4M and 16M . Throughout SIR is used as the sampling mechanism. Figure
(a): αt1 = xt, Figure (c): αt3 = zt, while Figure (b): αt2 = vxt and Figure (d): αt4 = vzt.

points α1
t , ..., α

M
t , with mass π1

t , ..., π
M
t . Then the task will be to update this distribution to

provide a sample from αt+1, ..., αt+p|Yt+p. At first sight this result seems specialized as it is not

often that we have to update after the arrival of a block of observations. However, as well as

solving this problem it also suggests a way of reducing the bias caused by using the empirical

prediction density as an approximation to f(αt+1|Yt). Suppose that instead of updating p future

observations simultaneously, we store p−1 observations and update those observations together

with an empirical prediction density for f(αt−p+2|Yt−p+1). This would provide us with draws

from f(αt+1|Yt+1) as required. We call this fixed lag filtering. The hope is that the influence of

the empirical prediction density will be reduced as it will have been propagated p times through

the transition density. This may reduce the influence of outliers on the auxiliary method.

This can be carried out by using a straightforward particle filter using SIR, rejection sampling

or MCMC, or by building in an auxiliary variable so that we sample from αt+1, ..., αt+p, k|Yt+p.

Typically the gains from using the auxiliary approach is greater here for as p grows so naive

implementations of the particle filter will become less and less efficient due to not being able to

adapt the sampler to the measurement density.
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To illustrate this general setup consider the use of an auxiliary particle filter where we take

g(k|Yt+p) ∝
∫

f(yt+p|µk
t+p)...f(yt+1|µk

t+1)dF (αt+p|αt+p−1)...dF (αt+1|αk
t )

= f(yt+p|µk
t+p)...f(yt+1|µk

t+1),

and then sampling the index k with weights proportional to g(k|Yt+p). Having selected the

index kj we then propagate the transition equation p steps to produce a draw αj
t+1, ..., α

j
t+p,

j = 1, ..., R. These are then reweighted according to the ratio

f(yt+p|αj
t+p)...f(yt+1|αj

t+1)

f(yt+p|µkj

t+p)...f(yt+1|µkj

t+1)
.

This approach has three main difficulties. First it requires us to store p sets of observations

and p × M mixture components. This is more expensive than the previous method as well

as being slightly harder to implement. Second, each auxiliary variable draw now involves 3p

density evaluations and the generation of p simulated propagation steps. Third, the auxiliary

variable method is based on approximating the true density of f(k, αt−p+1, ..., αt|Yt), and this

approximation is likely to deteriorate as p increases. This suggests that the more sophisticated

adaptive sampling schemes, discussed above, may be particularly useful at this point. Again

however, this complicates the implementation of the algorithm.

We tried the fixed lag versions of SIR based particle and auxiliary particle filters on the

difficult outlier problem previously discussed in Section 2.4 and report the results in detail in

Table 2. The results all take p = 2, 3 and suggest an order of magnitude improvement in the

auxiliary method, and a fall in the efficiency of SIR based particle filters as p increases due to

the poor sampling behaviour of the algorithm. The fixed lag auxiliary filter is now 50 to 500

times as efficient, in terms of the reducing the bias, as the plain particle filter for the p = 3

case. This suggests that the fixed lag approach has some uses and should be followed up when

we deal with difficult problems.

4.2 Stratification

4.2.1 The basics

Suppose that instead of having an equally weighted empirical prediction density, we had a

stratified density based on S sets of samples of size {Mi, i = 1, ..., S}. We write the individual

elements as
{
αj,i

t , i = 1, ..., S, j = 1, ...,Mi

}
. The stratified empirical prediction density is then

going to be of the form
S∑

i=1

πi
t

Mi∑
j=1

f(αt+1|αj,i
t ),

S∑
i=1

πi
t = 1.
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M
p = 2 particle auxiliary particle
R TRUTH 1,000 10,000 50,000 1,000 10,000 50,000
50 .9074 .4492 .4359 .4455 .6025 .5838 .5909
250 .9074 .5595 .5498 .5632 .6935 .7189 .7150
2,000 .9074 .6675 .6619 .6790 .7842 .8005 .8254
10,000 .9074 .7291 .7479 .7440 .8055 .8515 .8565
25,000 .9074 .7612 .7771 .7641 .7965 .8584 .8751
100,000 .9074 .7840 .8051 .8146 .8087 .8642 .8766
400,000 .9074 .7984 .8251 .8442 .8023 .8588 .8847
p = 3
R TRUTH 1,000 10,000 50,000 1,000 10,000 50,000
50 .9074 .4116 .4176 .4093 .6040 .6190 .6072
250 .9074 .5369 .5302 .5104 .7150 .7263 .7202
2,000 .9074 .6442 .6632 .6623 .7800 .8108 .8196
10,000 .9074 .7096 .7198 .7276 .8119 .8553 .8674
25,000 .9074 .7495 .7479 .7603 .8281 .8683 .8819
100,000 .9074 .7765 .7848 .7972 .8326 .8764 .8923
400,000 .9074 .7944 .8257 .8299 .8464 .8819 .8946

Table 2: Fixed lag SIR based particle and auxiliary particle filtering algorithms, using p = 2, 3.
Recorded are the means of 125 independent replications of the filters run on the fixed y using a
variety of values of M and R. Thus the Table demonstrates the bias of the methods.

We will propagate Ri times from the i− th strata. The associated propagation probabilities will

be 1/Ri for a particle based SIR or

pj,i =
f(yt+1|µj,i

t+1)∑Ri
k=1 f(yt+1|µk,i

t+1)
,

for an SIR applied to a auxiliary particle filter.

We write the propagated samples’ one-step ahead weights as lj,i = f(yt+1|αj,i
t+1)/p

j,i and we

resample within each strata. Then we can estimate the strata probabilities as

πi
t+1 =

Ri∑
j=1

lj,i/


S∑

k=1

Ri∑
j=1

lj,k

 .

Clearly stratification has the difficulty that, in effect, we are performing a SIR sampling method

within each strata and so we are likely to need Ri and Mi to be quite large for all values of i. Of

course, the advantage is that the strata can be chosen so that the associated weights l1,i, ..., lRi,i

maybe quite even within the strata which may reduce the amount of simulation we require.

One possible generalization of this idea is that we can estimate the strata probabilities,{
πi

t+1

}
, not as a by-product of the SIR operation but as an independent statistical calculation.
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We can estimate replace πi
t+1 given above by an alternative estimator which is proportional to

πi
t

1
Ni

Ni∑
k=1

f(yt+1|αk,i
t+1), (12)

where the αk,i
t+1 are generated by first sampling k between 1, ...,Mi with equal probability and

then drawing from αt+1|αk,i
t . This has the advantage that we can then use rejection sampling

or MCMC within a strata in a straightforward manner.

Stratification has also been independently proposed in the context of particle filters by Car-

penter, Clifford, and Fearnhead (1997) although their motivation is rather different than ours.

4.2.2 Posterior density of parameters

A fundamental characteristic of the particle filter is that it uses a discrete support for the states

which randomly changes as time progresses through the propagation mechanism of the transition

equation. Points of support with high measurement densities flourish and multiply, while points

with low support die out.

Theoretically a state could represent any quantity which we might wish to learn about and

so we might be tempted to perform particle filtering on unknown parameters or states which do

not change over time. Unfortunately it is well known that this performs very poorly for points

of support with low likelihoods are quickly discarded even though they will be very important

when the sample size is larger.

A radical alternative is to use stratification for this problem. The idea will be to generate

a set of parameter points θ1, ..., θS and then to draw the random states associated with each of

the parameter values. A sensible way to proceed would be in the first strata to draw M1 lots

of states α1,1
t , ..., αM1 ,1

t from α0|θ1. The same operation can be conducted for each parameter

value. Then we proceed as before.

In this situation the strata probabilities have an interesting interpretation. Clearly πi
t is

an estimate of a constant times πi
t−1f(yt|Yt−1, θi), from (12). That is the strata weights are

the normalized likelihood functions for the parameter values. This allows either Bayesian or

maximum likelihood calculations.

As we process more information the strata probabilities will increasingly become more con-

centrated on a few points of support. In this case we can start to discard points of support with

extremely low strata probabilities (typically log πi
t > −100) and we can replace them by other

values of θ which are close to the points of support which have high strata probabilities. These

methods will be discussed at more length in the next section.

25



5 ESTIMATORS OF PARAMETERS

5.1 Motivation

Suppose that we have a Gaussian autoregression observed with noise (5) and we wished to

perform parameter estimation. The Kalman filter yields the exact likelihood in this case, but

it might be useful to look at using particle filters to estimate θ in this case as we can use the

Kalman filter to check the results. Let n = 550, β = 0.5, φ = 0.975 and σ2 = 0.02, where

yt = αt + εt, εt ∼ NID(0, 4.9)
αt+1 − β = φ (αt − β) + ηt, ηt ∼ NID(0, σ2),

and εt and ηt are independent white noise processes. Suppose initially that φ and σ2 is known.

Then we will employ a particle filter to estimate the relative log-likelihood as β varies for this

problem. Initially we carry out this calculation for 280 different values of β which are drawn

from a N(0, 10) distribution.

The particle filter will be stratified, with each point of support for β being given a separate

strata. We discard points of support for β which at some stage have
{
πj

t

}
which is less than

exp(−50). Naturally a large number of points of support die during the iterative procedure.

Typically around a half will survive this experiment. Throughout we will initialize the states by

using their unconditional density, so that α0|β ∼ N
{
β, σ2/

(
1− φ2

)}
.

In this experiment we will use a straightforward SIR based particle filter with M = R/2 in

each strata and take R = 150, 500, 1000, 3000. The resulting
{
πj

n

}
, which are proportional to the

estimated likelihood function, are graphed in Figure 3. This figure is very ragged reflecting the

many sources of randomness in this process. It can be used to estimate the posterior moments

of β|y by weighting each strata by the prior density of the value of β indexing the strata.

5.2 Smoothing via common random numbers

Some of the roughness of the estimates of the relative log-likelihood function is caused by the

use of different random numbers in the different strata. There would seem to be little point in

this if we want to compare the estimated log-likelihood in the different strata. Hence we carry

out the same experiment but with common random numbers for each strata — using a common

seed across each strata, but a different one for each time period. The results are given in Figure

4.

The Figure indicates that using common random numbers does not really change the estim-

ators very much. The estimated log-likelihood is still very random across strata. The reason

for this is that the bootstrapping operation is extremely rough so that small changes in the res-

ampling weights can mean that a very different state is sampled. This can effect the estimated
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Figure 3: Estimators of the relative log-likelihood computed via simulation estimators of the
prediction decomposition. The graphs plot the estimated log-likelihood against the β, which means
the true value is 0.5. Each value of β is used as a strata.

log-likelihood dramatically.

5.3 Smoothing via sorting and recycling

An alternative to recycling the random numbers is to try to smooth the likelihood via the use of

sorting. The discontinuities result as different αj
t are randomly chosen, when θ changes, in the

bootstrap. As contiguous αj
t can be very different so these changes can make quite a big impact

on the estimated likelihood function. We can reduce the impact by simply sorting the αj
t (and

their weights if using an auxiliary variable) before bootstrapping. Then small changes in θ may

change the αj
t which is selected, but the impact on the estimated log-likelihood will be small.

This approach has three problems. First, sorting is quite expensive and so this addition to

the algorithm considerably slows it. Second, although this reduces the discontinuities, they are

not removed. Third, in very complicated problems it may not be immediately obvious how to

sort the states (or signals) in order to reduce their sensitivity.

Usually we have found the pure particle filter is far smoother than its auxiliary variable

generalization. This is because the second stage resampling weights of the auxiliary variable are

more sensitive to θ than the standard particle filter.
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Figure 4: Estimators of the relative log-likelihood computed via simulation estimators of the
prediction decomposition using common random numbers in each strata. The graphs plot the
estimated log-likelihood against the β, which means the true value is 0.5. Each value of β is used
as a strata and common random numbers are used in each strata.

To illustrate this we repeat the above experiment but now with common random numbers

and using sorting. The resulting estimates of the log-likelihood are given in Figure 5. These

curves are now extremely smooth — although they are still not differentiable for all parameter

points.

These estimated log-likelihood functions are sufficiently smooth to enable us to use a stand-

ard Nelder-Meed simplex numerical optimization routine to approximate the maximum likeli-

hood estimator and its sampling variation. The parameterization has been selected so that the

optimization can be carried out in a relatively small number of steps.

In this experiment we take the same model but with n = 955 and now use M = 2500 and

R = 5000. Throughout we use constant random numbers and sort the states for each value of t.

The reported standard errors, given in Table 3 are computed using an outer-product estimator

of the covariance of the score, using quite a coarse numerical derivative on the parameterization

β/2, {log φ/ (1− φ)} /4 and σ1/2. The Table also reports the implied 95% confidence intervals

for the parameters of interest, β, φ and σ.

The results are suggestive that the MLE estimator is quite easily approximated by the

simulation version. To confirm this we can estimate the score a number of times using new sets
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Figure 5: Estimators of the relative log-likelihood computed via simulation estimators of the
prediction decomposition. The graphs plot the estimated log-likelihood against the β, which means
the true value is 0.5. Each value of β is used as a strata and common random numbers are used
in each strata. Further the value of the states are sorted during each propogation step.

of random numbers. This will allow us to estimate the variability of the score as a function of

the simulation process and so estimate the contribution the simulation makes to the parameter

uncertainty.

In this experiment we estimate the score 10 independent (with fixed data but with new sim-

ulations each time) times and report in Table 4 the average score and the associated covariance

matrix. The values reported are very small.

5.4 Moment conditions

The particle filters deliver draws from αt+1|Yt and so can be used to unbiasedly estimate the

moments (assuming they exist) of yt+1|Yt for every value of t. Hence we can construct a series

of moment conditions

yk
t+1 − E

(
yk

t+1|Yt; θ
)

, k = 1, ...

replacing the expected value by an unbiased simulated version of this expectation (notice the

simulation error does not effect this argument). Such estimated moment conditions hold true

over the whole data and are independent over t when the parameter is taken at the true value.
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Sim MLE Covariance
log(φ/(1 − φ))/4 0.88646 0.024742 -0.077219 -0.00052404
σ1/2 × 10 3.7348 -0.077219 0.39342 0.0022645
β/2 0.23631 -0.00052404 0.0022645 0.0076095

Sim MLE upper .025 lower .975 Initial values MLE
φ 0.972 0.910 0.991 0.9 0.972
σ 0.139 0.063 0.246 0.141 0.139
β 0.473 0.131 0.815 0.5 0.478

Table 3: Simulation estimation of the ML estimator of the parameters: one version is with the
transformed parameters, the other with the parameters of interest. The confidence intervals are
calculated as being two sided and contain the truth with 0.95 probability. Initial values denote
the initial values used in the optimizarion. MLE denotes the true maximum likelihood estimator
of these parameters.

Average score Covariance of score
log(φ/(1 − φ))/4 -0.00018226 2.1655e-006 4.9657e-007 2.1291e-007
σ1/2 × 10 -0.00012770 4.9657e-007 3.0412e-007 1.7816e-007
β/2 -0.00049014 2.1291e-007 1.7816e-007 4.6521e-007

Table 4: Simulation of the score at the simulated MLE, varying the random numbers in the
simulation. The estimate of the average score and the covariance of the score is carried out
using 10 replications.

Hence a second set of estimated moment constraints is that

{yt+1 − E (yt+1|Yt; θ)} {yt+s − E (yt+s|Yt+s−1; θ)} , s = 2, ...

All of these moments could be used as an input into a generalized method of moment (GMM)

estimation procedure. For a discussion of GMM see, for example, Hansen (1982) and an intro-

duction given in Hamilton (1994, Ch. 14).

A continual problem with this approach is that the moment conditions are again not smooth

in θ even with fixed random numbers and employing sorting.

6 APPLIED EXAMPLE: STOCHASTIC VOLATILITY

6.1 Application

In this section we will analyse the weekday closes (difference of the log of the series) on the

Pound Sterling/US Dollar exchange rate from 1/10/81 to 28/6/85. The sample size is n = 946.

This dataset has been previously analysed using quasi-likelihood methods in Harvey, Ruiz, and

Shephard (1994) and by Bayesian MCMC by Kim, Shephard, and Chib (1998), whose result are
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Figure 6: Single move Gibbs sampler for the Sterling series. Graphs (a)-(c): simulations against
iteration. Graphs (d)-(f): histograms of marginal distribution. Graphs (g)-(i): corresponding
correlograms for simulation. In total 1,000,000 iterations were drawn, discarding the first 50,000.

summarized in Table 5 using simulations graphed in Figure 6. In that paper the prior for the

parameters were independent, with φ ∼ 2Beta(20, 1.5) − 1.0, σ2
η ∼ 0.01 × 5/χ2

5 and a diffuse

prior on log β. Here we replace the diffuse prior by a Gaussian distribution with a mean of zero

and variance of ten as particle filters cannot deal with diffuse conditions.

Mean MC S.E. Inefficiency Covariance & Correlation
φ|y 0.97762 0.00013754 163.55 0.00011062 -0.684 0.203
ση|y 0.15820 0.00063273 386.80 -0.00022570 0.00098303 -0.129
β|y 0.64884 0.00036464 12.764 0.00021196 -0.00040183 0.0098569

Table 5: Daily returns for Sterling: summaries of Figure 6. The Monte Carlo S.E. of simulation
is computed using a bandwidth of 2,000, 4,000 and 2,000 respectively. Italics are correlations
rather than covariances of the posterior. Inefficiency denotes an estimate of the simulation
efficiency of this MCMC procedure compared to a hypothetical sampler which produces iid draws
using the same computer time.

Here we will perform an on-line Bayesian analysis of this problem as well as a simulated

maximum likelihood analysis. Throughout we use the simplest of particle filters based on a SIR

algorithm. The simulation efficiency of this procedure could be very significantly improved by
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using the auxiliary variables rejection algorithm which is available for the SV model.

6.2 On-line Bayesian estimation and diagnostic checking

In this section we estimate the SV model on-line using a SIR based filtering algorithm with

stratification. We stratify to keep 840 different values of the parameters. These parameters are

initially drawn from the prior density. In each strata we take R = 1785 and M = 892. Common

random numbers were used across strata and sorting was employed. Up to t = 100 we replace

draws from the prior which had relatively log-likelihoods which were less than −1 × 1040. At

the end of the sample we have 216 remaining points of support.

The resulting simulation estimates of the posterior means and covariances are given in Table

6. The results are very slightly different from Table 5 for the MCMC algorithm.

Mean MC S.E. Ineff Covariance & Correlation lower .025 upper .975
φ|y 0.97466 0.00169 32.4 0.0000742 -0.63186 0.28177 0.96454 0.99516
ση|y 0.15988 0.00467 22.1 -0.0001566 0.000828 -0.26633 0.091702 0.19530
β|y 0.63775 0.01483 21.2 0.0002268 -0.000716 0.008725 0.53857 0.85807

Table 6: SIR based stratified sampler to perform Bayesian calculations. The lower and upper
points are estimates of the upper and lower 0.025 and 0.975 quantiles of the posterior density.
MC S.E. denotes a bootstrap estimator of the standard error in estimating via simulation the
posterior mean. Ineff denotes the inefficiency factor, which is an estimate of the simulation
efficiency of the SIR based sampler (using 840 strata drawn from the prior) compared to a
hypothetical sampling which produces iid draws from the posterior distribution.

The simulation error induced by using this procedure is estimated in the following way.

Suppose we use, in total, S strata then we estimate the posterior moments as

θ̂ =
S∑

i=1

πiθi, such that
S∑

i=1

πi = 1,

where πi represents the relative likelihood for the simulated prior value θi. Then the simulation

error is estimated via a bootstrap conducted on the discrete population (θ1, π1) , ..., (θS, πS).

The i-th replication of the bootstrap draws from the S strata with equal probability and with

replacement to produce a bootstrap sample
(
θ1,i, π1,i

)
, ...,

(
θS,i, πS,i

)
and records the corres-

ponding mean

θ̂i =
S∑

j=1

πj,iθj,i/
S∑

j=1

πj,i, i = 1, ..., B.

The estimated of the simulation error is then the standard deviation of the bootstrap replications

θ̂1, ..., θ̂B.

32



The inefficiency factor attempts to measure the statistical efficiency of the simulation method

compared to a hypothetical sampler which is able to produce iid samples from the posterior dens-

ity. The stratification sampler we are using draws S samples from the prior and then produces an

estimated Monte Carlo variance via the above bootstrap argument. Call the simulation variance

V ar(Eθ|y), then we compute the inefficiency factor by looking at the ratio of S × V ar(Eθ|y) to

the posterior variance.

The advantage of this approach is that it produces on-line estimates of the parameters and so

allows us to see how the parameter estimates are influenced by various stretches of data. Figure

7 displays the evolution of the posterior means of the parameters together with the upper and

lower 2.5 percentage of the distribution. Inevitably these quantiles are rather roughly estimated

and so vary quite dramatically at times.
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Figure 7: On-line Bayesian estimation of the SV model. (a)-(c) Graphs the estimated posterior
mean and upper and lower 2.5 percentage points of the posterior distribution function against
observation number. (a) is for φ|y, (b) has ση and (c) has β|y. Graph (d) plots the estimated
distribution function of the one step ahead prediction distribution against observation number.
These shoulc be UID(0, 1) if the model and prior are true.

The estimated distribution functions are used in a series of statistical graphs to assess the

validity of the model and prior densities. Let us write ut as the distribution functions, then

we will compute a histogram of their marginal distribution and an associated QQ-plot. We

will also map them to normals via the inverse of the Gaussian distribution function. Then
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their correlogram will be plotted. In addition the same operation will be performed on the

reflected uniforms, which work on 2|ut − 0.5|. These reflected uniforms assess whether there is

predictability in the size of discrepancy of the uniforms from their means. The corresponding

correlogram should pick up failures in the scale of the forecast density. It is the natural extension

of an ARCH based test which is used for linear models. The results of these calculations are

plotted in Figure 8.
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Figure 8: Diagnostics for on-line Bayesian estimation of the SV model. Graph (a) is the marginal
histogram of the estimated distribution functions. These should be uniform if the model and
prior are true. Graph (b) works on the inverse Gaussian distribution function evaluated at the
estimated distribution function. These should be white noise if the the model and prior is true
and so Graph (b) plots their correlogram. Graph (c) does the same operation but on the reflected
uniforms. Graph (d) is the QQ plot of the estimated distribution function and so contains the
same information as Graph (a).

These graphs show the model fits this data quite well with a little failure in Graph (b).

However, this is a failure of the mean of the model, not the volatility part which would have

been picked up in Graph (c). The histogram and QQ-plot suggest the model and prior fit the

data quite well.

Formalizing tests of the model and prior are in principle completely straightforward given

the nature of the estimated distribution functions under the null hypothesis. Let sy denote any

test statistic which is a function of the data only through the estimate distribution functions.

Under the null sy is exactly pivotal and so we can use it as the basis of an exact Monte Carlo
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test of the hypothesis that the model and prior are true (see, for example, Ripley (1987, pp.

171-4)). This takes on the remarkably simple form of simulating uj
1, ..., u

j
n as iid draws from

UID(0, 1) and then using these as an input into the statistic s, to deliver the observed value suj .

Carrying this out M times delivers a population su1 , ..., suM which gives us a basis for judging

the size of the observed value sy which resulted from the data. Under the null sy comes from

the same population as su1, ..., suM and so can be used as a basis for a formal test.

This setup is both remarkably simple and extends to the case where we think of computing

the exact distribution of many tests simultaneously. Indeed it would seem that we can control

the overall size of all simultaneous tests in this framework.

6.3 Maximum likelihood estimation

We also used the SIR based particle filter to perform maximum simulated likelihood estimation

of the SV model for this data set. The results are given in Table 7 and are based on taking

M = 2500 and R = 5000. The results are broadly in line with the Bayesian estimation except

that σ is estimated to be quite a lot higher in this experiment. This could be due to the prior

density for the Bayesian estimator which had quite a lot of mass below 0.1. The confidence

intervals are of the same type of size as observed for the Bayesian analysis. Again Table 7

displays the simulation covariance of the scores to give a guide as to the uncertainty associated

with this simulation based estimator. The covariance is very small and so we feel confident that

the estimator is very close to the maximum likelihood estimator.

Sim MLE Covariance
log(φ/(1 − φ))/4 0.88912 0.010242 -0.023987 0.00024964
σ1/2 × 10 4.1244 -0.023987 0.11019 -0.0023843
log(β) -0.47843 0.00024964 -0.0023843 0.0088938

Sim MLE upper .025 lower .975 Initial values
φ 0.97177 0.941 0.987 0.972
σ 0.170 0.121 0.228 0.141
β 0.620 0.515 0.746 0.606

Simulation error Covariance
for the score

log(φ/(1 − φ))/4 3.0465e-006 2.0024e-007 8.4064e-007
σ1/2 × 10 2.0024e-007 1.0137e-006 1.0890e-006
log(β) 8.4064e-007 1.0890e-006 2.9953e-006

Table 7: Simulation estimation of the ML estimator of the SV parameters: one version is with
the transformed parameters, the other with the parameters of interest. The confidence intervals
are calculated as being two sided and contain the truth with 0.95 probability. Initial values denote
the initial values used in the optimizarion. Simulation error for the score is the covariance of
10 independent simulations of the score evaluated at the simulated ML estimator.
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7 EXTENSIONS

7.1 Allowing feedback

In some problems the standard model is not sufficiently rich and has to be extended. In par-

ticular it is often helpful to allow the measurement and transition equations to depend on past

observations. If we write the information up to time t as Yt, then the measurement density be-

comes f(yt|αt, αt−1, Yt−1), while the transition density is f(αt+1|αt, Yt). We call this a feedback

model.

In principle the particle and auxiliary particle filter methods are not complicated by this

extension, although now it is necessary to store the history of the time series. All that changes

is that we now must be able to simulate from f(αt+1|αt, Yt) and evaluate f(yt|αt, αt−1, Yt−1).

A simple example of this framework is where f(yt|αt, Yt−1) is a switching autoregression with

outliers and level shifts, with αt being a discrete state Markov chain so that f(αt+1|αt, Yt) =

f(αt+1|αt). Such models have attracted quite a lot of interest following the work of, for example,

Hamilton (1989), Albert and Chib (1993), McCulloch and Tsay (1993), McCulloch and Tsay

(1994) and Gerlach, Carter, and Kohn (1996).

7.2 Simulation based models

In this paper we have shown how to perform filtering even in cases where we can only simulate

from f(αt+1|αt) and evaluate the measurement density f(yt|αt). In some problems it may be

unrealistic to assume that we can compute f(yt|αt), but in such situations it might still be

possible to simulate from yt|αt. In these cases we could draw a large sample y1
t , ..., y

S
t from yt|αt

and then use some non-parametric density estimator to form an estimate ̂f(yt|αt). This could

then replace the true density in the SIR algorithm outlined above for the particle filter. The

use of common random numbers and a smooth density estimator could be very useful in this

situation as this could reduce the impact of the simulation error in estimating the likelihood

ratios important in the SIR algorithm.

8 CONCLUSION

This paper has studied the weaknesses of the very attractive particle filtering method proposed

by Gordon, Salmond, and Smith (1993). The SIR implementation of this method is not robust

to outliers for two different reasons: sampling efficiency and the unreliability of the empirical

prediction density in the tails of the distribution. We introduce an auxiliary variable into the

particle filter to overcome the first of these problems, providing a powerful framework which is as

simple as SIR, but more flexible and reliable. We study the fixed lag filtering algorithm to tackle
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the second problem. Our experiments suggest that this produces a significant improvement in

the algorithm, however it still cannot deal with some problems.

The combination of the two improvements produce an algorithm which is a very significant

improvement over the existing technology. Further, it can be tailored to the particular problem

at hand. We believe that except in some very exceptional problems, the auxiliary variable

particle fixed lag filtering algorithm can be used reliably.

9 APPENDIX

9.1 Multinomial sampling

The following algorithm is discussed in Carpenter, Clifford, and Fearnhead (1997). Suppose x

takes on the values 0, ..., I − 1 with probability of π0, ..., πI−1. Then the task will be to draw

a sample of size R from this discrete distribution in O(R) computations. We carry this out by

sampling an ordered version of these variables, so that x0 ≤ x1 ≤ ... ≤ xR−2 ≤ xR−1. In the

applications discussed in this paper it is not necessary to shuffle these variables.

Drawing order variables will be carried out by first drawing order uniforms (see, for example,

Ripley (1987, p. 96)). Let u0, ..., uR−1 ∼ UID(0, 1), then

u(R−1) = u
1/R
R−1, u(k) = u(k+1)u

1/(k+1)
k , k = R− 2, R − 3, ..., 1, 0,

where u(0) < u(1) < ... < u(R−2) < u(R−1). This is most easily carried out in logarithms.

Then we calculate the ordered x using the following trivial algorithm

s=0,k=0,j=0;

for (i=0; i<I; i++)

{
s+=πi;

while (u(j) ≤ s && j < R)

{
xj = i;

j+=1;

}
}
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