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Abstract
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out these “anomalies” when buyers are symmetric, small asymmetries among

the buyers necessarily cause the anomalies to reappear.

Keywords: Auction theory, common value, winner’s curse, PCS auction,

spectrum auction, airwaves auction, initial public offerings, IPO.

JEL No: D44 (Auctions), L96 (Telecommunications), G30 (Corporate Fi-

nance), G24 (Investment Banking)

1



1 Introduction

Increases in supply lower prices. It is never profitable to commit to rationing

at a price at which there is surely excess demand. Excluding potential buyers

cannot raise prices. These statements evoke almost universal agreement in

our profession. Yet economists from Veblen (1899) to Becker (1991) have

sought to explain examples of pricing that appear to contradict these truths.

In fact, it is perfectly reasonable for these statements to be false. This

paper shows why, and when this is most likely to happen.

To understand our results, it is important to understand how a bidder

determines the maximum he will be willing to pay for an asset. If a buyer’s

estimate of an asset’s value is affected only by his own perceptions and not

by the perceptions of others, he should be willing to pay up to his valuation.

This is the Adam Smith world, where a buyer can easily maximize his utility

given any set of prices, and a firm can easily maximize its profits. In this

sort of “private value” model, the statements in the first paragraph are true.

But in many important markets others’ perceptions are informative. The

extreme cases are “common-value” assets, or assets all buyers would value

equally if they shared the same information. Financial assets held by non-

control investors may be the best example; oil fields are commonly cited.

Most assets have both a private and common value element, particularly

if imperfect substitutes exist. For example, a house’s value will have both

common and idiosyncratic (private) elements.

With common values, buyers may find it prudent to exit an ascending

price auction at more or less than their pre-auction estimate of the value,

so the statements in the first paragraph are often false in common-value

auctions.

The reason is the “winner’s curse”. Buyers must bid more conservatively

the more bidders there are, because winning implies a greater winner’s curse.
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This effect can more than compensate for the increase in competition caused

by more bidders, so more bidders can lower expected prices.1 Conversely,

adding more supply, and/or rationing, creates more winners, so reduces the

bad news learned by winning, and so may raise bids enough to increase ex-

pected prices. This paper shows when this happens and why it is surprisingly

often.

A good example is provided by the market for Initial Public Offerings

(IPOs). Rather than being priced to clear the market, many IPOs are made

at prices that guarantee excess demand. By pricing low enough so that

everyone will want to buy, potential shareowners are absolved of the winner’s

curse of only being buyers when they are among the most optimistic investors.

This allows the pooling price to be quite high and, under quite reasonable

conditions, as high or higher than the expected price in a standard auction.2

Our results are especially likely in asymmetric “almost common value”

markets in which some competitors have a small advantage, because the other

bidder(s) then face an exacerbated winner’s curse.

This was illustrated in the A and B band spectrum auction held in 1994-95

by the Federal Communications Commission. Pacific Telesis was the natu-

ral buyer of the single Los Angeles license available for sale,3 and was able

1Steven Matthews (1984) has already provided an example with symmetric bidders
and affiliated common values in which additional bidders reduce expected revenue in a
first-price auction. Our paper provides insight into why results like ours and Matthews’
can arise, and shows they are surprisingly likely.

2A related example is when the value of an asset is not allowed to rise or fall more
than a fixed amount in a day. The South Korean won was limited to a 10 percent daily
decline through early December of 1997. The limitation prevented the market from fully
aggregating bidders’ information and the price fell by the maximum on several days. When
the limitation was removed and the market was allowed to clear, the price actually rose: it
is entirely possible that if a price is artificially fixed only slightly in excess of the expected
market clearing price there will be an enormous excess supply, but if the market is allowed
to clear the price will rise above the fixed rate. (Obviously, the Korean situation was
very complex and relaxing the limit on the amount the won could fall may not have been
important for the increase in the market price.)

3AT&T was ineligible to bid, and PacTel had the benefit of its name recognition and
experience in California, as well as its familiarity with the California wireless market in
which it was a duopolist prior to its spinoff of its cellular subsidiary, Airtouch. No one
knows what PCS licenses are really worth, but it is fair to say that the LA license was
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to acquire it very cheaply.4 Markets where two licenses were sold generally

yielded more competitive prices relative to their demographic characteris-

tics.5 Even where one bidder had an advantage, the prices of both licenses

were determined by aggressive competition for the second license. So prices

were better, even though the third-highest bid set the price in these markets

while the second-highest bid set the price in Los Angeles.6

In section 2 we set up a simple model of a standard ascending auction7

among bidders with “almost”common values. Section 3 shows when higher

prices are associated with selling more units in the symmetric case. Section 4

shows that the results are dramatically different when bidders are asymmet-

ric: greater supply raises price precisely when it does not with symmetric

bidders! Section 5 shows when rationing, as in Initial Public Offerings, is

optimal. It also shows when restricting participation in an auction can raise

expected revenues, and considers first-price auctions.8 Section 6 concludes.9

worth more to PacTel than anyone else.
4While the FCC’s mandate was for economic efficiency rather than revenue, and award-

ing the license to PacTel was almost certainly efficient, if PacTel had paid more there would
have been an efficiency gain to the economy from being able to reduce the deadweight loss
from taxation.

5The most obvious example is Chicago, where the prices were about $31 per head of
population for each of the two licenses, compared with less than $26 per head of population
for Los Angeles’ single license, in spite of Chicago’s inferior demographic characteristics.
(The famous long commutes of Angelenos and the population density in the area makes it
a particularly desirable place to own a wireless telephone franchise.) The single New York
license yielded only $17 per head of population.

6Our model does not involve bidding costs, but these would tend to reinforce our
explanation and result. See Avery (1998), Daniel and Hirshleifer (1995), and Hirshleifer
(1995) for models including bidding costs.

7The spectrum auction was an ascending auction, but also included a number of special
features designed to allow licenses for different regions to be sold simultaneously (see, for
example, McAfee and McMillan (1996)). However, we do not believe these additional
features affect our basic argument.

8The first (1997) draft of this paper shows how our model can be used to develop one
possible explanation of the “Declining Price Anomoly”. (See Ashenfelter (1989), Ayres
and Cramton (1996), Beggs and Graddy (1997), Black and deMeza (1992), Levin (1997),
McAfee and Vincent (1993), Pitchik (1995), Pitchik and Schotter (1988) and von der Fehr
(1994), among others for further discussion of the “anomoly” and other explanations of
it.) We plan to pursue this further in subsequent work.

9Other recent papers that use similar models to ours are Avery and Kagel’s (1997),
de Frutos and Rosenthal’s (1997), and Krishna and Morgan’s (1997) Working Papers.
Krishna and Morgan develop important insights about the effects of collusion and joint-
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2 The Model

We use the simplest possible model to make our points: each of 3 risk-neutral

potential bidders observes a private signal ti independently and identically

distributed according to the distribution F (ti), i = 1, 2, 3. We assume F (·) has

a strictly positive continuous finite derivative f(·) everywhere on its range,

and the lowest possible signal is t > 0, so F (t) = 0. Conditional on all the

signals, the expected value, vi, of a unit to i is

v1 = (1 + α1)t1 + t2 + t3

v2 = t1 + (1 + α2)t2 + t3

v3 = t1 + t2 + (1 + α3)t3

That is, each unit has a common value,
∑3

i=1 ti,to all the bidders, plus a pri-

vate value, αiti, to each bidder i. We will focus on two cases, “the symmetric

case” in which α1 = α2 = α3 = α > 0 and “the asymmetric case” in which

α1 > α2 = α3 = α > 0. In the latter case we will refer to bidder 1 as the

“advantaged” bidder, and bidders 2 and 3 as “disadvantaged” bidders. We

are interested in the case in which the private-value components, that is, the

αi’s, are all small and so the sizes of bidders’ advantages and disadvantages

are also small. To make our points most starkly and straightforwardly, we

consider an asymmetric case in which α/α1 is also small, so we state our re-

sults throughout for the limits in which αi → 0, ∀i, and, for the asymmetric

case, α/α1 → 0.10

bidding in common-value auctions. Independently from the first (1997) draft of our paper,
they also obtain results that are equivalent to the symmetric case of our section 5.2 about
restricting participation. They do not tackle the asymmetric case because their model,
unlike ours, is of pure common values, so has a vast multiplicity of equilibria, even when
bidders are asymmetric (see note 14). (Nor, since their main focus is different, do they
analyse the effects of increasing supply, or of rationing, which are the main focuses of our
paper.) Avery and Kagel and de Frutos and Rosenthal address different concerns from
ours; Avery and Kagel discuss experimental results in a two-bidder one-prize model, while
de Frutos and Rosenthal obtain interesting results about sequential auctions. See also
Bikhchandani and Riley (1991).

10All we actually need is that the αi’s are small relative to the rates of change of bidders’
inverse hazard rates, 1−F (ti)

f(ti)
. So the order in which the limits is taken is unimportant.
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No bidder wants more than one unit. We consider two cases: the auc-

tioneer has one unit to sell, and the auctioneer has two units to sell. (The

number of units is common knowledge.)

We assume a conventional ascending bid “English” auction11 in which

the price, p, starts at zero and rises continuously until the number of bidders

who are still willing to pay the current price equals the number of units the

auctioneer has for sale. Each bidder observes the price at which any other

bidder drops out.

Each player’s pure strategy specifies the price level up to which he will

remain in the bidding, as a function of his private signal and of the price

(if any) at which any other player quit previously. We assume symmetric

bidders follow symmetric strategies, and restrict attention to the (Perfect

Bayesian) equilibrium in which each bidder stays in the bidding just so long

as he would be happy to find himself a winner, and stops bidding at that price

at which he would be just indifferent were he to find himself a winner on the

assumptions that any opponent(s) who drop out to make him a winner are

of their lowest possible types assuming they have followed the equilibrium

11More formally, we area assuming what auction theorists call a “Japanese auction”.
Bikhchandani and Riley (1993) describe this as follows (for the single unit case): The
auctioneer starts with a very low price and raises it continuously. Bidders indicate, by
depressing a button, whether they are interested in buying the object at the current price.
Once a bidder withdraws, he cannot reenter the auction. At each price level, the identities
of all bidders active at that price are common knowledge. Whenever one or more bidders
withdraw at a price, the auctioneer stops raising the price and asks the remaining bidders
if they wish to withdraw. If additional bidder(s) withdraw, this is announced by the
auctioneer and the remaining bidders are again asked if they wish to withdraw. This
process continues until no additional bidders quit. When no additional bidders withdraw,
and at least two bidders remain, the auctioneer starts raising the price continuously from
the current level. The auction can end in one of two possible ways. If at any price there
is only one active bidder, then this bidder is declared the winner and the auction ends.
Else, if at any price all the remaining active bidders withdraw (either simultaneously or
during the sequential quitting process described above) the auction ends and one of the
last active bidders is randomly chosen as the winner. The winner gets the object and pays
the current price. The other bidders pay nothing.
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strategies prior to the current price.12,13 The Appendix shows that this yields

a unique (Perfect Bayesian) equilibrium.14

We write the actual ith highest signal as t(i), write E(t) for the expectation

of ti, and write E(t | t ≥ t′) for the expectation of ti conditional on it

exceeding t′, etc. It will be useful to define bidder i’s marginal revenue15 as

MRi = vi − 1 − F (ti)

f(ti)

∂vi

dti
.

Note that since (we assumed) the αi are all small, MRi ≈ vi−hi in which

hi(ti) ≡ 1−F (ti)
f(ti)

is the reciprocal of i’s hazard rate.

3 The Symmetric Case

We begin with the symmetric case in which α1 = α2 = α3 = α > 0 (but

α ≈ 0).

When three bidders compete for a single object, the lowest bidder quits

12That is, strategies specified in this way yield a Perfect Bayesian equilibrium in the
space of all strategies; in this equilibrium a player cannot do better by following any other
strategy.

13Restricting attention to equilibrium of this form both avoids trivialities (although there
are other equilibria, they do not seem very natural) and greatly reduces the technical
burden: See Bikhchandani and Riley (1993) for an exposition of how cumbersome and
lengthy is a fully general analysis of even the completely symmetric version of our model,
although they too make assumptions to obtain a unique equilibrium (the same equilibrium
as ours, though their model is a special case of ours). See the Appendix for further
discussion.

14By contrast, in a pure common values model with α1 = α2 = α3 = 0 this construction
does not define a unique equilibrium. (For example, with just two bidders and v1 = v2 =
t1 + kt2, where k is a positive constant, it is an equilibrium for 1 to quit at βt1 and 2 to
quit at

(
βk

β−1

)
t2 for any β > 1.) Hence the need to include the αi in the model, and to

analyze a pure common value model as the limit of almost common value models; focusing
on a particular equilibrium of the pure common value model can be misleading.

15In analyzing our auctions using marginal revenues, we are following Bulow and Roberts
(1989) who first showed how to interpret independent private-value auctions in terms of
marginal revenues, and Bulow and Klemperer (1996) who extended their interpretation
to more general settings such as this one. The marginal revenue of bidder i with signal ti
is exactly the marginal revenue extracted from the customer who is the same fraction of
the way down the distribution of potential buyers of a monopolist whose demand is such
that it has q = 1 − F (ti) customers who have values ≥ p = vi(ti) (i.e. there are F (ti)
customers with values less than vi(ti)). This allows the direct translation of results from
monopoly theory into auction theory, and so facilitates the analysis of auctions and the
development of intuition about them.
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first in symmetric equilibrium, and the other bidders can then infer (assum-

ing equilibrium behaviour) his actual signal, t(3).
16 The next-lowest bidder

then quits when the price reaches the point at which he would just be indif-

ferent about winning were he the marginal winner, that is, were he tied for

the highest signal, so he quits at p = t(3) + (2 + α)t(2).
17 We therefore have

(since α ≈ 0):

Lemma 1: When 3 symmetric bidders compete for 1 object, the bidder

with the highest signal wins and the price ≈ t(3) + 2t(2).

Proof: See appendix. 2.

If instead, three bidders compete for two objects, the lowest quits in sym-

metric equilibrium at the price at which he would just be indifferent about

winning were he the marginal winner, that is, were he tied with the second-

highest signal. So the actual lowest-signal bidder with signal t(3) quits at

the value to him if the second-highest-signal bidder has the same signal,(
t(3)

)
, and the remaining signal equals its expected value given the two low-

est signals are t(3), that is, E
(
t| t ≥ t(3)

)
. So the lowest-signal bidder quits

at p = (1 + α)t(3) + t(3) + E(t | t ≥ t(3)).
18 So we have:

Lemma 2: When 3 symmetric bidders compete for 2 objects, the bidders

with the highest signals win and the price ≈ 2t(3) + E
(
t| t ≥ t(3)

)
.

16In fact, the lowest bidder quits at (3+α)t(3), since if he stays in until a slightly higher
price he will win only if both other signals are t(3), but this fact is not necessary to our
argument.

17It is easy to check that if he were to find himself a winner at any higher price he would
lose money, since at price p′ = t(3) + (2 + α)t′ with t′ > t(2), the inferred value of the unit
equals t(3) + (1 + α)t(2) + t′ conditional on winning at price p′, and conversely he would
make money at any lower price, so should not quit before p.

18Again it is easy to check that if either of the other bidders were to quit and leave him
as a winner at any higher price, p′ = (2+α)t′+E(t | t ≥ t′) with t′ > t(3), he would expect
to lose money since he would then infer a unit’s value to be (1 + α)t(3) + t′ + E(t | t ≥ t′)
< p′, and conversely he would expect to profit from a victory at any lower price.
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Proof: See appendix. 2.

Therefore selling two units rather than one lowers the per-unit price ob-

tained only if 2t(3)+E
(
t| t ≥ t(3)

)
< t(3)+2t(2), that is if E

(
t| t ≥ t(3)

)−t(3) <

2(t(2) − t(3)), or (in expectation) only if twice the expected distance between

the lowest signal and the lower of two higher signals exceeds the expected

distance between the lowest signal and a single higher signal. It follows that:

Proposition 1: With 3 symmetric bidders, the expected price per unit is

higher (lower) when 2 units are sold then when 1 unit is sold if hazard rates,(
1
hi

)
, are decreasing (increasing) in the signals, ti.

It is now easy to find examples in which selling more units raises the

expected price (See Ex.1 below.)

To understand this result better, recall from Bulow and Klemperer (1996)

that the expected price from the auction equals the expected marginal revenue

of the winning bidder(s).19,20 Furthermore, when bidders are symmetric, the

bidder(s) with the highest signal(s) win(s) the unit(s). So when more units

are sold, the expected price is lower if and only if the expected marginal

revenues of bidders with lower signals are lower, that is, if and only if v − h

is lower for bidders with smaller t’s than for bidders with larger t’s.

19This result assumes, as is the case here, that a bidder with the lowest possible signal
never makes money. Otherwise, expected revenue is reduced by the sum of the expected
profits of the bidders conditional on their having their lowest possible signals.

20The essential point is that if an English auction ends at a price of v, the winners will
each have an expected value of at least v (conditional on all previous actions by bidders
and on the auction ending at this price). Therefore, we can draw a probability curve for
the bidder’s actual value, v, with decumulative probability, 1−F (v), on the quantity axis,
and value on the price axis; the curve has its minimum value v at a “quantity” of 1. If we
interpret this as a conventional demand curve and draw the associated marginal revenue
curve, the expected marginal revenue of the winner has to equal v (just as if you knew
that a firm sold q units at a price of v, you would know that each buyer had a value of at
least v, that total revenue was vq, and therefore that the average marginal revenue from
the first q sales was v). So the expected marginal revenue of the winning bidder(s) always
equals the auction price.
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Note the contrast between common-value and private-value auctions. In

both a pure common-value auction (α arbitrarily small) and a pure private-

value auction (vi = ti), i’s marginal revenue equals his value minus his inverse

hazard rate. But in the private value case where vi = ti we have MRi >

MRj ⇔ ti − hi > tj − hj . In the common value case, since vi = vj , we

have MRi > MRj ⇔ −hi > −hj . So in the private-value case the result that

greater supply lowers (expected) price requires that ti−hi > tj−hj ⇔ ti > tj ,

which condition is satisfied by many standard distributions F (·), and is often

assumed in the literature without comment. However in the common-value

case the result that more supply lowers price requires −hi > −hj ⇔ ti > tj

which is a much more stringent condition on F (·).
In simple terms, the difference is that with private values when a bidder

has a higher signal it affects only his own value and marginal revenue. But

with common values when a bidder has a higher signal it also raises the

other bidders’ values and so raises the others’ marginal revenues. So it takes

a much stronger distributional condition to ensure that bidders with higher

signals have higher marginal revenues.

The condition in the private-value case is just that the bidder’s marginal

revenue is downward sloping, that is, that a monopoly firm with demand

q = 1−F (p) has marginal revenue downward sloping in its own output.21 The

condition in the common-value case is that the same firm’s marginal revenue

is steeper than its demand curve,22 or equivalently that the firm’s marginal

revenue is downward sloping in a sufficiently small opponent’s output;23 this

21The demand curve q = 1 − F (p) is just the conventional demand curve that would
be created by a very large number of buyers with values vi(ti) when the ti are drawn
independently from the distribution F (ti). (We hold tj and tk fixed; buyers are atomistic
with total mass 1.) For more discussion of the analogy between a bidder with signal
distributed as F (ti) and a market with demand curve 1− F (p) see Bulow and Klemperer
(1996) and the first (1997) draft of our Working Paper.

22Since −hi > −hj ⇔ ti > tj implies ((vi −hi)−vi) > ((vj −hj)−vj) ⇔ ti > tj , implies
(vi − hi) − vi increasing in ti, hence decreasing in q, letting q ≡ 1 − F (t) and p ≡ vi(ti).

23Assuming the opponent is producing a homogeneous product, see Bulow, Geanakoplos
and Klemperer (1985a).
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is exactly the condition required to guarantee strategic substitutes in quantity

competition in oligopoly—see Bulow, Geanakoplos, and Klemperer (1985a).

And the assumption of strategic substitutes, while commonly made, and per-

haps more plausible than the converse assumption of strategic complements,

is not a reasonable general assumption.24 Indeed, among the most commonly

used demand curves, linear demand (p = A − Bq ⇔ q = A−p
B

) yields strate-

gic substitutes, constant elasticity demand (p = Aq
1
η ⇔ q =

(
P
A

)η
, η < −1)

yields strategic complements, and logarithmic demand (p = A− 1
λ

log q ⇔ q =

e−λ(p−A), i.e. quantity is exponential in price) yields strategic independence

(neither strategic substitutes nor strategic complements) for a monopolist

facing a small new entrant.

Corresponding exactly to the oligopoly cases we have:

Example 1: With uniformly distributed signals, F (t) =
(

t−t
t−t

)
, expected

price is decreasing in supply. With constant-elasticity distributed signals,

F (t) = 1 − ( t
t
)η, expected price is increasing in supply. With exponentially

distributed signals, F (t) = 1−e−λ(t−t), expected price is constant in supply.25

(With a uniform distribution, twice the expected distance between the

lowest signal and the lower of two higher signals exceeds the expected dis-

tance between the lowest signal and a single higher signal; with the constant-

elasticity distribution this fails; and the exponential distribution is the inter-

24See Bulow, Geanakopolos and Klemperer (1985a) for more discussion, and also Bulow,
Genakopolos and Klemperer (1985b) for an example in which a monopolist facing a new
entrant views products as strategic complements.

25For example, if F (t) = 1 − t−2 for t ≥ 1 (which corresponds probabilistically to a
demand curve q ≡ 1−F (p) = p−2, that is, constant elasticity of -2) the expected values of
the three signals would be 1.2, 1.6, and 3.2. So the expected price in a 3 for 1 auction would
be 1.2+1.6+1.6 = 4.4, and the expected price with 3 for 2 would be 1.2+1.2+ 1.6+3.2

2 = 4.8.
If F (t) = t

4 for 4 ≥ t ≥ 0 (which corresponds probabilistically to a linear demand curve)
the expected values of the three signals would be 1,2, and 3. The expected price in a 3 for
1 auction would be 1 + 2 + 2 = 5, and the expected price in a 3 for 2 auction would be
1 + 1 + 2+3

2 = 4.5.
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mediate case in which the ratio of the expected distances is exactly one:two.26)

So, just as in oligopoly it is an empirical matter whether firms’ out-

puts are strategic substitutes or strategic complements, so in symmetric pure

common-value auctions it must be an empirical matter whether price is in-

creasing or decreasing in supply.

The next section, however, will show that even (arbitrarily) small asym-

metries can make the relationship between supply and price even less pre-

dictable.

4 The Asymmetric Case

This section will show that when the result that greater supply lowers ex-

pected price holds for the perfectly symmetric case, it can fail when there are

even arbitrarily small asymmetries between the bidders. In particular it fails

if the item(s) for sale are almost pure common-values but one bidder, say

bidder 1, almost certainly has an arbitrarily small private-value advantage.

We assume α1 > α2 = α3 = α > 0, but α1 ≈ 0 and (α/α1) ≈ 0.

We begin by analyzing bidding behaviour in more detail:

Lemma 3: When 3 bidders compete for 1 object in the asymmetric case,

26With a uniform distribution, 2t(3) + E
(
t | t ≥ t(3)

)
= 3t(3) + 1

2 (t − t(3)), while
t(3) + 2E(t(2) | t(3)) = 3t(3) + 2

3 (t − t(3)). With constant elasticity distributed signals,
2t(3) + E

(
t | t ≥ t(3)

)
= 3t(3) − 1

1+η t(3), while t(3) + 2E(t(2) | t(3)) = 3t(3) − 2
1+2η t(3). For

exponentially distributed signals, 2t(3) + E
(
t | t ≥ t(3)

)
= t(3) +2E(t(2) | t(3)) = 3t(3) + 1

λ .
The calculations are straightforward in the first and third cases. In the constant

elasticity case, E
(
t(1) | t(1) ≥ t(2)

)
= η

η+1 t(2) and (E
(

t(1)+t(2)
2

)
| t(2) ≥ t(3)) =

E
(
t | t ≥ t(3)

)
= η

η+1 t(3). Combining the last two equations yields 2η+1
1+η E(t(2)) = 2η

1+η t(3)

so E(t(2)) = 2η
1+2η t(3). By substituting E

(
t | t ≥ t(3)

)
= η

η+1 t(3) = t(3) − 1
1+η t(3) we can

derive the constant elasticity revenue for when there are two winners, and by substituting
E(t(2) | t(3)) = 2η

1+2η t(3) we can derive the expected revenue when there is one winner.
(The formulae E

(
t | t ≥ t(3)

)
= η

η+1 t(3) and E
(
t(1) | t(1) ≥ t(2)

)
= η

η+1E(t(2)) are mathe-
matically identical to the statement that, given constant elasticity demand and a price p,
the average buyer has a value of pη

η+1 . This must be true since η
η+1 is just the ratio of price

to marginal revenue at each point along a constant elasticity curve and therefore the ratio
of average value to average revenue (equals price). Here the calculations are the same,
except we use t(2) and t(3) instead of p.)
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the advantaged bidder (almost always) wins and the price ≈ t + t2 + t3 (in

which t2 and t3 are the actual signals of the disadvantaged bidders).

Proof: See appendix. 2.

The logic is straightforward. Bidder i quits where he would be just in-

different about finding himself a winner, so his marginal type ti quits at

price p = (1 + αi)ti + tj + tk, where tj and tk are his expectations of j’s

and k’s signals conditional on his winning at this price. That is, tj is the

marginal type of bidder j who is just quitting if any type of j is currently

quitting,27 and similarly for tk. Likewise, type tj of j is in fact just quit-

ting iff p = ti + (1 + αj)tj + tk. So types ti and tj quit simultaneously iff

(1 + αi)ti + tj + tk = ti + (1 + αj)tj + tk ⇔ αiti = αjtj, and ti quits before

(after) tj iff αiti < (>)αjtj . So since α1t > αt2 and α1t > αt3 for almost all t2

and t3 for sufficiently large α1/α, bidder 1 is almost always the winner. If, for

example, in fact α1t > αt2 > αt3, then bidder 3 quits first at (1+α)t3 + t3 + t

(since at this price he knows t2 ≥ t3 so the current lowest types of bidders 2

and 1 that could remain are t2 = t3 and t1 = t), and bidder 2 quits next at

(1 + α)t2 + t3 + t ≈ t2 + t3 + t.

The intuition is that because bidder 1 (almost always) values the asset

a little more than bidders 2 and 3, there cannot be any equilibrium where

bidder 2 or 3 is willing to pay p and bidder 1 is not willing to pay a little

more unless t1 is almost zero. So bidders 2 and 3 face an enormous winner’s

curse if bidder 1 ever exits, and they must therefore assume t1 ≈ t whenever

he bids. So they quit at ≈ t2 + t3 + t, and bidder 1 almost always wins.

However, with three bidders competing for two units and increasing haz-

ard rates, bidder 1’s advantage is almost eliminated and he wins only when

he has one of the two highest signals:

27If j has already quit tj ’s is j’s inferred signal, and if j has not quit but no type of j
is quitting then tj is j’s lowest possible signal consistent with equilibrium.
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Lemma 4: When 3 bidders compete for 2 objects, in the asymmetric

case (i) if hazard-rates
(

1
hi

)
are increasing in signals, the bidders with the

highest signals (almost always) win and the price ≈ 2t(3) +E
(
t| t ≥ t(3)

)
, (ii)

if hazard-rates are decreasing, the advantaged bidder and the disadvantaged

bidder with the higher signal win and the price ≈ E(t) + 2 min(t2, t3) (in

which t2 and t3 are the actual signals of the disadvantaged bidders).

Proof: See appendix. 2.

To understand Lemma 4, again begin by observing that bidder i quits

where he would be just indifferent about finding himself a winner. If ti, tj , and

tk are the lowest possible signals of bidders i, j and k assuming equilibrium

behaviour up to the current price, type ti of bidder i has expected value (1+

αi)ti+tj +E(tk | tk ≥ tk) if j quits now, and expected value (1+αi)ti+E(tj |
tj ≥ tj)+tk if k quits now. So type ti quits at p = (1+αi)ti+tj+tk+xjProb(k

quits now| j or k quits now)+xkProb(j quits now| j or k quits now) in

which xj ≡ E(tj − tj | tj ≥ tj) and xi and xk are defined similarly. Since

α2 = α3 = α < α1, some types of bidders 2 and 3 quit (symmetrically)

before any types of bidder 1 quits. Now note that for small enough α and

α1 the differences between α1t1 and αt2(= αt3) are very small relative to

differences between x1 and x2(= x3).
28 So if hazard rates are increasing, so

xi is decreasing in ti, then if t1 were to fall much behind t2(= t3) then x2

would become small relative to x1 and t1 would wish to quit at a lower price

than t2. So types of bidder 1 would have to quit until t1 roughly caught up to

the value of t2(= t3). Therefore increasing hazard rates require t1 ≈ t2 = t3.

So bidder i quits at (approximately) (1+αi)ti + ti +E (tk| tk ≥ tj = ti) , just

as in symmetric equilibrium with symmetric bidders, and the bidder with

28The exception is when hazard rates are constant, h1 = h2 = h3 = h, in which case
xk = h, ∀tk, ∀k.
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the lowest signal, t(3), (approximately) quits first, and we have part (i) of the

Lemma.

The intuition is that even if bidder 1 had a large advantage, bidders 2

and 3 would compete against each other, symmetrically, for the second unit,

and in that competition they would not face an abnormally large winner’s

curse. Because the prices of both units will be the same, the more aggressive

bidding by bidders 2 and 3 will force bidder 1 to pay more, and may cause

bidder 1 to exit if his signal is low enough (which further reduces the other

bidders’ winner’s curse). When bidder 1’s advantage is small, it becomes

irrelevant with increasing hazard rates.29

On the other hand, if hazard rates are decreasing, xi is increasing in ti,

so once t1 falls behind t2(= t3) then x2 becomes large relative to x1 so t1

wishes to quit at a still higher price relative to t2, so (since some types of

bidders 2 and 3 start quitting first) no type of bidder 1 ever quits. As the

auction proceeds and more types of bidders 2 and 3 quit, x2 ≡ E(t2− t2) and

x3 ≡ E(t3−t3) increase while x1 ≡ E(t1−t1) remains unchanged and so even

the lowest type of bidder 1 expects a larger and larger surplus conditional

on winning; the higher the bidding goes, the more underpriced bidder 1

thinks the object is. Since bidders 2 and 3 are symmetric, the bidder with

the lower of their two signals loses, and if this signal is t̂ he quits at price

p = E(t1) + (1 + α)t̂ + t̂ ≈ E(t) + 2t̂.

29A numerical example may help some readers: assume, counterfactually, that bidder
1 almost always wins when there are two units and t is distributed uniformly on [0, 10] .
Then bidders 2 and 3 will not learn anything about bidder 1’s signal through the auction
and will assume that t1 = 5 (its average value). So bidder 2 will bid up to ≈ 2t2 + 5 and
bidder 3 will bid to ≈ 2t3 + 5. If, for example, t2 = 2 < t3 then bidder 2 would exit at a
price of 9. But if this happened, and bidder 1 had a signal close to 0, bidder 1 would suffer
regret: he would estimate the value as only ≈ t1 + t2 + E(t3 | t3 ≥ 2) = 0 + 2 + 2+10

2 = 8.
So bidder 1 will have already dropped out. Bidder 1’s small private value advantage
is overwhelmed by the difference between his expectation of the other winner’s signal in
excess of its minimum possible value (2+10

2 −2 = 4 in this case) and the similar expectation
for bidders 2 and 3 about bidder 1 (0+10

2 − 0 = 5). Equilibrium will require that bidder
1 exit at almost exactly the same rate as bidders 2 and 3, so bidders win as often and at
(approximately) the same prices as if they were all symmetric.
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Lemmas 3 and 4 yield:

Proposition 2: In the asymmetric case, the expected price per unit is

higher (lower) when 2 units are sold than when 1 unit is sold if hazard rates,(
1
hi

)
,are increasing (decreasing) in the signals, ti.

Proof: Note that E
(
t| t ≥ t(3)

)
= 1

2

{
E

(
t(1)

∣∣t(3) ) + E
(
t(2)

∣∣ t(3)
)}

,since

the expectation of a single signal above t(3) equals the average of the expec-
tations of the higher of two signals above t(3) and the lower of two signals

above t(3). So

E(t + t2 + t3) < E
(
2t(3) + E

(
t| t ≥ t(3)

))
⇐⇒ E

(
t + 2

3
t(1) + 2

3
t(2) + 2

3
t(3)

)
< E

(
2t(3) + 1

2
t(1) + 1

2
t(2)

)
⇐⇒ 0 < 1

6

{[
3E

(
t(3) − t

) − E
(
t(1) − t(2)

)]
+

[
3E

(
t(3) − t

) − 2E
(
t(2) − t(3)

)]}
.

But increasing hazard-rates implies that each of the expressions in square
brackets is strictly positive (they would be zero with constant hazard-rates30),

which proves the result for increasing hazard-rates.

Note that E(min(t2, t3)) = 1
3
E(t(2)) + 2

3
E(t(3)). So

E(t + t2 + t3) > E(E(t) + 2 min(t2, t3))

⇐⇒ E
(
t + 2

3
t(1) + 2

3
t(2) + 2

3
t(3)

)
> E

(
1
3
t(1) + 3

3
t(2) + 5

3
t(3)

)
⇐⇒ 1

3
E(t(1) − t(2)) > E(t(3) − t)

which is true with decreasing hazard-rates (the last expression would hold
with equality with constant hazard-rates) and so proves the result for de-

creasing hazard-rates. 2.

Notice how much bidder 1’s position is weakened by the sale of the second

unit in the “normal” increasing hazard-rates case. When just one unit is

for sale, bidder 1 always wins it. But when there are two units for sale,

his opponents’ winners’ curses are weakened, so his own winner’s curse is

strengthened and he wins barely more often than they do.

As with the symmetric case, marginal revenues help us understand these

results better: When a single unit is sold it always goes to bidder 1, so the

30With constant hazard rates, where F (t) = 1 − e−λ(t−t), E(t(3)) = t + 1
3λ , E(t(2)) =

t + 1
3λ + 1

2λ , and E(t(1)) = t + 1
3λ + 1

2λ + 1
λ .
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expected price equals the expected marginal revenue of bidder 1 equals the

expected marginal revenue a randomly drawn signal.

When two units are sold, and hazard-rates are increasing, the winners

are the bidders with the two highest signals, and the expected per-unit price

equals the expected average marginal revenues of these bidders. Since in-

creasing hazard-rates imply that the bidders with the highest signals have

the highest marginal revenues, it follows that two units sell at a higher per-

unit price, on average, than one unit.

When hazard-rates are decreasing, on the other hand, and two units are

sold, they are won by bidder 1, whose expected marginal revenue equals that

of a randomly drawn signal, and by the other bidder who has the higher

of the other signals and the lower of the other marginal revenues. So the

expected marginal revenue of a winner is lower when two units are sold than

when just one unit is sold. 31

In short, selling more units leads to higher prices when bidders are asym-

metric and hazard rates are increasing, and when bidders are symmetric and

hazard rates are decreasing.

5 Extensions

5.1 Rationing and Initial Public Offerings

Selling two half-units yields the same per-unit prices as selling two whole

units in our model. So rationing by permitting each bidder to buy only a

half-unit yields a higher expected price than selling a single unit in those

cases in which increasing supply raises price.32 The intuition is that creating

31Actually this is only half the story for why with decreasing hazard-rates two units
yields a lower per-unit price than a single unit. Remember that the result that the
expected revenue from an auction equals the expected marginal revenue of the winner
assumes any bidder with the lowest feasible signal receives no expected surplus, just as
the Revenue Equivalence Theorem applies only to auctions where bidders with the worst
possible signals make no money. In most standard auctions the assumption holds triv-
ially, but our decreasing hazard rate asymmetric auction is an exception in which even the
lowest type of bidder 1 always wins, makes zero expected surplus at the lowest feasible
sale price, and an ever increasing expected surplus at higher sale prices. So the two-unit
decreasing hazard-rate auction is even less profitable relative to any of our other auctions
which do all satisfy the standard assumption. (See note 19.)

32Equivalently, choosing the winner randomly when two bidders remain does better than
selling a single unit to the highest bidder in these cases.
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additional winners reduces the winners’ curse that any of them face, and

so elicits more aggressive bidding behaviour. By the same logic, the seller

can do better still in the decreasing hazard rate case by simply offering each

buyer one-third of a unit at a fixed price, or alternatively by choosing the

winner randomly among those prepared to pay the fixed price.33

Proposition 3: Rationing to all 3 bidders at the fixed price t + 2E(t)

is the optimal way to sell a single unit when hazard rates are decreasing.34

Proof: See appendix. 2.

The result that rationing among all bidders is more profitable than rais-

ing the price to clear the market requires decreasing hazard rates.35 The

more general point, however, is that the difference between the expected rev-

enues from choosing a price that guarantees an immediate sell-out and from

searching for the best possible price may be small; because searching for a

high price may reveal some negative information (about where low bidders

quit), it can lead to either a higher or a lower price than the pooling equi-

librium that rationing induces. If the seller is risk averse, it may prefer the

sure price that rationing guarantees.

In many finance and oil-lease models, signals are assumed to be dis-

tributed lognormally, so hazard rates are first increasing and then decreasing.

In these cases, with symmetric bidders, the seller does best to gradually raise

price to eliminate the buyers with the lowest signals but then ration when a

high enough price is reached. This fits closely with practice in Initial Public

Offerings where a range of prices may be explored, but the final price is often

fixed at a point where excess demand is most likely.36

33In the asymmetric, increasing hazard-rate, case the optimal number of bidders to
ration among is two.

34We are restricting ourselves to mechanisms that always yield a sale. Sometimes a
seller can do better in expectation by having minimum prices that may lead to no sale.

35Rationing is strictly more profitable than raising the price to clear the market in the
symmetric case, and/or when two units are available. In the asymmetric case, rationing
a single unit to all three bidders at the fixed price is equally profitable in expectation as
the standard ascending auction (independent of whether hazard rates are increasing or
decreasing).(See note 1 of the Appendix.)

36This is true even when the final IPO price is set above the initially specified range.
For other theories of rationing, see De Graba (1995), De Graba and Mohammed (1996),
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5.2 Restricting the number of bidders

It is also evident that when increasing supply raises price, so can restricting

demand.37

Again the intuition is that reducing the number of bidders reduces each

bidder’s winner’s curse. Since in a private-value ascending auction bidders

follow the same strategy regardless of the number of bidders (they bid up

to their true value), it should be no surprise that with common values each

bidder bids more aggressively when there are fewer of them.38 This effect

can dominate the winner having a lower signal, on average, when there are

fewer bidders.

As before it is quickest to see the results using marginal revenues, though

we will offer proofs using more traditional methods.

When n symmetric bidders compete for one unit, the expected price

equals the expected marginal revenue of the winner, equals the expected

marginal revenue of the bidder with the highest signal among the n bidders.39

So if hazard rates are decreasing, that is, the bidders with the higher signals

have the lower marginal revenues, then the expected price is decreasing in n.

On the other hand, when bidders are asymmetric and all three bidders

are present, bidder 1 is the winner and, in expectation, has the marginal

revenue of a randomly selected bidder. However, when only two bidders are

Denicolo and Garella (1996), Gilbert and Klemperer (1997) and the references they cite.
37Krishna and Morgan’s (1997) Working Paper developed the results of the symmetric

case of this subsection independently and simultaneously with the first (1997) draft, of
our own paper.

38In the symmetric case, with two bidders i bids up to 2ti + E(t). With three bidders
i bids up to 2ti + t(3). Kagel, Levin and Harstad (1995) have noted the same result—
that bidders bid more aggressively when there are fewer of them—for sealed second-price
auctions. (In these you bid your value assuming one other bidder is tied with you, other
bidders are average conditional on being below you, but other non-bidders are uncondi-
tionally average.) Matthews (1984) argues that the result also typically holds for first-price
auctions. Our result applies equally to the asymmetric case.

39Note that any bidder’s actual marginal revenue is a function of all the other
active bidders’ signals, so depends on n. But with independent signals a bid-
der’s marginal revenue, M̃Ri(ti, tj), when i and j are active, equals his expected
marginal revenue conditional on ti and tj , Etk

{MRi(ti, tj , tk)}, when an addi-
tional bidder k is active. So with 2 bidders and decreasing hazard rates profits are
E min(M̃R1(t1, t2), M̃R2(t1, t2)) = E min(Et3{MR1(t1, t2, t3)}, Et3{MR2(t1, t2, t3)}) ≥
E min(MR1(t1, t2, t3), MR2(t1, t2, t3)) > E min(MR1(t1, t2, t3), MR2(t1, t2, t3), MR3(t1, t2, t3))
which last expression equals expected profits when all 3 bidders are present.
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selected, the winner will be the bidder with the higher of their two signals

when bidders 2 and 3 are selected (and the winner will be bidder 1 otherwise).

So if marginal revenues are higher (lower) for the higher-signal bidders, the

expected price will be higher (lower) when the number of bidders is arbitrar-

ily restricted to two. That is, the results for the asymmetric case are again

opposite to those for the symmetric case.

Proposition 4: In the symmetric case the expected price when 1 unit

is sold is higher (lower) when only 2 bidders are allowed to participate than

when all 3 compete if hazard rates,
(

1
hi

)
, are decreasing (increasing) in the

signals.

In the asymmetric case the opposite results apply.

Proof: See appendix. 2.

In sum, restricting the number of bidders who are allowed to participate

is likely to be a profitable strategy when bidders are asymmetric if hazard

rates are increasing, or when bidders are completely symmetric (in what

is publicly known about them) but hazard rates are decreasing.40 So our

model can explain strategies such as, for example, a merger-target opening

negotiations with only a limited number of potential acquirers.41

40Note that we are assuming that the participants are chosen randomly when their
numbers are restricted. Restricting numbers by requiring bidders to pay an entry fee
after learning their signals would be very unprofitable for the seller, since it would select
precisely those bidders (higher signals in the symmetric case, and advantaged bidders in
the asymmetric case) that the seller wishes to exclude. Of course if entry fees can be
imposed before bidders learn their signals, then almost all the surplus can be extracted
by the seller.

41Of course these results contrast with our earlier work, Bulow and Klemperer (1996),
which emphasised conditions under which restricting bidding is not merely undesirable for
the seller, but is even a bad idea for a seller who can gain additional negotiating power by
limiting participation. The point of this section is that while the conditions specified in
our earlier work are very natural for private-value auctions with symmetric bidders, they
are less compelling for symmetric common-value or almost-common-value auctions, and
perhaps even unnatural for asymmetric almost-common-value auctions.
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5.3 Sealed-Bid Auctions

How are our results affected if the other of the two most common auction

forms, that is, a sealed-bid or first-price auction, is used?42

The answer is hardly at all when bidders are symmetric, since the highest-

signal bidder(s) win in any standard auction, so it follows from the Revenue

Equivalence Theorem that expected revenues are the same in any standard

auction. So Lemmas 1 and 2 apply in expectation, and Proposition 1 applies

exactly as before.

However the outcome of a sealed-bid auction, in stark contrast to that

of an ascending auction is, it is believed, almost unaffected by small asym-

metries between the bidders.43 Assuming this is true, it then follows easily

that (see Appendix), in the asymmetric case, the expected revenue is more

(less) for 1 unit and is the same (more) for 2 units from a sealed-bid auc-

tion than from an ascending auction, if bidders’ hazard-rates are increasing

(decreasing); in the symmetric case the two auction types are always equally

profitable.

In sum, without detailed information about the distribution of bidders’

signals, it is very hard to make any predictions about which of sealed-bid

and ascending auctions are more profitable.44

6 Conclusions

Economists’ intuition has been developed from the partial equilibrium anal-

ysis of fully-informed buyers and sellers. These agents know the value they

place on assets. So in “private-value” auctions, more buyers raise prices,

more quantity implies a lower price, and if demand exceeds supply it always

42In a sealed-bid or first-price auction for two units, bidders simultaneously and inde-
pendently submit bids. The winners are the two high bidders and each pays his actual
bid.

43To our knowledge there is no general theorem proving this, although Avery and Kagel
(1997) theorem 2.6 demonstrates the results for a model that is almost a special case
of ours, and Bulow, Huang, and Klemperer (forthcoming) proves the result in a related
context.

44Klemperer (1997) builds on the first (1997) draft of this paper, to discuss how auctions
of PCS licenses and auctions of companies can be designed to capture the benefits that
first-price auctions offer.
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makes sense for a seller to try to raise price.

We have shown this intuition does not carry over to “common-value”

settings such as financial markets where buyers have differential assessments

of assets that would be valued similarly by all if they shared their information.

With symmetric agents, the standard results only occur with a rather

strong distributional assumption, equivalent to what is needed for strategic

substitutes in Cournot competition. When this assumption fails, setting a

price that guarantees excess demand and rationing, as in Initial Public Of-

ferings, may be more profitable than finding the price that clears the market.

Furthermore, restricting entry to an auction may increase expected revenues.

With asymmetric agents the standard results fail under exactly the con-

ditions for which they hold under symmetry. This may explain why, in the

FCC’s initial PCS auction, prices seemed to be low in some regions where a

single license was sold, relative to markets where two licenses were available.
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Appendix

A. Proof of Propositions 3 and 4

Proof of Proposition 3
For any allocation mechanism, let Pi(ti) be the probability that i will

receive the object, in equilibrium, and let Si(ti) be the equilibrium expected
surplus to bidder i. Incentive compatibility requires that Si(ti+dti) ≥ Si(ti)+
(1 + αi)dtiPi(ti) (since vi is (1 + αi)dti higher for type ti + dti than for type
ti, independent of the other bidders’ signals). Likewise Si(ti) ≥ Si(ti +dti)−
(1+αi)dtiPi(ti +dti), so (1+αi)Pi(ti +dti) ≥ Si(ti+dti)−Si(ti)

dti
≥ (1+αi)Pi(ti).

So Pi(ti) must be a (weakly) increasing function.
Also Si(ti) has derivative (1 + αi)Pi(ti), so

Si(ti) = Si(t) +
∫ ti

t
(1 + αi)Pi(t)dt, and

Eti(Si(ti)) = Si(t) +
∫ ∞

t

∫ ti
t

(1 + αi)Pi(t)dtf(ti)dti

= Si(t) +
∫ ∞

t
(1 − F (ti))(1 + αi)Pi(ti)dti (integrating by parts)

= Si(t) + Eti(hi(ti)(1 + αi)Pi(ti)).

Now expected seller profits are the expected value of the good to the win-
ning bidder less the expected surplus of the bidders. Since the value of the
good to the winner is the same for all mechanisms (ignoring the αi), profits
are maximized by minimizing the bidder’s surplus. But hi(ti) is increasing
when hazard rates are decreasing, so since Pi(ti) is required to be increas-
ing,

∑3
i=1 Eti(hi(ti)(1 + αi)Pi(ti)) is minimized (ignoring the αi) among all

schemes that always sell (i.e. have
∑3

i=1 Pi(ti) = 1) by choosing Pi(ti) =
constant, ∀i. And selling at price t + 2E(t) yields Si(t) = 0 (individual ra-
tionality implies Si(ti) ≥ 0 ∀ti). So rationing equally to all three bidders at
price t + 2E(t) maximizes the seller’s expected profits.45 2.

Proof of Proposition 4
In the symmetric case, with three bidders the price p[3] ≈ t(3) + 2t(2), by

Lemma 1. When only two bidders, say i and j, are permitted to participate
the loser, say bidder i, quits at price p[2] ≈ 2ti +E(tk), since this is the point
at which he would just be indifferent about winning conditional on being tied

45When bidders are symmetric and there are two objects, the standard auction to clear
the market yields per-unit profits of 2t(3)+E(t | t ≥ t(3)), by Lemma 2, and the expectation
of this quantity is less than t+ 2E(t) (when hazard rates are decreasing) by the argument
of Proposition 2. By Proposition 1, the expected profit from auctioning a single unit in
the symmetric case is still lower.

When bidders are asymmetric, auctioning two objects yields per-unit profits of E(t) +
2 min(t2, t3) (by Lemma 4) the expectation of which is less than t+2E(t) by the argument
of Proposition 2. By Lemma 3, the profit from auctioning a single unit in the asymmetric
case is t + t2 + t3, the expectation of which equals t + 2E(t).
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with bidder j. Since ti is the lower of two signals drawn from three bidders,
E(ti) = E

(
2
3
t(3) + 1

3
t(2)

)
while E(tk) = 1

3
E

(
t(1) + t(2) + t(3)

)
. So E(p[3]) <

E(p[2]) ⇔ 1
3
E

(
3t(3) + 6t(2)

)
< 1

3
E

(
5t(3) + 3t(2) + t(1)

) ⇔ 2E
(
t(2) − t(3)

)
<

E
(
t(1) − t(2)

)
which holds if hazard rates are decreasing (and the converses

hold if hazard rates are increasing).
In the asymmetric case, p[3] ≈ t + t2 + t3. If bidder 2 is excluded p[2] ≈

t+t3+E(t2); p
[2] ≈ t+t2+E(t3) if bidder 3 is excluded; and p[2] ≈ 2ti +E(t1)

if bidder 1 is not permitted to participate, and bidder i is the loser (as for
the symmetric case for this last case). So E(p[3]) < E(p[2]) ⇔ E(t − t) <
2E(ti−t), which is true (false) if hazard-rates are increasing (decreasing). 2.

B. Proof of Lemmas

At a given price p and for a given history (i.e. the first quitter’s quit
price if there has been a quit), we write ti for the lowest (or infimum), i.e.
marginal, type of bidder i remaining in equilibrium, or write ti for bidder i’s
expected signal if he has already exited, and write wi = (1 + αi)ti + tj + tk.
Write xi = E(ti − ti | ti ≥ ti). (Thus ti, wi and xi are all functions of p and
the history, but we will not usually write this dependence explicitly.) It will
be convenient to write x = E(ti − t).

Analysis of the 1 unit auction
We are looking for an equilibrium in which i stays in the bidding iff

p < wi. Now αiti ≥ αjtj ⇒ wi ≥ wj ⇒ type ti of i cannot quit if type tj of
j remains in the bidding. So types ti of i and tj of j quit simultaneously iff
αiti = αjtj . So if α1 ≥ α2 = α3 = α, bidders i = 2, 3 quit according to t2 = t3
with ti quitting at price p = t + (1 + α)ti + ti for p < (1 + α1)t + α1

α
t + α1

α
t,

and if bidder i quits in this range, then type tj of the other of these two
bidders quits at price p = t + ti + (1 + α)tj for p < (1 + α1)t + ti + α1

α
t, and

beyond this price bidder j and bidder 1 both quit according to α1t1 = αtj
and p = (1 + α1)t1 + ti + α1

α
t1 = t1 + ti + (1 + α)tj (j = 2, 3; j 6= i).

(Bidders 1 and j infer i’s actual signal ti from the price at which he quit.)
No type of bidder 1 quits until p = (1 + α1)t1 + t2 + t3. If neither of the
other bidders quit before this price (so then p = (1 + α1)t + α1

α
t + α1

α
t and

α1t = αt2 = αt3), then all three bidders quit according to t2 = t3 = α1

α
t1

(and p = w1 = w2 = w3) thereafter, and after one bidder has quit the re-
maining bidders l and m quit according to αltl = αmtm and p = wl = wm. It
is straightforward that this is a (Perfect Bayesian) equilibrium and is unique
under our assumptions.46 Thus if α1 = α2 = α3 = α the final price is

46There are other equilibria that do not satisfy our assumptions. In particular,
(i) when three bidders compete for a single unit, and player 2 or 3 receives a sufficiently

low signal (α2t2 < α1t or α3t3 < α1t) that he knows he will surely lose to player 1, different
equilibria can be constructed by making different assumptions about how far he bids up
the price in such a case (however different assumptions then ours would not importantly
affect our results).
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(1 + α)t(2) + t(2) + t(3) ≈ 2t(2) + t(3) for small α. If α1 > α2 = α3 = α, then

as
(

α
α1

)
→ 0 the probability of bidder 1 winning approaches 1 so the final

price is (almost always) t + t2 + t3 + α max(t2, t3) ≈ t + t2 + t3. This proves
Lemmas 1 and 3.

Analysis of the 2 unit auction
We look for an equilibrium in which a bidder quits when he would be just

indifferent were he to find himself a winner. In such an equilibrium let Hi(p)
be the hazard-rate with which i quits at price p, that is,

Hi(p) =
t′i(p)f(ti(p))

1 − f(ti(p))
.47

So type ti of i quits when

p = (1 + αi)ti + tj + tk + xj

(
Hk

Hj + Hk

)
+ xk

(
Hj

Hj + Hk

)

that is, the price equals i’s expected value conditional on winning since, in

this case, with probability
(

Hj

Hj+Hk

)
it is j who has quit so tj = tj and

E(tk) = tk + xk.
We begin with the asymmetric case. Let α1 > α2 = α3 = α.

Increasing hazard rates
Begin with the standard case in which the hazard rate, f(ti)

1−f(ti)
is increasing

in ti, so xi is decreasing in ti. No-one quits until p = (3+α)t+x, at which price
the lowest types of bidders 2 and 3 quit. Since 2 and 3 behave symmetrically,
t2 = t3, and p = t + (2 + α)t2 + x until α1t + x2 = αt2 + x at which price, say
p, bidder 1 is also just indifferent about finding himself a winner. For types

(ii) even when just two players i and j compete for a single unit, it is an equilibrium
for i to quit immediately while j never quits. (With unbounded supports of the signals,
this is a Perfect Bayesian Nash equilibrium supported by j believing that if he were to
observe the out-of-equilibrium behavior that i stays in to price p then i’s signal is at least
p; such equilibria can be ruled out by having a largest possible signal, or by insisting each
player bids up at least as far as his minimum possible value given his own information.)
Obviously these kinds of equilibria also arise when three bidders compete for either one
or two units.

(iii) when three players compete for two units and hazard rates are decreasing, equi-
libria can be constructed in which the first-order conditions fail because a player initially
expects to lose money conditional on winning, but he expects to make up these losses
(in expectation) if the bidding continues for a while. These equilibria seem particularly
unnatural since they require symmetric players to behave asymmetrically.

47More precisely, the equilibrium functions ti(p) are defined by the equilibrium hazard-
rates Hi(p), since otherwise t′i(·) might not be defined by ti(·). The condition that a bidder
quits when he is just indifferent about winning ensures that Hi(p) is finite, that is, ti(p)
is single-valued and continuous.
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of all three bidders to be quitting simultaneously, we require

α1t1 + x2

(
H3

H2 + H3

)
+ x3

(
H2

H2 + H3

)
= αt2 + x1

(
H3

H1 + H3

)
+ x3

(
H1

H1 + H3

)

= αt3 + x1

(
H2

H1 + H2

)
+ x2

(
H1

H1 + H2

)
,

so using the symmetry of bidders 2 and 3 yields

α1t1 + x2 = αt2 + x1

(
H2

H1 + H2

)
+ x2

(
H1

H1 + H2

)

⇒ α1t1 − αt2
x1 − x2

=
H2

H1 + H2

=
1

dt1
dt2

h2

h1
+ 1

⇒ dt1
dt2

=
h1

h2

[(
x1 − x2

α1t1 − αt2

)
− 1

]

in which hi(ti) ≡ 1−f(ti)

f(ti)
(i.e., as defined in the Model Section). Since hi(ti)

is finite everywhere this yields t1 as a continuous upward-sloping function of
t2, that is, ∞ >

dt1
dt2

≥ 0 everywhere, and t2 > t1, x1 > x2 and α1t1 > αt2

everywhere. (As (α1t1 − αt2) → 0,
dt1
dt2

→ ∞ ⇒ α1t1 > αt2 everywhere. As

(x1 − x2) − (α1t1 − αt2) → 0,
dt1
dt2

→ 0 so also dx1

dt2
→ 0 while dx2

dt2
< 0,⇒

(x1 − x2) − (α1t1 − αt2) > 0 everywhere when t1 > t. So also ∞ >
dt1
dt2

> 0

when t1 > t.)
Does the (unique) solution to this differential equation define a (Perfect

Bayesian) Nash equilibrium? To see that it does, first note that having t1 as a
function of t2 (uniquely) defines t1(p) and t2(p) using p = (1+α1)t1 +2t2 +x2

(since t1 and t2 + x2 and hence p are all continuous and upward-sloping
functions of t2). Now assume bidders 2 and 3 bid according to t2(p) (and
t3(p) = t2(p)). Then type t1 of bidder 1’s profits from finding himself a
winner at price p are p − ((1 + α1)t1 + 2t2 + x2) = (1 + α1)(t1 − t1) and we
have shown t1 is continuous and increasing in p for p ≥ p (i.e. where t1 > t)
so type t1’s uniquely optimal strategy is to quit at t1 = t1. Similarly, assume
bidders 1 and 3 bid according to t1(p) and t2(p), respectively. Then type t2
of bidder 2’s profits from finding himself a winner at price p are

p−
(

(1 + α)t2 + t1 + t2 + x1

(
H2

H1 + H2

)
+ x2

(
H1

H1 + H2

))
= (1+α)(t2−t2)

and t2 is continuous and increasing in p (for p ≥ p from our analysis of the
differential equation, and for p ∈ ((3+α)t+x, p) from our earlier argument).
So type t2 quits at t2 = t2. So our equations define a (Perfect Bayesian) Nash
equilibrium.48

48If there is an upper bound, t, on ti, then above the price where t2 = t3 = t, we can
continue to define 1’s strategy according to p = (1 + α)t1 + t + t + 0.
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Finally, it is easy to check that there are no other candidate equilibria in
the increasing hazard-rate case. At any price after p (at which price

p − (t1 + t2 + t3) = α1t1 + x2 = αt2 + x1

(
H2

H1 + H2

)
+ x2

(
H1

H1 + H2

)

is first satisfied) it yields a straightforward contradiction for there to be no
types of 1 quitting, or no types of 2 and 3 quitting, or no types of any of 1,
2 and 3 quitting, as the price rises.49

So the equilibrium we have found is unique under our assumptions. Fi-
nally, note from the differential equation that x1 − x2 is of order α1t1 − αt2.

(Since hi is an inverse hazard rate, h1

h2
> 1, so

dt1
dt2

>
(

x1−x2

α1t1−αt2
− 1

)
, so x1−x2

cannot become much larger than α1t1−αt2 without
dt1
dt2

becoming large so re-

ducing x1 −x2.) So as α1 → 0, x1 → x2 and so t2 → t1 along the equilibrium
path.50 So the winners are almost always the bidders with the higher signals,
and the price is almost always set by the bidder with the lowest signal, t(3),
who quits at ≈ (1 + α)t(3) + t(3) + E(t | t ≥ t(3)).

Decreasing hazard rates
As for the increasing hazard-rate case, no-one quits until p = (3+α)t+x

at which price the lowest types of bidders 2 and 3 start quitting symmetrically
according to t2 = t3 and p = t + (2 + α)t2 + x. Now with decreasing hazard
rates as t2 increases so does x2 so if, as we assume, α is small, (1+α1)t+2t2+
x2 > t + (2 + α)t2 + x = p for all t2. That is, for bidder 1 to never quit while
bidders 2 and 3 quit symmetrically satisfies the first-order conditions for
equilibrium everywhere. It is straightforward that this also defines a (Perfect
Bayesian) Nash equilibrium: if bidders 2 and 3 bid according to t2(p) no types
of player 1 ever wish to quit. If no type of bidder 1 ever quits, while bidder 3
bids according to t2(p), then the expected profits of type t2 of bidder 2 if he
finds himself a winner at price p are p−((1+α)t2+t+t2+x) = (1+α)(t2−t2)
which is continuous and increasing in p so t2 optimally quits at t2 = t2.

Are there any other equilibria in the decreasing hazard-rate case? Clearly,
as the price rises with p = t + (2 + α)t2 + x there is no point at which
some types of 1 start quitting. (Their expected values from being a winner
always exceed the price.) However we need to consider the possibility that
at some price at or above (3 + α)t + x no types of any players are quitting.

49If 2 and 3 alone stop quitting, their marginal types would earn (t1+t2+t3)+α2t2+x2−
p, i.e. strictly lose money in expectation, if they found themselves winners; if 1 alone stops
quitting the marginal types of 2 and 3 would earn (t1 + t2 + t3)+α2t2 +x1 − p by winning
so would also stop quitting; if all stopped quitting 1 would earn (t1 +t2+t3)+α1t1+x2−p
so 1 would instead continue to quit.

50More precisely, ∀ε, ∀K, ∃ δ s.t.{α1 < δ ⇒| t2 − t1 |< ε ∀ t2 < K}. To see this let
min0≤ti≤K{−x′

i(ti)} = φ > 0 (this minimum exists since −x′
i(ti) = 1− xi(ti)/(hi(ti)) and

fi(ti) and hence −x′
i(ti) is continuous, and φ > 0 since xi(ti) < hi(ti) follows from the

increasing hazard-rate). So x1 − x2 > φ(t2 − t1). So if δ < φε/4K then (t2 − t1) > ε/2 ⇒
dt1
dt2

> φ(ε/2)
φε/4 − 1 = 1 ⇒ t2 − t1 can never increase above ε/2.
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This would require beliefs that conditional on the out-of-equilibrium event
that player 2 does find himself a winner, he believes that player 3 quit with
probability ≤ λ where p = t + (2 + α)t2 + λx + (1 − λ)x2. Note that as p
rises, λ falls since x2 > x. So no types of players 2 and 3 can ever start
quitting again unless types of player 1 also do, since if the marginal types of
2 and 3 (but not 1) quit their expected value conditional on being a winner
is t + (2 + α)t2 + x − p = (1 − λ)(x − x2) < 0, so an atom of types of 2
and 3 wish to quit, so (almost) all of these types lose money conditional on
winning, which is a contradiction. Now one possibility is α1t > αt2, so no
types of player 1 would ever quit since their expected values from being a
winner exceed (1 + α1)t + 2t2 + x2 > t + (2 + α)t2 + λx + (1 − λ)x2 = p,
∀λ ∈ [0, 1]. In this case we have a contradiction at the price that yields
λ = 0.51 (The price cannot rise above this price without at least the marginal
types of 2 wishing to quit, so an atom of types 2 and 3 wish to quit (as
above), so (almost) all of these lose money conditional on winning which is
a contradiction.) Another possibility is α1t = αt2. In this case the marginal
types of 1 also wish to quit at λ = 0. But the price cannot then rise higher
without any types of 2 and 3 quitting since 1’s marginal condition would
imply p = (1 + α1)t1 + 2t2 + x2 ≥ t1 + (2 + α)t2 + x2 which implies types

of 2 and 3 must quit, but for any (actual) relative probability λ =
(

H3

H1+H3

)
with which player 2 believes that another player who quits is player 3, player
2’s expected value from winning is t1 + (2 + α)t2 + λx1 + (1 − λ)x2 < p so
an atom of types of 2 and 3 must quit, which is a contradiction, as before.
Finally, we may have α1t < αt2 at the price at which types of 2 and 3
stop quitting. In this case types of player 1 start quitting at price p =
(1 + α1)t + 2t2 + x2 = t + (2 + α)t2 + λx + (1 − λ)x2 for some λ ∈ (0, 1).
At this price the marginal types of players 2 and 3 must also start quitting

at hazard rates such that λ =
(

H2

H1+H2

)(
=

(
H3

H1+H3

))
.(If not, the marginal

types of players 2 and 3 would either be strictly losing or strictly making
money (in expectation) conditional on winning. Both are contradictions; the
latter because the types just below the current marginal types of 2 and 3
would not have been willing to quit earlier where their first-order conditions

were satisfied.) Now where types of 1 start quitting we have t1 = t <
(

α
α1

)
t2

and x2 > x1 so when α1 is small we require λ small, that is, H1

H2
large, hence

dt1
dt2

is large. So α1t1−αt2 → 0 and α1t1 = αt2 is achieved for finite t2. (Until this
point t1 and t2 must just be following the differential equation determined by

p = (1+α1)t1 +2t2 +x2 = t1 +(2+α)t2 +
(

H2

H1+H2

)
x1 +

(
H1

H1+H2

)
x2, that is,

the same differential equation as in the increasing hazard-rate case.) But at

α1t1 = αt2, and hence
(

H2

H1+H2

)
= 0, we have the same contradiction that we

had with α1t = αt2 and λ = 0. (Any finite rate of quitting of player 2 would

51This price is reached with positive probability (as are all prices) since the hazard rate
is decreasing.
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imply all types close to t2 strictly wished to quit which is a contradiction, but
if no types of player 2 quit as the price, and hence t1, rises, then we will have
p = (1 + α1)t1 + 2t2 + x2 > t1 + (2 + α)t2 + x2 which is also a contradiction.)

So the equilibrium we found, in which player 1 never quits while players
2 and 3 quit symmetrically according to t2 = t3 and p = t + (2 + α)t2 + x, is
the unique (Perfect Bayesian) Nash equilibrium satisfying our assumptions,
and the final price is t + x + (2 + α) min(t2, t3) = E(t) + (2 + α) min(t2, t3) ≈
E(t)+2 min(t2, t3) in which t2 and t3 are the actual signals of bidders 2 and 3.

The Symmetric Case
When α1 = α2 = α3 = α it is straightforward that it is a (Perfect

Bayesian) equilibrium for bidders to quit according to t1 = t2 = t3 and
p = (3 + α)t1 + x1, and that this is the unique equilibrium satisfying our
assumptions. In this case the final price is (3 + α)t(3) + x(3) ≈ 2t(3) + E(t |
t ≥ t(3)).

Thus we have proved Lemmas 2 and 4.

C. Comparison of Sealed-Bid and Ascending Auctions

In the asymmetric case, when 1 unit is sold, the ascending auction yields
≈ t + 2E(t) = t + 2

3
E

(
t(1) + t(2) + t(3)

)
in expectation (Lemma 3). The

sealed-bid auction yields ≈ E
(
t(3) + 2t(2)

)
in expectation — we assume the

conjecture in Section 5.3 that the expected revenue from the sealed-bid auc-
tion is almost unaffected by the small asymmetries between the bidders,52 so
is almost Revenue Equivalent to the situation in Lemma 1. Furthermore,
E

(
t(3) + 2t(2)

)
> 2

3
E

(
t(1) + t(2) + t(3)

)
+ t ⇔ E

(
9t(3) + 6

(
t(2) − t(3)

))
>

E
(
6t(3) + 4

(
t(2) − t(3)

)
+ 2

(
t(1) − t(2)

))
+ 3t ⇔

E
(
3(t(3) − t) + 2

(
t(2) − t(3)

))
> E

(
2
(
t(1) − t(2)

))
which is always true (false)

if hazard-rates are increasing (decreasing).53

When 2 units are sold the sealed-bid auction yields ≈ E
(
2t(3) + E

(
t| t ≥ t(3)

))
in expectation, assuming approximate Revenue Equivalence to the situation
in Lemma 2. The ascending auction yields the same in expectation if hazard-
rates are increasing, but ≈ E(E(t) + 2 min(t2, t3)) in expectation if hazard-
rates are decreasing (Lemma 4). But E

(
2t(3) + E

(
t| t ≥ t(3)

))
= E(2t(3) +

1
2
t(1) + 1

2
t(2)) and E(E(t) + 2 min(t2, t3)) = E(1

3
t(1) + 3

3
t(2), +

5
3
t(3)) (see the

proof of Proposition 2) and E(2t(3) +
1
2
t(1) +

1
2
t(2)) > E(1

3
t(1) +

3
3
t(2) +

5
3
t(3)) ⇔

52See note 43 of the text.
53Thinking about marginal revenues is the quickest way to see the result for the 1 unit

case, since the sealed bid and ascending auctions yield the expected marginal revenue of
the highest-signal bidder and the average bidder, respectively. For the 2 unit, decreasing
hazard-rate case, however, the calculations are trickier since this is the special case in
which the ascending auction gives positive expected surplus to the lowest type of bidder
1 (see notes 19 and 31 of the text), so the expected revenue from the ascending auction
is the sum of the expected marginal revenues of the winning bidders minus this expected
surplus.
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E(t(1) − t(2)) > E(2(t(2) − t(3))) which is always true with decreasing hazard
rates.
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