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Abstract
We propose a factor model which allows a parsimonious representation of the

time series evolution of covariances when the number of series being modelled be-
comes very large. The factors arise from a standard stochastic volatility model as
does the idiosyncratic noise associated with each series. We use an efficient method
for deriving the posterior distribution of the parameters of this model. In addition
we propose an effective method of Bayesian model selection for this class of models.
Finally, we consider diagnostic measures for specific models.

Keywords: EXCHANGE RATES; FILTERING; MARKOV CHAIN MONTE CARLO;
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1 INTRODUCTION

Many financial time series exhibit changing variance and this can have important con-
sequences in formulating economic or financial decisions. In this paper we will suggest
some very simple multivariate volatility models in an attempt to capture the changing
cross-covariance patterns of time series. Our aim is to produce models which can eventu-
ally be used on time series of many 10s or 100s of asset returns.

There are two types of univariate volatility model for asset returns; the autoregressive
conditional heteroskedastic (ARCH) and stochastic volatility (SV) families. Our focus
will be on the latter. The stochastic volatility class builds a time varying variance process
by allowing the variance to be a latent process. The simplest univariate SV model, due
to Taylor (1982) in this context, can be expressed as

yt = εtσ exp(αt/2), αt+1 = φαt + ηt,

(
εt

ηt

)
∼ NID

{
0,

(
1 0
0 σ2

η

)}
. (1)

Here σ is the modal volatility of the model, while ση is the volatility of the log-volatility.
One interpretation of the latent variable αt is that it represents the random and uneven
flow of new information into the market; this follows the work of Clark (1973)1.

∗We thank Enrique Sentana and the conference participants for their comments on the first draft of
our paper and the ESRC for their financial help on this project.

1The model also represents a Euler discretisation of the continuous time model for a log asset price
y∗(t), where w(t) and b(t) are independent Brownian motions, and dy∗(t) = σ exp {α(t)/2}dw(t) where
dα(t) = −φα(t)dt + τdb(t). This model was proposed by Hull and White (1987) for their generalisation
of the Black-Scholes option pricing scheme. Throughout the paper we will work in discrete time, however
our proposed multivariate model has an obvious continuous time version.
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Stochastic volatility models are a variance extension of the Gaussian ‘Bayesian dy-
namic linear models’ reviewed in West and Harrison (1997)2. In recent years many estim-
ation procedures have been suggested for SV models. Markov chain Monte Carlo (MCMC)
methods are commonly used in this context following papers by Shephard (1993) and Jac-
quier, Polson, and Rossi (1994) which have been greatly refined and simplified by Kim,
Shephard, and Chib (1998) and Shephard and Pitt (1997). Some of the early literature
on SV models is discussed in Shephard (1996) and Ghysels, Harvey, and Renault (1996).

The focus of this paper will be on building multivariate SV models for asset returns
in financial economics. In order to do this we will need some notation. We refer to (1) as
“uncentered” as the states have an unconditional mean of 0. We generally work with the
“centered” version of (1) with yt = εt exp(αt/2) and αt+1 = µ+φ(αt−µ)+ ηt, for reasons
of computational efficiency in MCMC estimation, see Pitt and Shephard (1998). We
write this as y ∼ISVn(φ; ση; µ), that is the series y = (y1, ..., yn)′ arises from a stochastic
volatility model, conditionally independent of any other series.

1.1 Economic motivation

Multivariate models of asset returns are very important in financial economics. In this
subsection we will discuss three reasons for studying multivariate models.

Asset pricing theory (APT). This links the expected return on holding an individual
stock to the covariance of the returns. A simple exposition of APT, developed by Ross
(1976), is given in Campbell, Lo, and MacKinlay (1997, pp. 233–240). The main flavour
of this can be gleaned from a parametric version of the basic model where we assume that
arithmetic returns follow a classic factor analysis structure (Bartholomew (1987)) for an
N dimensional time series yt = α + Bft + εt where (ε′t, f

′
t)
′ ∼ NID (0, D), where D is

diagonal, B is a matrix of factor loadings and ft is a K dimensional vector of factors. The
APT says that as the dimension of yt increases to such an extent that yt well approximates
the market then so α ' ιr + Bλ, where r is the riskless interest rate, ι is a vector of ones
and λ is a vector representing the factor risk premium associated with the factors ft.
Typically applied workers take the factor risk premiums as the variances of the factors.
Important Bayesian work to estimate and test the above restrictions imposed by the theory
has included Geweke and Zhou (1996) and McCulloch and Rossi (1991). Unfortunately
unless very low frequency data is used, such a monthly returns, the NID assumption is
massively rejected by the data which displays statistically significant volatility clustering
and fat tails and so the methods they develop need to be extended.

Asset allocation. Suppose an investor is allocating resources between assets which
have a one period (say a month) arithmetic return of yt ∼ NID. A classic solution to this
(Ingersoll (1987, Ch. 4)) is to design a portfolio which minimises its variance for a given
level of expected wealth. Interesting Bayesian work in this context includes Quintana
(1992). For high frequency data we need to extend the above argument by writing that
E(yt|Ft−1) = at and V ar(yt|Ft−1) = Σt where Ft−1 is the information available at the
time of investment.

Value at Risk (VaR). VaR studies the extreme behaviour of a portfolio of assets (see,
for example, Dave and Stahl (1997)). In the simplest case the interest is in the tails of

2A conjugate time series model for time varying variances was put forward by Shephard (1994a) and
generalized to covariances by Uhlig (1997). Although these models have some attractions, they impose
non-stationarity on the volatility process which is not attractive from a financial economics viewpoint.
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the density of ω′yt|Ft−1.

1.2 Empirically reasonable models

Although factor models give one way of tackling the APT, portfolio analysis problems
and VaR, the standard NID assumptions used above cannot be maintained. Instead,
in Section 2 we propose replacing the (ε′t, f

′
t) ∼ NID (0, D) assumption by specifying a

model which allows each element of this vector to follow an ISV process.
Diebold and Nerlove (1989) and King, Sentana, and Wadhwani (1994) have used a

similar type of model where the factors and idiosyncratic errors follow their own ARCH
based process3 with the conditional variance of a particular factor being a function of
lagged values of that factor. Unfortunately the rigorous econometric analysis of such
models is very difficult from a likelihood viewpoint (see Shephard (1996, pp. 16-8)).
Jacquier, Polson, and Rossi (1995) have briefly proposed putting a SV structure on the
factors and allowing the εt to be NID. However, they have not applied the model or
the methodology they propose, nor have they consider the identification issues which
arise with this type of factor structure. Their proposed estimation method is based upon
MCMC for Bayesian inference.

Kim, Shephard, and Chib (1998) put forward the basic model structure we suggest in
this paper. They allow the εt to follow independent SV processes — although this model
was not fitted in practice. In a recent paper, Aguilar and West (1998) have implemented
this model using the Kim, Shephard, and Chib (1998) mixture MCMC approach. The
work we report here was conducted independently of the Aguilar and West (1998) pa-
per. We use different MCMC techniques which we believe are easier to extend to other
interesting volatility problems. Further we design a simulation based filtering algorithm
to validate the fit of the model, as well as to estimate volatility using contemporaneous
data.

1.3 Data

Although our modelling approach is based around an economic theory for stock returns,
in our applied work we will employ exchange rates, with 4290 observations on daily clos-
ing prices of five exchange rates quoted in US dollars (USD) from 2/1/81 to 30/1/984.
We write the underlying exchange rates as {Rit} and then construct the continually com-
pounded rates yit = 100 × (log Rit − log Rit−1), for i = 1, 2, 3, 4, 5 and t = 2, 3, ..., 4290.
The five currencies we use are the Pound (P), Deutschemark (DM), Yen (Yen), Swiss
Franc (SF) and French Franc (FF). From an economic theory view it would be better

3We note in passing that there are other classes of multivariate models which have been developed in
the econometrics literature. The literature on multivariate ARCH models has been cursed by the problem
of parsimony as their most general models, discussed in Engle and Kroner (1995), have enormous numbers
of parameters. Hence much of this literature is concerned with appropriately paring down the structure
in order to get estimable models. The focus is, as before, on allowing the one step ahead covariance
matrix V ar(yt|Ft−1) to depend on lagged data. As we will not be using this style of model we refer the
interested reader to Bollerslev, Engle, and Nelson (1994, pp. 3002-10) for a detailed discussion of this
literature.

4We use the ‘Noon buying rates in New York City certified by the Federal Reserve Bank of New York
for customs purposes...’ Extensive exchange rate data is made available by the Chicago Federal Reserve
Bank at www.frbchi.org/econinfo/finance/for-exchange/welcome.html
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to alter the returns to take into account available domestic riskless interest rates (see,
for example, McCurdy and Morgan (1991)) as well as some other possible explanatory
variables. However, neglecting these additional variables does not make a substantial
difference to our volatility analysis as the movements in exchange rates dominate the
typically small changes in daily interest rate differentials and other variables. Hence we
will relegate consideration of these second order effects to later work.
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Figure 1: Daily returns for P (top left), DM (top right), Yen (second row, left), SF (second
row, right) and FF (third row, left). Correlograms for returns (third row, right) and for
the absolute values of returns (fourth row, left) and the corresponding partial sum of the
correlograms (fourth row, right).

The time series of the five returns are shown in Figure 1 together with the correlograms
of the returns and their absolute values. The correlograms indicate no great autocorrel-
ation in the returns. The changing volatility of the returns is clearly indicated by the
correlogram of the absolute values. It is clear that there is positive but small autocorrel-
ation at high lags for each of the returns. The sample mean and covariance (correlations
in upper triangle) of the 5 returns (US dollar versus P, DM, Yen, SF, FF in order) are

y =


0.00881
−0.00175
−0.01086
−0.00440
0.00690

 , Σ =


0.4669 0 .7518 0 .5068 0 .6917 0 .7280
0.3598 0.4906 0 .6448 0 .8915 0 .9454
0.2263 0.2951 0.4269 0 .6235 0 .6119
0.3779 0.4993 0.3257 0.6393 0 .8463
0.3427 0.4563 0.2754 0.4662 0.4747

 .

The mean return is close to 0 for all the series. The returns are all strongly positively
correlated, with the SF, DM and FF being particularly correlated. In our applied work
we will typically subtract the sample mean before fitting volatility models, in order to
simplify the analysis.
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1.4 Outline of the paper

The structure of the paper is as follows. In Section 2 we consider the multivariate factor
SV model. We go on to consider MCMC issues in Section 3. In Section 3.1 we discuss
the univariate SV model together with the MCMC methods used in its estimation. We
apply the univariate methods to the individual exchange rates in our dataset. The MCMC
methods for Bayesian inference applied to the factor SV (FSV) model are discussed in
Section 3.2.

In Section 4, we consider the estimation and testing of the factor model for our dataset
of 5 exchange rate returns. In Section 4.1 we estimate the parameters of the model
under consideration. We consider one-step-ahead estimates as diagnostics for assessing
the model’s fit in Section 4.2. These diagnostics are obtained by use of filtering (via
simulation) algorithm, the method being detailed in Section 4.4.

2 MULTIVARIATE FACTOR SV MODEL

2.1 Specification

In this paper we consider the following factor SV (FSV) model,

yt = βft + ωt, t = 1, ..., n
ωj ∼ ISVn(φωj ; σ

ωj
η ; µωj), j = 1, .., N

fi ∼ ISVn(φfi ; σ
fi
η ; 0), i = 1, .., K.

(2)

where N represents the number of separate series, K (< N) represents the number of
factors5. β represents a N ×K matrix of factor loadings, whilst ft is a K × 1 vector, the
unobserved factor at time t. For the moment we shall assume that β is unrestricted. The
necessary restrictions will be outlined presently. Jacquier, Polson, and Rossi (1995) have
briefly discussed a similar model, but they set ωt ∼ NID rather than allowing each of
the N idiosyncratic error terms of ωt to follow an independent SV process. Our hope is
that this will allow us to fit the data with K being much smaller than N as we regard
the factor structure as sufficient (particularly if K is reasonably large) to account for the
non-diagonal elements of the variance matrix of the returns, but not sufficient to explain
all of the marginal persistence in volatility.

Our choice of model naturally leads to a parsimonious model as the number of unknown
parameters is now linear in N when the number of factors is fixed. For exchange rates
this model appears extremely plausible. If we consider the returns on various currencies
against the USD, for example, then a single factor model may be sensible. In this case,
a large part of common factor term, ft, may account for the part of the return resulting
from changes in the American economy. The idiosyncratic terms could explain the part
of the returns which results from the independent country-specific shocks.

5The first multivariate SV model proposed in the literature was due to Harvey, Ruiz, and Shephard
(1994) who allowed the variances of multivariate returns to vary over time but constrained the correlations
to be constant. This is an unsatisfactory model from an economic viewpoint. There is a predating
literature on informal methods for allowing covariance matrices to envolve overtime in order to introduce
a measure of discounting into filtering equations. Important work includes Quintana and West (1987).
These techniques can be rationalised by the non-stationary variance and covariance models of Shephard
(1994a) and Uhlig (1997).
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2.2 Identification and priors

For identifiability, restrictions need to be imposed upon the factor weighting matrix.
Sentana and Fiorentini (1997) indicate that the identifiability restrictions, for the con-
ditionally heteroskedastic factor models, are less severe than in static (non-time series)
factor analysis (Bartholomew (1987) and Geweke and Zhou (1996)). However, we have
decided to impose the traditional structure in order to allow the parameters to be easily
estimated. Following for example Geweke and Zhou (1996), we set βij = 0, and βii = 1
for i = 1, .., K and j > i.

Our model has three sets of parameters: idiosycratic SV parameters
{
φωj ; σ

ωj
η ; µωj

}
,

factor SV parameters
{
φf

i ; σ
fi
η ; µfi

}
and the factor loading matrix β. We take priors for all

the SV parameters which are independent, with the same distribution across the factors
and idiosycratics. We do this as we have little experience of how the data will split the
variation into the factor and idiosycratic components. We adopt proper priors for each of
the

{
φωj ; σ

ωj
η ; µωj

}
and

{
φfi ; σ

fi
η ; µfi

}
parameters that have previously been successfully

used on daily exchange rate data by Shephard and Pitt (1997) and Kim, Shephard, and
Chib (1998). In particular we let φ = 2φ∗ − 1 where φ∗ is distributed as Beta with
parameters (18, 1), imposing stationarity on the process, while setting µ ∼ N(−1, 9).
Further we set σ2

η|φ, µ ∼ IG(σr

2
, Sσ

2
), where IG denotes the inverse-gamma distribution

and σr = 10 and Sσ = 0.01 × σr. The conjugate Gaussian updating of µ and conjugate
IG updating of σ2

η, in each case conditional upon the corresponding states, is described in
Pitt and Shephard (1998) whilst the more intricate (but very efficient) rejection method
used to update φ is used in Shephard and Pitt (1997) and more fully outlined in Kim,
Shephard, and Chib (1998).

For each element of β we assume βij ∼ N(1, 25), reflecting the large prior uncertainty
we have regarding these parameters. The updating strategy for β is detailed in Section
3.2.

3 MARKOV CHAIN MONTE CARLO ISSUES

3.1 Univariate models

Before proceeding with multivariate extensions we first estimate the univariate SV model
(1) using the MCMC methods designed by Shephard and Pitt (1997). Extending to
the multivariate case is then largely trivial as the univariate code can be included to
take care of all the difficult parts of the sampling. Computationally efficient single-
move MCMC methods (which move a single state αt conditional upon all other states
α1, ..., αt−1, αt+1, ..., αn and the parameters) have been used on this model by Shephard
and Pitt (1997) and Kim, Shephard, and Chib (1998). This sampler is then combined
with an algorithm which samples the parameters conditional upon the states and measure-
ments, i.e. from f(θ|α, y), where θ =

(
µ, φ, σ2

η

)′
. However, the high posterior correlation

which arises between states for typical financial time series means that the integrated
autocorrelation time can be very high. To combat this a method of proposing moves of
blocks of states simultaneously for the density

log f(αt, ..., αt+k|αt−1, αt+k+1, yt, ..., yt+k, θ)

via a Metropolis method was introduced by Shephard and Pitt (1997). An important
feature of this method is that k is chosen randomly for each proposal, meaning sometimes
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the blocks are small and other times they are very large. This ensures the method does
not become stuck by excessive amounts of rejection. This is the method which we shall
adopt in this paper. An additional advantage is that the method is extremely general and
extendable.

The univariate SV model is estimated, using 20, 000 iterations of the above method for
each of the exchange rates. The simulated parameters and corresponding correlograms are
given in Figure 2. Here, as later in the paper, we report the σ parameter, for ease of inter-
pretation, associated with the uncentred SV model of (1) rather than the unconditional
mean of the log-volatilities in the ISVn(φ; ση; µ) parameterisation. The corresponding
Table 1 show the posterior estimates of the mean, standard error (of the sample mean),
covariance and correlation for the three parameters for each of the series under examina-
tion. The standard errors (estimated using a Parzen based spectral estimator) have been
calculated taking into account the variance inflation (which we call inefficiency) due to
the autocorrelation in the MCMC samples. We set the expected number of blocks, which
we call knots, in the sampling mechanism to 40 and use the centered parameterisation in
the computations. Every 10 iterations the single move state sampler detailed in Shephard
and Pitt (1997) has been employed6. The entire dataset of 4290 returns on daily closing
prices of the five exchange rates from 2/1/81 to 30/1/98 has been used.
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Figure 2: Parameters for univariate SV model. The simulated parameters (20000 itera-
tions) shown on left; σ (top), ση and φ (bottom) together with corresponding acfs on right.
See Table 1.

The USD/Yen return has the least persistence in volatility changes, as we can see by
the low posterior mean for φ and the high posterior mean for ση. This indicates that there
is relatively little predictive power for the variance of this return in comparison with the
other series. The USD/P return is the most persistent of the series, closely followed by

6This ensures that even in the presence of very large returns or low state persistence, each of the states
will be sampled with probability close to 1.
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Mean M-C S.E. Ineff Covariance & Correlation of Posterior
British Pound

σ|y 0.5992 0.000333 2.4 0.000917 -0.0982 0.0698
ση|y 0.1780 0.00251 285 -0.0000625 0.000442 -0.796
φ|y 0.9702 0.000672 186 0.0000148 -0.000117 0.0000487

German Deutschemark
σ|y 0.6325 0.000282 2.3 0.000694 -0.105 0.0868
ση|y 0.1714 0.00153 153 -0.000048 0.000307 -0.766
φ|y 0.9652 0.000503 94 0.0000168 -0.0000982 0.0000536

Japanese Yen
σ|y 0.5544 0.000388 9.5 0.000316 -0.453 0.389
ση|y 0.4470 0.00584 203 -0.000467 0.00336 -0.916
φ|y 0.8412 0.00322 192 0.000227 -0.00175 0.00108

Swiss Franc
σ|y 0.7087 0.00029 2.8 0.000594 -0.115 0.0959
ση|y 0.1911 0.00199 181 -0.0000587 0.000437 -0.820
φ|y 0.9531 0.000787 124 0.0000234 -0.000171 0.00010

French Franc
σ|y 0.6042 0.000240 2.2 0.000522 -0.151 0.108
ση|y 0.2342 0.00207 159 -0.0000799 0.000539 -0.802
φ|y 0.9472 0.00076 113 0.0000248 -0.000188 0.000102

Table 1: Parameter of univariate models for the 5 currencies from 1981 to 1998. Summar-
ies of Figure 2. 20,000 replications of the multi-move sampler, using 40 stochastic knots.
M-C S.E. denotes Monte Carlo standard error and is computed using 1000 lags (except for
beta for which 200 lags are used). Ineff denotes the estimated integrated autocorrelation.

the USD/DM. The USD/SF and USD/FF returns exhibit similar medium persistence.
The parameter plots on the left of Figure 2 have been thinned out (taking every 20th

iteration) for visibility. The correlograms (for all the sampled parameters) indicate that
the MCMC method works well as the correlograms (over all iterations) die down at or
before lags of 500.

In the following section, we shall examine how the univariate SV methodology outlined
aids in estimating the FSV model. In addition, we will see how the estimated volatilities
change under the factor model.

3.2 MCMC issues for factor models

In this Section we consider MCMC issues for the FSV model. The key additional feature
of the approach is that we will augment the posterior to simulate from all of ω, f, θ, α, B|y
(where θ includes all the fixed parameters in the model except B) for this allows the
univariate code to be bootstrapped in order to tackle the multivariate problem. This
key insight appeared first in Jacquier, Polson, and Rossi (1995). Most of the new types
of draws are straightforward as the {ωt, ft|θ, α, y, B} are conditionally independent and
Gaussian (although degenerate).
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The only new issue which arises is updating samples from B|ω, f, α, y, θ. Let us now
consider column i represented by βi, i = 1, ..., K and the remaining columns by β\i. Then,
assuming a Gaussian prior N(µi, Σi) on each column βi we find that βi|β\i, yt, α

ω
t , f is

Gaussian and can easily be drawn imposing the identification constraints βij = 0 for j > i
and βii = 1, as suggested in Section 2. We iterate through the columns for i = 1, .., K.

4 SINGLE FACTOR MODEL FOR FIVE SERIES

4.1 MCMC analysis

We now concentrate on the fit of a single factor (K = 1) FSV model to the 5 series already
considered in our univariate SV analysis. We used 4018 returns by discarding the last
year of data for later model checking purposes. We apply the above MCMC approach
to the data. We used 80 knots (average block size about 50) for the block sampler for
both the states of the factor and the five sets of idiosyncratic states. However, after an
initial short run we introduced an additional sweep (for each overall MCMC iteration) for
the parameters and states associated with the DM and FF idiosyncratic errors. For this
additional sweep we increased the knot size to 160. For all our states, we also performed
the single-move method of Shephard and Pitt (1997) every 4 iterations (of the overall
sampler) to ensure that our sampler made local moves with high probability. We ran our
sampler for 100, 000 iterations.

The results for the three parameters of the factor f and the four unrestricted elements
of β are given in Table 3. The corresponding plots are given in Figure 3. As for the
univariate analysis the plots of the samples have been thinned out, only displaying every
100th iteration. The correlograms are calculated using all the sample. It is clear that our
MCMC method is reasonably efficient as the correlograms for the elements of β (from
unlikely initial values) become negligible before lags of 1000 in each case. Similarly, the
correlogram for the factor parameters dies down rapidly. Given the multivariate and high
time dimension of our model this is reassuring, particularly as the factor parameters and
β may well be regarded as the most interesting part of the model.

The posterior covariance matrix for the parameters {σ, ση, φ} of the factor f in Table 3
is similar in magnitude to that for the univariate parameters for the P and DM of Table 1.
The posterior correlation between these parameters is also similar. As we would expect
for the factor parameters, σ is not highly correlated with φ or ση. This is due to our
centred parameterisation. The elements of β are all tightly estimated and are positively
correlated. β2, β3 and β5 (representing the factor of DM, SF and FF respectively) are
all particularly strongly correlated. This is not surprising as the correlation between the
returns is reflected in the posterior correlation of the factor weights. However, it emphases
the importance of sampling all the elements of each column of β (in this case there is only
one) simultaneously.

Table 2 shows the results of the MCMC analysis for each of the 5 idiosyncratic errors.
The samples (thinned out) together with the correlograms for the three parameters asso-
ciated with each idiosyncratic error are given in Figure 4. The correlograms do not die
down as quickly as for the factor parameters but still indicate reasonable efficiency in our
MCMC method. The correlograms for the parameters of the DM error are the slowest to
decay. Apart from the DM error, the parameters of the remaining errors indicate far less
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Mean M-C S.E. Ineff Covariance & Correlation of Posterior
British Pound, ω1

σ|y 0.3508 0.000143 8.6 0.00245 -0.019 -0.089
ση|y 0.3369 0.00169 312 -0.0000286 0.000921 -0.815
φ|y 0.9358 0.000541 224 -0.0000506 -0.000284 0.000132

German Deutschemark, ω2

σ|y 0.0666 0.000178 53 0.00555 0.679 -0.907
ση|y 0.1248 0.00164 563 0.00154 0.000926 -0.800
φ|y 0.9907 0.000141 238 -0.000497 -0.000179 0.0000541

Japanese Yen, ω3

σ|y 0.4083 0.000162 14 0.00192 -0.164 0.167
ση|y 0.3840 0.00198 275 -0.000276 0.00147 -0.866
φ|y 0.8988 0.000810 210 0.000130 -0.000587 0.000318

Swiss Franc, ω4

σ|y 0.2490 0.000130 22 0.00331 -0.000418 0.041
ση|y 0.3342 0.00210 449 -0.000000760 0.000998 -0.838
φ|y 0.9180 0.000858 341 -0.0000344 -0.000390 0.000216

French Franc, ω5

σ|y 0.0848 0.000217 128 0.00527 -0.563 0.0952
ση|y 0.7479 0.00441 564 -0.00291 0.00510 -0.656
φ|y 0.9075 0.000923 421 0.0000920 -0.000672 0.000206

Table 2: Parameters for idiosyncratic multivariate SV processes. Summaries of Figure 4,
100000 replications of the multi-move sampler, using 80 stochastic knots (discarding first
1000). Ineff are the integrated autocorrelation estimates. M-C S.E. denotes Monte Carlo
standard error, using 2000 lags for all parameters except σ where it is 1000.

persistence than the factor component of Table 3 and than their univariate counterparts
of Table 1. For all but the DM, the factor part of our model is isolating the persist-
ent volatility movements whilst the idiosyncratic error terms pick up the more temporal
volatility features.

The relative importance of the factor for each of the returns considered can be shown by
considering the unconditional variance estimated from the model. This may be compared
with the corresponding sample variance given in Section 1.3. The Bayesian mean of the
unconditional variance from our model is

Σ = E
{

ββ
′
σ2

f + diag(σ2
ω1

, ..., σ2
ωN

)
}

= Σf + Σω,

where E(.) is with respect to the posterior density and

σ2
f = exp

{
µf +

1

2

σf
η

2

(1− φf 2)

}
and σ2

ωi
= exp

{
µωi +

1

2

σωi
η

2

(1− φωi2)

}
.

Hence we can easily unbiasedly estimate using our MCMC samples. We estimate Σf and
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Figure 3: Elements of β and factor parameters. The simulated parameters (100000 iter-
ations) shown on left; 4 unrestricted elements of β (top) and factor parameters (bottom)
together with corresponding acfs on right. See Table 3.
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Figure 4: Parameters for ω. The simulated parameters (100000 iterations) shown on left;
σ (top), φ and ση (bottom) together with corresponding acfs on right. See Table 2.
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Mean M-C S.E. Ineff Covariance & Correlation of Posterior
Factor parameters

σ|y 0.5045 0.000347 20 0.000584 -0.0723 0.0591
ση|y 0.1674 0.000850 221 -0.0000313 0.000320 -0.756
φ|y 0.9696 0.000248 131 0.00000971 -0.0000919 0.0000462

Beta elements
DM β2|y 1.240 0.000780 359 0.000166 0.455 0.851 0.971
Yen β3|y 0.710 0.000503 97 0.0000937 0.000255 0.400 0.452
SF β4|y 1.298 0.000813 275 0.000168 0.0000979 0.000235 0.851
FF β5|y 1.190 0.000761 364 0.000156 0.0000903 0.000162 0.000156

Table 3: Factor parameters and elements of β. Summaries of Figure 3, 100,000 replica-
tions of the multi-move sampler, using 80 stochastic knots (discarding first 1000). M-C
S.E. denotes Monte Carlo standard error, computed using 1000 lags.

Σω as

Σf =


0.2570 · · · . . . . . .
0.3186 0.3949 . . . . . .
0.1824 0.2261 0.1296 . . .
0.3335 0.4134 0.2367 0.4328
0.3059 0.3792 0.2172 0.3970 0.3642

 and Σω = diag


0.1913
0.0058
0.2414
0.0846
0.0310

 .

It is clear that the unconditional variances associated with the idiosyncratic terms are
generally small relative to the corresponding marginals of the factor part. This is partic-
ularly the case for the DM, SF and FF where the contribution of the idiosycratic is tiny.
This interpretation suggests the factor is basically a DM, SF, FF effect, while the P and
Yen are influenced but not wholly determined by this factor.

The addition of these two matrices gives us (with the correlations in italics),

Σ =


0.4481 0 .7514 0 .4474 0 .6920 0 .7266
0.3185 0.4008 0 .5868 0 .9075 0 .9530
0.1824 0.2263 0.3711 0 .5404 0 .5674
0.3334 0.4135 0.2369 0.5179 0 .8775
0.3058 0.3793 0.2173 0.3970 0.3952

 .

The corresponding sample variance and correlations for the data (4018 returns) is given
below as,

S =


0.4781 0 .7688 0 .5275 0 .7069 0 .7445
0.3752 0.4981 0 .6604 0 .8925 0 .9434
0.2360 0.3016 0.4188 0 .6375 0 .6254
0.3950 0.5090 0.3333 0.6529 0 .8450
0.3574 0.4622 0.2810 0.4740 0.4820

 .

The two matrices are similar. However, the diagonal elements from our model are
smaller in each case than those of the sample variance. This may indicate that there is
more volatility in the data than the model accounts for (for instance, heavy tailed meas-
urement densities). The unconditional correlations are very similar to those of the data.
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It is therefore clear our parsimonious model is nevertheless rich enough to model the un-
conditional properties of the model. The factor part of our model accounts for 57%, 99%,
35%, 84% and 92% of the marginal variance of the P, DM, Yen, SF and FF respectively.
This is what we might expect as the factor appears to explain European movements
whereas the Yen may move more independently against the USD, being influenced by
other factors (which also affect other Asian countries).

Idiosyncratic and factor means
P DM Yen SF FF FACT1 FACT2

σ|y 0.2067 0.06503 0.4087 0.2502 0.08845 0.5068 0.2386
ση|y 0.5994 0.1242 0.3844 0.3316 0.7363 0.1478 0.2013
φ|y 0.9283 0.9902 0.8994 0.9188 0.9077 0.9839 0.9824

Beta results
Column 1 Mean Variance Column 2 Mean Variance

P β11|y 1 0 β12|y 0 0
DM β21|y 1.055 0.000323 β22|y 1 0
Yen β31|y 0.617 0.000253 β32|y 0.527 0.00145
SF β41|y 1.108 0.000339 β42|y 1.020 0.000521
FF β51|y 1.0149 0.000301 β52|y 0.948 0.0000565

Table 4: Posterior means of the factor parameters and idiosyncratic terms for 2 factor
model. 100,000 replications of the multi-move sampler, using 80 stochastic knots (discard-
ing first 2000).

We estimated a two factor model on the same dataset. The results of this analysis are
summarized in Table 4. The factor and idiosyncratic components of the unconditional
variance of yt for the two factor model are given below. It is clear that the results do
not alter very much with the inclusion of an additional factor. This suggests a certain
robustness in these models generally.

Σf =


0.2605 · · · . . . . . .
0.2747 0.3490 . . . . . .
0.1607 0.2005 0.1155 . . .
0.2885 0.3647 0.2096 0.3812
0.2643 0.3350 0.1925 0.3502 0.3217

 and Σω = diag


0.1565
0.0051
0.2416
0.0850
0.0315

 .

4.2 One-step-ahead testing

We are going to use filtering to examine the model residuals and to assessing the overall
fit. To motivate and simplify our discussion we shall delay the outline of our filtering
method until Section 4.4. We shall regard our time-invariant parameters θ as fixed and
known for the moment. We shall assume we can evaluate and simulate from the density
f(yt|αt; θ) for t = 1, ..., n. These assumptions clearly hold for our FSV model for which
αt = (αω′, αf ′

t )′. Let us also assume that we can easily obtain samples from f(αt+1|Ft; θ),
the prediction density, where as usual Ft = (y1, ..., yt)

′. This last assumption results from
our filtering method of Section 4.4. It is clear that with these assumptions in place a
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whole army of residuals can be constructed. However, we focus only on four for assessing
overall model fit, outliers and observations which have substantial influence on the fitted
model.

Log likelihood lt+1 = log f(yt+1|Ft; θ). We have

f(yt+1|Ft; θ) =

∫
f(yt+1|αt+1; θ)dF (αt+1|Ft; θ).

Hence we use Monte Carlo integration as

̂f(yt+1|Ft; θ) =
1

M

M∑
i=1

f(yt+1|αi
t+1; θ),

where αi
t+1 ∼ f(αt+1|Ft; θ). Since we can evaluate the density f(yt+1|Ft; θ) we can cal-

culate the likelihood of the model M , say, at the Bayesian mean θM via the prediction
decomposition. Evaluating the likelihood allows model comparison.

Normalised log likelihood lnt . We take S (100 are used in the next section) samples
of zj , j = 1, .., S, where zj ∼ f(yt+1|Ft; θ) evaluating for each sample ljt+1 using the above
method. We then construct µl

t+1 and σl
t+1 as the sample mean and standard deviation

of these quantities, respectively. The normalised log likelihood at time t is therefore
computed as lnt+1 =

(
lt+1 − µl

t+1

)
/σl

t+1. If the model (and parameters) are correct then
this statistic should have mean 0 and variance 1. Large negative values of course, indicate
that an observation is less likely than we would expect. Under the WLLN we expect∑T

t=1 lnt /T → 0 as T →∞.
Uniform residuals ut+1 = F (lt+1|Ft; θ). This quantity is estimated as ût+1 =

F̂ (lt+1) = 1
S

∑S
j=1 I(ljt+1 < lt+1) where the ljt+1’s are constructed as above. If we as-

sume that we know the parameter vector θ, then under the null hypothesis that we have
the correct model ût+1 ∼ UID(0, 1). In addition, the reflected residuals (Kim, Shephard,
and Chib (1998)) 2 |ût − 0.5| ∼ UID(0, 1), t = 1, ..., n. The former has been used by,
amongst others, Smith (1985) and Shephard (1994b) to see if their fitted models were
well calibrated.

Distance measure dt. We can compute Σt+1 = V ar(yt+1|Ft; θ)
.
= 1

M

∑M
i=1 V ar(yt+1|αi

t+1)
where αi

t+1 ∼ αt+1|Ft; θ. Then at each time step t we compute dt = y′tΣ
−1
t yt = a′tat,

where at = Σ
−1/2
t yt consisting of N independent elements each with mean 0 and variance

1. It is therefore the case, if the model and parameters are correct, that dt
iid∼ χ2

N , so∑n
t=1 dt ∼ χ2

nN .
We can now identify outlying data and can also form overall tests of fit easily. The

difficulty is that in practise we do not know θ but the posterior density becomes tighter
around the true value of course. We therefore simply use θ, the Bayesian mean, in our
calculations.

4.3 One-step-ahead testing and filtering results

We ran the auxiliary filter, see Section 4.4, over the entire data setting M = 10, 000. For
evaluating ut and lnt , S the number of simulations from the prediction density for yt, is
set to 100 at each time step.

In Figure 5, the residuals together with the corresponding average returns over the
period of interest are plotted against date. The two large values of dt, occur at around the
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Figure 5: One step ahead residuals against date. Top row: d(t) (left), u(t) (right). Second
row: standardised ln(t) (left), l(t) (right). Last row: returns for five series.

end of 1981 and the beginning of 1983. These two outliers appear in the plots of lt and lnt .
Whilst the abnormal returns at the beginning 1983 are clear from the plot of returns, the
outlier at the end of 1981 is not. In addition it appears, from the plot of lt and lnt that
there is an unlikely return around the middle of 1991. Again this is not obvious simply
by examining the returns. The overall log-likelihood was computed as −6, 206.9 for the
overall single factor model computing using the posterior mean of the parameters.

From each of the univariate ISV models estimated we obtain log-likelihoods of −3, 863
(P), −4, 042 (DM), −3, 663 (Yen), −4, 539 (SF) and −4, 050 (FF). The overall log-
likelihood for all the series is −20, 157. Clearly the log-likelihood is far smaller than
for our FSV model since the correlation between returns is not accounted for by this
model. Further, the mean of resulting dt was 5.1911, indicating that the distance is not
much greater than we would expect were the model to be operating. The mean of the lnt
is 0.00255, close to zero (not significantly different) as we would expect under the model.
The variance of lnt is 1.6678, larger than we would expect indicating that there are a lot
of either very likely or very unlikely observations (but less in between) than expected.

From Figure 6 it is clear that the residuals ut are not, quite, uniform but are over-
dispersed. This again suggests using a heavy tailed SV model. The autocorrelations of
all the residuals displayed are not significantly different from zero. This is particularly
reassuring for as it indicates we have accounted for the persistence in volatility.

The filter we apply delivers samples from αt|Ft which we can compare to the draws
from the MCMC smoothing algorithm αt|Fn. The average (over time) of the difference is
−0.000487 whilst its variance is 0.0665. For Figure 7, we have transformed the samples
to give the smoothed mean and filtered mean factor standard deviation. It is clear that
the two mean standard deviations move together, the filtered mean delivering a coarser
plot than the smoothed mean. The difference between the two is also displayed together,
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Figure 6: Residual analysis. Top row: quantile plot for ut (right), histogram for ut (left).
Second row: correlogram for residual ut (left), for reflected ut (right). Bottom row: cor-
relogram for residual (lt)

n (left), for distance measure dt (right).

and varies around 0, as we would expect. Finally the filtered mean standard deviations
for the idiosyncratic terms are shown in Figure 8.

4.4 A simulation filter

The methodology outlined above presupposes that we can simulate from the one-step
ahead density f(αt+1|Ft; θ). We employ the auxiliary sampling-importance resampling
(ASIR) particle filtering method of Pitt and Shephard (1997) to carry out this non-trivial
filtering task. We use the notation f(αt+1|αt) to denote the evolution of the unobserved
log-volatilities over time.

The particle filter has the following basic structure. The density of αt|Ft = (y1, ..., yt)
′

is approximated by a distribution with discrete support at the points α1
t , ..., α

M
t . Then

we try to produce a sample of size M from

f̂(αt+1|Ft+1) ∝ f(yt+1|αt+1)

M∑
k=1

f(αt+1|αk
t ). (3)

This provides the update step of the ASIR filter. This is carried out by sampling kj with
probability proportional to f(yt+1|µk

t+1), where µk
t+1 = E(αt+1|αk

t ), and then drawing from

αj
t+1 ∼ αt+1|αkj

t . This is carried out R times. The resulting population of particles are
given weights proportional to

wj =
f(yt+1|αj

t+1)

f(yt+1|µkj

t+1)
, πj =

wj∑R
i=1 wi

, j = 1, ..., R.
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Figure 7: Factor log volatilities. Top row: smoothed mean of factor standard deviation.
Second row: filtered mean of factor standard deviation. Last row: filtered mean, filtered
90% quantile, filtered 10% quantle - smoothed mean.

We resample this population with probabilities {πj} to produce a sample of size M . In
this way we update at each time step. The efficiency of this method is analysed in Pitt
and Shephard (1997).

In practice when we applied the auxiliary SIR particle filter in this paper we have
taken M = 10, 000. At each time step we set R∗ = 200 and went forward a single time
step computing our resample probabilities w. We then went back and set the value of
R (the number of prior sample) to be min(10 × M,INEFF×M) where at each step we
computed the INEFF=1/ {1 + V ar(R∗w)}, using an approximate result of Liu (1996).

5 OPEN ISSUES

Risk premium. The use of a factor structure for our model suggests that we should add
a risk premium to the mean of the returns. In a simple one factor model the structure
would be that

yt = rι + βCov(ft|αt)π + βft + ωt,

where r is a riskless interest rate, π is some (very small) unknown parameter vector. Such
a model predicts higher expected returns in periods of high volatility and is in keeping
with the APT.

The presence of quite a sophisticated mean term in the returns model does not change
our MCMC calculations very much. As the information is quite small we propose ignoring
it in our proposal density and adding the implied density from the above residual to the
Metropolis acceptance rate.

Leverage effects. Unlike for exchange rate data, stock price falls are often associated
with increases in volatility (Nelson (1991)). In the context of SV models this can be
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Figure 8: Idiosyncratic volatilities. Filtered mean standard deviations for Pound, DM,
Yen, SF and FF.

achieved by allowing εt and ηt to be negatively correlated. The presence of this correlation
does not make the multivariate model anymore complicated, but it does mean the analysis
of the univariate models has to become slightly more sophisticated. However, the method
of Shephard and Pitt (1997) goes through in that case.

More general dynamics. In this paper we have assumed a very simple AR(1)
dynamic structures for the volatility process. However, our analysis would allow these
processes to be generalized to be any Gaussian process.

Heavy tailed densities. An empirically important generalisation of the model is to
allow for heavier tails. In particular each of the basic SV models can be generalised to
allow

εt =
ςt√
κt

√
p− 2, where ςt ∼ NID(0, 1) and κt ∼ IG

(
p

2
,
1

2

)
.

This has generalised {εt} from being iid normal to scaled iid Student’s t with p degrees of
freedom but still a unit variance. This style of model also requires us to specify a proper
prior for p constrained so that p > 2.

6 CONCLUSION

The factor model attempts to model both the correlation and the time varying variances
of returns. It is an appealing model from an economic perspective, its roots being in
finance theory. Simple multivariate factor model for SV processes has been suggested,
but not applied, by Jacquier, Polson, and Rossi (1995) and extended into an empirically
reasonable form by Kim, Shephard, and Chib (1998). As the number of asset returns
considered becomes large, our preferred factor SV model allows the possibility of a fairly
parsimonious model with a small number of factors. The residuals for the one factor
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model suggest that the volatility process of the returns considered is captured by the
model.

There is a great deal of work to be carried out in this area. Applying these methods
to very large datasets, with many tens or hundreds of assets, is theoretically possible
but computationally challenging. Using the fitted models in terms of testing APT and
carrying out optimal portfolio choice should be interesting. Further, exploiting the models
in order to accurately measure VaR is a useful topic.
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