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Summary. The likelihood ratio test for the hypothesis that the smallest
of two canonical correlations is zero is non-similar. This means that the
distribution of the test statistic depends on a nuisance parameter: the value
of the largest canonical correlation. If this parameter were known it would be
possible to construct a test with a desired size. However, in applications the
nuisance parameter is usually estimated. It is therefore of interest to evaluate
the distributional properties of such a test, conditional on the estimator. This
distribution is found. Although, it depends on the nuisance parameter, the
dependency seems to be negligible for practical purposes.
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1. Introduction

This paper concerns a test situation in which the asymptotic distribution of
the test depends on a nuisance parameter. For most values of the nuisance
parameter a standard asymptotic distribution applies, however, for one value
a different asymptotic distribution applies. As a consequence, both asymp-
totic distributions are often poor approximations to the exact distribution of
the test. Moreover, it is not clear whether a second order distribution approx-
imation, such as a Bartlett correction, is well-behaved. The problem arises
in connection with canonical correlation analysis, and consequently also in
cointegration analysis, which essentially is an application to vector autore-
gressive time series, see Johansen (1995). The bivariate canonical correlation
analysis provides the simplest example of the problem. It is argued that
the approximation suggested by Nielsen (1997) gives a rather well-behaved
solution to the problem.

Consider n+1 independent repetitions of two bivariate vectors, X, Y, with
a joint normal distribution. The canonical correlations of Hotelling (1936) are
defined as follows. Let X;; and S;; be the population and sample covariance
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matrices respectively. Then the squared population canonical correlations,
1> A2 > A2 > 0, are the solutions of the eigenvalue problem:

det ()\QEXX — Exyz;%/zyx) = 0.

Correspondingly, the squared sample canonical correlations, 1 > 72 > r2 > 0,
solve:

det (’I”QSXX — SXYs;%/SYx) = 0.

The hypothesis of interest is that the rank of the covariance matrix is at
most one or, equivalently, that the smallest population canonical correlation
vanishes: Ay = 0. The likelihood ratio criterion, suggested by Bartlett (1938),
is given by:

LR = —nlog (1 — ’)“g) .

Under the hypothesis, the distribution of the criterion depends on the largest
population canonical correlation, A;. For instance, for large n, the distrib-
ution can be approximated by a x2 (1) distribution for \; # 0 whereas for
A1 = 0 a different asymptotic distribution applies. This distribution is de-
scribed by Nielsen (1997).

The test is Bartlett adjustable. This means that the asymptotic x? ap-
proximation can be improved by scaling with a factor which is basically a
good approximation to the expectation of the criterion. The approximation
to the expectation by Lawley (1959) is found by fixing A; and letting n in-
crease to infinity. A different and more accurate approach is to fix p = )\fn
as n increases. The effect of this approximation is much more uniform in A,
see Nielsen (1997). In both cases the adjustment factor depends on the nui-
sance parameter, A\;. In applications this could be replaced by its maximum
likelihood estimator, the largest sample canonical correlation, r;. Therefore
it seems reasonable to consider the conditional distribution of the adjusted
test statistic for fixed values of r;.

Section 2 describes the conditional rejection frequency of the Bartlett-
adjusted test. It will be shown that this is close to the significance level
when neither the nuisance parameter, j, nor the estimator 7?n = z is too
small. From a practical point of view this is promising since the test would
be combined with a test of complete independence, \; = Ay = 0. If such a
test were rejected  would not be too small and the likelihood of a small g
would be small. Section 3 discusses theoretical justifications for the applied
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conditioning technique and the employed distribution approximation is char-
acterised as contiguous. The mathematical derivations are detailed in the
Appendices.

2. The conditional rejection frequency

The conditional rejection frequency for the likelihood ratio test is considered
for fixed value of the estimated nuisance parameter.

The marginal distribution of the test criterion can be approximated rather
well by a Bartlett correction to a x2 (1) distribution. Using the parametrisa-
tion p = )\%n the suggested critical value is therefore of the form:

Cumn = CaEu,nv (1>

where ¢, is the a quantile for the x? (1) distribution and E,, is the mar-
ginal expectation of the test statistic. Simulations indicate that the marginal
rejection frequency is very close to the significance level:

P.“L:n (LR > C.“Lyn) ~ Oé,

see Nielsen (1997). In applications p would be estimated by z = r?n and

it would be desirable to have the same property for the conditional rejec-
tion frequency, P, (LR > cg|z). This probability as well as an asymptotic
expansion thereof is derived in the Appendix A.

Various approximations to the marginal expectation of the likelihood ratio
test statistic have been suggested. For a fixed value of i the expectation has
the following asymptotic expansion for large sample size n:

E,(LR)exp(7/2n)+{R, (LR) — E, (LR)} /n. (2)

where the asymptotic expectation F, and the remainder term R, can be
expressed in terms of Bessel functions:

Bu(LR) = 248~ Zepum{armn (B (), @
1

R,(LR) = %[—5+M+;—Qexp(—,u/4){(48—1—3#_2#2)1—02 (g)

+ (10 + 3 — 1) 41, (%) I (%) +(9 = 2u) plt (%) H 7

see Nielsen (1997). The asymptotic expectation E, takes the value 2—7/2 for
g = 0 and tends to 1, the expectation of the x2 (1) distribution, for large p.
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The remainder term is O for i+ = 0 and tends to 1 for large p. Further, it can
be shown, that the expectation of the criterion has the following asymptotic
expansion for large values of p, n:

1(7 1
Eyn(LR) ~1+ ~ <§ — )\—%> . (4)
This approximation was found by Lawley (1959). A simulation study by
Nielsen (1997) found that the expression (2) is very accurate for all values of
1, at least for n > 32. However, Lawley’s approximation is only accurate for
rather large values of .

The Figure 1 shows numerically computed conditional rejection frequen-
cies as a function of u for z = 6,12,18 and n = 32,64,128. The chosen
significance level is o = 5% and three tests are considered. Two of these are
based on Lawley’s approximation (4) and the approximation (2). The main
conclusions are that the approximation (2) always performs better than Law-
ley’s approximation. As expected, the difference is largest for small values
of z. However, both approximations give under-sized un-conditional tests.
Therefore, a third test is considered, which is based on the simpler approxi-
mation where the remainder term is ignored:

E,(LR)exp(5/2n). (5)

For the considered values of x this approximation is smaller than the other
two and the derived test is better behaved.

[ Figure |

For small values of z the conditional rejection frequency is zero. The
reason is that the test is based on the marginal distribution of the criterion.
For large n this happens for z < caooFy e Or z < 2.42 for a = 5%. So,
when the largest sample canonical correlation is sufficiently small the test is
always accepted. However, in that case a test for the hypothesis of complete
independence would also be accepted and there is no need to adjust the
test in order to obtain a rejection frequency corresponding to the level. In
contrast, Lawley’s critical value is negative for z < 1, if n is large, and it
actually leads to a zero acceptance rate.



For x = 6 a test for complete independence, Ay = Ay = 0 would typically
be just accepted. The figure reflects that Lawley’s approximation to the
expectation is poor for this value of x. However, neither of the tests reach
the significance level for large n. For the same reasons as discussed above the
asymptotic rejection frequency is somewhat different from the chosen level.
This frequency can be computed using formula (9) of the Appendix A.

For x = 12 a test for complete independence would be rejected, however,
the value of z is not so large that Lawley’s approximation (4) gives an accu-
rate approximation. In contrast, the value x = 18 is so large that Lawley’s
approximation and (2) do equally well.

Figure 1 indicates that for 1+ = 0 then the conditional rejection frequencies
is not close to the significance level unless x is very large. An expansion for
large x of the asymptotic rejection frequency shows that this problem persists
even for large n, see formula (12) in Appendix B. With a significance level of
o = 5% the asymptotic rejection frequency is 3.7% for x = 10 and 4.4% for
x = 20. However, as seen in the figure the problem in reaching the significance
level only occurs for values of i which are close to zero. In applications the
problem can therefore be neglected since the likelihood of a small 4 is small
whenever z is not too small.

3. Discussion

The conclusion of the above conditional analysis is that size of the Bartlett
corrected likelihood test is fairly accurate despite the nuisance parameter.
Arguments for conditioning can be given by stretching the usual sufficiency
and ancillarity concepts. Finally, the employed distribution approximation
is characterised as contiguous.

If the conditioning variable, z, were sufficient for the nuisance parameter
1, then the conditional argument could be viewed as an attempt to obtain
a Neyman structure, see Cox and Hinkley (1974, p. 135). In the considered
statistical model the sufficient statistic is given by the sample covariance
matrices S;;, however, the variable z can be seen as approximately second-
order sufficient for the nuisance parameter. The first step in such an argument
is that the sample canonical correlations can be obtained from the sufficient
statistic by an invariant reduction. The likelihood could then be defined
from the joint distribution of the sample canonical correlations. Under the
hypothesis this is given by equation (8) in the Appendix A. For fixed Aj,
not too small value of ;1 = A\?n and large n, the smallest, squared canonical



correlation converges to zero at rate n~! and the largest, squared canonical
correlation is consistent at the usual rate of n~1/2. Therefore, the linkage
factor between the sample canonical correlations: (r? — r2)/A? depends only
on r? up to order n~!. Moreover, the involved hypergeometric function can
be expanded so that the sample canonical correlations are not entwined up to
the same order. The joint density therefore shows approximate second-order
independence of the sample canonical correlations. In this sense, only the
largest sample canonical correlation is relevant for likelihood purposes, see
Muirhead (1982, pp. 565-567) and also Srivastava and Carter (1980).

The conditioning variable is also second-order locally ancillary for the
parameter of interest, Ap, in the sense of Cox (1980), at least up to an ap-
proximation. For fixed values of A\; and A2n, not too small a value of 1 and
not too large a value of \g, it can be argued as above that the distribution
of 72 does not depend on Ay up to order n=1.

The conditioning argument could be taken further and applied in the de-
termination of the test statistic. However, in the situations described above,
large n and not too small p, the sample canonical correlations are approx-
imately independent and there would therefore not be much difference be-
tween a conditional approach and the applied unconditional approach.

The approximation to the marginal distribution of the criterion, which
is obtained by fixing pu = )\%n in the asymptotic argument, is contiguous
as argued in the Appendix C. Consequently, the log likelihood ratio of two
probability measures taken under the hypothesis, Ay = 0, is approximately
normal distributed, see Roussas (1972). This property and some further
properties, discovered by LeCam, would be useful for considerations of local
power of tests for the sub-hypothesis, \; = Ay = 0, against the hypothesis,
Ay = 0. These results cannot be applied immediately in this context where
the size of a test for the hypothesis, Ay = 0, against a general alternative is
of interest.
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Appendix A. The conditional distribution

The conditional distribution of the smallest sample canonical correlation,

72, given the largest, r2, is found for the case where the smallest population

canonical correlation, Ay = 0. Let g, ,, denote the density of (z,y) = n (1%, r3)

where p = )\fn. Then the conditional of # given z is given by:

Pun(y >clx) /gu, fvydy// Gun (2,y)d (6)

Two results are given below: a numerically stable expression for the inte-
grated density as well as asymptotic expressions derived for large n and a
fixed value of pu.

The integrated density can be represented as:

o0 2 k+1 n—>5)/2

¥ (n/2), k j—1/2 AR

/C un (2, y) dy - o kg{—k, (4n2> Z/ z ( 7) dz
27\ (2k — 2j 27+ 2\ (2k—25 -2 )
J k—7 j+1 kE—j—1 ’

up to a proportionality factor depending on z, . It has been used that bi-

nomial coefficients with integer parameters 2n,n are zero whenever n < 0.

The argument is as follows. The density g, , can be derived from a result by
Constantine (1963):

-2 (- D (-9 (-9 -

n/2 /2
(1_%> 2/0 2F1{ n/21n/2 "FLQ (mcos 6 + y sin® 9)}d9, (8)

™

for n > x >y > 0, see also Muirhead (1982, p. 260, 397) or formula (2.8) of
Glynn and Muirhead (1978). Expansion of the hypergeometric function in
(8) gives:

/7r/2 JF { n/2,1n/2
- S %)

(m cos? § + y sin® 9)} de

k—j /2 _ _
<k> (E) / cos? 0 sin®*=9 94
i) \z 0
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The trigonometric integral can by rewritten as a Beta integral using the
substitution z = cos? 8, dz = —2 cos 0 sin 6d0:

w/2 i .
g/ / cos? 9 sin®*=) 9dp =
0

™

(24)! (2K — 2))!
31 (k = j)Vkeld¥

Using the substitution zx = y for the other integral then gives:
0o 2 k . .
@ (n/2)k} (,um)’“ <2]> <2k—2]>
Gun (2, y) dy Y . :
/c o () IZ%{ k! 4n? JZ:% J k—j

1 . (n—5)/2
/ ZFIT2 (1 — ) (1 - %> dz
c/x n

Change of summation index j into k — j and separation of the term (1 — z)
gives the formula (7).

Asymptotic formulae for the integrated density. For large n the hyper-
geometric function in the density (8) can be replaced by a Bessel function
using Hansen’s confluence formula, see Watson (1944, p. 154):

gFl{ 2 ‘ (%)2} ~ T (v).

The problem of finding addition formulae for hypergeometric function is now
simpler. Neumann’s Addition Theorem for Bessel functions, see Watson
(1944, p. 358) gives:

/2
/ IO{\/M($COSQH+ySiH29)}d9
0

R RISl Py FIE] N

and consequently, for large n, the integrated density has asymptotic expan-
sion:

/C Gun (2,y) dy

~ K[ —yf2) [ \/ 2 6) b dod
. 5 exp (—y/2) A 0{ ,u(mcos + ysin )} Yy

e (_%>IO{\/W(1+\/E>}IO{\/W(12—\/E)}d

2

Z

(9)



where K is a constant depending on z, p. It turns out to be rather involving
to obtain (9) by a direct expansion of (7).

Expressions for the asymptotic conditional density of y given x or rather
of z = y/x given z can be derived from (9). For large values of pz an
asymptotic expansion of the involved Bessel functions gives that the main
term of the conditional density is proportional to:

(1—2)"2 2" exp (-22/2),

see Watson (1944, p. 203). This corresponds to the asymptotic conditional
density of 72 given r? derived by Glynn and Muirhead (1978) for not too
small values of A3:

1/2 -1/2 (n—5)/2
(Tf - r%) (r%) (1 - r%) . (10)
However, for ;1 = 0 the asymptotic conditional density is protional to:
(1—2) 2V exp(—x2/2) (11)

It is easily seen that the asymptotic conditional density (10) is not valid when
1 = 0 and hence for small values of .

Appendix B: Asymptotic expansion of conditional rejection fre-
quency.

It will be proved that for large n and p = 0 the conditional rejection fre-
quency, Ppoo (LR > ¢;00|%), has the expansion:

4(1— —x/2 1 —Cqo/2 —
ot (1—-a)exp(—z/2) 1___i_exp( Ca/2) c_a(1_5 3ca>
TV 2TT x l-« 2m 4x
exp (—¢a/2) [Ca . 5—3cy 53—6cy— 2 (12)
T 2 4 4x2 ’
for large x.

The acceptance frequency is easier to expand than the rejection frequency.
It is the ratio of integrals of the form:

/0 gO,n ('Tv y) dy



For y = 0 and large n the conditional density is given by (11) and up to
proportionality the integral can therefore be approximated by:

c/x
/ 272 (1 = 2)exp (—22/2) dz
0

That integral can be reformulated in terms of an incomplete Gamma, integral
by the substitution y = zz/2 and then using partial integration:

(g) 2 /OC/m 272 (1 = 2)exp (—22/2) dz

- (G2 o

The denominator of the acceptance probability is found for ¢ = z. Em-
ploying the asymptotic expansion for the incomplete Gamma function, see
Gradshteyn and Ryzhik (1965, 8.356.3, 8.357), it follows for large = that:

(%) 2 /01 272 (1 = 2)exp (—22/2) dz

~ (1 - l) + (%)1/2 exp (—z/2)

xz

~(1-3)(F) e (1214 )

N (1-&){1+(%)1/2%%13(—:5/2)(1—§+%>}. (14)

The numerator of the acceptence probability is found for ¢ = ¢; o. Using
(1) and (3) the asymptotic critical value, ¢, o, is found to have asymptotic
expansion ¢, (1 — 1/z + 2/x?) and the incomplete Gamma function in (13)
is therefore:

1 /1¢ 1 pea(1-1/at2/2®)
- - Z,00 = — /2 _ 2
I (27 5 ) %/0 y~ T exp (—y/2) dy.

A second order Taylor expansion around c, of the function defined by this
integral gives:

1 1 ¢poo exp (—¢o/2) [Cq 94+¢c, 124c,
O (e ol IO N ST AR | ,
(2’ 2 ) @ x 2%{ + Az + x2 }

\/%’Y
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Further expansion of the other terms of (13) gives:

Co Co Co Co
exp(—cm,oo/Q) ~ exp(—ca/Q){l—i—%—i—ﬁ(l—i—g)—i—ﬁ(ll—i—ca)},

1 9 6
VCroco ™ o l-—==—-—= )
“, \/C_( 2r  8x2 )

and, consequently the numerator has expansion:
T 1/2 Cz,oo/m 1
— A —22/2)d
(2%) /0 275 (1 = z)exp (—x2/2) dz

1 exp (—¢a/2) [Ca 5—3ca 53— 6cy— 2
~ (1= 2V {1 - g SR TG/ ey . .
(1 $> {1 @t x 2m 4 42

(15)

The acceptance probability is given as the ratio of (15) and (14) and the
expression (12) follows.

Appendix C: Contiguity

The idea of fixing u = )\%n in the asymptotic argument gives a contiguous
approximation. In contrast, contiguity is not obtained when JA; is held fixed
as n increases. These properties can be argued as follows.

Introduce the probability measure P) , under which the observations have
zero expectation, the variance matrices, X,,, X, are identity matrices and
the covariance matrix Y, is diagonal with element \; and 0. Consider the
log likelihood, A 5, of two such measures,

0Py,
21 — (X, ., Xy, Y1,..., Y,
OgaPO,n( 15 y An41, L1 +1)
2)\1 n+1 )\2 n+1
= —(”+1)10g(1—)\§)+—1_)\2 ZX]-JY]-J—1_1)\22(X;1+Yj?1).
1 j=1 1 j=1

The Central Limit Theorem gives that A, ,, is divergent under P, as well
as under Fy,. The sequences {Pxn}, . a0d {Fon},cn are therefore not
contiguous, see Roussas (1972, p. 11).

Let pu,n be the corresponding measure where )\f is replaced by ~/ n. It fol-
lows that the limit distribution of the likelihood ratio A, ,, = 21og(0F, ,/OFs )
is well-defined. Tt is normal, N (u,4p), under 8P, , and N (—p,4y) under
8]50,”. Therefore the sequences {Pu,n}neN and {]Sg,n}neN are contiguous.

11



References

Bartlett, M. S. (1938). Further aspects of the theory of multiple regression.
Proc. Camb. Phil. Soc., 34, 33-40.

Constantine, A. G. (1963). Some non-central distribution problems in mul-
tivariate analysis. Ann. Math. Statist., 34, 1270-85.

Cox, D. R. (1980). Local ancillarity. Biometrika, 67, 279-86.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical statistics. London:
Chapman and Hall

Glynn, W. J. and Muirhead, R. J. (1978). Inference in canonical correlation
analysis. Jour. Mult. Anal., 8, 468-78.

Gradshteyn, I. S. and Ryzhik, I. M. (1965). Tables of Integrals, Series and
Products. New York: Academic Press.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika,
28, 321-77.

Johansen, S. (1995). Likelihood-based inference in cointegrated vector au-
toregressive models. Oxford University Press.

Lawley, D. N. (1959). Tests of significance in canonical analysis. Bio-
metrika, 46, 59-66.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. New
York: Wiley.

Nielsen, B. (1997). The likelihood ratio test for rank in bivariate canonical
correlation analysis. Biometrika, forthcoming.

Roussas, G. G. (1972). Contiguity of probability measures: some applica-
tions in statistics. Cambridge University Press.

Srivastava, M. S. and Carter, E. M. (1980). Asymptotic expansions for
hypergeometric functions. In Multivariate analysis, vol. V (ed. P. R.
Krishnaiah), pp. 337-47. New York: North-Holland.

Watson, G. N. (1944). A Treatise on the Theory of Bessel Functions, 2nd
ed. Cambridge University Press.

12



x=6, n=32 x=6, n=64 x=6,n=128
0. 06 0.06 006
0.05 0.05 0.05
0.04
0.03
0.02{ |
0.0 0.014
1] B 16 24 32 0 16 32 48 B4 0 32 B4 95 128
x=12, n=32 x=12, n=64 x=12,n=128
0. 06 0.06 006
0.05 00— ———— 0.05 T e
i T e | e e L L S
0.04 [ 0.04 f 0,04
0.03 f 0.03 0. 03
0.02 0.02 0.02
0. 0.0 0.014
1] B 16 24 32 0 16 32 48 B4 0 32 B4 1] 128
x=18,n=32 x=18, n=64 x=18,n=128
0.08 0.0 0. 08
0.05 0 Fe—————————— O e e
0.04 0.04- r 0. 044 f
0.03 0.03 0. 03
0.0 0.02 0.02
0.0t i 0.0t i 0.014
1] B 16 24 32 0 16 32 48 B4 0 32 B4 1] 128

Figure 1: Rejection probabilities as function of p. Solid line: £, exp (5/2n),
dotted line: second order expansion, (2), dashed line: Lawley’s expression,

(4).
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