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Abstract

This paper develops methods to perform likelihood inference for Hasbrouck’s (1996) dis-
crete bid/ask price model for a stock in a security market. Our approach is to sample from
the distribution of the continuous latent variables, (the bid cost, the ask cost and the effi-
cient price), given the most recent updated values of the latent points at the previous and
next period, the discrete observed variables, (the bid and ask quotes), and some parameter
estimates, within a Metropolis-Hastings algorithm. The method is applied to estimate the
bid and ask quotes for Alcoa for all trading days in 1994, a data set previously analyzed in
Hasbrouck (1996).

Some key words: Bid/ask quotes; Discreteness; Gaussian limited dependent process; Latent
variables; Markov chain Monte Carlo; Metropolis-Hastings algorithm.
JEL classification: C13; C22; G1

1 Introduction

1.1 Security markets

This paper deals with the estimation of a dynamic model of discrete bid and ask quotes for a
stock in a security market proposed by Hasbrouck (1996).

The basic trading process in a security market, (e.g. the New York Stock Exchange) can be
described as follows. A market maker or quote setter in the security, posts a bid price (a price
at which he/she is willing to buy), an ask price (a price at which he/she is willing to sell), and
a quote size (the maximum number of shares he/she is willing to buy or sell at these prices).
The Exchange regularly disseminates (communicates) the highest bid and the lowest ask price
per stock, as well as the number of shares that can be bought or sold at these prices.

Specialists and floor brokers form the trading crowd. They are going to transact buying and
selling securities. A floor broker represents an order (an intent to buy or sell a security) of one
of his/her customers such as a pension fund or private individual. Floor brokers can represent
orders in all securities quoted in the market. All trading in a given stock, is centralized at
the assigned trading post and panel location for that security. The specialist representing the
individual stock stays at the trading post. He/she determines the quotation size to be displayed.
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He/she can also buy for his/her own account but only after exposing the orders to the trading
crowd. See Hasbrouck and Sofianos (1992) for details on the role and regulation of specialists in
the NYSE. Most orders reach the post where the security is traded electronically (the SuperDot
system in the NYSE). However, large or difficult orders are walked to the post by floor brokers.

When a floor broker receives an order, he/she can either leave it with the specialist or bid
for/offer the stock on behalf of his/her customer. The trader (specialist or floor broker), exposes
the order to the crowd as a quote. Trade occurs (the order is executed), when a specialist
or floor broker accepts one of the quotes, either hitting the bid or lifting the offer. Orders
may be executed against each other, against the specialist’s own inventory, or against an order
represented by another floor broker. Before buying or selling for his/her own account, the
specialist has to expose orders to the trading crowd. If an order is executed, transactions must
be reported by the specialist or floor broker representing the seller. Trade takes place at or within
the posted quotes but never at worse prices than those displayed. Orders may be executed at a
better price than the quoted price.

Example. The NYSE quotes stock XYZ at $20 bid for 30, 000 shares, 20, 000 offered at $20
1/4. Floor broker A comes with a market order (it will be executed at the most advantageous
price obtainable after being made public to the crowd) to buy 5, 000 shares. In an attempt to do
better than the offer price, he/she bids $20 1/8 for 5, 000. Floor broker B hits the bid and the two
brokers complete the transaction. Floor broker A got price improvement: instead of buying at
$20 1/4 (the posted offer), he/she bought at $20 1/8. (Hasbrouck, Sofianos, and Sosebee (1993,
p. 14)).

Orders may also be stopped by the specialist. By stopping the order, the market maker
guarantees execution at the prevailing quote while attempting to get a price improvement.
Orders representing both the buying and selling side of a transaction may also be crossed at a
more advantageous price, subject to certain rules.

Posted quotes may be revised in the absence of trade. The quote change also needs to
be reported. All the information regarding quotes and trades is kept in the audit trial for
surveillance operations. See Hasbrouck, Sofianos, and Sosebee (1993) for a detailed description
of NYSE systems, trading rules and variations of the basic trading process.

By posting the bid and ask quotes, the quote setter is risking that other traders may act on
this information to his/her disadvantage. For example, if the quotation size is large, either on
the bid or on the ask side, some dealers may try to profit from the free trading option provided
by the large size displayed. They will then quote on the same side attempting to get their orders
filled ahead of the large size displayed. Most financial markets force these dealers to improve the
price if they wish to acquire order precedence. In practice, the benefits from posting quotes and
being perceived as an active market participant is likely to outweigh the direct costs of quote
formation. For example, if a bank in the foreign exchange market continuously refuses to quote
bid and ask prices or quotes uncompetitive spreads, other traders may reduce their contact and
exclude the bank from the network that makes up the market (Lyons (1991)).

The difference between the bid and ask quotes is the spread. Incoming order flow depends
on the quoted spreads. Thus, a market maker may diminish the frequency of incoming order
arrival simply by widening the bid/ask spread. Large bid/ask spreads make trading expensive,
especially for small traders. Spreads are expected to decrease with trading activity because the
fixed costs of market making are spread over more traders, and to increase with price volatility
because dealers are risk averse.

In most markets quoted spreads must be some multiple of the tick size (the minimum price
variation), usually 1/8. This constraint appears to be binding for low-price stocks. For example
on the NYSE a stock priced at $5 or more per share trades in ticks of 1/8 dollar. Discreteness
then appears as an institutional feature of market data and reflects costs of negotiation. In
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the absence of discreteness restrictions, traders would haggle over very small amounts of money
before hitting the bid or lifting the offer.

For high frequency data (e.g. intraday changes in the bid and ask prices), discreteness could
considerably distort the econometric analysis and we have to model it explicitly.

1.2 Econometric issues of bid/ask price models

Some econometric studies of discreteness focus on transaction prices, (see for example, Hausman,
Lo, and MacKinlay (1992), who present an ordered Probit model of price transaction changes,
where the underlying continuous price variable is mapped into a set of discrete prices using
breakpoints). Others analyze the discrete bid/ask spread. Papers along these lines include Harris
(1994) or Bollerslev and Melvin (1994). Harris (1994) explores how price levels (and indirectly
the minimum price increment), are related in cross sections to relative spreads (spread expressed
as a fraction of price), quotation sizes and trading volumes. He uses intraday stock quotation
spread frequencies to estimate a cross sectional discrete spread model, in which the discrete
quote is obtained by rounding to the nearest tick, random draws from a continuous distribution.
Bollerslev and Melvin (1994) present empirical evidence that the size of the bid/ask spread
in the foreign exchange market is positively related to the exchange rate uncertainty. Since
the observed spread is assumed to only take on a fixed number of discrete values, they use an
ordered Probit model to estimate the relationship between exchange rate volatility and spread.
Exchange rate volatility is measured as the conditional variance of the ask price estimated by
an MA(1)-GARCH(1, 1) model.

In a recent paper, Hasbrouck (1996) estimates a model of discrete bid and ask prices. He
considers discrete bid and ask quotes as arising from three continuous random variables: the
efficient price of the security, a cost of quote exposure on the bid side and a similar cost of
quote exposure on the ask side. The bid quote is the efficient price less the bid cost, rounded
down to the next tick. The ask quote is the efficient price plus the ask cost, rounded up to
the next tick. Exposure costs reflect fixed transaction costs and asymmetric information costs
associated with market making. A limitation of using these simple rounding functions is that the
analysis cannot be extended to clustering (tendency of transaction prices and quotes to combine
in integers, halves and quarters, in decreasing frequency). Other models in the literature, (see for
example, Glosten (1994), Chordia and Subrahmanyan (1995), Bernhardt and Hughson (1995)
or Cordella and Foucault (1996)) incorporate discreteness effects by allowing a restricted set of
traders and permissible interactions. These models typically focus on information costs without
an explicit rounding construction to get the discrete bid and ask observations.

1.3 Our approach

In this paper we follow Hasbrouck (1996) in mapping continuous latent variables (efficient price,
ask cost and bid cost) into discrete observed variables (bid and ask prices) by a ceiling and
floor function. The bid and ask are modelled separately, although they are assumed to follow
the same dynamics. This model is a special case of a Gaussian limited dependent process.
We say yt, t = 1, ..., n, is a Gaussian limited dependent process if yt = h (st) , where at any
time yt is observed, st = (st1, ...stp)′ is an unobserved p-dimensional vector, h (·) is not a one-
to-one function and s follows a model which can be put in Gaussian state space (e.g., West
and Harrison (1997) and Harvey (1989)). Note that st can be, and will in practice often be,
non-stationary. If yt is multivariate, then it could include some variables which are identical to
elements in the st vector. This is a particular form of a non-Gaussian state space form where the
‘measurement equation’ is a deterministic and non-invertible function of a Gaussian state space
form. Examples of this setup also include Tobit structures, Probit structures and disequilibrium
processes. An extensive analysis of Gaussian limited dependent processes is given in Manrique
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(1997). Some examples of this setup (Tobit processes and disequilibrium models) have been
discussed in Manrique and Shephard (1997).

As in Hasbrouck (1996), we assume that the three latent variables evolve independently. A
Metropolis-Hastings algorithm can be designed to sample from the density of the latent variables
at any time, given the values of the latent variables at any other time, the observations and a
fixed parameter value. We postulate a very stylized model which can be criticized on several
grounds, as it does not take into account some intricate typical features of market data. In this
setup, we consider a simpler Metropolis-Hastings algorithm which draws from the density of the
latent variable at any time, given the values of the latent variables for the previous and next
period, this period’s observation and some parameter estimates. The model is then estimated
for Alcoa, a representative stock in the New York Stock Exchange, using the ask and bid prices
for this stock for all trading days in 1994. This data has previously been analyzed in Hasbrouck
(1996).

The outline of the paper is as follows. Section 2 presents the underlying economic model
to generate the bid and ask quotes using the same construction as in Hasbrouck (1996). The
Metropolis-Hastings algorithm is given in section 2.1. Section 3 is devoted to parameter infer-
ence. Section 3.1 outlines the approximated maximum likelihood approach in Hasbrouck (1996),
who uses Kitagawa’s (1987) non-linear filtering method. The Metropolis-Hastings algorithm for
Bayesian inference is in section 3.2. Results of a Monte Carlo study are discussed in section
4, first with a single data set and then repeating the experiment 100 times. In section 5 the
sampler is applied to estimate the bid and ask quotes for Alcoa for all trading days in 1994.
Section 6 examines the limitations of the model and suggests possible alternative formulations to
incorporate some typical features exhibited by the market data. A slightly more general model
is discussed in detail. Section 7 gives some conclusions. All the computations were generated
using the high level programing language Ox of Doornik (1996).

2 Underlying economic model

2.1 Basic model

A simple bid/ask spread model arises from the following trading process. Assume that m, the
implicit efficient price of the security, (the expectation of the security’s terminal value conditional
on all public information, including the transaction price history), is known to all participants.

A market maker or quote setter posts a price at which he/she is willing to buy (the bid price)
and a price at which he/she is willing to sell (the ask or offer price). The difference between
the bid and ask quotes is the spread. Transactions occur when active traders arrive and accept
one of the quotes (hitting the bid or lifting the offer). Buyers and sellers are assumed to arrive
independently and with equal probability. The incoming order flow depends on the quotes.

The agent establishing the bid quote is assumed to be subject to a non-negative cost of
quote exposure, β ≥ 0, for small trades, which is assumed to reflect fixed transaction costs, costs
associated with being the market maker and asymmetric information costs. With no discreteness
restrictions, this agent would quote a bid price of m − β. Similarly, the agent establishing the
ask quote is assumed to be subject to a non-negative cost of quote exposure α ≥ 0 also for small
trades. With no discreteness restrictions, this agent would quote an ask or offer price of m + α.
The quote exposure costs are defined implicitly by the conditions that ensure the quote setters
or market makers’ zero expected profits and no ex post regret. Clearly, the bid quote must be
lower than or equal to the ask price.

However, in most markets, assets are only traded at a fixed number of prices as quoted
spreads must be some multiple of the tick size, usually 1/8. This institutional feature has to
be explicitly taken into account for modelling high frequency data of the same scale or smaller
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than the tick size. Constrained by discreteness, the market maker will post a bid price of
b = Floor (m− β) , where Floor (·) rounds its argument down to the next tick since m − β is
the highest price at which he/she is willing to buy. Similarly, as he/she is not willing to sell
at any price lower than m + α, he/she will quote an offer price of a = Ceiling (m + α) , where
Ceiling (·) rounds its argument up to the next tick.

This construction is taken from Hasbrouck (1996). In this setup, random variation in m is
enough to induce randomness in the spread even when the bid and ask exposure costs are equal
and constant. For example, if α = β = 1/4, the spread is one tick, if the decimal part of m is
between 1/4 and 3/4, and is two ticks otherwise (Hasbrouck (1996, p. 7)).

The market maker avoids the possibility of loss on the incoming trade by asymmetrically
rounding up on the ask and down on the bid. If the efficient price of the security is rounded to
the nearest tick, in order to avoid the expectation of losing money, a market maker posting bid
and offer quotes must round his/her bid price down and his/her offer price up. With symmetric
rounding (all prices rounded up, all rounded down, or all rounded to the nearest integer), one or
both sides of the quotes might be associated with an expected loss. For example, if the efficient
price is 5, and the cost is 1.1, nearest integer rounding yields a bid of 4 and an offer of 6, both
of which yield expected losses (Hasbrouck (1996, p. 4)). Furthermore, symmetric rounding may
result in identical bid and ask prices if α and β are small, while asymmetrically rounding up
on the ask and down on the bid implies that with probability 1 the bid and ask prices will be
different. Even with no costs associated with market making, i.e., α = β = 0, the bid and ask
prices could only be identical when the efficient price m is exactly an integer, which happens
with probability 0.

This construction is motivated by most simple models of dealer behaviour. Following Glosten
and Milgrom (1985), it is typically assumed that there are informed and uninformed traders in
the population. For instance, in the foreign exchange market there are liquidity traders and
informed traders. The first ones do not speculate but only buy or sell currencies according to
what they need for their normal business activity. The second ones profit both from informa-
tion received by dealing with liquidity traders and from information asymmetries regarding the
determinants of the spot exchange rate. m is the expectation of the final value of the security,
conditional on all public information. The quote exposure costs are defined by the conditions
that m−β and m+α ensure the quote setter’s zero expected profits and no ex post regret. Due
to the asymmetric rounding, a Glosten-Milgrom dealer will achieve a profit (both ex ante and
ex post) at each trade. These profits will typically not lead to competitive price cutting. The
discreteness restriction ensures that such action, if feasible, will result in a loss. Furthermore,
despite these profits, new entrants are not expected to join the market as local time priority is
usually enforced so that the probability of execution diminishes with the length of the queue.

In summary, the three underlying continuous variables in the model are the efficient price,
mt, the ask cost, α, and the bid cost,β. The observed variables are the discrete bid and ask
quotes. These variables are related by

b = Floor (m− β) ,
a = Ceiling (m + α) .

(1)

2.2 Modelling framework

A simple dynamic bid/ask model is considered here. At any time, bid and ask prices are observed
while the underlying efficient price, the bid cost and the ask cost are unobserved. We can write

st = (s1t, s2t, s3t)′ ,
yt = [Floor {exp (s1t)− exp (s2t)} , Ceil {exp (s1t) + exp (s3t)}]′ , (2)

where s1t is interpreted as the logarithm of the efficient price log (mt), s2t as the logarithm of the
bid cost log (βt) , s3t as the logarithm of the ask cost log (αt) , y1t as the bid price bt and y2t as
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the ask price at. We assume st follows a model which can be put in Gaussian state space form,
(e.g., West and Harrison (1997) and Harvey (1989)). The model for st is therefore formulated
in terms of the unobserved states. At any time, st is linearly related to the unobserved state αt,
but corrupted through the addition of Gaussian noise. Let s = (s1, ..., s

′
n) and y = (y1, ..., yn)′ .

As before, the Floor function rounds its argument down to the next tick while the Ceil function
rounds it up to the next tick.

3 Parameter estimation

3.1 Previous work

Hasbrouck (1996) describes a non-linear state space estimation method for estimating a dynamic
bid/ask price model.

The estimation approach follows Hamilton (1984), Hamilton (1994) and Harvey (1989). It
is based on a recursive likelihood calculation. This likelihood is numerically approximated as
in Kitagawa (1987). Throughout, yt will denote (y′1, ..., y′t)

′ , and following Hasbrouck (1996),
s1t will be interpreted as the efficient price mt, s2t as the bid cost βt, and s3t as the ask cost
αt, so that yt = (bt, at)

′ = {Floor (s1t − s2t) , Ceil (s1t + s3t)}′ , and st = (s1t, s2t, s3t)
′ as the

unobserved state.
Assume that f

(
st|yt; θ

)
, the density function of the current state, conditional on current

and past information and a fixed parameter value, is known. Then f
(
st+1|yt+1; θ

)
is recursively

calculated as follows. Given θ, the density of the state in the next period, conditional on current
and past information is

f
(
st+1|yt; θ

)
=

∫
f (st+1|st; θ) f

(
st|yt; θ

)
dst, (3)

where f (st+1|st; θ) is the state transition density. The conditional probability of observing yt+1

given yt, Pr
(
yt+1|yt; θ

)
, is defined as the integral of the density of next period’s state, given

yt over Qt+1, where Qt+1 is the feasible region of the possible values for st+1 consistent with
observation yt+1 = {bt+1, at+1}′. That is,

Pr
(
yt+1|yt; θ

)
=

∫
st+1∈Qt+1

f
(
st+1|yt; θ

)
dst+1. (4)

The joint density of next period’s state and next period’s observed quotes given yt is

f
(
st+1, yt+1|yt; θ

)
=

{
f

(
st+1|yt; θ

)
if st+1 ∈ Qt+1,

0 otherwise,
(5)

and hence,

f
(
st+1|yt+1; θ

)
=

{
f

(
st+1, yt+1|yt; θ

) /
Pr

(
yt+1|yt; θ

)
if st+1 ∈ Qt+1,

0 otherwise,
(6)

which completes the update.
Maximum likelihood estimates are obtained by maximizing the log likelihood function,

log f (y1, ..., yn; θ) =
n−1∑
t=1

log Pr
(
yt+1|yt; θ

)
+ log p (y1; θ) , (7)

where p (y1; θ) is the density function of the first observation.
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Analytical computation of the integrals in this calculation will typically be infeasible in
non-Gaussian cases. Kitagawa (1987) suggests approximating f

(
st|yt; θ

)
by a numerical grid,

say Ci
t , i = 1, ... in the st space. Then, the state transition densities become the discrete

transition probabilities Pr
(
Ci

t+1|Cj
t ; θ

)
for i = 1, ... and j = 1, ... and the conditional probability

of observing yt+1 given yt is

Pr
(
yt+1|yt; θ

)
=

∑
j

Pr
(
Cj

t+1|yt; θ
) V ol

(
Cj

t+1 ∩Qt+1

)
V ol

(
Cj

t+1

) , (8)

where V ol denotes volume. Note that the intersection Cj
t+1∩Qt+1 is empty for most of the cells

in the st+1 space. There are several approaches to approximate Pr
(
Ci

t+1|Cj
t ; θ

)
, see Hasbrouck

(1996) for details.
In this framework, it seems difficult to add endogenous variables such as quote sizes or

trades. This will require expanding the set of state variables, which “may run into the curse of
dimensionality because of the requirement that the integration of the conditional probabilities
be computed numerically over all variables”, Hasbrouck (1996, p. 22).

3.2 Bayesian inference

An alternative approach to efficient inference, which is computationally attractive, is to use a
Bayesian analysis carried out by Markov chain Monte Carlo (MCMC) methods, (see e.g., Chib
and Greenberg (1994), or Gilks, Richardson, and Spiegelhalter (1996)). In this context, this
involves deriving methods for simulating from θ, s|y. It turns out that we can simulate from the
distributions of st|s\t, y; θ, where s\t = (s1, ..., st−1, st+1, ..., sn)′ , and θ|s, (note that s|θ follows
a Gaussian state space form, and so the likelihood function can be evaluated using the Kalman
filter (e.g., Kalman (1960)). It then follows that we can set up a simple Markov chain Monte
Carlo sampler to estimate the model by drawing from (s′, θ′)′ |y. Assuming a prior distribution
for the unknown parameters θ, the MCMC sampler will proceed as follows:

1. Initialize θ.

2. Sample s ∼ s|y; θ, i.e., st ∼ st|s\t, yt; θ, t = 1, .., n inside a Metropolis-Hastings algorithm.

3. Sample θ ∼ θ|s.
4. Repeat from step (2).

This type of algorithm will, (under some rather weak regularity conditions; e.g. Tierney
(1994)), converge to a draw from (s′, θ′)′ |y using Markov chain Monte Carlo results. Aver-
aging subsets of these simulations will lead to Bayesian estimators of the parameters. The
resulting estimators, based on the mean, median or mode of the posterior density of θ|y, are
typically efficient, (if viewed as estimators from a sampling viewpoint), as shown, for example,
by Barndorff-Nielsen and Cox (1994, Ch. 4) for a wide class of prior distributions.

In this section, we detail how to perform step (2) of the sampler. In section 4.2.2, we will
outline how to sample from the posterior distribution, θ ∼ θ|s, in a simple example.

The scan sampler of de Jong (1997) can be used to deal with the time series dimension of this
problem. The scan sampler is a powerful tool which enables us to sample from the distribution
of the latent variable st, at any time, given all the latent points s\t in only O

(
np3

)
operations.

It is important to note that at every iteration st is updated, given some parameter estimates,
conditional on the most recent values of all the other points. As we can easily sample from the
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distribution of st|s\t; θ using the scan sampler, the only unresolved difficulty left is sampling
from

Pr
(
st|s\t, y; θ

)
∝ Pr

(
st|s\t; θ

)
Pr (yt|st; θ) . (9)

Let f (st) denote the density of st|s\t, yt; θ and Qt the set of values st, consistent with observation
yt = {bt, at}′ , i.e.,

Qt = {st |bt ≤ exp (s1t)− exp (s2t) < bt + δ, at − δ < exp (s1t) + exp (s3t) ≤ at } , (10)

where δ is the minimum tick size, (in this case, 1/8). Note that f (st) = 0 if st /∈ Qt.
If we write st|s\t; θ ∼ N (γt,Σt) , sampling from f would involve sampling st from a normal

distribution truncated to Rt = [log (bt) , log (at)] × (log (at − bt) ,∞) × (log (at − bt) ,∞) , and
accepting st only if st ∈ Qt. However, we can propose from the truncated distribution without
checking whether st is in Qt. This can be done inside a Metropolis-Hastings algorithm. At step
i, a proposal s

i

t is drawn from some density q (st) and accepted with probability

min

1,
f

(
si
t

)
q

(
si−1
t

)
f

(
si−1
t

)
q

(
si
t

)
 , (11)

where si−1
t ∈ Qt. If the proposal is not accepted we write si

t = si−1
t and make another proposal.

We take a proposal density q, which is proportional to f in Qt. Hence, if st ∈ Qt then the
probability of accepting it is 1 (the constants of proportionality in (11) disappear) while if
st /∈ Qt the probability of acceptance is 0 as f (st) = 0. In other words, we sample from the true
density f and accept the proposal if it satisfies

bt = Floor {exp (s1t)− exp (s2t)} , at = Ceil {exp (s1t) + exp (s3t)} , (12)

(note that (12) is simply (10) rewritten). Clearly, the proposals will be accepted with high
probability if the region Qt is almost as large as the region Rt from which we sample.

The Metropolis-Hastings algorithm we set up (e.g., Metropolis, Rosenbluth, Rosenbluth,
Teller and Teller (1953), Hastings (1970) or Tierney (1994)), is as follows:

1. Initialize s at say s0; set k = 0.

2. Set t = n and then run for t = n, ..., 1.

(a) Set i = 1, generate a candidate value si
t from q.

(b) If (11) is 1 write sk+1
t = si

t and go to step (3). If (11) is 0 set i = i + 1.

(c) If i = 50 write sk+1
t = si

t if (11) is 1 or sk+1
t = sk

t if (11) is 0, and go to step (3).

3. Let t = t − 1. If t > 1, then repeat from step (2a). If t = 1, then write k = k + 1 and
repeat from step (2).

In short, for each t we perform up to 50 Metropolis rejection steps using a proposal st from
q and accepting this value when it is in Qt. If, after 50 rejections the proposal is still outside Qt,
we take sk+1

t = sk
t .

The simulations are not continuous with respect to the model parameters as the acceptance
probability in the Metropolis-Hastings algorithm is less than 1. This rules out the use of simu-
lated EM algorithm (e.g., Qian and Titterington (1991), Chan and Ledolter (1995), Ruud (1991)
or Tanner (1996, Ch. 4)).
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It is important to note that, unlike the estimation method used in Hasbrouck (1996), this
procedure allows us to add new state variables to the process straightforwardly. The only diffi-
culty will be to design an appropriate Metropolis-Hastings algorithm to sample from st|s\t, yt; θ
in step (2), and maybe sampling additional parameters in step (3).

Note also that the sampling from θ|s to estimate another Gaussian limited dependent pro-
cesses may be generically difficult, even though we can evaluate the likelihood f (s; θ) and can
sample from the full conditionals one at a time, rather than from the full density. Then, it will
be possible to add another line in the simulation procedure and to sample the unobserved states
α given s and θ, (e.g., using the signal simulation smoother of de Jong and Shephard (1995)).
The advantage with the resulting sampler is that it is usually easy to sample from θ|α, s than
from θ|s. Despite the fact that we are adding an unnecessary conditioning variable, the sampler
seems to work reasonably well in most cases, (see Manrique (1997) for details).

4 A Monte Carlo study

4.1 Monte Carlo setup

For sake of simplicity, we assume that the logarithm of the efficient price is a random walk and
the logarithm of the bid and ask exposure costs are stationary AR(1) processes, i.e.,

log (mt) = log (mt−1) + σεtεt,
log (βt)− µt = φ {log (βt−1)− µt−1}+ σνν1t,
log (αt)− µt = φ {log (αt−1)− µt−1}+ σνν2t.

(13)

where |φ| < 1, εt, ν1t and ν2t are independent, serially uncorrelated with N (0, 1) distributions,
and log (β0) = log (α0) = 0. We take log (m0) = 4.

The assumption of independent bid and ask exposure costs is appropriate to a market setting
in which the bid and ask quotes are set by limit orders, (orders which must be executed at a
specified price -the limit price- or at a better price), of different traders. If the quotes reflect the
interest of a single quote setter, it would be better to allow for positive correlation between the
two costs.

The unconditional mean and variance of the bid and ask costs are then

µ = E (βt) = E (αt) = exp
[
µ + (1/2)

{
σ2

ν

/(
1− φ2

)}]
,

V ar (βt) = V ar (αt) = µ2 · exp
(
σ2

ν

)− 1.
(14)

In this setup, θ =
(
σ2

ε , µ, σ2
ν , φ

)′
. The parameter values are chosen so that the artificial data

looks rather similar to the real data which will be considered in the next section. This data is
also analyzed in Hasbrouck (1996). There are 6, 780 observations, 6, 528 intraday observations
and 251 overnight observations from 252 trading days. An overnight observation is the first
observation of the day, and intraday observations are the remaining observations during the
day. The first observation of the first day is included within the intraday observations. Bid and
ask quotes are reported at the end of fifteen minute intervals. The first observation of a day
is typically at 9:30 and the last one is at 16:00. This gives 27 daily points with the exception
of 7 days. The bid quotes take values between $64 3/8 and $90 1/8, while the ask quotes are
between $64 3/4 and $90 1/4.

We take σ2
ε = 0.00001, (σε = 0.00316) , µ = −3.715, σ2

ν = 1.05, (σν = 1.025) , and φ = 0.4.
A very small value of σ2

ε is required to avoid huge variability in the efficient price. The value of
the autoregression coefficient is taken as being quite close to Hasbrouck’s estimate (0.37) . These
values give an unconditional mean and variance of 0.0455 and 0.00218 respectively for the bid
and ask costs. The simulated bid quotes take values between $50 1/4 and $74 1/8, while the
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Figure 1: Alcoa data for all trading days in 1994. There are 6, 780 observations, typically at
the end of fifteen minutes intervals. Top graph: bid and ask quotes. Middle graph: bid and
ask quotes for the first 15 trading days. Bottom graph: histograms of the bid/ask spread. The
middle graph is simply an enlargement of the first part of the top graph, containing the first 405
osbervations, to illustrate how the bid and ask quotes evolve over time.

simulated ask quotes are between $50 3/8 and $74 1/4. The fact that these values are not in the
same intervals as those for the market data does not matter for inference purposes.

Summary statistics for the bid/ask spread, (in ticks), both for the Alcoa series and for the
simulated series are reported in Table 1. Figure 1 plots the bid and ask quotes for the whole
year (top graph), the bid and ask quotes for the first 15 days, i.e., 405 observations (middle
graph) and the spreads (bottom graph) for the Alcoa data. Figure 2 plots the efficient price, bid
and ask quotes for the whole period, bid and ask quotes for the first 189 observations and the
spreads for the simulated data. There is clearly variation in the spread for both the Alcoa data
and the simulated data. The standard deviation of the spread for the simulated data is larger
than that for the market data. A weakness of our model is that the frequency distribution of
spreads of more than 4 ticks for the simulated data, is much larger than that for the market
data. Moreover, it occasionally produces very big spreads compared to the observed spreads for
the market data.

The first differences of the bid and ask quotes for Alcoa data are plotted in Figure 3. The
maximum of both series is 19, the minimum is equal to −15 for the bid quote and to −16 for
the ask quote. There is no change on the bid quote in 37.9% of the observations, the change (in
absolute value) is 1 tick in 36.2% of the cases and is larger than 1 tick for the remaining 25.6%
of the observations. The corresponding numbers for the first differences of the ask quotes are
38%, 36.2% and 25.8%. In short, both series are practically identical. It is therefore legitimate
to start by assuming that the bid and ask exposure costs processes follow the same dynamics.
A more detailed analysis of these series is given in section 5.

Our model does not replicate these series. Instead, the maximum of the first differences of
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Figure 2: 6, 780 simulated data points using σε = 0.00316, µ = −3.715, φ = 0.4, and σν = 1.025.
Top graphs: bid and ask quotes; efficient price series. Bottom graphs: bid and ask quotes for
the first 189 observations; histograms of the bid/ask spread. The bottom left graph is simply an
enlargement of the first part of the top left graph to illustrate how the bid and ask quotes evolve
over time.

the bid and ask quotes is 9, while the minimum is −7 for the bid series and −11 for the ask
series. There is no change on the bid quote in 25.1% of the cases; the change (in absolute value)
is 1 tick, (larger than 1 tick), in 40.4%, (34.5%), of the observations. The percentages for the
ask quotes series are almost the same.

4.2 Bayesian inference

This section deals with Bayesian inference of the model defined by (13). We use the MCMC
sampler outlined in section 3.2. Section 4.2.1 deals with sampling from st|s\t, yt; θ in step (2) of
the sampler. Section 4.2.2 details how to sample from the posterior distribution θ|s, in step (3).
Section 4.2.3 looks at a Monte Carlo experiment using a single data set. Section 4.2.4 presents
the results of 100 Monte Carlo replications.

To start the scan sampler, we need to set the initial values of the logarithms of the efficient
price, bid and ask costs. To do so, we take the efficient price equal to the middle point between
the bid and ask quotes, the bid cost equal to the efficient price less the bid price, and the ask cost
equal to the ask price less the efficient price. That is, mt = (1/2) (bt + at) , βt = mt − bt, αt =
at − mt, t = 1, ..., n. Note that the bid and ask costs are then just the spread divided by two,
βt = αt = (at − bt) /2 . A different set of initial values with mt ∼ U [bt, at] was also considered.
In any case, the burn in period does not need to be longer than 250 iterations.

The initial values for the parameters in the bid and ask costs equations are drawn from
uniform distributions on [−4.215,−3.215] for µ, on [0.525, 1.025] for σν , and on [−0.2, 1] for φ.
The sampler is practically independent of these values. However, it appears to be very sensitive
to meaningless choices for the variance of the efficient price. As an initial value for this variance,

11



Alcoa data Simulated data
n 6,780 6,780
Min 1 1
Max 5 14
Mean 1.65 1.71
St dev .674 .871

Distribution
1 tick 45.9% 44.7%
2 ticks 43.5% 44.6%
3 ticks 10.3% 7.6%
4 or more ticks 0.3% 3.1%

Table 1: Descriptive statistics for bid/ask spreads, (in 1/8 ticks), for Alcoa for all trading days
in 1994 and for the simulated data using σε = 0.00316, µ = −3.715, φ = 0.4, and σν = 1.025.
The frequency distributions of the spread correspond to the histograms in Figure 1 and Figure
2.

we take the variance of the first differences of the series given by (1/2) (bt + at) .

4.2.1 Sampling from st|s\t, yt; θ

The assumption of state variables evolving independently facilitates the sampling from the den-
sity of st|s\t, yt; θ, where θ is fixed. Writing s1t|s\1t ∼ N (γ1t,Σ1t) , s2t|s\2t ∼ N (γ2t,Σ2t) , and
s3t|s\3t ∼ N (γ3t,Σ3t) , sampling from this density will involve sampling from three truncate-
dunivariate distributions

s1t|s\1t, yt ∼ TNs1t<[log(bt),log(at)] (γ1t,Σ1t) ,

s2t|s\2t, yt ∼ TNs2t>log(at−bt) (γ2t,Σ2t) ,

s3t|s\3t, yt ∼ TNs3t>log(at−bt) (γ3t,Σ3t) ,
(15)

subject to the constraints in (12) using the Metropolis-Hastings algorithm described above.
However, due to the conditional independence structure of the model considered, we can draw

st, t = 1, ..., n, given the values of the latent variables for the previous and next period, this
period’s observation and some parameter estimates, within a Metropolis-Hastings algorithm.
Our target density will therefore be st|st−1, st+1, yt; θ. Although the general scan sampler of
de Jong (1997) is typically better, there is not much difference with respect to convergence in
this particular setup.

In our problem, we have

s11|s12; θ ∼ N
(
s12, σ

2
ε

)
,

s1t|s1t−1, s1t+1; θ ∼ N
{

1
2 (s1t−1 + s1t+1) , σ2

ε /2
}

, t = 2, ..., n − 1,
s1n|s1n−1; θ ∼ N

(
s1n−1, σ

2
ε

)
,

(16)

and, for i = 2, 3, since si0 = 0,

sit|sit−1, sit+1; θ ∼ N
(
s∗it, v2

s

)
, t = 1, ..., n − 1,

sin|sin−1; θ ∼ N
{
µ + φ (sin−1 − µ) , σ2

ν

}
,

(17)

where

s∗it = µ +
φ {(sit−1 − µ) + (sit+1 − µ)}

(1 + φ2)
and v2

s =
σ2

ν

(1 + φ2)
, (18)
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Figure 3: First differences, (in 1/8 ticks), of the bid and ask quotes for Alcoa for all trading
days in 1994. There are 6, 780 observations.

(see e.g. Kim, Shephard, and Chib (1997)). Note that a different end condition for si1|si2; θ,
i = 2, 3, should be added if we do not take si0 = 0. It follows that sit|sit−1, sit+1, yt; θ, i =
1, 2, 3 can be drawn from univariate truncated distributions TNs1t<[log(bt),log(at)], TNs2t>log(at−bt),
TNs3t>log(at−bt), using a proposal q, proportional to the target density and accepting with prob-
ability (11 ). We draw from truncated normal distributions without rejection using the proba-
bility integral transform theorem of Feller (1971), (e.g., Devroye (1986, p. 39)). The simulations
are not continuous with respect to the model parameters as the acceptance probability in the
Metropolis-Hastings algorithm is less than 1.

4.2.2 Sampling from θ|s
In this framework θ =

(
σ2

ε , µ, σ2
ν , φ

)′
. Given the structure of this model, the parameter θ can be

partitioned into θ = (θ1, θ
′
2)
′ where θ1 denotes the unknowns in the efficient price equation and

θ2 denotes the unknowns in the cost price equations, that is, θ1 = σ2
ε and θ2 =

(
µ, σ2

ν , φ
)′

. Thus,
step (3) of the Markov chain Monte Carlo sampler for Bayesian estimation can be divided into
two parts.

• Sample θ1 from θ1|s1. where s1. = (s11, ..., s1n)′ is the n× 1 vector of the logarithms of the
efficient prices.

• Sample θ2 from θ2|s2., s3. where s2. = (s21, ..., s2n)′ is the n × 1 vector of the logarithms
of the bid prices and s3. = (s31, ..., s3n)′ is the n × 1 vector of the logarithms of the ask
prices.

When we update the parameters we use the following conditional structure:

1. σ2
ε |s1.,

13



2. µ|s2., s3., σ
2
ν , φ,

3. σ2
ν |s2., s3., µ, φ,

4. φ|s2., s3., µ, σ2
ν .

All the parameters except for φ have straightforward conjugate distributions which we use.

Sampling σ2
ε

We use a non-informative prior distribution for σ2
ε , π

(
σ2

ε

) ∝ σ−2
ε . Then σ2

ε is sampled from

σ2
ε |s1. ∼ χ−2

n−1

n∑
t=2

(s1t − s1t−1)
2 . (19)

Sampling µ, σ2
ν and φ

We use a non-informative prior distribution for µ, π (µ) ∝ c. This yields the posterior conditional
density

µ|s2., s3., σ
2
ν , φ ∼ N [µ̂, V ar (µ̂)] , (20)

where

µ̂ =
1

2 (n− 1) (1− φ)

{
n∑

t=2

(s2t − φs2t−1) +
n∑

t=2

(s3t − φs3t−1)

}
, (21)

and

V ar (µ̂) =
σ2

ν

2 (n− 1) (1− φ)2
. (22)

We use χ−2
q L1 for σ2

ν , with q = 5 and L1 = q. Then σ2
2 is sampled from

σ2
ν |s2., s3., µ, φ ∼ χ−2

n−1+q

[
n∑

t=2

{(s2t − µ)− φ (s2t−1 − µ)}2 +
n∑

t=2

{(s3t − µ)− φ (s3t−1 − µ)}2 + L1

]
.

(23)
Following Kim, Shephard, and Chib (1997) we use 2Beta(ζ1, ζ2)−1 as a prior family for φ to

enforce the stationarity condition. Although a flat prior π (φ) may be attractive as it leads to an
analytically tractable conditional density, the stationarity condition would not be achieved. This
implies E(φ) = {2ζ1/(ζ1 + ζ2)} − 1 and V ar(φ) = 4ζ1ζ2

/[
(ζ1 + ζ2)

2 (ζ1 + ζ2 + 1)
]
. Alternative

priors (restricted for the stationary region) for autoregressive models are discussed in Marriott
and Smith (1992). We take ζ1 = 10, ζ2 = 2 so that φ has a prior mean of 0.66 and a standard
deviation of 0.207.

To sample φ from the posterior distribution, we use an accept/reject algorithm as in Shephard
and Pitt (1997) and Kim, Shephard, and Chib (1997), although a more general procedure such
as Chib and Greenberg (1994), based on the Metropolis-Hastings algorithm, can also be used.
By Bayes theorem, the posterior of φ|s2., s3., µ, σ2

ν is proportional to the product of the likelihood
function f

(
s2., s3.|µ, σ2

ν , φ
)
, which is quadratic in φ, and the prior density, which is not quadratic

in φ. The log-likelihood function can be written as

log f
(
s2., s3.|µ, σ2

ν , φ
)

= constant − 1
2σ2

ν

∑n
t=2 {(s2t − µ)− φ (s2t−1 − µ)}2

− 1
2σ2

ν

∑n
t=2 {(s3t − µ)− φ (s3t−1 − µ)}2 + log f

(
s21, s31|s20, s30, µ, σ2

ν , φ
)
.

(24)
The log of the prior density is first order Taylor expanded around some point φ, (we take φ = 0.55
in our calculations). This is combined with (24) in order to form a Gaussian covering density,
say N

{
φ̂, V ar

(
φ̂
)}

. Then φ can be sampled using an accept/reject algorithm, i.e., drawing a
proposal φ∗ from this Gaussian distribution and accept it, (if in the stationary region), with a
probability which depends on ζ1, ζ2, φ∗ and φ. If φ∗ is rejected, we propose a new value.
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4.2.3 Illustration

We first look at a Monte Carlo experiment on a single data set. The efficient price, bid and ask
prices, and spread series are the same as in Figure 2.
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Figure 4: Metropolis-Hastings sampler. Left graphs: the simulated values of θ against iteration
number. Middle graphs: histograms of the resulting marginal distributions and estimated densi-
ties using a non-parametric density estimator. Right graphs: the corresponding correlograms for
the iterations. In total 10, 000 iterations were drawn, discarding the first 250. The true parameter
values are σε = 0.00316, µ = −3.715, φ = 0.4, and σν = 1.025.

Figure 4 and Table 2 present the results. We consider a burn in period of 250 iterations.
The next 10, 000 iterations are recorded.

The summary statistics of Table 2 report inefficiency factors of the sampler. These are
estimated as the variance of the sample mean from the MCMC sampling scheme relative to
the variance of a hypothetical sampler which draws independent random variables from the
posterior, (the posterior variance divided by the number of iterations). The variance of the
sample mean from the MCMC sampler is estimated using a Parzen kernel (see Priestley (1981,
Ch. 6)) to account for the serial correlation in the draws. Let τ̂N denote this estimator. In our
computations we follow Andrews (1991, pp. 849). The suggested τ̂N , using N samples of the
chain, is then

τ̂N = 1 +
2N

N − 1

BN∑
i=1

K

(
i

BN

)
ρ̂(i), (25)

where ρ̂(i) is the estimate of the autocorrelation function of the chain, and the kernel is

K(x) = 1− 6x2 + 6x3, x ∈ [0, 1
2 ],

= 2(1− x)3, x ∈ [12 , 1],
= 0, elsewhere.

(26)

The term BN , the bandwidth, is selected empirically and will be stated in all calculations. In
most cases, BN will be selected based on an assessment of the correlogram.
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TRUTH Mean MCse Ineff Covariance and Correlation
σε|y .003162 .003163 4.668e-007 2.5 8.722e-010 .029 -.071 .053
µ|y -3.715 -3.705 .0007625 5.4 2.023e-008 .0005415 -.517 -.155
σν |y 1.0247 .9986 .0006604 17.5 -3.323e-008 -.0001901 .0002498 -.337
φ|y .4 .4123 .0008365 17.4 3.128e-008 -7.234e-005 -.0001067 .0004012

Table 2: Summaries of Figure 4. MCse denotes the Monte Carlo standard error of the simulation
estimator of the mean of the posterior density. Throughout, these standard errors are computed
using 250 lags and 10, 000 iterations. Numbers in italics are correlations rather than covariances.
Ineff denotes the estimated inefficiency factor.

For example, the inefficiency factor for θi, i = 1, ..., 4, where θi denotes the i-th component
of θ = (σε, µ, σν , φ)′ , is {MCse (θi)}2 /{V ar (θi|y) /N } , where MCse (θi) is computed using
(25) and V ar (θi|y) denotes the posterior variance of θi given y.

The inefficiency factor can be a useful diagnostic, although not the only one in measuring
how well the chain mixes. If we require the Monte Carlo error in estimating the mean of the
posterior to be no more than one percentage of the variation of the error due to the data, i.e.,
{MCse (θi)}2 /V ar (θi|y) ≤ 0.01, then inefficiency factors of less than 18 for all the parameters
suggest that these models can be estimated quite precisely with 1, 800 iterations of the Markov
chain Monte Carlo sampler. This number will give an idea of how many iterations should be
used at the sampling experiment.

Results also suggest that, after the burn in period, at each iteration the simulated parameters
are quite close to their true values. There is quite a strong negative correlation between µ and
σν , (−.517) and between σν and φ, (−.337) .

4.2.4 Sampling behaviour

The experiment is now repeated 100 times to study the sampling behaviour of the Bayesian
estimators. We take a burn in period of 100 iterations and record the next 1, 000 iterations.
Results are reported in Figure 5 and Table 3. The histograms of the estimates of µ, σν , and φ are
broadly symmetric, while the histogram of σε is slightly skewed to the left. All the parameter
estimates are within small intervals of their true values. The means of the estimates are very
close to the true parameters; the estimated standard errors are quite small, especially for σε.

σε µ σν φ
mean .0031882 -3.7175 1.0292 0.39326
st. deviation ( 4.273e-005) (.0242) (.0180) (.0211)
TRUTH .003162 -3.715 1.0247 .4

Table 3: Summaries of Figure 5. Sampling behaviour of the Bayesian estimators using 1, 000
iterations of the Metropolis-Hastings sampler. We perform 100 Monte Carlo replications. Main
figures are the means of the estimates; figures in brackets are the estimated standard deviations
of the replications.
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Figure 5: Histograms of the Bayesian estimates using 1000 iterations of the Metropolis-Hastings
sampler after a burn in period of 100 iterations. We perform 100 Monte Carlo replications. The
true parameters are .003162, −3.715, 1.0247, and 4.

5 Data estimation

We analyze the NYSE bid and ask quotes for Alcoa for all trading days in 1994. This data has
previously been analyzed in Hasbrouck (1996).

The first differences of the bid and ask quotes for intraday and overnight observations are
plotted in Figure 6. The changes in the quotes are given in ticks. The bid and ask series are again
virtually identical. Summary statistics are given in Table 4. The frequency distributions of the
changes in the quotes for intraday and overnight observations are clearly different. For overnight
observations the size of the change, (in absolute value), is larger than 1 tick in more than 50%
of the cases, while this happens only in 24.6% of the intraday observations. Moreover, the
changes overnight are occasionally very large for both quotes. This is reflecting the information
accumulated when the market is closed. Our model ignores this feature of the market data. It
would be more realistic to allow for larger variation in the efficient price at the beginning of the
day. We incorporate this feature at the end of next section.

The initial values for the efficient price, and the bid and ask quotes the same as in our
previous Monte Carlo experiment, i.e., mt = (1/2) (bt + at) , βt = mt − bt and αt = at −mt.

We take the variance of the first differences of the series given by (1/2) (bt + at) as an initial
value for σ2

ε , Hasbrouck’s (1996) estimate for φ, twice the mean of {log (αt)− φ} /(1− φ) , for
µ, and twice the variance of the first differences of {log (αt)− µ} for σ2

ν , (note that the bid and
ask prices are initialized at the same value and so αt = βt,t = 1, ..., n). This gives initial values
of (σε, µ, σν , φ)′ = (.002636,−4.7077, .57744, .37) ′ .

We use χ−2
p L0 with p = 3 and L0 = 0.01 × p as the prior distribution for σ2

ε . The mean
estimates for σε appear to be slightly sensitive to the choice of prior, (e.g. a prior with p = 2
yields a mean estimate for σεof .003117). However, there is almost no difference in the estimates
for σ2

ε , (.000011269or .000009716).
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Figure 6: First differences (in 1/8 ticks) of the bid and ask quotes for Alcoa for all trading days
in 1994. Top graphs: intraday observations. Bottom graphs: overnight observations. There
are 6, 780 observations, 6, 528 intraday observations and 251 overnight observations from 252
trading days.

Results are presented in Figure 7 and Table 5. We consider a burn in period of 750 itera-
tions. The next 3, 000 iterations are recorded. Inefficiency factor of .6 for σε indicates negative
autocorrelation. Actually, the correlogram reflects very small negative autocorrelation. Ineffi-
ciency factors of less than 22 suggest that the model can be estimated reasonably precisely with
2, 200 iterations of the sampler. The Monte Carlo standard errors (except for σε) are larger
than those in Table 2. Note that they are now computed using 500 lags instead of 250. The
posterior correlations between µ, σν and φ are of the same magnitude as those in Table 2. As in
Hasbrouck (1996) both the disturbance standard deviation σν and the autoregression coefficient
φ are strongly positive. His estimates for these parameters are .37(.03) and .86(.03) , (standard
errors in brackets). Despite the simplicity of the model specified here, we get similar estimates.
The autoregression coefficient suggests that 38.1% of the excess log cost persists at the following
period, (fifteen minutes later).

To conclude this section, we simulate 6, 780 data points setting the parameters equal to their
estimates, with log (m0) = 4.25. This gives bid and ask quotes, (in dollars), within [62 3/8, 90]
and [62 1/2, 89 3/4] respectively. Figure 8 plots the bid and ask quotes for the whole year (top
graph), the bid and ask quotes for the first 15 days, i.e., 405 observations (middle graph) and
the spreads (bottom graph) for the simulated data using the parameter estimates. We still
occasionally observe very large spreads (e.g., in Figure 8, the spread is 7 ticks at the 270-th
observation). The spread mean (1.67) , and standard deviation (723) , are closer to the values
for the Alcoa data than before. The distribution frequency of the spread is as follows. There
is a spread of 1, 2, 3 and 4 or more ticks in 42.3%, 47.1%, 6.1% and 1.7% of the observations,
respectively. The percentage of 4 or more ticks spreads is still quite large (2.9%) compared to
only .3% for the Alcoa series. The maximum change in the bid (ask) quote is now 9(8) and the
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Intraday Overnight
bid changes ask changes bid changes ask changes

n 6,528 6,528 251 251
Min -10 -10 -15 -16
Max 11 10 19 19
Mean 0.03 0.002 -0.21 0.5
St dev 1.58 1.57 3.7 3.7

Distribution of the absolute values
no change 38.6% 38.7% 18.3% 18.7%
1 tick change 36.8% 36.7% 27.5% 24.3%
more than 1 tick change 24.6% 24.6% 54.2% 57%

Table 4: Descriptive statistics for the first differences, (in 1/8 ticks), of the bid and ask quotes
for Alcoa for all trading days in 1994. There are 6, 780 observations, 6, 528 intraday observations
and 251 overnight observations (252 trading days).

Mean MCse Ineff Covariance and Correlation
σε|y .003357 4.2147e-007 .6 9.0994e-010 -.012 .004 .003
µ|y -3.6478 .001177 8.3 -8.3554e-009 .0004998 -.593 -.130
σν |y .90746 .0014245 21.6 2.1024e-009 -.0002226 .00028234 -.371
φ|y .38107 .001862 16.6 2.4342e-009 -7.2913e-005 -0.000156 .00062523

Table 5: Summaries of Figure 7. Mean estimates of the bid and ask quotes for Alcoa for all
trading days in 1994. MCse denotes the Monte Carlo standard error of the simulation estimator
of the mean of the posterior density. Throughout, these standard errors are computed using
500 lags and 3, 000 iterations. Numbers in italics are correlations rather than covariances. Ineff
denotes the estimated inefficiency factor.

minimum change is −9(−8) . There is no change in the bid quote in 19.4% of the observations,
the change (in absolute value) is 1 tick in 35.2% of the cases and is greater than 1 tick in the
remaining 45.4%. Again this is quite different from the frequency distribution exhibited by the
data. In the next section we analyze more realistic specifications which may account for these
weaknesses in the fitted model.

We also look at the autocorrelation function of the first difference of the log ask and log bid
quotes for both the Alcoa series and the simulated series using the parameter estimates. This
is shown in Figure 9 and does not appear not to be very informative. There is a very small but
persistent correlation in both series.

6 Extensions

6.1 Alternative specifications of the model

Our model is very limited as it does not take into account many intricate features of the data. We
discuss here some possible extensions of the basic formulation in (13), review the specification
considered in Hasbrouck (1996) and then study a slightly more general version of the model in
(13).
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Figure 7: Metropolis-Hastings sampler using the bid and ask quotes series for Alcoa in 1994.
Left graphs: the simulated values of θ against iteration number. Middle graphs: histograms of
the resulting marginal distributions and estimated densities using a non-parametric density esti-
mator. Right graphs: the corresponding correlograms for the iterations. In total 3, 000 iterations
were drawn, discarding the first 750.

To allow for the intraday ‘U’ pattern frequently exhibited by market data, (where obser-
vations are typically higher at the start and end of each day), we could assume that µ in the
bid and ask costs equations varies according with the time of day the observation takes place.
Hasbrouck (1996) suggests using exponential decay functions of the type

µt = k1 + kopen
2 exp (−kopen

3 τ open
t ) + kclose

2 exp
(
−kclose

3 τ close
t

)
, (27)

where τ open
t is the time in hours that has passed since the market opened, and τ close

t is the time
remaining before the market closes, also in hours.

Asset returns tend to be leptokurtic. To allow for leptokurtosis we could relax the Gaussian
assumption and suppose that the increments of the efficient price are independent and identically
distributed (i.i.d.) draws from a thick tailed distribution.

We could also allow for a time varying variance in the efficient price equation, using a
(parametric) autoregressive conditional heteroskedastic (ARCH) model or a stochastic volatility
model. ARCH type models are surveyed in Bollerslev, Engle, and Nelson (1994, Ch. 49).
Reviews of the literature on stochastic volatility models are given in Taylor (1994), Shephard
(1996) and Ghysels, Harvey, and Renault (1996).

Stochastic volatility models specify a latent stochastic process for the variance. A simple
stochastic volatility model for the log of the efficient price is written as

∆ log (mt) = eht/2εt,
ht+1 = γ + ϕ (ht − γ) + σηηt,

(28)

where htis the log volatility at time t, |ϕ| < 1,εtand ηt are uncorrelated normal white noise
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Figure 8: Simulated data constructed with the parameter estimates which result from estimating
the bid and ask quotes for Alcoa in 1994 inside a Metropolis-Hastings sampler. Top graph: bid
and ask quotes. Middle graph: bid and ask quotes for the first 405 observations. Bottom graph:
histograms of the bid/ask spread. The middle graph is simply an enlargement of the first part of
the top graph to illustrate how the bid and ask quotes evolve over time.

shocks, and h1is drawn from the stationary distribution h1 ∼ N
{
γ, σ2

η

/(
1− ϕ2

)}
. We can

think of exp (γ/2) as the modal instantaneous volatility, ϕ as the persistence in the volatility,
and ση as the volatility of the log-volatility.

Simulation based methods, in particular, Markov chain Monte Carlo methods, can be de-
signed to analyze these models. Gibbs samplers that draw the log volatilities one at a time
are given in Jacquier, Polson, and Rossi (1994) and Shephard (1993). These samplers typically
converge very slowly. In a recent paper, Kim, Shephard, and Chib (1997) propose a much more
efficient adapted Gibbs sampler which draws all the log volatilities at once. They use an ap-
proximated offset mixture model and then correct for the (minor) approximation error by using
an importance reweighting procedure.

Alternatively, an ARCH specification can be used. In the basic ARCH(p)model formulated
by Engle (1982), the conditional variance at time t, σ2

εt, is a linear function of past qsquared
observations {log (mt)}2 . In the generalized ARCH, GARCH(p, q) model suggested by Bollerslev
(1986), σ2

εt is a linear function of ppast variances and qsquared innovations. In the exponential
ARCH (GARCH) model of Nelson (1991), log

(
σ2

εt

)
depends on the size and sign of lagged

standardized residuals. Other parametric formulations have been suggested in the literature.
A GARCH(1, 1)model for the log of the efficient price is written as

log (mt) |log (m1) , ..., log (mt−1) ∼
(
0, σ2

εt

)
(29)

for some distribution which needs to be specified with

σ2
εt = ϕ0 + ϕ1 {log (mt−1)}2 + ϕ2σ

2
εt−1, (30)
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Figure 9: Autocorrelation function of the first differences of the log ask and log bid quotes
series. Top graph: data for Alcoa in 1994. Bottom graph: simulated data constructed with the
parameter estimates which result from estimating the bid and ask quotes for Alcoa in 1994 inside
a Metropolis-Hastings sampler.

where ϕ0 ≥ 0,ϕ1 ≥ 0 and ϕ2 ≥ 0. The model is covariance stationary if ϕ1 +ϕ2 < 1. This model
can be written as an ARMA(1, 1) model for {log (mt)}2

{log (mt)}2 = ϕ0 + (ϕf1 + ϕ2) {log (mt−1)}2 + υt − ϕ2υt−1, (31)

with υt = {log (mt)}2 − σ2
εt. In many applications with high frequency market data, ϕ1 + ϕ2

tends to be close to 1.
The standardized innovations ζt = εt/σεt are assumed to be i.i.d. If the normal distribution

is used, then the unconditional distribution for log (mt) , although leptokurtic, does not capture
all the leptokurtosis present in high speculative prices. Bollerslev (1987) suggests using a tι
-Student distribution with ι > 2 degrees of freedom. Nelson (1991) suggests using a generalized
error distribution (GED) with tail-thickness parameter ι

fGED (ζt; ι) =
ι exp

(
−1

2

∣∣∣ ζ
λ

∣∣∣ι)
λ2(1+1/ι)Γ (1/ι)

, where λ =

√
2(−2/ι)Γ (1/ι)

Γ (3/ι)
. (32)

This distribution is the standard normal for ι = 2, has thicker tails than the normal for ι > 2 and
thinner tails than the normal for ι < 2. Nelson (1991) finds that this distribution is insufficient
to successfully fit data on US stock index returns due to the fact that the data has many more
large standardized residuals than those postulated by a GED distribution. Instead, Bollerslev,
Engle, and Nelson (1994, Ch. 49) suggest using a generalized t -distribution which nests both
the Student’s t and the GED distributions.

In principle, it should be straightforward to generalize the Markov chain Monte Carlo
method for Bayesian estimation given in section 3.2 to the stochastic volatility case or to
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the GARCH(1, 1) case, (with normally distributed innovations for simplicity). The parame-

ters of interest in the efficient price equation will be θ1 =
(
γ, ϕ, σ2

η

)′
in the stochastic volatil-

ity formulation or θ1 = (ϕ0, ϕ1, ϕ2)
′in the GARCH(1, 1) formulation. Prior distributions as

discussed in Kim, Shephard, and Chib (1997) could be used. In particular, they take a dif-
fuse prior on γ,a 2Beta (ζ1, ζ2) − 1for ϕ and χ−2

p Lfor σ2
η,for some constants pand L.For the

GARCH model, rewritten as an ARMA model, they take the same prior on ϕ1 + ϕ2as for ϕ,a
Betadistribution for ϕ2 /(ϕ1 + ϕ2)|ϕ1 + ϕ2 = rϕand a diffuse inverse chi-squared distribution
for ϕ0 /(ϕ1 + ϕ2)|ϕ1, ϕ2.

Before analyzing, as a way of illustration, a version of (13) model which incorporates the
effect on the efficient price of information accumulated when the market is closed, we briefly
describe the model in Hasbrouck’s (1996).

6.1.1 Hasbrouck’s (1996) specification

The model considered in Hasbrouck (1996) is defined by three independent processes, mt,βt,αt,

log (mt) = log (mt−1) + σεtεt,
log (βt)− µt = φ {log (βt−1)− µt−1}+ σνν1t,
log (αt)− µt = φ {log (αt−1)− µt−1}+ σνν2t.

(33)

Following Nelson (1991), he uses a GED distribution for the standardized innovations εt,and
an EGARCH specification for the variance

log
(
σ2

εt

)
= ηt + ϕ

{
log

(
σ2

εt−1

)
− ηt−1

}
+ γ (|εt−1| − E |εt−1|) , (34)

with E |ε| = λ2(1/ι)Γ (1/ι) /Γ (3/ι) .To avoid inclusion of σ2
εtas another state variable he re-

places |εt−1| with Et−1 |εt−1| = E [|ut−1| |s0, s1, ..., st−1 ] /σt. The deterministic components are
modelled as

ηt =

{
l1 + lopen

2 exp (−lopen
3 τ open

t ) + lclose
2 , if t is an intraday interval

ηovernight, if t is an overnight interval
(35)

for ηt,and
µt = k1 + kopen

2 exp (−kopen
3 τ open

t ) + kclose
2 exp

(
−kclose

3 τ close
t

)
, (36)

for µt,where τ open
t and τ close

t are defined as before.
Hasbrouck (1996) uses the method described in section 3.1 to estimate the bid and ask quotes

for Alcoa for all trading days in 1994. He defines the states as st = {mt, αt, βt}′instead of as the
log variables, so that the observed bid and ask prices are simply

yt = {Floor (s1t − s3t) , Ceiling (s1t + s2t)}′ . (37)

6.2 A slightly more general model

As a way of illustration, we consider a version of (13) model which incorporates the effect on the
efficient price of information accumulated when the market is closed. In (13), we assumed that
the increments to the efficient price all have the same variance, independently of the time of day
at which the observation is recorded, that is, ∆ log (mt) ∼ N

(
0, σ2

ε

)
for all t = 2, ..., n.Instead,

we now assume that the variance of the difference between the prices at the first observation of
each day and the price at the last observation of the previous day is larger than the variance of
the difference in prices for intraday observations.
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The resulting model can be specified as follows. Assume there are Rtrading days with
nrobservations in the r-th day of trading, i.e.,

∑R
r=1 nr = n.The new model is written as

∆ log (mt) ∼ N
(
0, σ2

ε1

)
, for t = n1 + 1, n1 + n2 + 1, ..., n1 + ... + nR−1 + 1

∆ log (mt) ∼ N
(
0, σ2

ε

)
, for any other value of t greater than 1

(38)

with σ2
ε1

> σ2
ε .In our case, R = 252and in most days, (245) ,nr = 27.For simplicity, let us denote

Nr = n1+...+nr,r = 1, ..., R,with N1 = 0.Note that the observations of day rare Nr−1+1, ...,Nr .

6.2.1 A Monte Carlo experiment

As an illustration, we carry out a Monte Carlo experiment on a single data set generated in
(38), taking σ2

ε1
= 2σ2

ε .We take nrand Rto be the same as in the data for Alcoa. In this
setup, θ =

(
σ2

ε , σ
2
ε1

, µ, σ2
ν , φ

)′and θ1 =
(
σ2

ε , σ
2
ε1

)′
.We take σ2

ε = 0.00001,(σε = 0.00316) ,σ2
ε1

=
0.00002,(σε1 = 0.00447) ,µ = −3.715,σ2

ν = 1.05,(σν = 1.025) ,and φ = 0.4.The bid and ask
quotes, spreads and the efficient prices series, (with log (m0) = 0), are plotted in Figure 10.
This model also occasionally yields very large spreads, (for example, the spread is 9ticks at the
last observation of day 10). As before, the distribution frequency of 1 and 2 ticks spreads is
approximately the distribution for the data. However, we get too many observations with more
than 3 ticks spreads (3.1%) and too few with 3 ticks spreads (7.8%) . We are able to replicate
the distribution of the changes in bid and ask quotes for overnight observations, although we get
lower extreme values. We get the same extreme values for intraday observations; however, the
frequencies of no change in the quotes and of more than 1 tick change are inverted. In short, it
seems that more complex specifications, as discussed above, need to be considered in order to
get a good fit of the model.

TRUTH Mean MCse Inefficiency
σε|y .003162 .003150 4.921e-007 2.8
σε1|y .004472 .004553 2.748e-006 1.7
µ|y -3.715 -3.7147 .0009077 14.6
σν |y 1.0247 1.0276 .0007813 21.5
φ|y .4 .38618 .0007204 12.7

Covariance and Correlation
σε|y 8.663e-010 -.004 .016 -.058 .047
σε1|y -2.740e-011 4.4895e-008 .008 -.025 .009
µ|y 1.0881e-008 4.2217e-008 .000563 -.570 -.117
σν |y -2.8732e-008 -9.105e-008 -.0002280 .0002843 -.308
φ|y 2.8146e-008 4.0681e-008 -5.601e-005 -.0001050 .000409

Table 6: Summaries of Figure 11. MCse denotes the Monte Carlo standard error of the simulation
estimator of the mean of the posterior density. Throughout, these standard errors are computed
using 500 lags and 10, 000 iterations. Numbers in italics are correlations rather than covariances.

To sample θ1|s1.we sample (1) σ2
ε |s1.,(2) σ2

ε1
|s1.,with

σ2
ε |s1. ∼ χ−2

n−R

R∑
r=1

Nr∑
t=Nr−1+2

(s1t − s1t−1)
2 , (39)
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Figure 10: Simulated data using the new specification of the model: σε = 0.00316, σε1 = 0.00447,
µ = −3.715, σν = 1.025, and φ = 0.4. Top graph: bid and ask quotes. Middle graph: bid and
ask quotes for the first 405 observations. Bottom graph: histograms of the bid/ask spread. The
middle graph is simply an enlargement of the first part of the top graph to illustrate how the bid
and ask quotes evolve over time.

and

σ2
ε1
|s1. ∼ χ−2

R−1

R∑
r=2

(
s1,Nr−1+1 − s1,Nr−1

)2
. (40)

Note that we use non-informative prior distributions for σ2
εand σ2

ε1
.

Let w = σ2
ε/σ

2
ε1

(w = 0.5in our experiment). Then

s1t|s1t−1, s1t+1; θ ∼ N

{
1
2

(s1t−1 + s1t+1) , σ2
ε /2

}
(41)

if tis not the first observation or the last observation of the day,

s1Nr |s1,Nr−1, s1,Nr+1; θ ∼ N
{
(s1,Nr−1 + w · s1,Nr+1) /(1 + w) , σ2

ε /(1 + w)
}

(42)

if tis the last observation in day r,and

s1,Nr+1|s1,Nr , s1,Nr+2; θ ∼ N
[
{s1,Nr + (1/w) · s1,Nr+2} /{1 + (1/w)} , σ2

ε1
/{1 + (1/w)}

]
(43)

if tis the first observation in day r + 1.The end conditions are as in (16).
The sampler is initialized as before, taking the initial value for σ2

ε1
to be equal to that for σ2

ε .
Results are presented in Figure 11 and Table 6. We consider a burn in period of 750iterations.

The next 3, 000iterations are recorded. The correlograms and posterior covariances and corre-
lations are very similar to those obtained in section 4.2.3 using the simpler specification of the
model. The histogram of the estimates for σν has moved slightly towards the right while the
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Figure 11: Metropolis-Hastings sampler for the new specification of the model. Left graphs:
simulated values of θ against iteration number. Middle graphs: histograms of the resulting
marginal distributions and estimated densities using a non-parametric density estimator. Right
graphs: the corresponding correlograms for the iterations. In total, 10, 000 iterations were drawn,
discarding the first 750. The true parameter values are σε = 0.00316, σε1 = 0.00447, µ = −3.715,
σν = 1.025, and φ = 0.4.

histogram for φ has moved slightly towards the left. The inefficiency factor for µ is now larger.
However, inefficiency factors of less than 22suggest that these models can be estimated quite
precisely with 2, 200iterations of the sampler.

We do not report results on the sampling behaviour of the estimators because this model
does not appear to better fit the data than the previous one. A better fit should be expected
for models with time-varying variance and cost functions that allow for the observed intraday
‘U’ shapes.

7 Conclusions

In this paper we have discussed Bayesian estimation of a dynamic model of discrete bid and
ask quotes suggested by Hasbrouck (1996). We assume that the observed bid and ask quotes
are obtained from underlying continuous variables by some rounding function. Specifically,
the bid quote is the efficient price minus the bid cost exposure rounded down to the next
tick and the ask quote is the efficient price plus the ask cost exposure rounded up to the
next tick. These costs reflect asymmetric information costs and fixed transaction costs. The
model can be thought of as a limited dependent process. In this context, the scan sampler
can be used inside a Metropolis-Hastings algorithm to sample a single st,given the most recent
updated values of all the other latent points, the observations and some parameter estimates.
We postulate a very simple model where the log of the efficient price follows a random walk
and the logs of the ask cost and of the bid cost are stationary AR(1) processes. The three
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variables are assumed to be independent. Due to the simplicity of the model, we design a simpler
MCMC method to simulate a single stgiven st−1,st+1,yt,and a fixed parameter value, inside a
Metropolis-Hastings algorithm. The simulations are not continuous with respect to the model
parameters as the acceptance probability is less than 1 , and hence, we carry out a Bayesian
analysis. Assuming this form for the underlying model, the Metropolis-Hastings sampler is
applied to estimate the bid and ask quotes for a stock in the NYSE for all trading days in
1994. This data has previously been analyzed in Hasbrouck (1996) using non-linear filtering
techniques as suggested in Kitagawa (1987). Only the estimates of the disturbance variance
in the cost equations and the autoregression coefficient can be compared with the estimates
in Hasbrouck (1996). Despite the simplicity of our model we get quite similar estimates. The
analysis can be extended straightforwardly in different ways to more realistic models which
incorporate institutional features exhibited by market data.
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