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Abstract

A convergence model in which wealth accumulation is subject to i.i.d.

random shocks is examined. The accumulation function shows what kt+1 -

wealth at t + 1 - would be given kt and with no shock. It has a positive

slope, but its concavity or convexity is indeterminate. The focus is the er-

godic distribution of wealth. This distribution satisfies a Fredholm integral

equation. The ergodic distribution can be characterized in some respects by

direct analysis of the stochastic process governing wealth accumulation and

by use of the Fredholm equation without solution. Multiple local maxima in

the ergodic distribution cannot be ruled out.
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0.1 Introduction

The Neoclassical convergence model has been influential in recent years. In

its basic form the model says that all units - which might be countries,

regions, even individual families, as desired - tend to converge to a common

level of capital and output per head. The theory leads to a relationship

similar to:

kt+1 = h [kt] (1)

where kt is the logarithm of wealth (or income), and there is a unique sta-

ble value of k = k∗, such that k∗ = h [k∗]. This model refers to wealth,

that is capital including human capital. And the economic theory to which

the leading writers appeal deals with wealth accumulation. Empirical stud-

ies, however, typically use income rather than wealth, because income is far

better measured. In what follows I shall always refer to wealth, even when

discussing studies which use income. When it is precisely an income measure

which is used, income may be interpreted as a proxy for wealth. Nothing

essential in what follows is affected by the income-wealth distinction.

An econometric model based on (1) has to include an error term. This

may be interpreted as random departures from the strict model, or as showing

the effect of missing variables, or as both. In any case, if random errors

are important in their magnitudes they affect the process of convergence.

Consider an empirical study based on a linearized and re-arranged version of

the relation (1), viz:

kt+1 − kt = f [kt]− kt = α− β · kt + εt (2)

With the normal finding 0 < β < 1, equation (2) says that on average

poor units (countries) grow faster than rich units. This has been called
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β−convergence. This concept of convergence is not the same as σ−convergence,

which means that the variance of the population of k values declines over

time1. Friedman (1992) claims that interpreting a negative coefficient on kt

in a regression like (2) as convergence exhibits “Galton’s Fallacy”, on the

ground that a negative coefficient is consistent with no tendency for the vari-

ance of kt to decrease with time: it may even increase.

The point fits well with the argument of this paper. If kt is distributed

according to its ergodic distribution, which is one which reproduces itself2,

there is plainly no σ−convergence. Take a value of kt far from k∗. The

expected value of kt+1 conditional on such a value of kt will be closer to

k∗. It is α − (β − 1) · kt when (2) applies. Here, while individual dispersed

units tend to converge, their density is made good by units, including the

less-dispersed, pushed outwards by random shocks. An ergodic distribution

of k values is invariant over time in the sense that it reproduces itself next

period, although individual values will vary, partly systematically, showing

β-convergence, and partly randomly, due to stochastic realisations of εt.

In an important contribution Quah (1993) noted independently that a

Galton’s Fallacy problem exists. Quah considers income generation as a

pure Markov process. See also Quah (1996a) and (1996b). His empirical

investigation looks at observed transition patterns, without considering the

ergodic distribution. Also he does not derive his Markov transitions from

economic theory. His aim is to confront theoretically derived convergence

models with the hard facts shown in the data. He finds a tendency for

1For a clear exposition of the two concepts of covergence, and empirical discussion, see
Sala-i-Martin (1996).

2To talk of kt as being continuously distributed does not imply that k takes an un-
countable infinity of values. An interval in the density of the distribution may measure the
probability density of finding k within that interval of values. Then an ergodic distribution
is one for which the probability density of finding k within any interval is the same next
period as this period.
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convergence within two groups - high and low income. He names this finding

”twin peaks”. There are non-negligible probabilities that a country will shift

from one group to the other, but these transition probabilities are too low to

iron out the twin peaks in the distribution.

0.2 Convergence and the Accumulation Function

It is convenient to work with the logarithm of wealth because it is not

bounded below by zero, which makes possible infinite-tail distributions, such

as the normal. Obviously, were k to be normally distributed, the wealth itself

would be distributed as the log-normal distribution. Starting with the model

(1), we add i.i.d. errors ε with mean zero to obtain:

kt+1 = h [kt] + εt (3)

The function h [·] will be called the accumulation function, as it shows

how much capital would be held one period later, starting from a level kt,

were no random shock to arrive to throw the accumulation process off its

intended path. The agent starts with kt, turns that into h [kt+1] by saving,

and ends up with kt+1 after the shock has taken effect. One could assume:

kt+1 = h [kt + εt] (4)

meaning that shocks affect wealth before the accumulation decision is

made. However (3) fits best with existing econometric approaches. It is

important in interpreting (3) to understand what is implied by the i.i.d.

assumption, and what is not implied by it. The additive i.i.d. shock entails

that the value of h [·] is unaffected by the particular value taken by ε. That

does not imply that h [·] is unaffected by the distributional properties of ε,

in particular by the fact that ε does not always take the value zero. To put
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it simply, as h [·] shows an optimal saving rule, that rule may be influenced

by the existence of uncertainty. Computing the properties of optimal saving

rules under uncertainty is formidably difficult and will not be attempted

below. As will be seen, there is ambiguity for an important property of h [·]
even when the saving decision takes no account of uncertainty. When h [·]
shows an optimal saving rule which reflects the existence of uncertainty, it

does not use information on the current value of ε.

For stability one must have:

[
∂h [k]

∂k

]
h=h∗

< 1 (5)

Because accumulation cannot be supposed to be an entirely determinate

mechanical process, random influences have to be added in. Obviously any

econometric estimation of the model has to allow for random departures from

the model. The aim of the present paper is to derive properties of an ergodic

distribution of kt generated by the stochastic process (3).

0.3 A Hydraulic Model

For understanding the ergodic distributional properties of a variable gener-

ated by the stochastic process (3), the following strange, yet understandable,

hydraulic model is helpful. In the centre is a rift valley, running due north-

south, and viewed in cross section. Rivers flow down from highlands on the

east side and from the west. Position is measured by a variable k which runs

from −∞ (indefinitely far west) to +∞ (indefinitely far east).

These are not normal rivers, fed by springs, and rainfall originating out-

side the river system. The system is completely closed. While there is rainfall,

it all originates from water in the rivers themselves. Evaporation constantly

redistributes water within the system. The amount of water evaporated de-
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pends on the volume at a point. One molecule of water may travel any

distance, east or west. The probability of any such journey depends upon

the absolute distance travelled, and it decreases monotonically with absolute

distance. Elevation as such has no effect in precipitation. Indeed the high

highlands will tend to be dry, because they will be far from the great mass

of water. Finally water runs down hill and it runs faster the steeper the

absolute gradient.

The bottom of the rift valley is at k∗. The flow of river water towards

the valley represents non-stochastic transformation of values of k through

the function h [k]; which is to say that it represents neoclassical convergence.

Evaporation and the random redistribution of water represent the effect of

i.i.d. shocks, which will be called scattering below. The depth of water

at any point k represents the density of wealth at that point. When this

hydraulic system is an ergodic equilibrium state, depth is constant at any

point. The rivers flow always towards k∗. However evaporation and the

random redistribution of water frustrate that process. A deep lake may

build up around k∗. Yet if redistribution is significant, the lake can never

contain all the water in the system, because redistribution will always throw

some water back into the highlands.

0.4 Concavity of the Accumulation Function

In deriving the properties of an ergodic distribution, the more that is known

about the function h [·] the better. For instance, can h [·] be assumed to be

strictly concave?

Unfortunately concavity of h [·] does not hold in general. Thus suppose

that (1) shows the outcome of the optimal wealth accumulation of a Ramsey-

style agent, who maximizes:
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∞∑
t=1

δt−1U [f (Kt) + Kt −Kt+1] (6)

where K is wealth itself, not its logarithm k. K1 is given, δ < 1 , U [·] is

a strictly concave utility function, f (·), which is the production function in

per capita terms, is strictly concave, and the argument f (Kt) + Kt − Kt+1

shows consumption at t. Given a value for Kt, there is a unique optimal

value for consumption at t, denote it C [Kt]. Then Kt+1 may be expressed

as a function of Kt as:

Kt+1 = f (Kt) + Kt − C [Kt] (7)

Differentiating (7) twice with respect to Kt gives:

d2Kt+1

dK2
t

=
d2f

dK2
t

− d2C

dK2
t

(8)

and the concavity/convexity of the function from Kt to Kt+1 is given by

the right-hand side of (8). For a concave production function, the first term

is negative. What can be said of the second term?

The maximized value of (6) depends uniquely on the initial level of K.

Denote that maximized value by:

V [K] (9)

Theorem 1 V [·] is a strictly concave function of K.

Proof: Take two distinct values of K, K1 and K2. These deliver the val-

ues V [K1] and V [K2] by means of two time paths of K starting at respec-

tively K1 and K2. Because the production function is strictly concave, a

convex combination of these two paths is feasible starting from the same con-
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vex combination of K1 and K2. This path will deliver utility strictly greater

than Therefore d2V
dK2 < 0.2

Denote by Y the total output available for consumption or investment.

Thus:

Y = f (K) + K (10)

where time subscripts have been omitted. A necessary, dynamic program-

ming, condition for an optimum is that C should maximize:

U [C] + δV [Y − C] (11)

which requires:

U ′ [C]− δV ′ [Y − C] = 0 (12)

where primes denote differentiation. As (12) is an identity in Y , further

differentiation gives:

{U ′′ [C] + δV ′′ [Y − C]} dC

dY
− V ′′ [Y − C] = 0 (13)

Equation (13) shows that dC
dY

is positive, as would be expected, because

both U ′′ and V ′′ are negative. Differentiating once again gives:

{U ′′′ [C]− δV ′′′ [Y − C]} dC

dY
+ V ′′′ [Y − C] + δV ′′′ [Y − C]

dC

dY

−V ′′′ [Y − C] + {U ′′ [C] + δV ′′ [Y − C]} d2C

dY 2
= 0 (14)

This equation simplifies to:
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d2C

dY 2
=

U ′′′ [C] dC
dY

U ′′ [C] + δV ′′ [Y − C]
(15)

If U(C) = Cα for 0 < α < 1, then U ′′′ [C] > 0, and d2C
dY 2 < 0.

Notice that the sign of d2Kt+1

dK2
t

in (8) depends in part not on d2C
dY 2 but on

d2C
dK2 . However there is a straightforward connection, because:

d2C

dK2
=

d2C

dY 2

(
dY

dK

)2

+
dC

dY

d2Y

dK2
(16)

Therefore any sign-ambiguity for d2C
dY 2 translates to some sign-ambiguity

for d2C
dK2 .

Finally note that ambiguity of the concavity/convexity of the mapping

from Kt to Kt+1 has to be translated to the concavity/convexity of the map-

ping from kt to kt+1, that is the accumulation relation in logarithms. However

the translation is simple. We have:

d log Kt+1

d log Kt

=
dKt+1

dKt

Kt

Kt+1

(17)

Differentiating once more with respect to log Kt gives:

d2 log Kt+1

d log K2
t

=
d2Kt+1

dK2
t

(Kt)
2

Kt+1

+
dKt+1

dKt

KtKt+1 − (Kt)
2 dKt+1

dKt

(Kt+1)
2 (18)

which does not resolve any sign-ambiguity.

0.5 Conditions for an Ergodic Process

With economic theory silent concerning the precise form of the accumulation

function, we may turn to the conditions which will have to be assumed if the

process:

kt+1 = h [kt] + εt (19)
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is to be ergodic. The process is ergodic if the probability of kt taking a

particular value becomes independent of k1 as t → ∞. A condition for (19)

to be ergodic is given in Granger and Tersvirta (1993), p.10, who derive

it from a result due to Doukhan and Ghindés (1980). The process (19) is

ergodic if h [·] is continuous and:

[ |h [k]|
|k|

]
< 1 for |k| large. (20)

If the production function f (k) is bounded above, then h [k] is bounded

above, in which case (20) is satisfied for large positive k. Let k → −∞.

Because k is the logarithm of capital, this is equivalent to capital going to

zero. If the unit has a source of income other than capital, gathering berries

for example, then h [k] will be bounded away from −∞ as k → −∞, and

(20) will be satisfied. If there is no extraneous source of income, and if

wage income goes to zero when capital goes to zero, as would happen with a

Cobb-Douglas production function, the limit of:

h [k]

k
as k → −∞ (21)

will be given by L’Hospital’s rule as the limit of dh[k]
dk

as k → −∞. For that

limit to be < 1, the elasticity of kt+1 with respect to kt must be < 1 for

k sufficiently small. While that is not an implausible condition, it is not

guaranteed.

In summary, conditions for ergodicity can be derived and while they are

not unacceptable, they are not without force. For large positive k, the con-

dition bounds h[k]
k

above, as would happen were h [k] to be strongly concave.

However no concavity/convexity as such is implied by bounding conditions.

As k → −∞, h[k]
k

must be bounded above, and that would happen with a

strongly convex function. Again, no concavity/convexity as such is implied
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by the bounding condition. What is certain, in any case, is that for central

values of k; those close to the mean and mode of the distribution, there is

no restriction concerning the sign of the second derivative d2h[k]
dk2 . All the

derivations which follow have to take that fact into account.

0.6 A Fredholm Equation for an Ergodic Solution

The ergodic density of values generated by the stochastic process:

kt+1 = h [kt] + εt (22)

is described by a Fredholm Equation of the second kind3:

Λ [k] = A
∫ +∞

−∞
π [k − h [κ]] · Λ [κ] dκ (23)

where π [·] is the density of the random effect εt, and A is a constant chosen

so that Λ [k] integrates to 1. The integral on the right-hand side of (23) is the

sum of all transitions from κ to k weighted by the probability that the initial

value is κ, which is Λ [κ], and the probability of a transition to k, which is

the probability that εt takes the value k − h [κ]. Placing the same function

Λ [·] on both sides of (23) identifies the ergodic fixed point outcome.

This derivation is somewhat similar to the so-called Theory of Breakage

which leads to the equation:

Fj (x) =
∫

u
Hj

[
x

u

]
dFj−1 [u] (24)

for which see Aitchison and Brown (1957), pp.26-7.

The process:

3See Hildebrand (1961) p. 381-2. In section 4.5 of the same chapter the author explains
the connection between this type of equation and the joint effect of many causes.
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kt+1 = h [kt + εt] (25)

generates another Fredholm Equation, viz:

Λ [k] =
∫ +∞

−∞
π
[
h−1 [k]− κ

]
· Λ [κ] dκ (26)

which is quite similar.

To keep things simple, we concentrate on the Fredholm Equation (23).

To be able to write out an equation showing the ergodic solution as (23) is

encouraging. Unfortunately this equation cannot be solved for Λ [k]. However

it yields three useful results.

Theorem 2 The set of functions satisfying (23) is convex4.

Proof: Is immediate. If Λ1 [k] and Λ2 [k] both satisfy (23), then:

λ · Λi [k] = Ai
∫ +∞

−∞
π [k − h [κ]] · λ · Λi [κ] dκ (27)

for i = 1 or 2, and for any value of λ. Hence:

λ · Λ1 [k] + (1− λ) · Λ2 [k]

=
[
λA1 + (1− λ)A2

] ∫ +∞

−∞
π [k − h [κ]] ·

{
λ · Λ1 [κ] + (1− λ) · Λ1 [κ]

}
dκ

(28)

2

The next theorem uses the Fredholm equation to establish continuity

of Λ [k] with respect to k. An essential assumption is that π [·] should be

everywhere continuous.

4To say that the set of functions is convex is not, of course, to say that the functions
are convex functions.
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Theorem 3 If π [·] is everywhere continuous, a Fredholm equation value for

Λ [k] is continuous in k.

Proof: If the integral on the right-hand side of (23) is well defined it must

equal the limit as L →∞ of:

A
∫ +L

−L
π [k − h [κ]] Λi [κ] dκ (29)

Which entails that for any δ > 0 ∃ L0 such that L ≥ L0 implies:

A
∫ +∞

−∞
π [k − h [κ]] Λi [κ] dκ−A

∫ +L

−L
π [k − h [κ]] Λi [κ] dκ < δ (30)

The equation (30) says that the Fredholm integral for any k may be approxi-

mated to any desired degree of accuracy by an integral with a finite - although

possibly extremely long - range. Take any value of k, denoted k0. Choose

γ > 0. Let L satisfy (30) for δ = γ
3
. For each value of γ there must exist

ε > 0 such that:

|π [k − h [κ]]− π [k0 − h [κ]]| < γ

3
(31)

holds for all |k0 − k| < ε and h−1 [−L− γ] ≤ κ ≤ h−1 [+L + γ]. It must be

possible to satisfy these conditions because both the continuous functions h [·]
and π [·] are uniformly continuous on the compact interval h−1 [−L− γ] ≤
κ ≤ h−1 [+L + γ]. Then:

A
∫ +L

−L
{π [k0 − h [κ]]− π [k0 − h [κ]]}Λ [κ] dκ

≤ A
∫ +L

−L
|π [k0 − h [κ]]− π [k0 − h [κ]]|Λ [κ] dκ (32)

≤ γ

3
A
∫ +L

−L
Λ [κ] dκ ≤ γ

3
A
∫ +∞

−∞
Λ [κ] dκ =

γ

3

Therefore for any γ however small we have been able to find an open interval

centred on k0 such that (29) differs from its value at k0 by at most γ
3

for any
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k in the interval.

Denote the value of (29) according to the values taken by k and L as I(k, L).

Then:

|I(k0,∞)− I(k,∞)| ≤ |I(k0, L)− I(k, L)|+ 2γ

3
≤ γ (33)

for all |k0 − k| < ε. This is continuity, as required.2

Continuity of Λ [k] does not rule out the possibility that an equilibrium

density might split into two or more disjoint segments: say a high wealth

segment with positive density; a low wealth segment with positive density;

and a region between these two where Λ [k] = 0. Suppose, for instance, that

k∗ lies in the high wealth region. Then agents cannot escape from the low

wealth region because random shocks always push them back down. We call

such a distribution disjoint. The next theorem will rule out such an extreme

separation of agents who are identical except for their initial wealth cannot

occur in equilibrium. It demands a tighter specification of the properties of

the distribution of ε than has been required so far.

Definition 1 The distribution of ε will be said to be weakly-regular if π (·)
is continuous and:

π(x) > 0 (34)

for all x in the interval [−a, +a] for a suitably small value of a. Obviously a

weakly-regular distribution could exhibit strange features in comparison with

familiar statistical distributions, and a stronger regularity requirement will be

introduced below.

Theorem 4 If the distribution of ε is weakly-regular, an ergodic density can-

not be disjoint.

Proof: If the distribution is disjoint there will exist at least one open range

14



of values of k, (k−, k+) such that Λ [k] = 0 in that interval and Λ [k] > 0

for values of k as close to k− or k+ as required. Suppose k− < k∗. Similar

arguments take care of the opposite inequality and the case k− = k∗.
Consider the closed range of k values [h−1 [k−] , k−]. We have:

∫ k−

h−1[k−]
Λ [κ] dκ > 0 (35)

for otherwise we choose a lower value for k−. Define k0 =
h[k−]−k−

2
> k−.

Λ [k0] ≤ A
∫ k−

h−1[k−]
π [k0 − h [κ]] · Λ [κ] dκ (36)

It will be seen that k0 − h [κ] ranges from:

k0 − h
[
h−1

[
k−
]]

= k0 − k− > 0 (37)

and:

k0 − h
[
k−
]

= −k− + h [k−]

2
< 0 (38)

The fact that π [k0 − h [κ]] must be continuously positive over at least part

of the range between the limits of the integral in (35), and (35) itself, imply

Λ [k0] > 0, contrary to the assumption that the disjoint distribution assumed

is ergodic.2

0.7 Cumulative Distribution, h-Transformation
and Scattering

In analysing the distribution of k values, it is sometimes convenient to work

in terms of the cumulative distribution. Hence ∆(k) is the proportion of

the population with wealth not greater than k. Clearly ∆(−∞) = 0 and

∆(∞) = 1.

Notice that the effect on the distribution of wealth in moving from one

period to the next is the sum of two separate transformations. First each k
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value maps to h [k]. We call this h-transformation. Next all values are scat-

tered by the addition of random shocks εt. We call this scattering. Consider

the first step. Before h-transformation:

Λ [k] =
d∆ [k]

dk
(39)

Whereas after h-transformation:

Γ [k] = ∆
[
h−1 [k]

]
(40)

where Γ [k] is the cumulative distribution of k after transformation. Then:

dΓ [k]

dk
=

d∆ [h−1 [k]]

d [h−1 [k]]

d [h−1 [k]]

dk
=

Λ [h−1 [k]]
dh[k]
dk

(41)

is the density of wealth distribution after h−transformation. Equation (41)

defines how the accumulation function affects the distribution of wealth in

the absence of random effects.

Denote the transformed distribution by Φ(k). So:

Φ(k) =
Λ [h−1 [k]]

dh[k]
dk

(42)

Consider a maximum of Φ(k) at k = k0. Then:{
dΛ [h−1 [k]]

dk
− Λ

[
h−1 [k]

] d2h [k]

dk2

}
k=k0

= 0 (43)

Equation (43) is useful when locating a maximum, including a mode, of a

wealth distribution after h−transformation when the location of a maximum

of Λ [k] is known. Suppose, for instance, that h [k] is so nearly linear in the

relevant range that d2h[k]
dk2 may be replaced by zero. Then (43) says that one

should look for a maximum of Φ(k) to the left (right) of a maximum of Λ [k]

according as k is less than (greater than) k∗.
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The sequential effects of h−transformation and scattering in an ergodic

case can be exhibited mathematically as follows. Take any value of k. Sup-

pose k < k∗ . A symmetrical argument works for the other side. For any

level of wealth between h−1 [k] and k, h−transformation will carry wealth

across the border marked by k from lower to higher values of wealth. Next,

after h−transformation, scattering will carry a certain mass of wealth across

the same border, travelling in the same direction, while scattering will carry

another mass of wealth across the border in the opposite direction. It is an

evident equilibrium condition for an ergodic distribution that the net move-

ment of wealth across the border shall be zero. That condition is expressed

in the following equation.

∫ k

h−1[k]
Λ [κ] dκ+

∫ k

−∞
{1− Π (k − κ)}Φ(κ)dκ =

∫ +∞

k
Π (k − κ)Φ(κ)dκ (44)

where Π (·) is the cumulative distribution of i.i.d. shocks; that is the proba-

bility that εt will be ≤ the argument of Π (·).
As (44) holds as an identity in k, we may differentiate (44) with respect

to k to obtain:

Λ [k]− Λ [h−1 [k]]
dh[k]
dk

+ {1− Π (0)}Φ(k)−
∫ k

−∞
π (k − κ) Φ(κ)dκ

= −Π (0)Φ(k) +
∫ +∞

k
π (k − κ) Φ(κ)dκ (45)

Notice that is the distribution of shocks is symmetrical about 0, then

Π (0) = 1
2
. However the argument does not use that property. Simplifying

(45) taking into account (42) gives:

Λ [k] =
∫ +∞

−∞
π (k − κ)

Λ [h−1 [κ]]
dh[κ]
dκ

dκ (46)
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which provides another integral equation description of ergodic equilibrium.

The right-hand side of (46) is the density given at k when the distribution

Λ [κ] is first subject to h−transformation and then to scattering. Then (46)

says that these twin processes shall map density at each k into itself. Notice

that one can go directly from the original Fredholm equation (23) to (46) by

a simple change to the variable of integration, from κ to h [k].

Analysis of a Fredholm distribution can proceed either from the integral

equation (23), or from the equation defining the process itself (22). The next

section adopts the latter approach.

0.8 Direct Analysis from the Stochastic Process

Equation

Applying the mathematical expectation operator E to (3) gives:

Ek = Eh [k] (47)

The relation of Eh [k] to h [Ek] depends upon the concavity/convexity of

h [·], which we have seen to be ambiguous. Subtracting (47) from (3) and

rearranging gives:

E [kt − Ek]2 = E
{
[h [kt]− Eh [k] + εt]

2
}

= E
{
h [k]2

}
+ E

〈
{Eh [k]}2

〉
+ E {εt}2 − 2E {h [k] Eh [k]} (48)

= E {[ε]}2 + E
{
h [k]2

}
− {Eh [k]}2

where time subscripts have been dropped, because they are irrelevant when

an ergodic distribution is under consideration. On account of εt being i.i.d.,

expectations of products involving εt have been equated to zero.

Notice that the variance of h(k) is given by:
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E {h(k)− Eh(k)}2 = E
{
h(k)2 + [Eh(k)]2 − 2h(k)Eh(k)

}

= E
{
h(k)2

}
− {Eh(k)}2 (49)

Now equations (48) and (49) together can be interpreted in a very natural

result.

Theorem 5 An h−transformation always subtracts variance from the dis-

tribution of k. For an ergodic distribution it subtracts precisely the amount

of variance that is added by scattering.

Proof: Notice that the result is not trivial. While h−transformation obviously

moves every k closer to k∗, there is no immediate guarantee that it moves

every k closer to the mean of the k values. However from (45) the second

moment of the distribution of k in general, and hence the same moment in

an ergodic distribution, is the sum of the variances of h(k) and of ε. In that

case, k itself must have a larger variance than h(k). Evidently scattering

restores equality, as required.2

Similar calculations for the third moment of the distribution of k, assum-

ing E {ε3} = 0, produce:

E {k −Ek}3 = E
{
h(k)3

}
− 3E {h(k)}E

{
h(k)2

}
+ 2 [E {h(k)}]3 (50)

Theorem 6 If the distribution of shocks εt has a third moment about its

mean equal to zero; hence in particular if it is symmetrical about zero; an

h−transformation does not affect the third moment of h(k) about its mean.

Proof: The right-hand side of (50) is the third moment h(k) about its mean.

Therefore the result follows immediately.2
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0.9 Bell-Shaped Distributions

The following arguments touch particularly on the question of whether an

ergodic equilibrium wealth distribution can be normal. As k is the logarithm

of wealth, that is equivalent to asking whether wealth can be log-normally

distributed in the limit.

Definition 2 A twice-differentiable function q(x) on the range [a, a], where

these end points may be −∞ or +∞, will be said to be Symmetric-Bell-shaped

(SBS) if:

1. There exists a unique value x0 such that q(x) takes its maximum value.

2. The value of q(x) is uniquely determined by |x− x0|; and

3. The value of q(x) decreases monotonically with |x− x0|.
In addition to the above, a distribution will be called regular symmetric-bell-

shaped if, starting from x = a,
d2q

dx2
(51)

is first positive, then negative until a point at which x > x0, and finally

positive to a.

The definition describes a normal distribution, but is not confined to that

particular case.

Definition 3 The stochastic process (22) or the Fredholm equation (23) will

be said to be standard if the density function of errors π [·] is SBS with its

maximum at zero.

Recall that the mapping of an ergodic distribution solution into itself

consists of the sum of two separate steps. The first is the effect of the

h−transformation; the second is scattering.
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The statement of the next theorem is most easily understood in terms of

the cumulative distribution Γ [k]. The wealth distribution has an infinite tail

if there exist no finite value of k such that Γ [k] takes either the value 0 or 1.

In the former case the distribution will be said to have an infinite left-hand

tail; in the latter case an infinite right-hand tail.

Theorem 7 If the distribution π [·] has an infinite left- or right-hand tail,

a Fredholm equation solution will have respectively an infinite left- or right-

hand tail. A Fredholm equation solution may have an infinite tail without

π [·] having an infinite tail if:

|k − h(k)| (52)

is bounded above for all large |k| by A, where A is within the range of the

absolute value of one of the tails of π [·].
Proof: The first statement is obvious. Whatever value h [kt] may take, if the

distribution π [·] has an infinite tail, positive probability attaches to εt taking

any value whatsoever in that direction; hence positive probability, and there-

fore distribution density, attaches to kt+1 taking any value in that direction.

The second statement is also plain. However far out k may be, as long as

positive probability attaches to the movement towards the centre h(k)− k be-

ing undone by a random shock, some positive density of k can survive the

tendency to convergence brought about by h− transformation.2

The next result is most useful in characterizing the shape of an ergodic

distribution because it shows exactly what scattering by itself does, and

particularly how it influences the SBS property.

Theorem 8 If the stochastic process for wealth is standard, a wealth distri-

bution, which may or may not be ergodic, is SBS after scattering if and only
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if it is SBS before scattering.

Proof: Let Λ2(k) be the distribution resulting when Λ1(k) is modified by a

process of pure scattering:

kt+1 = kt + εt (53)

A Fredholm equation, similar to (23) but simpler, describes the relation be-

tween the two distributions:

Λ2 [k] = A
∫ +∞

−∞
π [k − κ] · Λ1 [κ] dκ (54)

Sufficiency: Suppose that Λ1 [k]is SBS with its mode at k = k0. The right-

hand side of the equation (54) may be written:

A
∫ k0

−∞
π [k − κ] · Λ1 [κ] dκ + A

∫ +∞

k0
π [k − κ] · Λ1 [κ] dκ (55)

Let k − k0 = d. Then if k
′
= 2k0 − k, the absolute value of the distance of

k
′
from k0 is again d. If k is to the right of k0, the integral equation (54)

shows that the value Λ2 [k] is obtained by integrating for κ from −∞ to k0,

and then adding the integral all the way to +∞, with k being interior to the

second integration. When the value of Λ2
[
k
′]

is obtained, the calculation is

completely mirror-image symmetric. When k is equi-distant to the left of k0,

the value Λ2
[
k
′]

is obtained by integrating for κ from −∞ to k0, and then

adding the integral all the way to +∞, with k now being interior to the first

integration. The net effect of both integrations is the same, as equal levels of

Λ1 [·] and π [·] appear, and are multiplied together, during the two stages. We

have the SBS property for Λ2 [k] around k0.

Necessity: Suppose that Λ2 [k] is SBS around k0 but that Λ1 [k] satisfying (54)

is not SBS. If Λ1 [k] is not SBS around k0, it can always be expressed as:

Λ1 [k] = Λ∩ [k] + Λ→ [k] (56)
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where Λ∩ [k] is SBS around k0, and Λ→ [k] = 0 for k ≤ k0. It is important

to take into account the fact that Λ→ [k] is not itself a density function, and

may take negative values over some ranges of k. Then:

Λ2 [k] = A
∫ +∞

−∞
π [k − κ] · Λ∩ [κ] dκ + A

∫ +∞

k0
π [k − κ] · Λ→ [κ] dκ (57)

The distribution given by the first integral will be SBS by the sufficiency

argument above. Suppose that the second integral gives an SBS distribution,

in which case a non-SBS distribution would have been transformed by (54)

into an SBS distribution, contrary to the theorem. Take a point k +k0 and a

value of κ ≥ k0. Starting from κ, the probability of getting to k is π [k − κ];

and the probability of getting to −k is π [k + κ]. If the second integral of (57)

gives an SBS distribution:

A
∫ +∞

k0
π [k − κ] · Λ→ [κ] dκ = A

∫ +∞

k0
π [k + κ] · Λ→ [κ] dκ (58)

identically in k. However:

|k − κ| ≤ |k + κ| (59)

and π [x] decreases monotonically with |x|. Therefore (58) can not be satis-

fied, and sufficiency is established.2

From Theorem 8 it may be seen that the shape of an ergodic distribution,

and particularly question of whether it could be SBS, turns on the effect of

h−transformation. This is because the effect of scattering is neutral where

the SBS property is concerned. Hence suppose that Λ [k] is SBS with its

maximum at k0. From (42) the density of k after h−transformation is given

by:

Φ(k) =
Λ [h−1 [k]]

dh[k]
dk

(60)
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Then Φ(k) must also have a maximum at k0 because, by symmetry, scat-

tering applied to an SBS distribution cannot affect the location of a maxi-

mum. Take two values of k, k0 − ∆ and k0 + ∆. Because Φ(k) is SBS, we

must have:

Λ [h−1 [k0 −∆]]
dh[k−∆]

dk

=
Λ [h−1 [k0 + ∆]]

dh[k+∆]
dk

(61)

Theorem 9 If h [k] is linear, a distribution is ergodic only if it is SBS.

Proof: Take a distribution, SBS around k0, Λ [k]. After h−transformation it

will be as (57). If:

h [k] = α + βk (62)

dh[k]
dk

= β is constant, and h−1 [k] = k−α
β

. Further:

Λ
[
h−1

[
k0 −∆

]]
= Λ

[
h−1

[
k0 + ∆

]]
(63)

by the SBS property. Therefore (60) is SBS. After scattering the distribution

is SBS. Therefore an SBS distribution maps to an SBS distribution.

Now suppose that Λ [k] is not SBS around k0. However because it is ergodic, it

maps to an SBS distribution around k0 with the mapping (23). Then it must

be mapped to an SBS distribution by h−transformation, because scattering

will not give the SBS property unless is already present. When h [k] is linear,

there exists a value of ∆ such that (60) is not satisfied, because Λ [k] is not

SBS around k0. A non-SBS distribution cannot map to an SBS distribution.

2

If h [k] is approximately linear, an ergodic distribution could be approxi-

mately SBS. Theorem 9 shows a strong connection between linearity of h [k]

and the SBS property. It does not show however that the h−transformation
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of an SBS distribution could not be SBS while h [k] is non-linear. Differen-

tiating (60) with respect to k gives:

dΦ(k)

dk
=

dΛ[h−1[k]]
dh−1[k]

− Λ [h−1 [k]] d2h[k]
dk2(

dh[k]
dk

)2 (64)

For a given SBS function dΦ(k)
dk

(64) can be viewed as a non-linear differen-

tial equation in h [k] and it may be possible to prove that it has no non-linear

solutions. I have not been able to obtain such a proof. Even so, the equation

itself shows at least that a very specific functional form for h [k] will always

be required if non-linear h−transformation of an SBS distribution is to be

SBS. Therefore the linear case may be the only important one for practical

purposes. As there is no theoretical reason to expect linearity, or any other

specific form, the SBS property appears to be an improbable outcome.

0.10 Single Peakedness

Given that the SBS property for the wealth distribution has been shown to

be improbable, what about looking for a weaker regularity condition? The

following condition is implied by SBS but is certainly much weaker.

Definition 4 The wealth distribution will be said to be single-peaked if all

its local maxima are attained on one convex set of values of k.

The definition allows a ”table mountain” case in which the maximum

value is attained over a connected range of values of k. That case apart,

the definition rules out multiple local maxima as distinct peaks. We know

already that a linear h [k] function produces an SBS outcome. It follows that

multiple local maxima can only arise if h [k] exhibits significant non-linearity.

The hydraulic system described in Section 3 above can also throw light

on single-peakedness. Suppose that the steepness of the rift valley walls on
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both sides increases monotonically with absolute distance from k∗, and is

symmetrical on the two sides. Far from k∗ water is moved quickly towards

k∗. All the water that far out has been transported a long distance. There

cannot be much of it, and swift running rivers must be shallow. As one

moves closer to the floor of the valley, the absolute gradient becomes lower

and rainfall rises, because the total water not too far away increases. Now

rivers flow slowly and are deep. Therefore the depth of water rises until it

reaches its maximum at k∗. The density of water is SBS around k∗.
Now modify the model just described. On the west side insert a range of

values of k along which the gradient is quite flat. Follow it by a very steep

interval closer to k∗, and then return to a similar gradient to that prevailing

on the opposite valley wall. The amount of water above these ranges will

hardly be affected if redistribution is strong and the ranges described cover

short intervals. Therefore water will move through the intervals first slowly,

next rapidly, then it will slow down. Depth will be high, then lower, then

high again. The depth of water, which is to say the density of wealth, will

exhibit twin peaks.

For the accumulation of wealth the model just described corresponds to

the following state of affairs. For a range of low levels of wealth, is accumu-

lated towards k∗, but at a slow rate. Then, when wealth gets a bit higher, the

pace of accumulation picks up sharply. Later it moderates. Economic theory

cannot exclude such a case. The only way to avoid a twin-peak outcome

in such a case is to have a high density in the steep (fast-flowing) section.

That will never be an equilibrium because that high density would be rapidly

dissipated by flow towards k∗ which rainfall could not replace.

An informal mathematical version of this pictorial argument runs as fol-

lows. Take a regular model with no twin-peaks in its ergodic wealth distri-
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bution. Over a range of values of k < k∗ which is small relative to a range

which contains much of the density of π [·], distort the h [·] function so as to

make its derivative large. Figure 1 sketches the h [·] function so distorted.

From (60) it may be seen that either the density in the distorted range will be

relatively low, or density in that particular section of the distribution which

maps into the range under h−transformation will be relatively high. In the

latter case, density to the left of the last section must again be high, and so

on. Therefore, unless density in the range over which the h [·] function has

been distorted is relatively low in ergodic equilibrium, density will have to

be relatively high for extremely low values of k. This is not possible. The

effect of h−transformation will always be to pull that density closer to k∗.
And scattering by itself cannot sustain high density far from k∗, because it

is neutral as to direction.

An example of this type depends upon the magnitude of dh[k]
dk

varying

considerably over a narrow range: first rising then falling. One could rule

that out by assumption. Particularly if h [·] is everywhere either weakly

concave or weakly convex, a case such as the example cannot occur.

When Quah5 published his empirical evidence showing the twin-peak pat-

tern in international cross section per capita income data, I read it as evidence

against the simple convergence model, as no doubt did many other readers.

It is interesting to note that Quah himself advances no such claim. First he is

very clear that he is describing the development of income distribution over

a short period of time. Secondly, Quah is aware of the possibility that even

the apparently disconnected distributions he observes may be generated by

a process which in the long run is ergodic. Now the theoretical investigation

of an ergodic wealth distribution has shown that it may have twin (indeed

5See Quah (1996a) and (1996b).
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multiple) local peaks. So it seems that even such a surprising feature may

be completely consistent with a convergence model.

That is not a good way of looking at matters. To be worthy of study,

an economic model has not only to be true in some high abstract sense; it

has to be useful. A twin peak case can only arise when h [k] is severely

non-linear. The estimation of such a model presents many difficulties. In

a way the strength of the Baumol-Barro convergence model was its crude

simplicity. If it has to be rescued by refined mathematical argument, it

loses its appeal. Also, in the example, and more generally, twin peaks in

an ergodic distribution can only happen over a range within the reach of a

single-period realization of the random shock. Therefore if twin peaks are

an important feature of the distribution, it must be the case that shocks are

large in absolute value. This is another way of saying that the explanatory

power of the model is weak.

0.11 Concluding Remarks

The long history of the analysis of income or wealth distributions, going

back to Pareto, includes different approaches. One is purely empirical. The

shape of the distribution is examined and the fitness of simple mathematical

specifications is investigated. Another approach is to start with postulates

concerning the process which generates the distribution and then to investi-

gate mathematically what is the limiting distribution which results. Yet the

limiting distribution does not have to be the object of concern. The shorter

term conditional transfer process can itself be the focus of investigation. In-

deed the neoclassical convergence theorists can only do that, because for

them the limiting distribution is trivial, being a state in which all countries

- or individuals in the case of a personal distribution - are at the common
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limit point k∗. When the transfer process is taken to be random there are

wider possibilities than when it is modelled using economic theory.

The present paper marries two different traditions. They are the neoclas-

sical approach, according to which wealth accumulation is systematic and

deliberate; and the random shocks approach, according to which wealth ac-

cumulation is purely haphazard. As would be expected, such a model is

complicated, and direct mathematical solution is hardly possible. Even so,

we have been able to obtain a series of results which together effectively

characterize the limiting distribution of the logarithms of wealth values.

It is a continuous connected distribution which may or may not have

infinite tails. It is unlikely to be symmetric-bell-shaped, although that case

is possible. While it may not be single-peaked, mild assumptions on the

accumulation function can assure that is However these assumptions are not

derivable from economic theory.

29



References

[1] Aitchison, J. and J.A.C. Brown (1954), “On Criteria for Description of

Income Distribution”, Metroeconomica, 6, 88

[2] Aitchison, J. and J.A.C. Brown, The Lognormal Distribution, Cam-

bridge University Press

[3] Barro, Robert J. (1991), “Economic growth in a cross section of coun-

tries”, Quarterly Journal of Economics, CVI, 407-444

[4] Barro, Robert J. and X. Sala-i-Martin (1992), “Convergence”, Journal

of Political Economy, 100, 223-251

[5] Barro, Robert J. and X. Sala-i-Martin (1992), Economic Growth,

McGraw-Hill

[6] Bliss, C. (1995), “Capital Mobility, Convergence Clubs and Long-run

Economic Growth”, Oxford: Nuffield College Discussion Paper No. 100

[7] Champernowne, D.G. (1953), “A Model of Income Distribution”, Eco-

nomic Journal, 63, 318

[8] Doukhan and Ghindés (1980)

[9] Friedman, M. (1992), “Do Old Fallacies Ever Die?”, Journal of Eco-

nomic Literature, XXX, December, 2129-32

[10] Granger, C.W.J. and T. Tersvirta (1993), Modelling Nonlinear Eco-

nomic Relationships, Advanced Textbooks in Econometrics, Oxford Uni-

versity Press.

30



[11] Hildebrand, F.B. (1961), Methods of Applied Mathematics, Englewood

Cliffs, N.J., Prentice-Hall.

[12] Quah, D. (1993), “Galton’s Fallacy and Tests of the Convergence Hy-

pothesis”, Scandinavian Journal of Economics, December.

[13] Quah, D. (1996a), “Twin Peaks: Growth and Convergence in Models of

Distribution Dynamics”, Economic Journal, 106, July, 1045-55.

[14] Quah, D. (1996b), “Empirics for Economic Growth and Convergence”,

European Economic Review, 40, 6, June, 1353-1376.

[15] Sala-i-Martin, X. (1996), “The Classical Approach to Convergence Anal-

ysis”, Economic Journal, 106, July, 1019-36.

[16] Solow, R.M. (1956) “A Contribution to the Theory of Economic

Growth”, Quarterly Journal of Economics, 70, pp. 65-94

[17] Solow, R.M. (1970), Growth Theory: An Exposition, Clarendon Press

[18] Steindl, J. (1972), “The Distribution of Wealth after a Model of Wold

and Whittle”, Review of Economic Studies, 39(3) July, 263-79

[19] Wold, H.O.A. and P. Whittle (1957), “A Model Explaining the Pareto

Distribution of Wealth”, Econometrica, October.

31




