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Abstract

The single-agent smash and grab problem takes the form
MaxxU(x) ·h(x). The agent selects a target value (how much
to grab). The probability that he will receive (get away with)
x is h(x),.the cumulative probability distribution of the max-
imum achievable level of x. Generalizations are developed to
two agents. Agent i (i = 1, 2) maximizes U i(xi) · h(x1, x2).
SigniÞcant special cases are seen when U i(xi) = xi (expected-
return maximization); or when h(x1, x2) = h(x1 + x2) (cut-
ting slices from a cake of uncertain size). The players may
choose their values independently (Nash game); in a prede-
termined sequence; or in a game of attrition. Simple exam-
ples exhibit second-mover advantage. which is discussed in
detail.
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1.1 The Smash-and-Grab Problem

In my hand I hold an envelope. Inside is a piece of paper on which a value
in terms of money is enscribed. Please take part in a small experiment.
Take a sheet of paper and write down a sum of money; sign the paper
and pass it to me. One of these returns will be selected at random. If
that is your return, and if the sum which you have written down is less
than or equal to the sum enscribed inside the envelope, you will receive
what you have written down. Otherwise you will get nothing. Plainly
you need to know more to make a decision. To help you I will tell you
that the sum written in the envelope is randomly generated by a process
which has uniform density on the interval ($1m,$2m). Before you get
too excited I had better admit at once that I am teasing you. I cannot
perform the experiment because the ESRC shamefully turned down my
application for a grant of $1m to fund it.
But wait a minute; why was my application for only $1m? That was

because I take it for granted that my audience at the Royal Economic
Society annual conference will consist exclusively of rational non-risk
loving people. And in the above experiment a rational non-risk loving
agent will always write down $1m. On why, more below.
The notional experiment is an instance of a Smash-and-Grab prob-

lem. Several interesting economic problems take this form:

MaxxU (x) · h(x) (1)

This can be interpreted as maximizing expected utility when the agent
can decide how much to go for, x, and the probability of success is a
(declining) function h(·) of that target value. The title given to such a
problem may be explained as follows. A criminal smashes the window
of a jeweler�s shop. For mathematical convenience assume that the shop
window is furnished with a bounded or inÞnite supply of gold dust. Then
the quantity taken can be considered a continuous variable. The thief
can help himself to gold of the value of his choice, and he runs off with
that amount. His only problem is that the more value he tries to carry
away, the smaller is his chance of success. If captured he goes to jail and
enjoys utility zero. His choice of how much value to try to carry away
takes the form of (1).
A class of problems essentially the same as (1) is encountered when

U(x) decreases with x and h(x) increases with x. An example of this
type is provided by games of attrition. In the Bliss-Nalebuff ballroom
dancing game, the players wait before individually providing a costly
public good. Then x is the pre-determined maximum waiting time, and
success takes the form of another player moving Þrst. The longer the
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waiting time the lower utility on average; but the greater the chance of
success.
Bliss and di Tella (1997) examine an imperfect information model

in which the decision problem is that of a corrupt agent deciding how
much graft to demand of a Þrm. If the Þrm cannot pay it exits and
the agent gets nothing. The ability of Þrms to pay graft depends upon
their overhead costs, which are independently drawn from a cumulative
distribution which measures the probability that a particular Þrm will
have overhead costs no greater than C:

F (C) (2)

with F (0) = 0, F (∞) = 1, and F (·) is an increasing function of C.
Each Þrm is in the territory of one corrupt agent. While the agent

cannot observe the value of C for his Þrm, he does know the operating
proÞt which all Þrms make, denoted P . Given P and the distribution
F (·) he can decide how much graft to demand. The official demands a
bribe: the Þrm either pays up or exits, and exit is irreversible.
If the corrupt official is only interested in the expected value of his

return he will solve the following program:

MaxG G · F (P −G) (3)

The maximand is the product of the amount of graft demanded G
and the probability of obtaining that amount. This is a smash-and-grab
problem.
Examples can be multiplied easily. Consider courtship. The agent

seeks a partner and follows the strategy of setting a target standard,
and searching until a partner of at least that standard is found. The
probability of success given a standard x is h(x). Without success the
agent is alone and enjoys utility zero. Ignoring the possibility of having
a sliding standard; accepting partners of lower and lower standard as the
search period nears completion, courtship will be seen to be a smash-
and-grab problem.

1.2 Smash and Grab and Monopoly/Oligopoly

The maxiimand in (1) is U(x)·h(x). When expected value is maximized,
this becomes x ·h(x), with h(x) a decreasing function of x. The problem
of a monopolist with zero marginal production problem is similar:

Maxxx · p(x) (4)

where x is the quantity sold and p(x) is the inverse demand function.
When the Cournot-Nash equilibrium of oligopolists is at issue, the in-
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dividual seller�s maximand again takes a form which is similar to the
smash and grab problem. Now it is:

Maxxx · p(x+X) (5)

where X is the total sold by other sellers.
It will serve the reader well to bear this analogy in mind when reading

what follows. Some smash and grab results are in effect already familiar
from IO theory. Later as the smash and grab problem is enriched, we
enter new territory.

1.3 Multiple Solutions

In line with standard theory, we may assume U(x) to be a strictly con-
cave function. However h(x) will often be non-convex, as would happen
were x to be normally distributed. In such cases, even if the agent is
risk neutral, multiple maximizing choices for x may be found. Figure 1
illustrates. The convex curve AA, with the appearance of an indifference
curve, is a locus along which x ·h(x) is constant. The height of the curve
HH shows the value of h(x). x1 and x2 are both maximizing values.

Or consider the case in which U(x) =
√
1 + x and h(x) = (1 + x)−

1
2 .

Then (1) takes the value 1 for all positive x.

1.4 Two Examples

The Smash and Grab problem is not always well-deÞned. Consider the
following example.

Example 1
U(x) = xα (6)

h(x) = (1 + x)−β (7)

With 0 < α ≤ 1 and β > 0. The agent maximizes:
xα (1 + x)−β (8)

If α = β = 1 the agent would maximize:

x

1 + x
(9)

However (9) increases with x on [0,∞) and there is no maximum. One
might say that x =∞ is the solution, but of course that is not a mean-
ingful answer.
In general, differentiating (8) with respect to x yields:

αxα−1 (1 + x)−β − βxα (1 + x)−β−1 = 0 (10)
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x

1 + x
=
α

β
(11)

and it is evident why the case α = β = 1 causes problems.
If α > β, (11) has no solution. From (10) the Þrst derivative of the
maximand is:

xα (1 + x)−β
·
α

x
− β

1 + x

¸
(12)

which is always positive with α > β.
With α < β, the smash-and-grab problem has a solution. From (11):

x =
α

β − α (13)

2

The case of no solution is parallel to a case in monopoly theory. If the
inverse demand function is (1 + x)−1 the monopolist tries to maximize
(8), and proÞt increases with extra sales however large are sales. In the
monopoly instance we might be ready to say that the case is entirely
unreasonable on grounds of realism, and to dismiss it. Can we argue
similarly for the smash and grab problem? Some people who never mar-
ried explain their history by saying: �I never met anyone who seemed
good enough.� One is tempted to reply that perhaps the individual
concerned set the standard unrealistically high. But is that response
correct? The smash and grab problem differs from monopoly in that an
expected value is being maximized. Although psychologists may con-
demn it, it is not irrational from the strictly economic point of view to
search for a partner so incredibly wonderful that the chance of Þnding
that partner is vanishingly small.
The next Example is based on the uniform distribution, with expected-

value maximization. It brings out the point that corner solutions may
be of great importance, and incidentally justiÞes the claim which I made
at the start of my presentation, that you should all have written down
$1m.

Example 2 The maximum value obtainable is uniformly distributed on
[β, β + α] with α and β > 0. The agent solves:

Maxxx ·
·
1− x− β

α

¸
(14)

This gives a Þrst-order condition for an interior maximum:·
1− x− β

α

¸
− x

α
= 0 (15)
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Hence:

x =
α+ β

2
(16)

This solution is plainly incorrect if β is large and α small, as the agent
could take β without risk. The general solution is:

x = Max

·
α + β

2
, β

¸
(17)

The value of the problem is:

Max

"
(α+ β)2

4α
, β

#
(18)

Figure 2 illustrates the solution to my experiment when the agent
is an expected value maximizer. A risk-averse agent would be even less
willing to put the certain $1m at risk by asking for more.

1.5 Smash-and-Grab solutions

With all functions differentiable a regular maximum solution to (1) re-
quires:

U1(x) · h(x) + U (x) · h1(x) = 0 (19)

and:

U11(x) · h(x) + 2U1(x) · h1(x) + U (x) · h11(x) < 0 (20)

where subscripts denote differentiation. While (20) is required for a
regular maximum, natural restrictions on the functions do not ensure
the condition (20). For a concave utility function, and h(·) a declining
function, the Þrst two terms of (20) will always be negative. However the
third term is sign-ambiguous. If h(·) is derived from a cumulative prob-
ability distribution, for instance, its second derivative may well change
sign. That would happen with the Normal Distribution. As a conse-
quence of this sign ambiguity, the Smash-and-Grab problem may well
have multiple local maximum solutions, and even multiple global max-
imum solutions. Bliss and di Tella (1997) illustrate such a case with a
diagram.
When the agent is an expected value maximizer, U (x) = x, and (19)

and (20) become:

h(x) + x · h1(x) = 0 (21)

and:
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2h1(x) + x · h11(x) < 0 (22)

Again (22) is in general sign ambiguous. However, despite the am-
biguity, (21) and (22) lead directly to a useful result for the expected
value maximizing smash and grab problem. Suppose that h(x) is re-
placed by h(λx), where λ < 1.This corresponds to an increase in the
scale of the loot available. Now x

λ
can be taken at the same risk of

failure as previously applied to x.

Theorem 3 The expected value maximizing smash and grab problem is
homogeneous, in the sense that if it was optimal to take x before the
change described above, it will now be optimal to take x

λ
.

Proof: Consider the class of problems to maximize:

x · h(λx) (23)

The Þrst-order condition is:

h(λx) + xλh1(λx) = 0 (24)

Differentiating (24) totally with respect to λ gives:

£
2λh1(λx) + xλ

2h11(λx)
¤ dx
dλ
+ 2xh1(λx) + x

2λh11(λx) = 0 (25)

dx

dλ
= −x

λ
· 2h1(λx) + xλh11(λx)
2h1(λx) + xλh11(λx)

= −x
λ

(26)

Integrating (26) gives:

log x = log
1

λ
+ log c (27)

x =
x∗
λ

(28)

where x∗ is the solution for x when λ = 1.2

Theorem 1 is an unsurprising result, because the shift from h(x)
to h(λx) corresponds to a change of the units in which x is measured.
One would not expect that to affect the real level of optimizing x. In
the general smash and grab problem (1) the substitution of h(λx) for
h(x) by itself does not correspond to a change of units. Furthermore,
homogeneity will not apply, as the fact that there is no substitution of
U(λx) for U (x) breaks the simple scale effect.
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The agent maximizes:

U(x) · h(λx) (29)

The Þrst-order condition is:

U1(x) · h(λx) + U(x)λh1(λx) = 0 (30)

Differentiating (30) totally with respect to λ gives:

£
U11(x)h(λx) + 2U1(x)λh1(λx) + U(x)λ

2h11(λx)
¤ dx
dλ

+U1(x)xh1(λx) + U(x)h1(λx) + U(x)λxh11(λx) = 0 (31)

dx

dλ
=
U1(x)xh1(λx) + U(x)h1(λx) + U(x)λxh11(λx)

U11(x)h(λx) + 2U1(x)λh1(λx) + U (x)λ2h11(λx)
(32)

In Theorem 1 the sign ambiguity of h11(λx) did not matter, as terms
involving that value cancelled. Now they no longer cancel.

1.6 Two Players: Independent Move Nash Equilib-

rium

So far we have examined a single-player Smash-and-Grab Game. Later
we will look at the same game with two players who play in a pre-
determined order.
In a Nash equilibrium the two players simultaneously maximize their

respective objectives, given the other player�s optimizing value. Thus
Player I chooses a value of x1 which maximizes:

U 1 (x1) · h (x1, x2) (33)

while Player II chooses a value of x2 which maximizes:

U 2 (x2) · h (x1, x2) (34)

We can learn a lot about the two-player smash and grab game by
computing the Nash solution for the two examples above, with the sum
of the two choices replacing the choice of a single player.
In the case of the Þrst example the players solve:

Maxx1x
α
1 · [1 + x1 + x2]−β (35)

and:

Maxx2x
α
2 · [1 + x1 + x2]−β (36)
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The Þrst-order conditions are:

αxα−11 · [1 + x1 + x2]−β − βxα1 [1 + x1 + x2]−β−1 = 0 (37)

α

x1
=

β

1 + x1 + x2
(38)

The symmetrical condition holds for x2. So the solution is symmetrical
with x1 = x2 = x and:

x =
α

β − 2α (44)

With the uniform distribution example the players solve:

Maxx1x1 ·
·
1− x1 + x2 − β

α

¸
(45)

and:

Maxx2x2 ·
·
1− x1 + x2 − β

α

¸
(36)

This gives Þrst-order conditions:·
1− x1 + x2 − β

α

¸
− x1
α
= 0 (37)

and: ·
1− x1 + x2 − β

α

¸
− x2
α
= 0 (38)

From which the solution is:

x1 = x2 =
α+ β

3
(39)

As the previous solution has already shown, a mechnically-derived
interior solution may not be sensible. If α is small and β large, two
players following the rule (39) would together opt for less than β, in
which case they could each aim for something more with certainty of
obtaining it. However if the two players together opt for the safe bet of
just β, we have a standard case of indeterminacy of the Nash solution,
since many divisions of the total β could be Nash solutions.
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1.7 Two Agents: A pre-determined move order

Now consider a simple extension of the Smash-and-Grab problem. Each
agent chooses an x-value. Each will only obtain their chosen x-value
if they jointly pass the same functional test. If they coordinated they
would solve the same program and divide the payoff according to some
rule. But suppose that they do not coordinate at all. Each chooses an
x-value independently. Suppose that one player moves Þrst, the other
second, the order being determined in advance.
This case needs careful interpretation. It is easy to imagine that the

Þrst mover takes an amount observed by the second-mover, who then
optimizes given that level. This cannot be required strictly, because in
a common-knowledge situation the second-mover can calculate what the
Þrst mover will take, and has no need to observe it. In fact move order
as such is irrelevant. When we assume it, and model it as will be done
in this section, what we are doing is to make one player (the Þrst mover)
into a Stackelberg leader who optimizes given the reaction function of
the other player (the second-mover).
This game is easily solved. Assume that the Þrst mover has decided

on the value x1. Then the second-mover solves:

Maxx2 x2 · h ¡x1, x2¢ (45)

Denote the solution to (45) by x2(x1). The Þrst mover will solve:

Maxx1 x1 · h ¡x1, x2(x1)¢ (46)

Take the case in which h(x1, x2) = x1 + x2. Consider in particu-
lar the model of Bliss and di Tella (1997). Suppose that two corrupt
agents take bribes in a pre-determined order, with exit probability de-
termined by the sum of their demands. From the point of view of the
second-mover agent, the bribe taken by the Þrst-mover is equivalent to
a decrease in Þrm proÞtability. Bliss and di Tella (1997) show that an
increase in proÞtability cannot increase the graft taken by a single agent
by more than the said increase. It could however decrease the total
graft taken. The agent could take out the beneÞts of higher proÞtability
as a higher probability of obtaining the amount demanded, albeit for
a lower demand. Translated to the two agent model, this means that
the Þrst agent, who plainly decreases the proÞt remaining, causes the
second agent to take less. The two together may take more or less in
total compared with the amount taken by a single maximizing agent.

Theorem 4 Two uncoordinated agents cannot take the same total graft
as coordinating agents (who take x�).
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Proof: Suppose not. The Þrst agent takes x1, the second takes x2, and:

x1 + x2 = x� (47)

Then the second agent solves:

Maxx2 x2 · h ¡x1 + x2¢ (48)

for which the Þrst-order condition given (47) is:

h (x�) + x2 · h1 (x�) = 0 (49)

However to maximize for one agent x� must satisfy:

h (x�) − x� · h1 (x�) = 0 (50)

and (49 and (50) are inconsistent.2

Inspection of equations (49) and (50) shows why we cannot go further
and say whether two agents take more or less in total. What happens to
h1 (x�) when the size of x� varies is ambiguous. For certain, the corrupt
agents obtain less expected proÞt, because they do not coordinate. The
conclusion is the same as Shleifer and Vishny [1993], who argue from
what is, in effect, a simultaneous moves model. But whether society
is better or worse off when corrupt agents coordinate their strategies
cannot be decided in general.

1.8 Solving Examples for the Two Agent Case

In this section explicit solutions are obtained for cases involving simple
functional forms. In each case agents are expected value maximizers.
First consider the model of Example 1 above, now with two players and
a pre-determined move order. We look Þrst at the decision problem of
the second-mover when the Þrst-mover has taken x1. Then the second-
mover solves:

Maxx2x
α
2 · [1 + x1 + x2]−β (51)

the Þrst-order condition is:

αxα−12 · [1 + x1 + x2]−β − βxα2 · [1 + x1 + x2]−β−1 = 0 (52)

α

x2
=

β

1 + x1 + x2
(53)

x2 =
α

β − α (1 + x1) (54)

As with the single-agent problem, we requireβ > α. If β > 2α, we
have an example of a general proposition, that there can be a second-
mover advantage (SMA).
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1.9 Second-Mover Advantage

Discussing my research with colleagues and students has convinced me
that some Þnd the concept of second-mover advantage to be counter-
intuitive. It should not be. If it is, that may be because different cases
easily become confused. It is trivial to construct asymmetric games in
which the second mover does better than the Þrst mover. Therefore
consider a symmetric game. Denote various outcomes as follows (C,C);
(N,N), (S,N). These are respectively the symmetric cooperative solution;
the symmetric Nash solution, and the solution in which the Þrst player
plays the optimal Stackelberg move, and the other player plays the best
reply to that move. Then VC, VN, VS and VSS are values of various
solutions to the players concerned. VC is the value of the cooperative
solution; VN is the value of the symmetric Nash solution; VS is the
value of being the Stackelberg leader; and VSS is the value of being the
follower in the (S,N) outcome.

DeÞnition 5 A symmetric game exhibits Second-Mover Advantage if
VSS>VS.

Notice that the requirement of the deÞnition is stronger than VSS>VN.
When that happens the passive player is helped rather than harmed by
the other player becoming a Stackelberg leader, which is a commonplace
result. The deÞnition says that the passive player is helped so much by
the other player becoming a Stackelberg leader that he ends up better off
than that Stackelberg leader. As the Stackelberg player can always play
the Nash move, it is obvious that VS≥VN. For that reason the deÞnition
implies VSS≥VN; but is much stronger. All this is long familiar from the
higher reaches of the IO literature See in particular Bulow, Geanako-
plos and Klemperer (1985). For second mover advantage to arise, the
players� strategies must be strategic complements- reaction curves slope
upwards.
The Þrst-mover solves:

Maxx1x
α
1 ·
·
1 + x1 +

α

β − α (1 + x1)
¸−β

(55)

This is equivalent to:

Maxx1x
α
1 ·
µ

β

β − α
¶−β

[1 + x1]
−β (56)

which is the same as the single-mover problem. Therefore the solu-
tion is:
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x1 =
α

β − α (57)

The Þrst mover takes exactly what a single player would take. Then
the second-mover takes his own bite; possibly less than the Þrst-mover
takes; possibly even more.
In the second example the maximum value of pay-off obtainable is

uniformly distributed on [β, β + α]. A single agent takes x chosen to
maximize:

Maxx x

·
1− x− β

α

¸
(58)

We have seen above that the solution is:

x = Max

·
β,
α + β

2

¸
(59)

and the value will be:

Max

"
β,
(α+ β)2

4α

#
(60)

Making use of this single-player solution, we derive the solution to
the two-stage game. The Þrst-mover takes y, which has the effect of
presenting the second mover with a one-stage problem in which β has
been reduced to β−y. Consider Þrst the case in which the second-mover
will take α+β−y

2
. That is equivalent to saying that the second-mover will

be placed in a position in which his interior tangent solution is maximal.
Then the Þrst-mover chooses y to maximize:

y

"
1− y − β +

α+β−y
2

α

#
(61)

The Þrst-order conditions for the maximization of (61) are:

α − y + β − α + β − y
2

− y − 0 (62)

y =
3

5
(α+ β) (63)

And the second-mover takes:

1

5
(α + β) (64)
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There is a Þrst-mover advantage. The value of this solution to the
Þrst-mover is:

3

5
(α+ β)

·
1−

4
5
(α + β)− β

α

¸
(65)

Which is equal to:

3

25
(α+ β)

·
1− β

α

¸
(66)

This solution only make sense if α > β.
If β ≥ α, the Þrst-mover should take β−α, leaving the second-mover

to choose x to maximize:

x

·
1− x− α

α

¸
(67)

The solution is:

x = α (68)

And the value to the Þrst-mover is:

β − α (69)

1.10 Non-Linear-Additive Cases

Most of the argument above has concerned itself with the case in which:

h [x1, x2] = h [x1 + x2] (70)

Only the sum of the two player�s demands count for success or failure
of the project. In many interesting cases (70) is not satisÞed. Staying
with examples, imagine two dishonest officials working for the same Min-
istry or company, and able to divert funds to their private accounts. For
one dishonest official the probability of detection will increase with the
amount stolen, and we have a classic smash-and-grab problem. When
there are two dishonest officials, what determines the probability that
both will be found out? This assumes that either neither fraud is de-
tected or that both are detected. The smash-and-grab problem requires
that feature. It is not unreasonable, however, as it may well be that the
detection of one fraud always triggers an investigation that detects all
frauds.
The condition (69) requires that the total sum dishonestly taken de-

termines the probablity of detection. Equally plausible for this example
is:
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h [x1, x2] = h [Max (x1, x2)] (71)

when the largest sum taken by fraud determines the probability of de-
tection.
Similarly consider two players joining their efforts to achieve some

objective. Their utilities decrease with that effort, but the probability
of success rises with those efforts. Then (70) says that only the sum of
their efforts matters. This implies that their separate efforts are perfect
substitutes.Equally plausible for this example is:

h [x1, x2] = h [Min (x1, x2)] (72)

The probability that a team will win is a function of the lowest effort
proided by any member. We can conÞne attention to (71), as (72) is
its mirror image. Bearing in mind the example of two dishonest officials
within the same organiation should help to motivate the following dis-
cussion. If the two players have the same utility functions, the objective
function of official i (i = 1, 2) is:

u(xi) · h [Max (x1, x2)] (73)

If the two players were to coordinate they would select xi = x1 = x2
to maximize (74). Denote the value of x which achieves that maximiza-
tion by x∗. Then the best reply for either player to the choice of a value
y by the other is:

x = x ∗ if y ≤ x∗ (74)

x = y if y > x∗ (75)

If the two players choose their x-values independently, there are in-
Þnitely many Nash equilibria. Both players choosing the same value of
x ≥ x∗ is a Nash equilibrium. If x > x∗, the equilbrium is Pareto-
dominated by the equilibrium with x = x∗. Plainly the natural focal
solution among Nash equilibria is x = x∗.
1.11 Second-Mover Ambiguity

Among the many issues that may be examined in terms of a general
model, what may be called Second-Mover Ambiguity (SMAMB) is par-
ticularly intriguing. Take a game in which the players� demands enter
the h(·) function additively, in which both players are expected value
maximizers, and in which the players move in a pre-determined order.
After the Þrst player has taken x1, the second-mover solves:
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Maxx2 x2 · h (x1 + x2) (76)

As h(·) may well be non-concave, it appears that the Þrst-mover
could Þnd it optimal to place the second-mover in a position in which he
is indifferent between a set of moves with more than one element. That
outcome would be unsatisfactory to the Þrst-mover. Suppose that the
second-mover is indifferent between x12 and x

2
2, with x

1
2 > x

2
2. Then:

h
¡
x1 + x

1
2

¢
< h

¡
x1 + x

2
2

¢
(77)

and the Þrst-mover strictly prefers the second-mover to play x22. But
he cannot guarantee that outcome. We might assume for instance that
the second-mover will randomize between equal value moves. As op-
timal move multiplicity cases are non-generic it would usually pay the
Þrst-mover to slightly shade his move away from the value that would
be optimal if he could decide the second-mover�s choice for him, select-
ing only moves from the second-mover�s optimal set. Then , strictly
speaking, there may exist no optimal move for the Þrst-mover, although
an upper bound for the value of the game to the Þrst-mover can be
approached as closely as desired.

1.12 Conclusions

This paper reports work in progress, and it is not even evident to me
in which direction the argument will be, or ought to be, developed. Fo-
cussing on corruption, which was the original motiivation of the study,
the some useful observations may be gleaned from results already ob-
tained.

DeÞnition 6 An anti-corruption drive is an intervention that shifts h(·)
so that it takes a lower value at each point on (0,∞).

Now note the following points:

� An anti-corruption drive must lower the value of (1). There-
fore if the corrupt agents are expected-value maximizers, an anti-
corruption drive will lower the amount taken corruptly. That need
not be so when corrupt agents are expected-utility maximizers. In
any case, lowering the probability that agents will get away with
small graft may encourage them to �go for bust� - taking large
bribes despite the relatively smaller chance of carrying off the big
stolen prize.
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� When two (or more) corrupt agents Þnd themselves in situations
with early (or late) mover advantage, the result may be either
competitive dashes to the loot, or wars of attrition when they wait
for the other to move Þrst.

� With such complex reactions, an anti-corruption drive needs to
deÞne its objectives clearly, and to be optimally designed to achieve
those objectives.
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