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Abstract

Non-Gaussian processes of Ornstein-Uhlenbeck type, orOU processesfor short, offer the pos-
sibility of capturing important distributional deviations from Gaussianity and for flexible modelling
of dependence structures. This paper develops this potential, drawing on and extending powerful
results from probability theory for applications in statistical analysis. Their power is illustrated by a
sustained application of OU processes within the context of finance and econometrics. We construct
continuous time stochastic volatility models for financial assets where the volatility processes are
superpositions of positive OU processes, and we study these models in relation to financial data and
theory.

Keywords:Background driving L´evy process; Econometrics; L´evy density; Lévy process; Long range
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tion.

Authors’ note: This paper supersedes our previously circulated but unpublished papers “Aggregation
and model construction for volatility models” and “Incorporation of a leverage effect in a stochastic
volatility model”.

1 Introduction

1.1 Motivation

Non-Gaussian processes of Ornstein-Uhlenbeck type, orOU processesas we shall call them, have con-
siderable potential as building blocks for stochastic models of observational series from a wide range
of fields. They offer the possibility of capturing important distributional deviations from Gaussianity
and for flexible modelling of dependence structures. This paper aims at developing this potential, draw-
ing on and extending powerful results from probability theory for applications in statistical analysis.
We illustrate their power by a sustained application of OU processes within the context of finance and
econometrics. Based on well-known (empirical) stylized facts, we construct continuous time stochastic
volatility models for financial assets where the volatility processes are superpositions of positive OU
processes, and we study these models in relation to financial data and theory. The study has also required
the development of new numerical methods and these are discussed in some detail.

The general definition of an OU processy(t) is as the solution of a stochastic differential equation of
the form

dy(t) = ��y(t)dt+ dz(t) (1)

1



wherez, with z(0) = 0, is a (homogeneous) L´evy process, i.e. a process with independent and stationary
increments (see, for example, Rogers and Williams (1994, pp. 73–84), Bertoin (1996), Bertoin (1999),
Protter and Talay (1999) and Sato (1999)). Familiar special cases of L´evy processes are Brownian motion
and the compound Poisson process. L´evy’s theorem tells us that all L´evy processes except for Brownian
motion have jumps. Asz is used to drive the OU process we will callz(t) a background driving L´evy
process (BDLP) in this context.

Our interest in this paper will be in the existence and properties of stationary solutions to (1) in
cases wherez has no Gaussian component and the increments ofz are positive, implying positivity
of the processy. We will write a continuous time stationary and nonnegative latent process�2(t) as
representing the changing volatility underlying a financial asset. The simplest OU based model for�2(t)

will have
d�2(t) = ���2(t)dt+ dz(�t); � > 0: (2)

The unusual timingdz(�t) is deliberately chosen so that it will turn out that whatever the value of�

the marginal distribution of�2(t) will be unchanged. Hence we separately parameterise the distribution
of the volatility and the dynamic structure. Thez(t) has positive increments and no drift. This type of
process is often called a subordinator (Bertoin (1996, Ch. 3)). Correspondingly�2(t) moves up entirely
by jumps and then tails off exponentially1. However, under the models we have in mind small jumps
are predominant. Although having OU dynamics looks restrictive, we will show we can construct more
complicated processes by the addition of independent OU processes.

The main advantage of these OU processes is that they offer a great deal of analytic tractability
which is not available for more standard models such as geometric Gaussian OU processes and constant
elasticity of volatility processes2. For example integrated3 volatility, which in finance is a key measure,

�2�(t) =

Z t

0

�2(u)du

= (1� e��t)�2(0) +

Z t

0

n
1� e��(t�s)

o
dz(�s)

= ��1fz(�t)� �2(t) + �2(0)g; (3)

has a simple structure.
A more general class of processes, which is also quite mathematically tractable, is given by

�2(t) =

Z 0

�1

f(s)dz(�t+ s);

for bounded, positivef(�) and withz as above4. Givenf(�) such a process is stationary and positive.
This type of process is reminiscent of a standard infinite order linear moving average model.

1This type of model has been used in storage theory by, for example, Cinlar and Pinsky (1972), Harrison and Resnick (1976)
and Brockwell, Resnick, and Tweedie (1982).

2For geometric Gaussian OU processes,log �2(t) is assumed to follow a Gaussian OU process. For constant elasticity of
volatility processes

d�2(t) = ��
�
�2(t)� �

	
dt+ ��2(t)kdb(t);

whereb(t) is standard Brownian motion,k � 1=2. The former is highlighted by Hull and White (1987) while the latter is used
extensively by Meddahi and Renault (1996).

3All integrated processes will be denoted by having a superscript�. The main examples are integrated volatility and intensity
and the log-price level of a stock.

4To be technically precise:fz(t)gt�0 is assumed to be caglad andfz(�t)gt�0 is an independent copy off�z(t)gt�0 but
modified to be also caglad. Further,f(�) has to be a positive function tailing off sufficiently fast to ensure the existence of the
integral. In particular iff(s) = es we recover the OU processes.
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1.2 Stochastic volatility processes

Continuous time models built out of Brownian motion play a crucial role in modern finance, providing
the basis of most option pricing, asset allocation and term structure theory currently being used. An
example is the so called Black-Scholes or Samuelson model which models the log of an asset price by
the solution to the stochastic differential equation

dx�(t) =
�
�+ ��2

	
dt+ �dw(t); t 2 [0; S]; (4)

wherew(t) is standard Brownian motion5. This means aggregate returns over intervals of length� > 0,
are

yn =

Z n�

(n�1)�

dx�(t) = x�(n�)� x� f(n� 1)�g (5)

implying returns are normal and independently distributed with a mean of�� + ��2� and a variance
of ��2. Unfortunately for moderate to small values of� (corresponding to returns measured over 5
minute to one day intervals) returns are typically heavy-tailed, exhibit volatility clustering (in particular
the jynj are correlated) and are skew (see the discussion in, for example, Campbell, Lo, and MacKinlay
(1997, pp. 17-21)), although for higher values of� a central limit theorem seems to hold and so Gaus-
sianity becomes a less poor assumption forfyng in that case. This means that every single assumption
underlying the Black-Scholes model is routinely rejected by the type of data usually used in practice.

This common observation, which carries over to the empirical rejection of option pricing models
based on this model, has resulted in an enormous effort to develop empirically more reasonable models
which can be integrated into finance theory. The most successful of these are the generalised autoregress-
ive conditional heteroskedastic (GARCH) and the diffusion based stochastic volatility (SV) processes.
This very large literature, which was started by Clark (1973), Engle (1982) and Taylor (1982), is re-
viewed in, for example, Bollerslev, Engle, and Nelson (1994), Ghysels, Harvey, and Renault (1996) and
Shephard (1996).

Our model will also be of an SV type, based on a more general stochastic differential equation,

dx�(t) =
�
�+ ��2(t)

	
dt+ �(t)dw(t); (6)

where�2(t), the instantaneous volatility, is going to be assumed to be stationary, latent and stochastically
independent ofw(t). Even though�2(t) exhibits jumpsx�(t) is a continuous process for all parameter
values. This formulation also makes it clear that in the special case where� = � = 0 an SV process
can be thought of as a subordinated Brownian motion. We will delay our discussion of this well known
connection until Section 6 of this paper. Instead our earlier sections will focus on our main innovation,
which will be to use OU processes to model�2(t). We do this as it will allow us to gain a much better
analytic understanding than conventional diffusion based SV models.

SV models in general, by appropriate design of the stochastic process for�2(t), allow aggregate
returnsfyng to be heavy-tailed, skewed, exhibit volatility clustering and aggregate to Gaussianity as�

gets large. To see why this happens, whatever the model for�2, it follows that

ynj�2n � N(��+ ��2n; �
2
n):

where

�2n = �2�(n�)� �2� f(n� 1)�g ; and �2�(t) =

Z t

0

�2(u)du: (7)

So returns are scaled mixtures of normals, where the scaling is typically time dependent inducing de-
pendence in the returns. Hence this model class can produce empirically reasonable models, allowing
us to think about the appropriate implications for the pricing of derivatives written on underlying assets
obeying SV processes. We will do this in Section 5 and Subsection 6.2 of the paper.

5We have usedx�(t) to denote the price level as this is an integrated process.
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It is possible to generalise (6) to allow for the feedback of the innovations of the volatility process
into the level of the asset price. In particular, we write

dx�(t) =
�
�+ ��2(t)

	
dt+ �(t)dw(t) + �d�z(�t); (8)

where�z(t) = z(t) � Ez(t), the centred version of the BDLP. This allows the model to deal with the
so called leverage type problem associated with the work of Black (1976) and Nelson (1991) which
formalises the observation that for equities a fall in the price is associated with an increase in future
volatility. We will discuss some aspects of this model in Section 4 of the paper.

1.3 Structure of the paper

This paper has six other sections and an Appendix. In Section 2 we discuss the detailed mathematical
construction behind the OU processes we favour, focusing on building appropriate BDLPs. We show
that they are sufficiently flexible to allow us to design models to fit marginal features of the distribution
of returns as well as to separately deal with the observed dependence structure in the returns. As this
section is quite technical, readers whose main interest is in the SV aspect of this paper could skip this
section on their first reading of the paper. Related, more advanced, technical details may be found in our
second paper on this topic Barndorff-Nielsen and Shephard (2000). Section 3 looks at the construction
of volatility models by the addition of OU processes. This provides a way of constructing a wide class
of dynamics for volatility, including (quasi-)long memory models. In Section 4 we give results for the
temporal aggregation of returns from a continuous time SV model. This allows us to relate our linear
SV models to the popular GARCH discrete time models associated with the work of Engle (1982). In
Section 5 we discuss the empirical fitting of these models using linear and non-linear methods. Section 6
discusses various additional issues such as multivariate extensions of the models, the precise connection
between SV and subordination, as well as showing formally that SV models do not allow for arbitrage
and giving results on the pricing of derivatives written using a SV model. Section 7 concludes. The
Appendix collects various proofs and derivations we have omitted from the main text of the paper.

2 Construction of OU processes

2.1 Definition and existence

Before we discuss the SV models in detail we will introduce the mathematical basis of the OU processes,
showing how they are constructed and how to simulate from them.

The stationary process�2 is of Ornstein-Uhlenbeck type if it is representable as

�2(t) =

Z 0

�1

esdz(�t+ s) (9)

in which case it may also be written as

�2(t) = e��t�2(0) +

Z t

0

e��(t�s)dz(�s):

Herez = fz(t) : t 2 Rg is a (homogeneous) L´evy process and� is a positive number. When this is the
case�2(t) satisfies the stochastic differential equation (2). The processz(t) is termed thebackground
driving Lévy process(BDLP) or subordinator corresponding to the process�2(t). A simulated example
of the paths that the�2(t) andz(�t) processes follows is given in Figure 1.

In essence, given a one-dimensional distributionD (not necessarily restricted to the positive halfline)
there exists a stationary process of Ornstein-Uhlenbeck type (i.e. satisfying a stochastic differential
equation of form (1)) whose one-dimensional marginal law isD if and only if D is selfdecomposable,
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Figure 1: OU process with�(�; �) marginals.Throughout,� = 3, � = 8:5, �= 0:01 and� = 1. Top
left: plot ofz(�n�) againstn. Top right: plot of�2(n�) againstn. Same graph but for longer series in
bottom left. Bottom right: as a numerical check we also present the empirical autocorrelation function
for �2(n�).

i.e. if and only if the characteristic function� ofD satisfies�(�) = �(c�)�c(�) for all � 2 R and allc 2
(0; 1) and for some family of characteristic functionsf�c : c 2 (0; 1)g. This restriction does, however,
still leave a great flexibility in the choice ofD. The precise statement of existence is as follows, cf. Wolfe
(1982) and Jurek and Vervaat (1983) (see also Barndorff-Nielsen, Jensen, and Sørensen (1998)).
Theorem 2.1Let � be the characteristic function of a random variablex. If x is selfdecomposable, i.e.
if �(�) = �(c�)�c(�) for all � 2 R and allc 2 (0; 1), then there exists a stationary stochastic process

x(t) and a Lévy processz(t) such thatx(t)
L
= x and

x(t) =

Z t

�1

e��(t�s)dz(�s) =

Z 0

�1

e�udz f� (t+ u)g =
Z 0

�1

eudz (�t+ u) (10)

for all � > 0.
Conversely, ifx(t) is a stationary stochastic process andz(t) is a Lévy process such thatx(t)

L
= x

andx(t) andz(t) satisfy the equation (10) for all� > 0 thenx is selfdecomposable.
2

If the stationary OU process�2(t) is square integrable, it has autocorrelation functionr(u) =

exp (�� juj). It will be helpful later to establish the notation that the cumulant generating functions
for �2(t) andz(1) (if they exist) be written as

�k(�) = log E
�
exp

����2(t)	� and k(�) = log E [exp f��z(1)g] ;
respectively. Indeed they are related by the fundamental equality (Barndorff-Nielsen (2000))

�k(�) =

Z 1

0

k(�e�s)ds; (11)
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which can be reexpressed as
k(�) = ��k0(�) (12)

(where�k0(�) = d�k(�)=d�). It then follows that if we write the cumulants of�2(t) andz(1) (when they
exist) as, respectively,��m and�m (m = 1; 2; :::) we have that�m = m��m, for m = 1; 2; :::.

2.2 Lévy densities

Suppose we choose a probability distributionD on the positive halfline which is self-decomposable.
Then, as just discussed, there exists a strictly stationary Ornstein-Uhlenbeck process

�2(t) = e��t�2(0) +

Z t

0

e��(t�s)dz(�s): (13)

such that�2(t) � D and wherez is a Lévy process. The increments ofz are positive and

k(�) = log E [exp f��z(1)g] = �
Z 1

0+

�
1� e��x

�
W (dx); (14)

whereW is the Lévy measure of the L´evy-Khintchine representation forz(1). We shall generally assume
thatW has a densityw. It is related to the L´evy densityu of �2(t) by the formula

w(x) = �u(x)� xu0(x) (15)

(this presupposes thatu is differentiable) and, letting

W+(x) =

Z 1

x

w(y)dy; (16)

we have, moreover
W+(x) = xu(x) (17)

Barndorff-Nielsen (1998). Finally, we shall denote the inverse function ofW+ byW�1, i.e.

W�1(x) = inf
�
y > 0 : W+(y) � x

	
:

2.3 Models viaD

One approach to model building is to write down a specific parametric form forD and then calculate the
implied behaviour of the BDLP. We do this here for the generalized inverse Gaussian (GIG) marginal
law �2(t) � GIG(�; �; )6. The GIG class seems particularly interesting as a plausible model basis
for volatility models as special cases have been extensively used (though in different contexts from
the present) in various recent papers. See, in particular, Eberlein and Keller (1995), Barndorff-Nielsen
(1997), Barndorff-Nielsen (1998), Rydberg (1999) and Eberlein (2000). Recall that ifx � GIG(�; �; )

then it has a density
(=�)�

2K�(�)
x��1 exp

�
�1

2
(�2x�1 + 2x)

�
; x > 0; (18)

whereK� is a modified Bessel function of the third kind. Note that when� or  are0, the norming con-
stant in the formula for the density of the generalized inverse Gaussian distribution has to be interpreted
in the limiting sense, using the well-known results that forx # 0 we have

K�(x) �
8<
:

� log x if � = 0

�(j�j)2j�j�1x�j�j if � 6= 0:

:

6The standard notation for the generalised inverse Gaussian distribution isGIG(�; �; ), however the notation� was not
available to us.
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Special cases of the GIG density are: (i) the inverse Gaussian law, where� = �1
2
, (ii) the positive

hyperbolic law where� = 1, (iii) and inverse chi-squared law withdf degrees of freedom where� =

�df=2, � =
p
df and = 0, (iv) gamma, where� = 0 and� > 0. Of course if�2 � GIG(�; �; ) and

is independent of" � N(0; 1), thenx = �+ ��2 + �" is the generalized hyperbolic distribution. If we
define� =

p
�2 + 2, then the density is

(=�)�

p
2��(��

1

2
)K� (�)

n
�2 + (x� �)2

o 1

2
(�� 1

2
)
K(�� 1

2
)

�
�

q
�2 + (x� �)2

�
exp f� (x� �)g : (19)

Hence a continuous time volatility model built using a volatility model of OU type with GIG marginals
will have generalized hyperbolic marginals for instantaneous returns. Special cases of this include the
normal inverse Gaussian distribution, the hyperbolic and the Student t.

It is known that theGIG(�; �; ) law is self-decomposable ( Halgreen (1979)) so that stationary OU
processes with GIG marginals do exist. The following theorem specifies the L´evy measure.
Theorem 2.2 The Lévy measure of the generalized inverse Gaussian distribution is absolutely continu-
ous with density

u(x) = x�1
�
1

2

Z 1

0

e�
1

2
��2x�g�(�)d� +maxf0; �g�

�
exp

��2x=2� (20)

where

g�(x) =
2

x�2

n
J2j�j(

p
x) +N2

j�j(
p
x)
o�1

andJ� andN� are Bessel functions.
2

PROOFSee Appendix.
For the definitions and properties of Bessel functions see, for example, Gradstheyn and Ryzhik (1965,

pp. 958-71).
We note that the Bessel functions have simple forms whenj�j is half odd. We will now discuss four

special cases of this result.

� GIG(�1
2
; �; ): Inverse Gaussian. Its marginal law means�2(t) � IG(�; ) whose density is

�p
2�
e�x�3=2 exp

�
�1

2

�
�2x�1 + 2x

��
, x > 0, (21)

where the parameters� and satisfy� > 0 and � 0. We find the upper tail integral (recalling
W+(x) = xu(x)) is

W+(x) =
�p
2�
x�1=2 exp

�
�1

2
2x

�
: (22)

� GIG(1; �; ): Positive hyperbolic distribution. The density of the positive hyperbolic distribution
is

(=�)

2K1(�)
exp

�
�1

2
(�2x�1 + 2x)

�
; x > 0;

where the parameters� and satisfy� > 0 and � 0. When the law of�2(t) is positive hyperbolic
we find the upper tail integral is

W+(x) =

�
�2
Z 1

0

e�x�g1(2�
2�)d� + �

�
exp

��2x=2� : (23)
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� GIG(��; �; 0): Reciprocal gamma distribution. The reciprocal gamma distribution (i.e. the law
of the reciprocal of a gamma variate) has density

��

�(�)
x���1 exp

���x�1� ; x > 0; � > 0; � = �2=2:

The corresponding upper tail integral is

W+(x) =
1

2

Z 1

0

exp

�
�1

4
��1x�

�
g�(�)d�: (24)

� GIG(� > 0; 0; ): Gamma distribution.The gamma marginal law has probability

��

� (�)
x��1 exp (��x) ; x > 0; � = 2=2:

This has the corresponding upper tail integral of the L´evy densityW+(x) = �e��x, which has the
convenient property that it can be analytically inverted:

W�1(x) = max

�
0;� 1

�
log
�x
�

��
. (25)

2.4 Models via the BDLP

Instead of specifying a model for�2(t) and working out the density for the BDLP, it is possible to go the
other way and construct the model through the BDLP. Of course there are constraints on valid BDLPs
which must be satisfied. We note in passing that a necessary and sufficient condition for the stochastic
differential equation

dx(t) = ��x(t)dt+ dz(�t) (26)

to have a stationary solution is thatE [log f1 + jz(1)jg] < 1 (cf. Wolfe (1982) and Jurek and Mason
(1993, Theorem 3.6.6)).
Lemma 2.1Let z be a Lévy process with positive increments and cumulant function

log E [exp f��z(1)g] = �
Z 1

0+

�
1� e��x

�
W (dx);

and assume that Z 1

1

log(x)W (dx) <1: (27)

Suppose moreover, for simplicity, that the L´evy measureW has a differentiable densityw, and define
the functionu onR+ by

u(x) =

Z 1

1

w(�x)d� : (28)

Thenu is the Lévy density of a random variablex of the form

x =

Z 1

0

e�sdz(s)

and the specification

x(t) =

Z t

�1

e��(t�s)dz(s)

determines a stationary processfx(t)gt2R with z as its BDLP.
2

PROOF This may be concluded from a more general result given in Jurek and Mason (1993, Theorem
3.6.6).
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Example 1 We give a simple valid construction which allows easy simulation and analytic results for
the implied density of�2(t). LetW be a Ĺevy measure determined in terms of its tail integral by

W+(x) = cx�"(1 + x)�� exp

�
�1

2
2x

�

wherec is a positive constant,0 � " < 1, 0 � �, 0 �  andmaxf(� � 1); g > 0. Then

w(x) = cf"x�1 + �(1 + x)�1 +
1

2
2gx�"(1 + x)�� exp

�
�1

2
2x

�
: (29)

Hence Lemma 2.1 applies and ensures the existence of an OU process�2(t) whose BDLPz(t) hasw
as the Ĺevy density ofz(1). Furthermore, recalling that the Ĺevy densityu of �2(t) satisfiesxu(x) =

W+(x), we find

u(x) = cx�1�"(1 + x)�� exp

�
�1

2
2x

�
:

Note that for" = 1
2

and� = 0 we recover theIG law for �2(t). If  = 0, implying� > 1, then for the
moments of�2(t) we have

E
��
�2(t)

	��
<1 if and only if � < � + ":

Furthermore, thej-th order cumulant of�2(t) (j < �+") is cB(j�"; �+"�j) whereB(x; y) denotes
the beta function.

2.5 Simulation via series representations

A crucial feature of our approach will be that we simulate from the volatility process

�2(t) = e��t�2(0) +

Z t

0

e��(t�s)dz(�s)

in order to simulate returns from thex�(t) process and so analyse data. To be able to do that we will
have to simulate from

e��t
Z �t

0

esdz(s); (30)

rather than the BDLPz(s) itself. One approach to this is to directly simulate from the L´evy processes
(e.g. through Wolpert and Ickstadt (1998) and Protter and Talay (1999)) and then approximate the cor-
responding integrals. This is difficult due to the jump character of the processes. Instead we use infinite
series representations of these types of integrals. The required results are, in essence, available from work
of Marcus (1987) and Rosinski (1991). A self-contained exposition of this result is given in Barndorff-
Nielsen and Shephard (2000), while recent developments are surveyed in Rosinski (2000). Again we let
W be the Lévy measure ofz(1) andW�1 denote the inverse of the tail mass functionW+. Then the
desired results is that Z �

0

f(s)dz(s)
L
=

1X
i=1

W�1(ai=�)f(�ri): (31)

Here thefaig andfrig are two independent sequences of random variables with ther0is independent
copies of a uniform random variabler on [0; 1] anda1 < ::: < ai < ::: as the arrival times of a Poisson
process with intensity1.

Our practical experience with using (31) is that it is quite quickly converging, however theory sug-
gests that it has to be used carefully. Consider the special case of the IG model, then (22) impliesW�1(x)

will, for large values ofx, behave essentially asx�2. This is studied in more detail in Barndorff-Nielsen
and Shephard (2000).

9



Example 2 OU gamma (�(�; �) marginals) process. We need a method to sample from (30). We have
already noted the expression forW�1(x) in (25). Thus, definingc1 < c2 < ::: as the arrival times of a
Poisson process with intensity��t andN(1) as the corresponding number of events up until time1, then

e��t
Z �t

0

esdz(s)
L
= e���

1X
i=1

W�1(ai=�t)e
�tri (32)

= ���1e��t
1X
i=1

1]0;�[(ai=�t) log(ai=��t)e
�tri

= ��1e��t
1X
i=1

1]0;1[(ci) log(c
�1
i

)e�tri

= ��1e��t
N(1)X
i=1

log(c�1i )e�tri :

To illustrate these results we simulate a regularly spaced OU gamma process�2(n�) using the above
representation for the parameter values� = 1, � = 3, � = 0:01 and� = 8:5. The results are presented
in Figure 1. There we graph bothz(�n�) and�2(n�) against time using only a small range of values of
n, which shows the jumps in the process. Of course thez(�n�) process is a non-decreasing, integrated
process, while the�2(n�) is stationary. For the larger series we see the jumps look less extreme and
instead our eyes tend to focus on the large up movements in OU process followed by slower declines.
The final picture is the corresponding empirical autocorrelation function of the�2(n�) process. Finally,
it is worth noting that the simulation is very fast for OU gamma processes. Over many different parameter
values we were able to produce processes of length of half a million in around 5 seconds on a modern
PC using the Ox programming language of Doornik (1998).

3 Superposition

Although we have focused on the simplest OU volatility process, our model and technique extend to
where volatility follows a weighted sum of independent Ornstein-Uhlenbeck processes with different
persistence rates. That is

�2(t) =

mX
j=1

w+
j �

2
j (t); where

mX
j=1

w+
j = 1;

with
d�2j(t) = ��j�2j (t)dt+ dzj(�jt);

where thefzj(t)g are independent (not necessarily identically distributed) BDLPs. In such a case we
would have a process for the price of the type

dx�(t) =
�
�+ ��2(t)

	
dt+ �(t)dw(t) +

mX
j=1

�jd�zj(�jt);

where �zj(�jt) = zj(�jt) � E fzj(�jt)g, allowing the leverage effect to be different for the various
components of volatility.

By the adding together of independent OU processes with different persistence rates we obtain more
general correlation patterns in the volatility structure. This implies an autocorrelation function which is
a weighted sum of exponentials

r(u) = w1 exp (��1 juj) + :::+ wm exp (��m juj) ; (33)
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where thewi are positive and sum to1. Hence some of the components of the volatility may represent
short term variation in the process while others represent long term movements. Alternative empirical
models of this, written directly in discrete time, are discussed by Engle and Lee (1999), Dacorogna,
Muller, Olsen, and Pictet (1998) and Barndorff-Nielsen (1998).

By choosing the weights and damping factors in (33) appropriately and lettingm!1 it is possible
to construct tractable volatility models with long range or quasi long range dependence. In particular,
Barndorff-Nielsen (2000) shows there exists a limiting model for which

r(u) = (1 + � juj)�2(1�H)

with � > 0 andH 2 (1
2
; 1) being the long memory parameter7. Similar types of arguments have

previously been used for real valued time series models by, for example, Granger (1980) and Cox (1991).
Ding and Granger (1996) have studied long memory in volatility using the addition of short memory
processes while Andersen and Bollerslev (1997a) have used the theory of heterogeneous information
arrivals to motivate a long memory volatility model. Finally, Comte and Renault (1998) constructed a
long-range dependent SV model by writing the log of the instantaneous volatility as fractional Brownian
motion.

It is possible to extend this to multifractal behaviour where

r(u) =

mX
i=1

wi(1 + �ijuj)�2(1�Hi); Hi 2
�
1

2
; 1

�
; �i > 0;

and where thewi are positive and sum to one. These types of continuous time models imply that discrete
returns have long memory features.

4 Aggregation results

4.1 Behaviour ofx�(t), the log price

In this section we will study the behaviour of integrals, or aggregations, of the instantaneous returns
dx�(t). There will be two points of focus. First, in this subsection we will look at the log-price itself
x�(t), recalling thatx�(0) is defined to be zero. The second focus, developed in the next subsection, will
be on characterising the dependence structure of the returnsfyng, defined in (5) as the change inx�(t)
over non-overlapping intervals of length�.

First we will state some general results for the non-leverage SV models given in (6) with arbitrary
stationary volatility processes, then we will go on to produce a complete description of the behaviour of
x�(t) in the OU volatility case allowing� 6= 0. In general we have that if we write (when they exist)�,
!2 andr, respectively, as the mean, variance and the autocorrelation function of the process�2(t) then

E
�
�2�(t)

	
= �t, Varf�2�(t)g = 2!2r��(t);

where8

r�(t) =

Z t

0

r(u)du and r��(t) =

Z t

0

r�(u)du: (34)

A consequence of the above result is that

E fx�(t)g = (�+ ��) t and Varfx�(t)g = t� + 2�2!2r��(t);

7Barndorff-Nielsen (2000) constructed this, and more general models, not by a limiting procedure but in terms of the theory
of independently scattered measures and L´evy random fields.

8We user��(t) to denote the double integral over the autocorrelation function.
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while, when� = � = 0,
Varfx�(t)2g = 6!2r��(t) + 2�2t2:

Further we have that if�2(u) is ergodic then, ast!1,

t�1�2�(t) = t�1
Z t

0

�2(u)du
a:s:! �;

implying, for the SV model, thatt�1=2
�
x�(t)� �t� ��2�(t)

	
is asymptotically normal with mean0

and variance� (i.e. the log returns tend to normality for long lags — a similar result is known within
the ARCH class since Diebold (1988, pp. 12-16)). This follows from the subordination interpretation of
the SV models discussed in Section 6.1. The convergence oft�1=2

�
x�(t)� �t� ��2�(t)

	
to normality

will, however, be slow in the case where the process�2(t) exhibits long range dependence.
As x�(t) is the sum of a continuous local martingale (see section 6) and a continuous bounded

variation process, its quadratic variation is��2(t), i.e. we have

[x�](t) =p� lim
r!1

X
fx�(tri+1)� x�(tri )g2 = �2�(t) (35)

for any sequence of partitionstr0 = 0 < tr1 < ::: < trmr
= t with supiftri+1 � trig ! 0 for r ! 1.

The quadratic variation estimation of integrated volatility has recently been highlighted, following the
initial draft of this paper and the concurrent independent work of Andersen and Bollerslev (1998), by
Andersen, Bollerslev, Diebold, and Labys (2000) in foreign exchange markets.

When we assume that�2(t) is anOU process then we can strengthen some of these results to give
a complete description of the leveragedx�(t) process (8) via its cumulant generating functional. The
formula is in terms of the cumulant functionk for the BDLP. Note, however, that it can easily be recast
in terms of the cumulant function�k for �2(t), cf. formulae (11) and (12). Letf denote an ‘arbitrary’
function then the log of the characteristic function off �x�, which we interpret as the stochastic integralR1
0
f(s)dx�(s) (Protter (1992)), is

C

�
� z
Z 1

0

f � x�
�

= �

Z 1

0

fk(�Je��s) + k(�H(s))gds+ i�(�� ���)

Z 1

0

f(s)ds (36)

where

J =

Z 1

0

f1
2
�2f2(u)� i��f(u)ge��udu (37)

and

H(s) =

Z 1

0

f1
2
�2f2(s+ u)� i��f(s+ u)ge��udu� i��f(s) (38)

The derivation of this result is given in Barndorff-Nielsen and Shephard (2000). It is important to un-
derstand the full scope of this expression. It gives a calculus for computing all the cumulants for any
weighted sum of the path of the log-price. In other words this is a full description of the whole process.

Expressions for the cumulant functions of the finite dimensional distributions of thex� process are
directly obtainable from (36) by suitable choice off . As an illustration, we consider the cumulant
function forx�(t) for an arbitrary value oft. For notational simplicity we suppose that� = � = � = 0;
extension to the general case causes no substantial difficulty. Lettingf = 1[0;t] we find, after a bit of
algebra,

Cf� z x�(t)g = �

Z t

0

k

�
1

2
�2��1(1� e��t)e��s

�
ds

+�

Z 1

t

k

�
1

2
�2��1(1� e��t)e��s

�
ds:

Note that from this formula the cumulants ofx�(t) are explicitly expressible in terms of the cumulants
of z(1) or, alternatively, of�2(t).
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Example 3 Suppose�2(t) � IG(�; ), as in (21), then�k(�) = �
�
1� (1 + 2�=2)1=2

	
and so, by

formula (12),

k (�) =
��


(1 + 2�=2)�1=2 =

1X
m=1

�m (�1)m�1 �
m

m!
;

where

�m = m (�=)
�
2=2

�m�1� 1=2

m� 1

�
:

Hence, for instance, the variance ofx�(t) is seen to be�m(t) = (�=) t, as could, of course, also have
been found by simple direct calculation.

4.2 Dependence of returns

In this subsection we derive the moments of discrete time returns implied by a general continuous time
SV model. In particular when� and� are zero then, using the definitions given in (34),

Covf�2n; �2n+sg = !2}r��(�s); (39)

corfy2n; y2n+sg =
}r��(�s)

6r��(�) + 2�2(�=!)2
(40)

= q�1��2}r��(�s); (41)

where
}r��(s) = r��(s+�)� 2r��(s) + r��(s��); (42)

and
q = 6��2r��(�) + 2(�=!)2: (43)

Example 4 If �2(t) � OU with its variance existing thenr(u) = exp(��juj), which means that
r��(s) = ��2

�
e��jsj � 1 + �s

	
and

}r��(�s) = ��2(1� e���)2e���(s�1); s > 0:

This implies

corf�2n; �2n+sg = de���(s�1); corfy2n; y2n+sg = ce���(s�1); s > 0 (44)

where

1 � d =
(1� e���)2

2 fe��� � 1 + ��g (45)

� c =
(1� e���)2

6 fe��� � 1 + ��g+ 2(��)2(�=!)2
� 0:

Note that (44) implies that�2n and y2n follow constrained ARMA(1,1) processes with common autore-
gressive parameters and with the moving average root being stronger for�2n than for they2n. The ARMA
structure implies thatyn is weak GARCH(1,1) in the sense of Drost and Nijman (1993) and as emphas-
ised in the work of Meddahi and Renault (1996). Andersen and Bollerslev (1997b, p. 137) have fitted
GARCH(1,1) models to (seasonally adjusted) equity and exchange rate returns measured at a variety of
values of� and found that the above aggregation results broadly describe the fit of the various GARCH
models. These simple analytic results generalise to the situation where we add together a weighted sum
of uncorrelated Ornstein-Uhlenbeck processes, as was suggested in the previous section on superpos-
itions and long memory models. Finally, as� ! 0 so d ! 1 and so�2n behaves like a first order
autoregression with no moving average component.
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More abstractly, Sørensen (1999) and Genon-Catalot, Jeantheau, and Lar´edo (2000) have independ-
ently noted that when� = � = 0 then the return sequencefyng is�-mixing if the instantaneous volatility
�2(t) is �-mixing and further that the mixing coefficients for returns are less than or equal to the mixing
coefficients for the instantaneous volatility process.

4.3 Leverage case

In the leverage case (8) the calculations are inevitably more specialised. When�2(t) � OU we are able
to produce very concrete results. In particular

Efynyn+sg = 0;

Cov
�
yn; y

2
n+s

�
= Efyny2n+sg = ��2(1� e���)2 exp f���(s� 1)g

Cov(y2n; y
2
n+s) =

�
�2

2�2
+ �2�3

�
(1� e���)2 exp f���(s� 1)g :

The effect of the leverage term is to allowCov
�
yny

2
n+s

�
to be negative if� < 0. However, in addition

bothCov
�
yny

2
n+s

�
andCov(y2n; y

2
n+s) damp down exponentially with the lag lengths. We should note

that exactly the same dynamic structure was found by Sentana (1995) in his work on the discrete time
quadratic ARCH model (QARCH). Hence we can think of the QARCH model as a kind of discrete time
representation of our continuous time leverage model, generalising the unleveraged result associated with
the work of Drost and Nijman (1993) and Drost and Werker (1996).

5 Estimating and testing models

5.1 Olsen high frequency exchange rate data

In this paper we will study five minute9 return series (recorded using Greenwich Mean Time) for the
DM/$ exchange rate from 1/12/86 to 30/11/96 constructed from the Olsen and Associates database using
the semi-cleaning procedures carefully documented in Andersen, Bollerslev, Diebold, and Labys (2000).
It should be noted that the series is defined using an average of bid and ask quotations. As a result they
do not represent returns on transactions, however the evidence of transaction data (which is not generally
available in this quantity) of Goodhart, Ito, and Payne (1996) and Danielsson and Payne (1999) suggests
the properties of transaction and quote data, at this frequency, closely match.

The semi-cleaned Andersen, Bollerslev, Diebold, and Labys (2000) data does not remove some heavy
intra-day effects in the volatility of the series. As a result we imposed some adjustments ourselves.
These included taking out all data from 10.30pm Friday until Sunday 11pm each week, as well as bank
holidays. In addition we have estimated a strong intra-day volatility effect (see Guillaume, Dacorogna,
Dave, Muller, Olsen, and Pictet (1997) for a discussion of this) by running a cubic spline (with 40
degrees of freedom) on the variance of each five minute period in active day. After some initial analysis
we have set the intra-day effect to be the same for Tuesdays, Wednesdays and Thursdays. Further, we
have allowed the 5 minute return after the opening of the New York stock exchange to have its own free
level as its variance is much higher than the rest of the data. The resulting smoothed estimate of the
intra-day seasonal component is given in Figure 2. The most interesting features of this graph is the high
volatility of the series on Monday mornings, Friday afternoons and the high level of volatility which
generally occurs when the New York market is open.

After full adjustments are taken into account, we are left with a single unbroken time series made up
of 684,867 five minute observations. For each observation we standardise it by dividing through by its
intra-day effect in an attempt to achieve a homogeneous series. We then study the marginal distribution

9It is difficult to go below 5 minute returns without suffering from problems of discreteness which we will briefly discuss in
Section 6. Recent econometric papers on this topic include Russell and Engle (1998) and Rydberg and Shephard (1998).
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Figure 2:Left: Estimated intra-day pattern of volatility (standard deviations) for each day (in particular
Monday, average over Tuesday through Thursday, Friday and Sunday) over 5 minute periods using 10
years of data. X-axis denotes hours. Right: marginal log-density of returns over 5 minute period — data
split into series of length 125,000. Dotted line is corresponding fitted normal log-density.

of the resulting standardised series. Figure 2 gives the log of the histogram of returns where we split the
returns into four sections of 125,000 observations (that is each section is just over two years of adjusted
five minute returns). To calibrate the graphs we have drawn the corresponding normal density. The graph
indicates that returns are consistently much heavier tailed than is suggested by the normal distribution.

An interesting feature of the log-histograms is that the tails look almost linear10, suggesting we need
models for extreme marginal returns over short intervals of the form

const: jyj�� exp(��� jyj)

for some�+; �� 2 R and�+; �� � 0. One class of densities which has this property are the normal
inverse Gaussians.

5.2 Estimating marginal distribution

Although the basic dataset we use takes� as representing five minutes, we can think about returns at
other frequencies. In Figure 3 we show the log-histograms of the fully adjusted returns for a variety of
values of�. As expected from our discussion in Section 4.1 on aggregation, as� lengthens the marginal
log-densities seemingly become more accurately approximated by quadratics, that is normal densities.
The Figure also shows the fitted log-densities of normal inverse Gaussian and Student t type, where the
parameters of the fit are chosen by maximising the corresponding likelihood assuming the returns are
i.i.d.. We thus interpret these fits as of quasi-likelihood type.

Table 1 records the quasi-likelihood fits for each of the models11, once again showing that the normal
distribution is dominated by the other candidates. Further for small values of� the normal inverse
Gaussian out-performs the Student t even though it is clear that the Student t has heavier tails. For larger
values of� the fit is basically identical. The convergence towards normality as� increases is also
shown in the Table where we compute the average Kullback-Liebler distance (per observation) between
the normal density and the other two candidates we study here.

10Granger and Ding (1995) modeljynj as having a marginal distribution which is exponential.
11Here, for simplicity of exposition, we have only fitted symmetric distributions as exchange rate returns (unlike equity

returns) are known to be approximately symmetric. Further� is taken to be zero, although in theory we should allow it to
depend upon the difference in interest rates between the two countries. However, in practice the drift in neglible is this case.
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Figure 3: Log-densities of returns at different levels of temporal aggregation. Plotted are histograms,
estimated (by quasi-ML) NIG and Student’s t distributions. Top left: 5 minute returns. Top right: 70
minute returns. Bottom left: 7 hours. Bottom right: 27 hours. Top graphs histograms computed using
128 bins, bottom graphs have only 32.

5.3 Estimating dependence structure

We now turn our attention to the time dependence structure in high frequency fully adjusted returns.
The correlogram of the series itself shows little activity, but the squares are another matter. We again
decided to split our long series into the four shorter series of length 125,000 and have drawn in Figure
4 the average correlogram which results. Note the x-axis of the correlogram is marked out in days, not
in 5 minute periods. The left hand graph focuses on the short term dynamics and shows a fast initial
decay which then levels out. The middle graph, which averages the correlograms within each day (the
raw correlogram is very noisy), looks at longer term dependence and shows a slow decay with memory
lasting many days.

The right hand side graph of Figure 4 is more unusual. Each day has 288 observations of 5 minute
adjusted returns. We have computed the empirical variation within each day

s2n;288 =

288X
j=1

y2288(n�1)+j

which we know, from equation (35), should be a good estimator of the integrated volatility over a day�
�2�(288n�) � �2� [f288 (n� 1) + 1g�]

	
= �2n;288:

As a result we calls2n;288 the QV estimator. Having computed the daily
�
s2n;288

	
series we have drawn

in Figure 4 the average (over our four series) correlogram (starting at lag 3 to be compatible with above
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Model Measure of fit �

(distance from normal) 1 16 81 256
Student t Quasi-log-Likelihood -880240 -111090 -29215. -10884.

KL distance 34.22 2.048 0.2482 0.03944
degrees of freedom 2.954 2.926 3.366 5.154

NIG Quasi-log-likelihood -879800 -111060 -29198. -10886.
KL distance 34.38 2.059 0.2549 0.03889
, � 0.709, 0.679 0.193, 2.52 0.0971, 6.65 0.0799, 17.0

Normal Quasi-log-likelihood -971860 -116570 -29880. -10990.

Table 1:Fit of the marginal distributions of returnsyn using zero meaned, symmetric distributions. We
use the scaled Student t, normal inverse Gaussian (parameters and�) and the normal distribution with
unknown variance.� = 1 is chosen to represent five minutes. Reported is the maxima of the quasi-
likelihood functions. KL (Kullback-Liebler) distance is the average difference (per data point) between
the log-likelihood function and the log-likelihood for the normal. We use it to measure the departure
from normality of the returns.

analysis)12. Our theoretical results suggest that the autocorrelation function of the
�
�2n;288

	
should

be proportional to that for the averaged correlogram for the
�
y2n
	

process given in the middle picture.
This seems to be very roughly confirmed here. However, we can see that the dependence amongst the
empirical variance is much stronger than amongst just the noisy plain squared returns. This is not a
surprise, nor does it indicate that the QV estimator brings any additional statistical information beyond
what is available from the autocorrelation function of the high frequency squared returns.

1 2

.1

.2

Short lags: average Acf

0 25 50 75

0

.005

.01

Long lags: average Acf

0 25 50 75

0

.2

Average Acf of QV estimator

Figure 4: Averaged of 5 correlograms each with 125,000 returns. Labels for the lags of correlogram
are written using days, not 5 minute periods. Left: first 750 lags, to show short term dynamics. Middle:
next 15000 lags to focus on long term pattern. Right: equivalent quadratic variation estimator based on
squared 5 minute returns measured over a day.

The empirical results suggest that we will not be able to build satisfactory volatility models from
the direct use of OU processes, for these have exponential decays in their autocorrelation functions.
The left hand graph of Figure 4 has a heavy initial decay which then falls less steeply at longer lags.
This immediately points us towards the use of the superposition of a number of OU processes for the

12Quadratic variation type estimators of the integrated volatility process
�
�2n
	

, have been used before us in Andersen,
Bollerslev, Diebold, and Labys (2000). They study the empirical correlograms and marginal distributions of the resulting
statistics. However, in their paper they use unadjusted data.
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continuous time volatility.
In this section we will assume the instantaneous volatility process

�
�2(t)

	
is made up by the addition

of m independent stationary processes
n
�2j (t)

o
. For ease of expositions we will assume13

�2(t) =

mX
j=1

�2j(t); �2j (t) � IG(�wj ; ); where
mX
j=1

wj = 1 and fwj � 0g :

Then�2(t) � IG(�; ), and soE(�2(t)) = � = �= andVar(�2(t)) = !2 = �=3. The corresponding
integrated volatility is

�2n =

mX
j=1

�2jn; where �2jn =

Z n�

(n�1)�

�2j (t)dt: (46)

An implication is thatVar(yn) = ��. Further, fors > 0,

Cov(y2n; y
2
n+s) = Cov

�
�2n; �

2
n+s

�
(47)

=

mX
j=1

wjCov
�
�2jn; �

2
jn+s

�

= !2
mX
j=1

wj}r��j (�s)

= !2
mX
j=1

wj�
�2
j f1� exp (��j�)g2 exp f��j�(s� 1)g :
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Figure 5: Fitted and raw autocovariance functions for the single series of 684,000 observations. The
x-axis is marked in days not 5 minute periods. The graphed fit uses a superposition of four independent
OU processes. Left hand graph draws the average autocovariance in the day, rather than graphing all
the 5 minute correlations.

In order to estimate the parameters of the model we used a fitting procedure which employed a non-
linear least squares comparison of the empirical autocovariance functionfcsg, based on the single time

13The inverse Gaussian assumptions will play no formal role in this analysis as it will be based only on the second order
properties of the model.
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series of length 684,000 observations, with the parameterised one given in (47). In particular the criterion
we minimised was

S =

3�288X
s=1

�
cs � Cov(y2n; y

2
n+s)

	2

+288

123X
s=3

(
1

288

288X
k=1

c288s+k �
1

288

288X
k=1

Cov(y2n; y
2
n+288s+k)

)2

:

The second term in this expression is slightly non-standard for we are working with the average autoco-
variances over each day of lags. The raw data is given in Figure 5, together with the corresponding fit
usingm = 4. The broad picture is a fast initial decay, together with a small amount of correlation at
longer lags.

m wj exp(�j�) !2 S
1 1.00 0.99988 0.303 -430.7
2 0.212 0.788 0.99995 0.99982 0.335 -346.1
3 0.017 0.064 0.919 0.99995 0.99982 0.9064 4.13 -336.9
4 0.008 0.030 0.061 0.9010.99995 0.99982 0.9931 0.7118.75 -334.8

Table 2:Fit of the autocovariance function using a variety of superpositions of OU processes. The fit is
based on the single series of around 684,000 observations. The number of processes is denoted bym.
The weights are denoted bywj , while the memory of the components isexp(�j�). The variance of the
volatility is written as! and appears inCov(y2n; y

2
n+s). Finally, S denotes sum of squares given above.

Table 2 shows the fitted parameters for the analysis. It shows the effect of the changing value of
m. For small values ofm longer term dependencies are focused on, while for larger values ofm the
longer term dynamics are clarified while the short term dynamics are picked up. The most interesting
feature of the table is that a very large percentage of the volatility changing in the process is basically
unpredictable. Hence we can think that this is merely a heavy tailed component of the exchange rate
movements. However, around ten percent of the volatility movements are largely predictable. It is these
effects which are more important when we measure returns at longer time horizons.

5.4 Tradition inference approaches

5.4.1 Likelihood

In principle we would like to use likelihood methods to estimate a fully parametric version of the model.
To be concrete we will work with theIG(�; )-OU process with no leverage. Then the likelihood func-
tion for � = (�; �; �; ; �)

f(y; �) =

Z
f(y1; :::; yT j�21; :::; �2T ;�; �)f(�21; :::; �2T ; �; ; �)d�21; :::;d�2T

=

Z ( TY
n=1

f(ynj�2n;�; �)
)
f(�21; :::; �

2
T ; �; ; �)d�

2
1; :::;d�

2
T :

is, unfortunately, not directly computable (see, for example, Kim, Shephard, and Chib (1998) and West
and Harrison (1997)). We can simulate fromf(�21; :::; �

2
T ; �; ; �), by first recalling that

�2n = �2�(n�)� �2� f(n� 1)�g where �2�(t) = ��1fz(�t)� �2(t) + �2(0)g; (48)

= ��1

�
z(�n�)� �2(n�)

	� �z f� (n� 1)�g � �2 f(n� 1)�g��
19



while noting that

�
�2(n�)

z(�n�)

�
=

�
e����2 f(n� 1)�g
z f� (n� 1)�g

�
+ �n; �n

L
=

 
e���

R �
0
e�tdz(�t)R�

0
dz(�t)

!
: (49)

Here thef�ng are i.i.d. and can be simulated using (31) or by other methods.

Example 5 Suppose the�2(t) is an OU process with�(�; �) marginals. Then the result in (32) applies
and we have

�n
L
= ��1

(
e���

PN(1)
i=1 log(c�1i )e��riPN(1)

i=1 log(c�1i )

)
; ri

i:i:d:� U(0; 1);

and definingc1 < c2 < ::: as the arrival times of a Poisson process with intensity��� andN(1) as the
corresponding number of events up until time1.

In general we do not know the explicit form off(�21; :::; �
2
T ; �; ; �), and so we cannot hope to solve

for f(y; �) analytically or use an importance sampler to estimate the likelihood function. However, estim-
ating the likelihood function without using an importance sampler is likely to be hopelessly inaccurate.
Hence direct likelihood methods are not feasible in our case.

Although the likelihood function is not directly available it may be possible that we could carry
out Bayesian inference based on Markov chain Monte Carlo (MCMC) methods (Gilks, Richardson,
and Spiegelhalter (1996)) to draw samples from�jy if we place a prior on�. This method has proved
effective for log-normal SV models (see Jacquier, Polson, and Rossi (1994) and Kim, Shephard, and
Chib (1998)) using the idea of data augmentation designing a MCMC for sampling from�; �2jy, where
�2 =

�
�21; :::; �

2
T

�
. A generic scheme for carrying this out is given below:

1. Initialize�2 and�.

2. Update�2 from�2j�; y , using a Metropolis-Hastings algorithm (one element at a time (e.g. Carlin,
Polson, and Stoffer (1992)) or using a blocking strategy (e.g. Shephard and Pitt (1997))).

3. Perform a Metropolis update on�jy; �2:

4. Goto 2.

Cycling through 2 to 3 is a complete sweep of this sampler. The MCMC sampler will require us to
perform many thousands of sweeps to generate samples from�; �2jy. Wong (1999) has shown that even
in cases where it is possible to produce quite good samplers for drawing from step 2 of this procedure,
in effect sampling from�2jy; �, the overall performance of the sampler is extraordinarily poor. This is
because knowing�21; :::; �

2
T basically determines� in a simple OU model — that is when we know the

volatility we are over-conditioning14. Hence the sampler is completely unable to move speedily through
the sample space. This is not the case in a log-normal SV model (see Kim, Shephard, and Chib (1998)).
This very unfortunate effect seems inevitable for this type of parameterisation.

The above problems can potentially be removed if we reparameterise the MCMC problem to work
more directly in terms of the components of the shock termsf�ng. Recall they have an infinite series

14The easiest way of thinking about this is to work with a discrete time version of this type of model where

�
2

n = e
��

�
2

n�1 + �n;

where�n > 0 and is i.i.d.. Then
e��

� min
n

�2n=�
2

n�1:

This suggests the likelihood function will have a mode very close toe��. Indeed it can be shown that the maximum likelihood
estimator of� is superconsistent for this type of problem (see Nielsen and Shephard (1999) and the references contained within).
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representation (31) which can be used to simulate from them. Each draw in these infinite series are
based on the sequences, independent overn, faing andfring. Here ther0ins are independent copies of a
uniform random variabler on [0; 1] anda1n < ::: < ain < ::: are the arrival times of a Poisson process
with intensity1. Suppose we truncate the sequence afterK random variables for each value ofn and
write a(n) = (a1n; :::; aKn)

0 andr(n) = (r1n; :::; rKn)
0, anda = (a(1); :::; a(T )) andr =

�
r(1); :::; r(T )

�
.

Then we could perform MCMC based inference based upon sampling from

f(�; a; r; �2(0)jy) / f(yj�; a; r; �2(0))f(�2(0)j�; )f(a; r):

This is straightforward for

f(yj�; a; r; �2(0)) =
TY
n=1

f(ynj�2n);

as�; a; r; �2(0) determine
�
�2n
	

. In principle this would only be an approximation (due to the truncation
of the infinite series representation), as it would be based uponK variables, however ifK was chosen as
a large number then it is likely to perform well.

So far we have not implemented the above strategy as it is computationally burdensome.

5.4.2 Best linear predictors

In order to simplify the exposition suppose that� = � = 0 (which may be reasonable for exchange rate
data)15. Then we note thatynj�2n � N(��; �2n) and so�

yn
y2n

�
=

�
��

�2�2 + �2n

�
+ un; where un �MD; (50)

Var(u1n) = E
�
�2n
�
= ��

Cov(u1n; u2n) = 2��E
�
�2n
�
= 2��2�:

Var(u2n) = 4�2�2E
�
�2n
�
+ 2E

�
�4n
�

= 4�2�3� + 2
�
2!2r��(�) + �2�2

	
:

Further
�
�2n; zn

�
is a linear process which is driven by the i.i.d. noisef�ng. It is easy to see that

E(�n) = �

�
1� e���

��

�
; Var (�n) = 2!2

�
1
2

�
1� e�2��

� �
1� e���

��
1� e���

�
��

�
:

These results imply that a linear state space representation of the
�
yn; y

2
n

�
(with uncorrelatedfung and

f�ng)16 is �
yn
y2n

�
=

�
��

�2�2

�
+

�
0 0

��1 0

�
�n + un; with

�n+1 =

� fz(� (n+ 1)�)� z (�n�)g+ �2 (n�)� �2 f(n+ 1)�g
�2 f(n+ 1)�g

�

=

�
0
�
1� e���

�
0 e���

�
�n +

�
�2n � �1n
�1n

�
:

which allows us to use the Kalman filter (see, for example, Harvey (1989)) to provide a best linear
(based onyn andy2n) predictor of�2n and the associated mean square error. Let us write these quantities

15The extension to the leverage case would writeyn = ��+ zn + u1n andy2n = �2�2 + �2n + E(z2n) + un.
16As �2n has an ARMA(1,1) representation the minimial dimension of the state space form is two. However, it is possible to

removez(� (n+ 1)�)�z (�n�) from the transition equation and have a single state variable. This would result in correlated
measurement and transition noise.
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assnjn�1 andpnjn�1, then it is straightforward in the case that� = 0 to demonstrate that ifs1j0 � 0

thensnjn�1 is always non-negative and, in steady state, takes the form of a GARCH(1,1) recursion in the
squares of the data. We should note that these estimates of volatility are really semi-parametric, in the
sense that they do not rely on any distributional assumptions about the volatility process only on�; !2; �

and�17.
A simple way of estimating the parameters of this model is to use a (Gaussian) quasi-likelihood based

around the output from the Kalman filter (e.g. Harvey (1989)). The asymptotic theory associated with
the maximum quasi-likelihood estimator is worked out in Dunsmuir (1979). It will be asymptotically
equivalent to an estimator defined via the Whittle likelihood.

The above arguments also generalise to where we summ independent OU processes (46). Suppose

E(�2j (t)) = wj� andVar(�2j(t)) = wj!
2. Then we have

�
�2jn; zjn

�
are independent overj and are

again linear processes driven by noise
�
�jn
	

. In this setup

E(�jn) = wj�

�
1� e��j�

�j�

�
; Var

�
�jn
�
= 2wj!

2

�
1
2

�
1� e�2�j�

� �
1� e��j�

��
1� e��j�

�
�j�

�
:

The resulting representation has2m state variables. Further, the only change in the measurement equa-
tion is that

E
�
�4n
�

=
�
E
�
�2n
�	2

+Var
�
�2n
�

= 2!2
mX
j=1

wjr
��
j (�) + �2�2:

5.4.3 Particle filter

The Kalman filter’s estimate of�2n is the best linear estimatorsnjn�1 but it is not necessarily the efficient
E(�2njFn�1), whereFn�1 denotes the information available at time(n� 1)�. In this part of the paper
we show this quantity can be recursively computed using a particle filter (see Pitt and Shephard (1999a)
and Doucet, de Freitas, and Gordon (2000) for a book-length review of this material) and, further, we
will indicate that the linear and efficient estimators are close to one another.

A particle filter is a method for approximately, recursively sampling from the filtering distribution of
�2njFn for n = 1; :::; T . It has the following basic structure

Basic particle filter (Gordon, Salmond, and Smith (1993))

1. Assume a sample�2(1)(n�); :::; �2(M)(n�) from �2n; �
2(n�)jFn. Setn = 0.

2. For each
�
�2(m)(n�)

	
generateK offspringn
�
2(m;k)
n+1 ; �2(m;k)((n+ 1)�)

o
; k = 1; :::;K;

using (48) and (49). Compute

logw�m;k = �1

2
log �

2(m;k)
n+1 � y2n+1

2�
2(m;k)
n+1

; k = 1; :::;K:

3. Calculate normalised weightswm;k / w�
m;k

which sums to one overm andk.

17For related ideas, in the context of discrete time log-normal SV models, see Harvey, Ruiz, and Shephard (1994) and Harvey
and Shephard (1996) where a linear state space form is constructed forlog y2n. Estimates based on this representation are known
to be inefficient (Jacquier, Polson, and Rossi (1994)) principally due to the variance caused by inliers (small values ofy2n). This
particular problem does not necessarily carry over to our current treatment.
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4. Resample, with unequal weights, amongst the
�
�2(m;k)((n+ 1)�); wm;k

	
to produce a new

sample�2(1)((n+ 1)�); :::; �2(M)((n+ 1)�). This sample is approximately from�2n+1jFn+1

5. Goto 2.

As M gets large so the particle filter becomes more accurate, with the samples truly coming from
the required filtering densities. In practice values ofM of around 1,000 to 10,000 are effective, while we
typically takeK as3. Figure 6 gives an example where we simulate from an OU process for

�
�2(t)

	
and

then use both the Kalman filter and a particle filter to estimate the unobserved integrated volatility
�
�2n
	

process. The top of the Figure shows that both procedures give rough estimates of the true integrated
volatility with the major feature being that the two estimates are close together. Extensive work on this
aspect suggests that the particle filter is only very marginally more efficient than the best linear estimator.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

.2
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.6

Estimated volatility given current information drawn against time

True Linear filter
Particle

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6

.01

.02

.03

.04
Var of volatility given current information v. estimated volatility

Figure 6: OU process with�(�; �) marginals. Throughout,� = 1, � = 3, � = 8:5, � = 0:01.
Top: against time we plot the true�2n, the best linear estimator and the particle filter’s estimator of
E(�2njFn�1). Bottom: againstE(�2njFn�1) we plotVar(�2njFn�1) where both terms are estimated
using the particle filter. To do this we takeT = 2; 300.

The bottom of Figure 6 graphs the particle filters estimate of Var(�2njFn) against E(�2njFn). The
graph shows that the variance increases with the level of volatility, which is not surprising given the
process that generates the integrated volatility but is not reflected in the corresponding calculations based
on the Kalman filter.

5.4.4 Estimating equations

Earlier we derived general expressions for the second order moments of the return sequencefyng. In
a recent paper Sørensen (1999) has studied how to use these moments to construct optimal estimating
equations for OU based SV models. These results, together with more general frameworks presented
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in Sørensen (1999) and Genon-Catalot, Jeantheau, and Laredo (1998), provide powerful methods for
estimating these types of models. However, we are yet to study their effectiveness in practice.

5.4.5 Indirect inference

Equations (48) and (49) can be used to simulate a return sequencefyngwithout any form of discretisation
error. However, it is now clear that this is insufficient for us to conduct straightforward likelihood based
inference, even when we are prepared to use MCMC or particle filter based methods. This situation is
not unfamiliar in econometrics where a new form of inference method, now generally called indirect
inference, has been developed by Smith (1993) to deal with such situations (see Gourieroux, Monfort,
and Renault (1993) and Gallant and Tauchen (1996) for clear expositions). The basis of this approach is
to use an incorrect “auxiliary model”, such as a GARCH(1; 1) model, as an approximation to the process
and then correct for the approximation by simulation.

To establish notation writey as the data,� as the parameters indexing the SV model,byS(�) as a
simulation of lengthS from the SV model based upon the parameter� and to be the parameters of the
GARCH(1; 1) model. Then indirect inference for� follows the approach.

Indirect inference: auxiliary model is GARCH

1. Find the MLE of b = arg max logLGARCH( ; y);

as if the data had been produced by the GARCH model.

2. Findb� such that b = arg max logLGARCH( ; byS(b�)):
That is change the simulated data until its GARCH version of the MLE is the same as that which
results from the data.

We call b� the indirect estimator of� and typically base it on very large values ofS (many times
the sample sizeT ). It is typically consistent and asymptotically normal (e.g. Gourieroux and Monfort
(1996)). Of course it is also inefficient.

6 Further issues

6.1 Subordination

The modelling of financial processes by subordination of Brownian motion goes back to the paper by
Clark (1973). Recent work on this topic includes Ghysels and Jasiak (1994), Conley, Hansen, Luttmer,
and Scheinkman (1997) and An´e and Geman (2000). Subordination of Brownian motion is taken here
in a general sense. It means a time transformation by a positive monotonically increasing stochastic
process�(t) that tends to infinity fort tending to infinity and is independent of the Brownian motionb.
The resulting process isb f�(t)g.

Now consider models of the type

x�(t) =

Z t

0

�(s)dw(s); (51)

where the processes� andw are independent,w being a Brownian motion and� being positive and
predictable and such that�2�(t) ! 1 for t ! 1. It turns out that, in essence, there is equivalence
between the model formulation by (51) and the model formulation by subordination with an independent
subordinator� .
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To see this, note first that the processx� is a continuous local martingale whose quadratic character-
istic satisfies[x�](t) = �2�(t). As is well known, the Dubins-Schwarz theorem (see, for instance, Rogers
and Williams (1996, p. 64)) tells us that, if we define processes andb by

(t) = inffu : [x�](u) > tg and b(t) = x�((t))

thenb is a Brownian motion and

fx�(t)gt�0 L
= fb([x�](t))gt�0 (52)

To establish the equivalence it remains to prove that the processesb and�2� are independent. But this is
equivalent to showing that

E [exp fi(f � [x�] + g � b)g] = Efexp (if � [x�])gEfexp (ig � b)g: (53)

But this is straightforward to show using iterative expectations by first conditioning on�.

6.2 Pricing

6.2.1 Non-arbitrage

In this subsection we will show that our leveraged SV model does not allow arbitrage18. We study the
process in parts

x�(t) = x�0(t) + ��2�(t) + ��z(�t) (54)

where�z(t) = z(t)� t�, and

x�0(t) =

Z t

0

�(s)dw(s) with �2(t) = e��t
Z t

�1

e�sdz(s):

Once again we assumew and z are independent, while we writefFtgt�0 to represent the filtration
generated by the pair of processes(w; z). Further, in establishing non-arbitrage only finite time horizons
will be considered, i.e. we restrictt to the interval[0; T ] for some, arbitrary,T > 0.

We have to verify the existence of an equivalent martingale measure under which the processexpfx�(t)g
is a local martingale. LetP be the original probability measure governing the behaviour ofw andz over
the time interval[0; T ], let� = � + 1

2
, and let�0 be the solution to the equation

�(�+ �0)� �(�0) = �� (55)

existence of the solution being assumed. Now, define the processd(t) by d(t) = expfu�(t)g with

u�(t) = ��x�0(t)�
1

2
�2�2�(t) + �0�z(�t)� �t��(�0) (56)

and where��(�) = �(�) � �� is the cumulant function corresponding to the L´evy process�z, i.e. the
cumulant function of�z(1). Note that equation (55) may be reexpressed as

��(�+ �0) = ��(�0) (57)

Furthermore, letP 0 be the measure given bydP 0 = d(T )dP .

Proposition 6.1Under the above setup we have

18In the case of no leverage,� = 0, non-arbitrage follows essentially from Lipster and Shiryayev (1977, Ch. 6) and is well
known. The arguments given below combines their technique with the Esscher transformation technique well known for L´evy
process models.
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(i) the processd(t) is a mean1 martingale, and henceP 0 is a probability measure

(ii) the price processexpfx�(t)g is a martingale underP 0.

2

The proof of this result is given in the Appendix.
ExampleSupposez(1) � IG(�; ). Then

�(�+ �)� �(�) = �[f1 � 2�=2g1=2 � f1� 2(�+ �)=2g1=2]
= 2(�=)�[f1� 2�=2g1=2 + f1� 2(�+ �)=2g1=2]�1
= 2��[f1� 2�=2g1=2 + f1� 2(�+ �)=2g1=2]�1

Seeking a solution to (55) is therefore equivalent to solving

f1� 2�=2g1=2 + f1� 2(�+ �)=2g1=2 = 2 (58)

Suppose� � 0, which is the econometrically relevant case. Then, as� increases from�1 to its upper
bound2=2 the left hand side of (58) decreases monotonically from1 to j�jp2=. Consequently, (58)
is solvable if and only ifj�j � p

2 (which in practice is not a very binding constraint).
2

6.2.2 Derivatives

The fact that our SV model is arbitrage-free means there exists at least one equivalent martingale measure
(EMM) with which we can compute derivative prices. An important question is which one to use? In a
recent paper Nicolato and Prause (2000) have tackled this problem for our model when�2(t) � IG in
the special case of� = 0. They have shown that a particularly convenient option price formula results
if we choose to price the derivative with the EMM, writtenQ, which is closest to the physical measure,
writtenP , in a relative entropy sense

R
log (dQ=dP ) dQ. This way of selecting from a set of EMM was

advocated in F¨ollmer and Schweizer (1991) using an elegant hedging argument. In particular if we write

C fK;x�(n�); n�+�g

for the price at timen� of a European call option onx�(t), with initial valuex�(n�), strike priceK
and expiration daten�+� we have that

C fK;x�(n�); n�+�g = EQ fx�(n�+�)�Kg+

=

Z
R+

BS

�
K;x�(n�);

1

�
�2n+1; n�+�

�
dP

�
1

�
�2n+1j�2(n�)

�

whereBS
�
K;x�(n�); 1

�
�2n+1; n�+�

	
denotes the Black-Scholes price of the option with initial

valuex�(n�), strike priceK and constant volatility1
�
�2n+1. This is particularly straightforward for the

law of the volatility process is the same under the physical measure and the EMM. This result extends to
more general cases as long as the volatility process is independent of the Brownian motion; in particular,
it holds under superposition of OU processes.

In practice we can unbiasedly estimateC f�g simply by simulation for we can quickly draw many
samples from�2n+1j�2(n�) using the series representations developed in Section 2 of this paper. Feas-
ible alternatives to this approach include using either saddlepoint approximations or Fourier inversion
methods based on the characteristic function, underQ, of

x�(n�+�)jx�(n�); �2(n�):

Here we will derive the cumulant generating function, while Scott (1997) and Carr and Madan (1998)
discuss the computations involved in moving to option prices from this type of function.
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The required function is, for the canonical case ofn = 1 and writingr to denote the riskless interest
rate19,

K f� z x�(�)g = log EQ
�
exp f�x�(�)g jx�(0); �2(0)�

= fx�(0) + r�g � +K

��
�� +

1

2
�2
�
z �21j�2(0)

�
:

Hence the only unsolved problem is to compute the cumulant generating function of�21j�2(0).
Recall

�21 = ��1
�
z(��)� �2(�) + �2(0)

	
=

Z �

0

"(�� s;�)dz(�s) + "(�;�)�2(0); where "(t;�) = ��1(1� e��t):

Consequently it is sufficient to work with

K
�
� z �21j�2(0)

	
= log E

�
e���

2
1 j�2(0)

�
= ��"(�;�)�2(0) + Kf� z ��1

Z ��

0

(1� e���+u)dz(u)g

= ��"(�;�)�2(0) +

Z ��

0

Kf���1(1� e���+u) z z(1)gdu

= ��"(�;�)�2(0) + ��1
Z �

0

Kf�"(�� s;�) z z(1)gds

= ��"(�;�)�2(0) + ��1
Z �

0

Kf�"(s;�) z z(1)gds

= ��"(�;�)�2(0) + ��1
Z �

0

k(�"(s;�))ds

= ��"(�;�)�2(0) + ��2
Z 1�e���

0

(1� u)�1k(��1�u)du:

Example 6 Supposez(1) � IG(�; ), implyingk(�) = � � �(1� 2�2�)1=2. Then

Z 1�e���

0

(1� u)�1k(��1�u)du = �

Z 1�e���

0

1� (1 + {u)1=2

1� u
du

= � f��� I({;�)g ;

where{ = �2�2��1� and

I({;�) =

Z 1�e���

0

(1 + {u)1=2

1� u
du

= ��
p
1 + { + 2

��
1� b({) +

p
1 + { log

fp1 + { + b({)g
fp1 + { + 1g

��
:

Hereb({) =
p
1 + { � {e���.

19This is a slight abuse of notation for we have previously assumedx�(0) = 0, which is not our intention here.
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The result that we have the analytic cumulant generating function, underQ, of x�(�)jx�(0); �2(0)
seems important for we can now regard the option pricing problem as being analytically solved for this
class of models. In the financial economics literature the only equivalent result for SV models has been
found by Heston (1993) and Duffie, Pan, and Singleton (2000) (see also Stein and Stein (1991)) working
with a square root process

d�2(t) = ����2(t)� �
	
dt+ ��(t)db(t):

6.3 Trade-by-trade dynamics

Recently vast datasets recording the price, times and volumes of actual market transactions have become
routinely available to researchers. It is interesting to try to link empirically plausible models of these
trade-by-trade pricing dynamics with our SV models. To enable us to present general results we will
adopt the Rydberg and Shephard (2000) framework for tick-by-tick data. We model the number of trades
N(t) up to timet as a Cox process (which is sometimes called a doubly stochastic point process) with
random intensity�(t) = ��2(t) > 0. In general we write� i as the time of thei� th event and so�N(t)

is the time of the last recorded event when we are standing at calender timet.
Then a stylised version of the Rydberg-Shephard framework writes the current log-price as

x��(t) = ��N(t) + ��2�
�
�N(t)

	
+

1p
�

N(t)X
k=1

yk; (59)

where for sake of simplicity thefyig are assumed independent standard normal and�2�(t) =
R t
0
�2(u)du.

We assume the Cox process and thefyig are all completely independent. This model models prices as
being discontinuous in time, jumping with the arrivals from the Cox process. Then we have the following
result.
Theorem 6.1For the price process (59), if thefyig are assumed independent standard normal,�2�(t) =R t
0
�2(u)du andN(t) is a Cox process with random intensity�(t) = ��2(t) > 0, then

lim
�"1

x��(�) L! x�(�):

Proof: Given in the Appendix.
This means that the tick-by-tick model will converge to a stochastic volatility model as the amount of

trading gets large and the average tick size becomes small. We should note that the requirement that the
fyig are independent standard normal can be relaxed to allow general sequences offyig which exhibit a
central limit theorem for the sample average. This is particularly useful for in practice thefyig live on a
lattice and have quite complicated dependence structures which are not easy to model (see Rydberg and
Shephard (2000) and Rydberg and Shephard (1998)).

6.4 Vector OU processes

6.4.1 Construction of the process

So far our discussion has dealt with univariate processes. In this subsection we discuss extending
this to the case of a vector of OU processes with dependence between the series. We introduce the
q�dimensional volatility process

�2(t) =
�
�21(t); :::; �

2
q(t)
�

via the BDLPs z(t) = (z1(t); :::; zq(t))

as follows. The multivariate form of (14) is

k(�) = log E [exp f� h�; z(1)ig] = �
Z
R
q
+

�
1� e�h�;xi

�
W (dx); (60)
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where� = (�1; :::; �q), x = (x1; :::; xq), R+ = (0;1) and h�; xi =
Pq

i=1 �ixi, andW is a Levy
measure onRq+, i.e. a measure satisfyingZ

R
q
+

min
n
1; h�; xi2

o
W (dx) <1; for all � 2 Rq+:

Now let z = (z1; :::; zq) be aq�dimensional Lévy process withlog E [exp f� h�; z(1)ig] as in (60).
Suppose for simplicity, thatW has a densityw with respect to Lebesgue measure, and letwi(xi) be the
i� th marginal ofw, i.e.

wi(xi) =

Z
R
q�1
+

w(x)dx1:::dxi�1dxi+1:::dxq:

Imposing the condition Z 1

1

log (xi)wi(xi)dxi <1

we may then, on account of Lemma 2.1, define the stationary process�2i (t) by

�2i (t) =

Z 0

�1

esdzi(�it+ s):

Note that

log E [exp f��izi(1)g] = �
Z 1

0+

�
1� e��ixi

�
wi(xi)dxi:

The full specification of�2 then rests on the choice ofw, which we may aim to reflect the depend-
encies amongst the volatility processes�21(t); :::; �

2
q(t).

This approach is presently under development. Here we just present a simple example.

Example 7 Let q = 2 and letw, defined in polar coordinates(r; a), be

ew(r; a) = g(r; �; )b(a;�)

whereg(r; �; ) is the Ĺevy density of the BDLP for the OU-IG(�; ) process and

b(a;�) = B(�; �)�1
�
2

�
a

�
1� 2

�
a

����1
;

� being a positive parameter. In the limit for� # 0 we obtain thatz1(s) and z2(s) are independent
BDLP/IG-OU processes, while for� " 1 the processesz1(s) and z2(s) tend to one and the same
BDLP/IG-OU process. Thus� serves as a dependence parameter.

6.4.2 Series representations

Series representations of multivariate L´evy processes are available from the work of Rosinski (1990) and
Rosinski (1999). Here we restrict discussion to presenting a result from the simplest type of setting. A
fuller account is given in Barndorff-Nielsen and Shephard (2000).

Consider aq�dimensional BDLP processz with densityw(x) as in the subsection directly above
and let ew(r; a) (a = (a1; :::; qq�1)) be the representation ofw in polar coordinates. We assume, for
simplicity (and as in Example 7), thatew factors asew(r; a) = g(r)b(a) whereg is a one-dimensional
Lévy density onR+ andb is a probability density. Now let

G�1(s) = inf
�
r > 0 : G+(r) � s

	
; where G+(r) =

Z 1

r

g(�)d�:
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Proposition 6.1 Let aj , j = 1; 2; ::: be the arrival times of a Poisson process with rate1 and letuj,
j = 1; 2; ::: be an i.i.d. sequence of unit vectors independent offajg, such that the law ofuj is that
determined by the probability densityb. Furthermore, fors 2 [0; 1] let

~z(s) =

1X
j=1

1[0;s](rj)G
�1(aj)uj (61)

wherefrjgj2N is an i.i.d. sequence of random variables uniformly distributed on[0; 1] and independent
of the sequencesfajgj2N andfujgj2N. Then the series (61) converges a.s. and

fz(s) : 0 � t � 1g L
= f~z(s) : 0 � t � 1g (62)

2

Furthermore we have
Proposition 6.2If fi, i = 1; :::; d, are positive and integrable functions on[0; 1] then

Z 1

0

fi(s)dzi(s)
L
=

1X
j=1

G�1(aj)uijfi(rj) (63)

for i = 1; :::; d and theuij i.i.d. with law determined byb.
2

6.5 Multivariate SV models

6.5.1 Model structure

A simpleq-dimensional version of the SV model for log-prices setsx�(t) =
�
x�1(t); :::; x

�
q(t)

	
with

dx�(t) = f�+ ��(t)g dt+�(t)1=2dw(t);

where�(t) is a time varying stochastic covariance matrix and� is a vector of risk premiums. Corres-
ponding to this model structure is the integrated covariance

��(t) =

Z t

0

�(u)du:

Then definingyn = x�(n�)� x� f(n� 1)�g we have that

ynj��n � N(��+ ���n;�
�
n);

where��n = ��(n�)� �� f(n� 1)�g.
We can estimate��(t) using quadratic variation forx�(t) is a continuousq�dimensional local mar-

tingale plus a process which is continuous with bounded variation and so

[x�](t) =p� lim
r!1

X
fx�(tri+1)� x�(tri )gfx�(tri+1)� x�(tri )g0 = ��(t) (64)

for any sequence of partitionstr0 = 0 < tr1 < ::: < trmr
= t with supiftri+1 � tri g ! 0 for r !1.
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6.5.2 Factor models

An important problem is to specify a model for��(t). One approach is to do this indirectly via a factor
structure

�(u) = diag(
�
�21(u); :::; �

2
q(u)

	
) + �2q+1(u)��

0:

Here� =
�
�1; :::; �q

�
are unknown parameters and the�1; �2; :::; �q+1 are mutually independent OU

processes which are square integrable and stationary. It has common, but differently scaled, stochastic
volatility model and individual stochastic volatility models for each series. It generalizes straightfor-
wardly to allow for two or more factors. This style of model is in keeping with the latent factor models
of Diebold and Nerlove (1989), King, Sentana, and Wadhwani (1994), Pitt and Shephard (1999b) and
Chib, Nardari, and Shephard (1999). Its motivation is that in financial assets it is often the case that
returns move together, with a few common driving mechanisms. The common factors allow us to pick
this up in a straightforward and parsimonious way. This model could be generalised by allowing the
volatilities to be dependent using the multivariate OU type processes introduced in the previous subsec-
tion.

Finally, we should note that generating economically useful models via direct subordination argu-
ments seems difficult even when we have vector OU processes. Letb(t) be a vector of independent
Brownian motions, then a multivariate, rotated, subordinated model would be�b

�
�2(t)

�
, for some mat-

rix � and�2(t) a vector of dependent OU processes. However, such a model has a time invariant correl-
ation matrix of returns, which is unsatisfactory from an economic viewpoint (e.g. asset allocation theory
depends on correlations).

7 Conclusion

Non-Gaussian processes driven by L´evy processes are both mathematically tractable and have important
applications. It is possible to build compelling SV models using OU processes to represent volatility.
Log returns from these types of models have many of the properties of familiar discrete time GARCH
models. These SV models are empirically reasonable as well as having many appealing features from a
theoretical finance perspective. In particular our class of models does not allow arbitrage and gives very
simple expressions for standard option pricing problems under stochastic volatility.

Although the treatment of OU processes we have presented in this paper is extensive, there are a
number of unresolved issues. A principle difficulty is that exact likelihood inference for SV models in
continuous time but with discrete observations seems difficult. We hope that others may be able to solve
this problem.

The generalisation to the multivariate case is at its infant stage and much work has to be carried out
in order to make this a very flexible framework.

More generally, we believe that L´evy driven processes have great potential for applications to fields
other than finance and econometrics, for instance to turbulence studies. It can also be further developed to
a general toolbox for time series analysis. In this connection, we note that while in the present paper we
have concentrated on integrated processesx�, one can also introduce very tractable stationary processes
x driven by Lévy processes and having continuous sample paths, a simple and appealing possibility being
the stationary solutions to stochastic differential equations of the form

dx(t) =
�
�+ ��2(t)� �x(t)

	
dt+ �(t)dw(t) (65)

with �2(t) an OU process as in (2). See Barndorff-Nielsen and Shephard (2000) for a discussion of some
of the work on this topic and its use in interest rate theory. Another alternative is to produce a positive
stationary process by driving (65) not by Brownian motion but by another independent L´evy process
with positive increments.
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9 Appendix

9.1 Background

This Appendix collects various proofs and results not given in the main text of the paper. It will be
convenient to use the following notation for the cumulant function of an arbitrary random variablex

C(� z x) = log E
�
ei�x

�
; while writing K f� z xg = log E

�
e��x

�
;

in cases wherex is positive. Similar notation applies for vector variates.

9.2 GIG Lévy density

Proof of Theorem 2.2 Let z � GIG(�; �; ). From Halgreen (1979) we have that if� � 0 then

�Kf� z zg = ��2
Z 1

2=2

g�f2�2(y � 2=2)g log(1 + �=y)dy

Differentiating both sides of this equation with respect to� and transforming the integral by setting� =
y � 2=2 we obtain

@ �Kf� z zg
@�

= ��2
Z 1

0

g�f2�2�g(2=2 + � + �)�1d�

= ��2
Z 1

0

g�f2�2�g
Z 1

0

exp
��(2=2 + � + �)x

	
dxd�

= �
Z 1

0

e��xxu(x)dx

and this shows that

u(x) = �2x�1
Z 1

0

e�x�g�f2�2�gd� exp
��2x=2�

is the Lévy density ofz.
For� > 0 the expression foru follows from the convolution formula

GIG(�; �; ) = GIG(��; �; ) � �(�; 2=2)
where�(�; �) is the gamma distribution with probability density

��

�(�)
x��1e��x

and corresponding L´evy density�x�1e��x:
2
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9.3 Non-arbitrage

Proof of Proposition 6.1(i) For 0 � s � t � T we find

EP fd(t)jFsg = EPfEP fd(t)jz;FsgFsg

= e��t��(�
0)EP

�
exp

�
�0�z(�t)� 1

2
�2�2�(t)

�
EPfexp f��x�0(t)g j�;FsgjFs

�

and here

EP

n
e��x

�

0
(t)j�;Fs

o
= exp

�
��x�0(s) +

1

2
�2f�2�(t)� �2�(s)g

�
so that

EPfd(t)jFsg = d(s) exp
���(t� s)��(�0)

	
EP fexp

�
�0f�z(�t)� �z(�s)g	 jFsg = d(s)

Thusd(t) is a martingale and takings = 0 we have thatEP fd(t)g = 1 = EP 0f1g.
(ii) Note first that

� � 1

2
�2 + (1� �)2 = 0 (66)

By the martingale property ofd(t) we have, for arbitraryFt measurable random variablesyt,

EP 0fytjFsg = EP fytd(T )=d(s)jFsg = EP fytd(t)=d(s)jFsg (67)

Hence

EP 0 [expfx�(t)gjFs] = EP [expfx�(t)gd(t)=d(s)jFs ]
= expfx�(s)� �(t� s)��(�0)gEP

�
exp

�
(�+ �0)f�z(�t)� �z(�s)g	 J jFs	

where
J = ef��

1

2
�2gf�2�(t)��2�(s)gEP fe(1��)(x�0(t)�x�0(s))j�;Fsg

However, by (66),
J = ef��

1

2
�2+(1��)2gf�2�(t)��2�(s)g = 1

so that, in view of condition (57),

EP 0fexpfx�(t)gjFsg = expfx�(s)� �(t� s)��(�0)gEP
�
exp

�
(�+ �0)f�z(�t)� �z(�s)g	 jFs�

= exp
�
x�(s)� �(t� s)

�
��(�+ �0)� ��(�0)

	�
= expfx�(s)g

2

9.4 Trade-by-trade dynamics

Lemma 9.2 Let N(t) be a Cox process with random intensity�(t) = ��2(t) > 0. We write� i as
the time of thei � th event and so�N(t) is the time of the last recorded event when we are standing at

calender timet. Then for� !1 we have that�N(t)
p! t.

Proof: It suffices to show that for every" > 0 we have that

Pr (no event in[t� "; t]) ! 0 as� !1.
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Now, via conditioning on the intensity process we find, for every�1 > 0,

Pr (no event in[t� "; t]) = E fPr (no event in[t� "; t] j�(:))g

= E

�
exp

�
�
Z t

t�"

�(s)ds

��

= E

�
exp

�
��
Z t

t�"

�2(s)ds

��
= E

�
exp

��� ��2�(t)� �2�(t� ")
		�

= E
�
1f�2�(t)��2�(t�")>�1g exp

��� ��2�(t)� �2�(t� ")
		�

+E
�
1f�2�(t)��2�(t�")��1g exp

��� ��2�(t)� �2�(t� ")
		�

� Pr
�
�2�(t)� �2�(t� ") � �1

	
+ e��1�

Consequently

lim
�"1

supPr (no event in[t� "; t]) � Pr
�
�2�(t)� �2�(t� ") � �1

	
and since this holds for all�1 > 0 the conclusion of the Lemma follows.
2

Proof of Theorem 6.1 It is helpful to rewrite the process as

x��(t) = ���t� �N(t)

	
+ �

�
�2�(t)� �2�

�
�N(t)

	�
+ ��2� (t) + �t+

1p
�

N(t)X
k=1

yk:

We obtain from Lemma 9.2 and the continuity of�2�(t) that the limiting behaviour in the distribution of
x��(t), as� !1, is the same as that of

x��(t) = �t+ ��2� (t) +
1p
�

N(t)X
k=1

yk:

Further, for the characteristic function ofx�
�
(t) we find that

E [exp fi�x��(t)g] = exp (i�t�) E

2
4exp�i���2�(t)	Eexp

8<
:i� 1p

�

N(t)X
k=1

yk

9=
; j�(�)

3
5

= exp (i�t�) E

"
exp

�
i���2�(t)

	
Eexp

(
i�

r
N(t)

�
yN(t)

)
j�(�)

#
;

whereyN(t) =
q

1
n
(y1 + :::+ yn). Trivially, conditionally on�(�) we have thatN(t)=�

a:s:! �2�(t) as

� !1 andyN(t) � N(0; 1) exactly. Thus

lim
�"1

E [exp fi�x��(t)g] = lim
�"1

E [exp fi�x��(t)g]

= lim
�"1

exp (i�t�) E
�
exp

�
i�
�
��2�(t) + ��(t)u

�	�
;

whereu � N(0; 1) and is independent of�2�(t). That is, the limiting distribution ofx�
�
(t) is the same as

the law ofx�(t). This argument is easily extended to convergence of all finite dimensional distributions

of x�
�
(t), i.e.x�

�
(�) L! x�(�).

2
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