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Abstract

The availability of intra-day data on the prices of speculative assets means that we can
use quadratic variation like measures of activity in financial markets, called realised volatility,
to study the stochastic properties of returns. Here we provide a statistical basis for realised
volatility and show how it can be used to estimate the parameters of stochastic volatility
models. Models covered included those which are based on Lévy driven non-Gaussian OU
volatility processes, as well as more traditional type models such as constant elasticity of
variance processes or superpositions of such processes.
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1 Introduction

1.1 Stochastic volatility

In stochastic volatility (SV) models the basic Brownian motion model for log-prices is generalised

to allow the volatility terms to vary over time. Then the log-price x∗(t) follows the solution to

the stochastic differential equation (SDE),

dx∗(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t), (1)

where σ2(t), the instantaneous volatility, is going to be assumed to be stationary, latent and

stochastically independent of the standard Brownian motion w(t). This model can be thought

of as a time series version of a scale mixture of normals model. To see this directly recall the

definition of a return over an interval of time of length ∆ > 0

yn = x∗ (∆n)− x∗ ((n− 1)∆) , n = 1, 2, .... (2)
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implies that whatever the model for σ2, it follows that

yn|σ2
n ∼ N(µ∆+ βσ2

n, σ
2
n).

where

σ2
n = σ2∗(n∆)− σ2∗ {(n− 1)∆} , and σ2∗(t) =

∫ t

0
σ2(u)du.

In econometrics σ2∗(t) is called integrated volatility, while we call σ2
n actual volatility. Both

definitions play a central role in the probabilistic analysis of SV models. Reviews of the literature

on this topic are given in Taylor (1994), Shephard (1996) and Ghysels, Harvey, and Renault

(1996), while statistical and probabilistic aspects are studied in detail in Barndorff-Nielsen and

Shephard (2001a). One of the key results in this literature (Barndorff-Nielsen and Shephard

(2001a)) is that if we write (when they exist) ξ, ω2 and r, respectively, as the mean, variance

and the autocorrelation function of the process σ2(t) then

E
(
σ2

n

)
= ξ∆, Var

(
σ2

n

)
= 2ω2r∗∗(∆) and Cov{σ2

n, σ
2
n+s} = ω2♦r∗∗(∆s), (3)

where

♦r∗∗(s) = r∗∗(s+∆)− 2r∗∗(s) + r∗∗(s−∆), (4)

and

r∗(t) =
∫ t

0
r(u)du and r∗∗(t) =

∫ t

0
r∗(u)du. (5)

That is the second order properties of σ2(t) completely determine the second order properties

of actual volatility.

One of the most important aspects of SV models is that σ2∗(t) can be exactly recovered

using the entire path of x∗(t). In particular, for the above SV model the quadratic variation is

σ2∗(t), i.e. we have

[x∗](t) =p− lim
r→∞

∑
{x∗(tri+1)− x∗(tri )}2 = σ2∗(t) (6)

for any sequence of partitions tr0 = 0 < tr1 < ... < trmr
= t with supi{tri+1 − tri } → 0 for r → ∞.

This is a powerful result for it does not depend upon the model for instantaneous volatility nor

the drift terms in the SDE for log-prices given in (1). The quadratic variation estimation of

integrated volatility has recently been highlighted, following the initial draft of Barndorff-Nielsen

and Shephard (2001a) and the concurrent independent work of Andersen and Bollerslev (1998a),

by Andersen, Bollerslev, Diebold, and Labys (2000a) in foreign exchange markets. Some of the

effects of market microstructure on these estimates are studied by Bai, Russell, and Tiao (2000).

In practice, although we often have a continuous record of quotes or transaction prices, at

a very fine level the SV model is a poor fit to the data. This is due to market microstructure
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effects (e.g. discreteness of prices, bid/ask bounce, irregular trading etc.). As a result we should

regard the above results as indicating that we can estimate actual volatility, for example over

a day, reasonably accurately by sums of squared returns, say, using five, ten or thirty minute

periods. Suppose we have M intra-day observations during each day, then the sum of squared

intra-day changes over a day is

s2
n =

M∑
j=1

{
x∗

(
(n− 1)∆ + ∆j

M

)
− x∗

(
(n− 1)∆ + ∆(j − 1)

M

)}2

, (7)

which is an estimate of σ2
n. It is a consistent estimate asM → ∞, while it is unbiased when µ and

β are zero. In econometrics s2
n has recently been labelled realised volatility, and we will follow

that convention here. In a series of important papers Andersen, Bollerslev, Diebold, and Labys

(2000a), Andersen, Bollerslev, Diebold, and Ebens (2000) and Andersen, Bollerslev, Diebold,

and Labys (2000b) have empirically studied the properties of s2
n in foreign exchange and equity

markets (earlier, less formal work on this topic includes Schwert (1989) and Taylor and Xu

(1997)). In their econometric analysis they have regarded s2
n as a very accurate estimate of σ

2
n.

Indeed they often regard the estimate as basically revealing the true value of actual volatility

so that yn/sn is more or less Gaussian. So far no measure of error has been obtained which

indicates the difference between s2
n and σ2

n. We will show that this difference is approximately

mixed Gaussian, can be substantial and that more accurate estimates of σ2
n are readily available

if we are prepared to use a model for σ2(t).

In this paper we will discuss a simple way of formally bridging the gap between realised and

actual volatility, providing a discussion of the properties of
{
s2
n

}
which has so far been entirely

lacking in the literature. Inevitably for finiteM these properties will depend upon the dynamics

of the instantaneous volatility as well as the drift term in the SDE for log-prices. This has to

be the case, for the short-hand of ignoring the small sample effects of estimating σ2
n with the

consistent s2
n is only valid for infeasibly large values of M .

1.2 Empirical example

To illustrate some of these features we have used the same return data as employed by Andersen,

Bollerslev, Diebold, and Labys (2000a), although we have made slightly different adjustments

to deal with some missing data. Full details of this are given in Barndorff-Nielsen and Shephard

(2001b, Ch. 1). This United States Dollar/ German Deutsche Mark series covers the ten year

period from 1st December 1986 until 30th November 1996. It records every five minutes the

most recent quote to appear on the Reuters screen. It has been kindly supplied to us by the

Olsen group in Zurich and preprocessed by Tim Bollerslev. In the top left graph in Figure 1
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we have drawn the correlogram of the squared five minute returns. It shows the well known

very strong diurnal effect (the x-axis is drawn in days). This will be discussed in detail in

Section 4 but for now will be ignored entirely. The graph on the top right of the Figure shows

the correlogram of realised volatility, s2
n, computed using M = 288. Hence this second graph

corresponds to volatility over a single day. The graph starts out at around 0.6, decays very

quickly for a number of days and then decays at a slower rate. The graphs on the bottom show

a cumulative version of the squared five minute returns drawn on a small scale, while on the

right the same cumulative function is drawn over a larger time scale. It is the daily increments

of this process which makes up realised volatility.
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Figure 1: All graphs refer to the Olsen group’s five minute changes data. Top left: ACF of five
minute returns. Bottom left: cumulative sum of squared 5 minute changes over short interval.
Top right: ACF of realised volatility measured over each day. Bottom right: cumulative sum of
squared 5 minute changes over long interval.

1.3 OU type processes

A main focus of our paper will be where the volatility is the solution to the SDE

dσ2(t) = −λσ2(t)dt+ dz(λt), (8)
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where z(t) is a Lévy process with non-negative increments (which rules out Brownian motion as

a candidate model for z(t)). The unusual timing dz(λt) is deliberately chosen so that it will turn

out that whatever the value of λ the marginal distribution of σ2(t) will be unchanged. Hence

we separately parameterise the distribution of the volatility and the dynamic structure. These

models, called non-Gaussian Ornstein-Uhlenbeck, or OU type for short, processes, have been

developed in this context by Barndorff-Nielsen and Shephard (2001a) and can be generalised

to allow for a superposition of such processes (that is a sum of independent OU processes with

different decay rates). They are mathematically very tractable allowing us to derive, for example,

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

.2

.4

.6

.8

1

1.2

Figure 2: OU process with Γ(ν, α) marginals. Throughout, ν = 3, α = 8.5, λ= 0.01 and ∆ = 1.
Plot of σ2(n∆) against n.

analytic option prices for these processes for wide choices of the Lévy process (see Barndorff-

Nielsen and Shephard (2001a) and subsequently Nicolato and Venardos (2000) and Tomkins and

Hubalek (2000)). A major reason for this is that integrated volatility has a very simple form for

these models with (Barndorff-Nielsen and Shephard (2001a))

σ2∗(t) = λ−1
{
z(λt)− σ2(t) + σ2(0)

}
. (9)

A simulated example of the paths that the σ2(t) and z(λt) processes follow is given in Figure 2,

showing their large upwards jumps and slow downward decays. In this example the process has
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been designed to have a marginal law for σ2(t) which is gamma, although in practice many other

marginal laws are attractive from an empirical viewpoint. These are developed in Barndorff-

Nielsen and Shephard (2001a). Importantly, for these models r(t) = exp (−λ |t|), which imply

r∗∗(t) = λ−2
{
e−λ|t| − 1 + λt

}
and ♦r∗∗(∆s) = λ−2(1− e−λ∆)2e−λ∆(s−1), s > 0.

An alternative, which is also covered by our analysis, is where volatility follows a constant

elasticity of variance process (or a superposition of such processes)

dσ2(t) = −λ
{
σ2(t)− ξ

}
dt+ ωσ(t)ηdb(λt), η ∈ [1, 2],

where b(t) is standard Brownian motion uncorrelated with w(t). Of course the special cases of

η = 1 delivers the square root process, while when η = 2 we have Nelson’s GARCH diffusion.

These models, favoured heavily by Meddahi and Renault (2000) in this context, also have the

property that r(t) = exp (−λ |t|), implying we can also compute the second order properties of{
σ2

n

}
for this model. Our results will be based around these second order properties and so

results for the OU process will carry over to this process. However, we will not explore this

aspect in any detail.

Our analysis will allow us to

• have an understanding of the approximate distribution of √M
(
s2
n − σ2

n

)
for large M and

the exact, generic second order properties of s2
n and σ2

n.

• use the models for instantaneous volatility to provide model based estimates of actual
volatility (rather than model free estimates which assume M → ∞) using the series of
realised volatility measurements. These model based estimates can be forecasts, filtered

or smoothed estimates of actual volatility depending upon how much information we can

use. In particular, these will be based on past, current or historical sequences of realised

volatilities.

• estimate the parameters of SV models using simple and rather accurate statistical proce-
dures.

1.4 Outline of the paper

The outline of the rest of the paper is as follows. In Section 2 we discuss the basic approach in

the most straightforward setup where µ and β are zero. Section 3 extends the results to allow

for drift, while section 4 studies diurnal effects. Section 5 discusses working with multivariate

observations. Section 6 concludes.
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2 Realised volatility

2.1 Relating actual to realised volatility

2.1.1 Generic results

Actual volatility, σ2
n, plays a crucial role in SV models. It can be estimated using realised

volatility, s2
n, given in (7). Here we discuss this in the simplest context where µ = β = 0,

extending to the more complicated case in Section 3. In SV models we can always decompose

s2
n = σ2

n + un, where un = s2
n − σ2

n. (10)

Here we call un the realised volatility error, which has the property that E
(
un|σ2

n

)
= 0. Hence

realised volatility is an unbiased estimator of actual volatility. We know that as M → ∞ so

s2
n

a.s.→ σ2
n, so it also consistent. However, the purpose of this section is to discuss the properties

of s2
n for finite M . We can see that

E
(
s2
n

)
= ∆ξ, Var

(
s2
n

)
= Var(un) + Var(σ2

n), Cov(s2
n, s

2
n+s) = Cov(σ

2
n, σ

2
n+s).

Further, writing σ2
j,n as the volatility of the j−th intra-day return, so that,

x∗
(
(n− 1)∆ + ∆j

M

)
− x∗

(
(n− 1)∆ + ∆(j − 1)

M

)
|σ2

j,n ∼ N(0, σ2
j,n),

we have that

un
L=

M∑
j=1

σ2
j,n

(
ε2
j,n − 1) .

where ε2
j,n

i.i.d.∼ N(0, 1) and independent of
{
σ2

j,n

}
. It is clear that {un} is a weak white noise

sequence which is uncorrelated to the actual volatility series
{
σ2

n

}
.

Now unconditionally,

Var(un) = 2ME
(
σ4

1,n

)
(11)

= 2M
{
Var

(
σ2

1,n

)
+ E

(
σ2

1,n

)2
}
,

for σ2
1,n has the same marginal distribution as each element of

{
σ2

j,n

}
. In general we have, from

(3) that

E
(
σ2

1,n

)
= ∆M−1ξ, Var

(
σ2

1,n

)
= 2ω2r∗∗

(
∆M−1

)
. (12)

Hence we can compute Var(un) for all SV models when µ = β = 0. One of the implications of

this results is that

Cor(s2
n, s

2
n+s) =

Cov(σ2
n, σ

2
n+s)

Var(un) + Var(σ2
n)

=
ω2♦r∗∗(∆s)

2M−1
{
2ω2M2r∗∗ (∆M−1) + (∆ξ)2

}
+ 2ω2r∗∗(∆)

.
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Notice the autocorrelation function of
{
y2

n

}
is also given by this result, for s2

n = y2
n whenM = 1.

Hence the decay rates in the acf of
{
s2
n

}
,
{
σ2

n

}
and

{
y2

n

}
are, in general, the same but the degree

of correlation varies considerably with the correlation being the highest for
{
σ2

n

}
, followed by{

s2
n

}
and ending with the lowest correlation in

{
y2

n

}
.

In practice we tend to use realised volatility measures withM being moderately large. Hence

it is of interest to think of a central limit approximation to the distribution of un. This will

depend upon the limit of t−2r∗∗(t) as t → 0 from above. Now, by Taylor expansion

r∗∗(t) = r∗∗(0+) + tr∗(0+) +
1
2
t2r(0+) + o(t2)

=
1
2
t2r(0+) + o(t2).

This means the limit of t−2r∗∗(t) is c where c = r(0+). A consequence of this is that

lim
M→∞

M2Var
(
σ2

1,n

)
= c∆2ω2 (13)

implying, as M goes to infinity,

Var
(√

Mun

)
= Var

{√
M

(
s2
n − σ2

n

)} → 2∆2
(
cω2 + ξ2

)
.

This is an important result. We have moved away from the standard consistency result of

s2
n

p→ σ2
n as M → ∞ which follows from familiar quadratic variation results. Now we have the

more refined measure of the uncertainty of this error term.

The above limiting result can be strengthened to calculate the asymptotic distribution of

this error. In particular we show in the Appendix that
√
M

(
s2
n − σ2

n

)
√
2M

∑M
j=1 σ

4
j,n

L→ N(0, 1), (14)

where

σ2
j,n = σ2∗ (

jM−1∆+ (n− 1)∆) − σ2∗ {
(j − 1)M−1∆+ (n− 1)∆}

, j = 1, 2, ...,M.

Importantly

M
M∑

j=1

σ4
j,n

has a stochastic limit, and so
√
M

(
s2
n − σ2

n

)
has a mixed normal asymptotic distribution.

2.2 Lévy based volatility models

2.2.1 Recalling some properties

In this paper we will be primarily interested in estimating non-Gaussian OU based SV models

of the type (8). The OU structure allows us to explicitly compute the mean, variance and
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autocorrelation function of the actual volatility. In particular

E
(
σ2

n

)
= ∆ξ, Var

(
σ2

n

)
=
2ω2

λ2

{
e−λ∆ − 1 + λ∆

}
and

Cor{σ2
n, σ

2
n+s} = de−λ∆(s−1), s = 1, 2, ..., (15)

where

d =
(1− e−λ∆)2

2 (e−λ∆ − 1 + λ∆)
≤ 1.

Importantly this implies actual volatility has the autocorrelation function of an autoregressive

.5 .6 .7 .8 .9 1

.2625

.265

.2675

MA root against AR root

.5 .6 .7 .8 .9 1

.7

.8

.9

Coefficient d against AR root

Figure 3: Left graph shows plot of moving average root against autoregressive root e−∆λ for
ARMA(1,1) representation. Right graph shows d in expression for Cor{σ2

n, σ
2
n+s} against au-

toregressive root e−∆λ.

moving average (ARMA) model of order (1, 1). Its autoregressive root is e−λ∆ (which will be

typically close to one unless ∆ is very large), while the moving average root is also determined

by e−λ∆ but has to be found numerically. A graph of the moving average root against e−λ∆

is given in the left hand side of Figure 3 and shows that for a wide range of the autoregressive

root the moving average root is around 0.265. Likewise Figure 3 shows a plot of d against e−λ∆

and indicates a rapid decline in this coefficient as the autoregressive root falls. In particular, in

financial econometrics the literature suggests volatility is quite persistent, which would imply d

should be close to one. Thus if t is recorded in days and ∆ is set to one day, then empirically

reasonable values of λ will imply d should be close to one.

In turn the acf for σ2
n implies that the squares of returns have autocorrelations of the form

Cor{y2
n, y

2
n+s} = c′e−λ∆(s−1), (16)

where
1
3
≥ 1
3
d ≥ c′ =

(1− e−λ∆)2

6 {e−λ∆ − 1 + λ∆}+ 2(λ∆)2 (ξω−2)2
≥ 0.
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Importantly this means
{
y2

n

}
also has a linear ARMA(1,1) representation. Further, it has

the same autocorrelation function as the familiar generalised autoregressive conditional het-

eroskedastic (GARCH) model used extensively in econometrics (see, for example, Bollerslev,

Engle, and Nelson (1994)). Finally, the autoregressive root of the ARMA representation is the

same for
{
y2

n

}
as for

{
σ2

n

}
, however the moving average root of the square changes is much

larger in absolute value. The implication is that the correlograms for
{
y2

n

}
will be much less

clear than if we had observed the correlograms of the latent
{
σ2

n

}
. This can be most easily seen

by noting that for small λ,

c′ � 1− λ∆
3 + 2 (ξω−2)2

,

which is much smaller than d which is approximately 1− λ∆. For example if the ξ = ω2, then

c′ will be approximately 0.2 for daily data.

2.2.2 Implied error in realised volatility

As σ2
n has an ARMA(1,1) representation, we can think of (10) as a very compact linear state

space representation (see, for example, the textbook expositions in Harvey (1989, Ch. 3) and

Hamilton (1994, Ch. 13)). This is briefly outlined in the Appendix. In order to fully charac-

terise it we just have to calculate the exact unconditional variance of {un}. We gave a generic
expression for it in (11) and (12), now we become more specialised. Having carried that out we

could use a Kalman filter to unbiasedly and efficiently (in a linear sense) estimate and predict

future actual volatilities, refining the realised volatility estimate. As a bi-product the Kalman

filter also provides a quasi-likelihood function for the realised volatility which can be used to

effectively estimate the parameters of the model. We will briefly study the properties of these

estimators in a moment.

Now unconditionally

Var(un) = 2ME
(
σ4

1,n

)
= 2M

{
Var

(
σ2

1,n

)
+ E

(
σ2

1,n

)2
}

= 2M
{
2ω2λ−2

(
e−λ∆/M − 1 + λ∆M−1

)
+

(
∆M−1

)2
ξ2

}
. (17)

Of course, for large M

2
(
e−λ∆/M − 1 + λ∆M−1

)
� (

λ∆M−1
)2

,

implying, as M goes to infinity,

Var
(√

Mun

)
→ 2∆2

(
ω2 + ξ2

)
.
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Figure 4: Payoff of using intra-day information in estimating volatility in simulated SV models.
OU process σ2(t) ∼ Γ(2, 4) distribution and λ = − log(0.98), with ∆ = 1 representing a day.
ThroughoutM = 128. Left shows filtered quantities, right smoothed ones. Throughout, basic QV
denotes s2

n, tradition smooth is the smoothed estimate based on squared daily returns (M = 1) and
QV smooth denotes the model based smoothed estimate based on all the intra-day information.

This is the same result as in (14) with r(0+) = c = 1.

To illustrate this method we have constructed a simulation experiment. We simulated an

OU process for
{
σ2

n

}
with a marginal Γ(2, 4) distribution and λ = − log(0.98), with ∆ = 1

representing a day. We assumed thatM = 128 and that we can observe the corresponding intra-

day returns at that frequency as well as the aggregated return at the daily level. Figure 4 shows

the plot of true daily volatility, drawn as
{√

σ2
n

}
, over time, together with the corresponding

realised volatility for each day
{√

s2
n

}
. The realised volatility is a pretty good estimate of the

true volatility, but is quite noisy. However, it is far more precise than the corresponding best

linear estimator of the volatility based on the above model (10) using squared daily returns.

On the left hand graph we have shown the one-step ahead prediction of the volatility σ2
n, using

y2
1, ..., y

2
n−1. This prediction is quite close to the one which would result from a discrete time

GARCH model and so should be regarded as being reasonable by the academic literature.

However, it does not exploit the intra-day data and so is much less precise than the realised

volatility estimate. This carries over to the smoothed estimate of the volatility, which is given
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on the right hand side of the graph. This uses all the information in the daily returns sample,

y2
1, ..., y

2
n−1, to estimate σ

2
n. This is more precise, but is still inferior to the realised volatility

estimate.

M Mean Standard error 0.1 quantile 0.9 quantile

λ, truth is 0.03046
1 0.206 0.612 0.0157 0.561
10 0.0447 0.233 0.0223 0.0425
100 0.0315 0.00507 0.0255 0.0384

ν, truth is 2
1 1.93 1.04 0.800 3.20
10 2.06 0.449 1.53 2.65
100 2.05 0.304 1.67 2.45

a, truth is 4
1 4.00 2.11 1.60 6.80
10 4.14 0.852 3.16 5.17
100 4.13 0.591 3.38 4.94

Table 1: Monte Carlo study of the quasi-likelihood estimator of SV model with OU volatility.
Volatility model has σ2(t) ∼ Γ(ν, a) with 500 daily observations. The true values of ν and a are
2 and 4 respectively. M denotes the number of intra-day observations used. 1,000 replications
are used in the study. Code is available to carry out these calculations in ssf.ox.

Figure 4 also gives the filtered (that is the estimate of σ2
n, using s2

1, ..., s
2
n−1) and smoothed

(that is the estimate of σ2
n, using s2

1, ..., s
2
T ) estimates based on the model based use of intra-

day data. The parameters in this analysis are set at the true values. The filtered estimate

is less spread out than the realised version and is in fact more precise. This is remarkable as

it is based on a predictive information, while realised volatility uses current information. The

smoothed estimate is far more precise than the realised volatility estimate. Indeed the error in

the estimates are very minor.

Table 1 shows the result of a small simulation experiment which investigates the effectiveness

of the quasi-likelihood estimation methods based on the time series of realised volatility. The

quasi-likelihood is constructed using the output of the Kalman filter. It is suboptimal for it does

not exploit the non-Gaussian nature of the volatility dynamics, however it provides a consistent

and asymptotically normal set of estimators. This follows from the fact that the Kalman filter

builds the Gaussian quasi-likelihood function for the ARMA representation of the process, where

the noise in the representation is both white and strong mixing (strong mixing follows from

Sørensen (2000) and Genon-Catalot, Jeantheau, and Larédo (2000) who show if volatility is

strong mixing then squared returns are strong mixing). This means we can immediately apply

the asymptotic theory results of Francq and Zaköian (2000) in this context so long as σ2(t)

is strong mixing. Further the estimation takes only around 5 seconds on a modern notebook

computer.
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The setup of the simulation study uses 500 daily observations where the volatility is an OU

process with a gamma marginal distribution. The Table varies the value of M , the number of

intra-day observations available. When M = 1 this corresponds to using the classical approach

of squared daily returns. When M is higher we are using intra-day data. The results suggest

that the intra-day data allows us to estimate the parameters much more efficiently. Indeed

when M is large the estimators have very little bias and turn out to be quite close to be jointly

Gaussian. The results are quite encouraging for they are based on only two years of data but

suggests we can construct quite precise estimates of these models with this.

The above method can be contrasted with the large literature on the estimation of (partially

observed) stochastic differential equations based on discrete data. A very incomplete list of

references include Gourieroux, Monfort, and Renault (1993), Gallant and Long (1997), Elerian,

Chib, and Shephard (2001) and Sørensen (2000). The closest paper to ours is a recent one by

Bollerslev and Zhou (2000) who use a method of moment approach based on an assuming that

the actual volatility process
{
σ2

n

}
is observed via the quadratic variation estimator.

2.3 Superpositions of OU processes

The OU model (8) for the instantaneous volatility is often too simple in practice to fit the types

of dependence structures we observe in financial economics. This can be seen in the top right

piece of Figure 1 which displays the autocorrelation function of realised volatility for the Olsen

group’s five minute data. This graph shows a relatively quick initial decline in the acf, followed

by a slower decay. The autocorrelation at lag one is around 0.6, which is a long way from 1.

This can only be reconciled with an OU based SV model if the decay rate of the OU process

is very fast. However, this would not allow us to fit the rest of the correlogram which displays

considerable memory. This single observation is sufficient to dismiss the OU (and constant

elasticity of variance) model.

One mathematically tractable way of improving the flexibility of the volatility model is to

let the instantaneous volatility be the sum, or superposition, of independent OU processes. As

the processes do not need to be identically distributed, this offers a great deal of flexibility while

still being mathematically tractable (for example, see Nicolato and Venardos (2000) for analytic

derivative pricing based on these models). Superpositions of OU processes also have potential

for modelling long-range dependence in volatility. This is discussed briefly in Barndorff-Nielsen

and Shephard (2001a) and at more depth by Barndorff-Nielsen (2000) who formalises the use of

superpositions as a way of modelling long-range dependence. This follows earlier related work

by Granger (1980), Cox (1991), Ding and Granger (1996), Engle and Lee (1999) and Comte and

Renault (1998).
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Consider volatility based up of the sum of J independent OU processes

σ2(t) =
J∑

j=1

τ j(t), where dτ j(t) = −λjτ
j(t)dt+ dzj(λjt),

where the zj(t) are independent Lévy processes with non-negative increments. It is not necessary

for the Lévy processes to have the same marginal distributions at time one. In practice in this

paper we have used the following structure to parameterise the model.

We assume the non-negative weights {wj} are such that

E(τ j(t)) = wjξ Var(τ j(t)) = wjω
2 where

J∑
j=1

wj = 1,

implying

E(σ2(t)) = ξ, Var(σ2(t)) = ω2,

and

Cov(σ2(t), σ2(t+ s)) =
J∑

j=1

Cov
(
τ j(t), τ j(t+ s)

)

= ω2
J∑

j=1

wj exp (−λj |s|) .

Hence the acf of instantaneous volatility can have components which are a mix of quickly and

slowly decaying components. A simple parametric example of this construction is where τ j(t) ∼
Γ(wjν, α)-OU, implying

σ2(t) ∼ Γ(ν, α)-OUJ ,

a superposition of J independent OU processes with a marginal distribution which is gamma.

A similar type of process can be constructed with inverse Gaussian marginal distributions.

The linearity of the superposition of OU processes means that actual volatility has the form

σ2
n =

J∑
j=1

τ j
n,

where

τ j
n = τ j∗(n∆)− τ j∗ {(n− 1)∆} , and τ j∗(t) =

∫ t

0
τ j(u)du.

The key feature is that each τ j
n has an ARMA(1,1) representation of the type discussed above.

As the autocovariance function of a sum of independent components is the sum of the auto-

covariances of the terms in the sum, we can compute the acf of σ2
n without any new work.
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Figure 5: Autocorrelations for realised volatility. Graphed are the correlogram for realised volatil-
ity and the fitted autocorrelation functions for various SV models based on the superposition of
up to four OU processes.

Computationally it is helpful to realise that the sum of uncorrelated ARMA(1,1) processes

can be fed into a linear state space representation when combined with (10). The only new issue

is computing

Var(ut) = 2M
{
Var

(
σ2

1,n

)
+ E

(
σ2

1,n

)2
}
.

Clearly

E
(
σ2

1,n

)
= ξ

∆
M

,

while

Var
(
σ2

1,n

)
=

J∑
j=1

Var
(
τ j
1,n

)
= 2ω2

J∑
j=1

wjr
∗∗
j

(
∆M−1

)

= 2ω2
J∑

j=1

wj

λ2
j

{
e−λj∆M−1 − 1 + λj∆M−1

}
.

This implies we can also estimate the parameters of this model via the Kalman filter which

moreover gives us filtered, smoothed and forecasted estimates of actual volatility. No new issues

arise. Further it allows us to compute the acf of realised volatility straightforwardly as the
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autocovariance function is just the autocovariance function of actual volatility plus the white

noise measurement error.

To illustrate these points we have drawn in Figure 6 the fitted acf (drawn in lags of days) of

realised volatility for a variety of values of M , taking the parameter values from Table 3 which

fits this model to high frequency exchange rate returns. This data will be discussed at some

length in the next subsection. For now it is sufficient to note that asM decreases the correlation

in realised volatility tends to fall. This is most marked at the low lag values.

2.4 Empirical illustration

To illustrate some of these results we have fitted a set of superposition based OU type SV models

to the realised volatility series discussed in the introduction to this paper. There we computed

realised volatility using 5 minute changes to the exchange rate. Here we use the quasi-likelihood

method to estimate the parameters of the superposition — ξ, ω2, {λj} and {wj}. Our empirical
work will look at fitting a series of these models increasing J until the fit of the model does not

improve very much. The results, given in Table 2, are striking. The third OU process has a value

of w3 which is between 0.96 and 0.94, while the damping factor is very high with λ3 being over

200. This means the vast majority of the instantaneous volatility has very little predictability

even over a five minute period. This means that σ2
n will be far less jagged than σ2(n∆), which

is the reason why ω2 rose so much as J went from two to three. This is an important result.

(We note that our SV models have continuous sample paths and so are, in principle, different

from SV models with added jumps which are the usual way of modelling this type of occurrence

in SDEs.) The other two OU processes have similar weights, but the first process has a daily

damping factor of around 0.97 which means that around four percent of a shock to this process

is left after 100 trading days. The second factor lasts only a couple of days.

J ξ ω2 λ1 λ2 λ3 w1 w2 Quasi-L BP
3 0.5321 4.712 0.03263 0.8865 289.6 0.01870 0.02081 -1153.1 17.331
2 0.53206 0.37044 0.045212 2.8396 — 0.27294 — -1160.2 33.848
1 0.53206 0.32107 1.1344 — — — — -1325.3 700.28

Table 2: Fit of the superposition of J OU type volatility process for a SV model. The data is
realised volatility computed using M = 288, that is five minute returns. We do not record wJ as
this is 1 minus the sum of the other weights. Estimation method: quasi-likelihood using output
from a Kalman filter. BP denotes Box-Pierce statistic, based on 20 lags, which is a test of serial
dependence in the scaled residuals.

Figure 5 shows the corresponding autocorrelation function for the realised volatility together

with the corresponding empirical correlogram. We see from this figure that the simple OU
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process is entirely unable to fit the data, as it starts at around 0.6 and then almost instantly

decays to zero. A superposition of two processes is much better, but damps too slowly initially

and then too quickly. In particular it is poor at picking up the longer-range dependence in the

data. The superposition of three and four processes give very similar fits, indeed in the graph they

are hardly distinguishable, suggesting a model with three OU processes is sufficiently flexible.

0 10 20 30 40 50 60 70 80 90 100 110 120

.1

.2

.3

.4

.5

Fitted acf using 3 OU processes. Lags are in days.

M=288 M=144
M=96 M=48
M=24 M=12
M=6

Figure 6: Fitted acf for realised volatility using a superposition of 3 OU processes. Different
curves are given for different values of M, reestimating the model’s parameters at each value of
M. The fitted parameters are given in the next subsection.

To assess the influence of M on the estimates of the parameters of the model we have

reestimated the model using a variety of values of M . The results are reported in Table 3.

There are a number of interesting features of these results. The estimator of parameter ξ falls

very slightly as M increases, while ω2 does change quite considerably. The reason for this is

that as w3 changes, which corresponds to a very short memory OU process, so ω2 must vary

considerably in order for the unconditional variance of the return over a day to remain constant.

One of the most encouraging features of the results is that the estimators of {λj} do not vary
very much withM while there is not much sign of any residual serial dependence after the fitting

of the model. Finally, one of the features of Figure 6 is that asM goes from 288 to 144 it crosses

the other curves. This is not the expected result if the SV model fits perfectly in continuous
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M ξ ω2 λ1 λ2 λ3 w1 w2 Quasi-L BP
288 0.5321 4.712 0.03263 0.886 289.6 0.01870 0.02081 -1153.1 17.3
144 0.5112 5.175 0.03292 0.890 288.8 0.01693 0.01536 -1371.7 16.9
96 0.4936 3.536 0.03547 1.046 291.5 0.02450 0.02649 -1375.6 17.9
48 0.4727 4.398 0.03413 0.740 289.9 0.01785 0.01670 -1704.1 21.9
24 0.4630 2.479 0.03997 0.775 293.7 0.03384 0.02652 -1885.2 23.7
12 0.4714 1.8146 0.04131 1.000 294.29 0.05180 0.04197 -2426.5 25.5
6 0.4813 0.4733 0.01172 0.0812 294.30 0.04498 0.19678 -2633.4 30.4

Table 3: Fit of the superposition of 3 OU type volatility process for a SV model with different
values of M . Estimation method: quasi-likelihood using output from a Kalman filter built on
realised volatility. BP denotes Box-Pierce statistic, based on 20 lags, which is a test of serial
dependence in the scaled residuals.

time and so we can regard this as a sign of misspecification at the level of 5 minute returns.

3 Drift

Suppose we generalise the standard model to allow for a drift effect

dx∗(t) = µdt+ σ(t)dw(t). (18)

We saw in equation (6) that the addition of the drift into the model does not change the quadratic

variation at all and so realised volatility is still a consistent estimator of actual volatility. How-

ever, realised volatility will now be biased.

To study the dynamic properties of realised volatility we note that(
yn

s2
n

)
=

(
µ∆+ vn

µ2∆2M−1 + σ2
n + un

)
, (19)

where {un, vn} is a zero mean, vector white noise process. Of course the µ2∆2M−1 term, which

we call an offset, is likely to be very small in practice if M is large for µ is typically very small.

In particular, using the same notation as before(
vn

un

)
L=

{ ∑M
j=1 εj,nσj,n

2µ∆M−1
∑M

j=1 εj,nσj,n +
∑M

j=1 σ
2
j,n

(
ε2
j,n − 1

) }

The implication is that

Var(vn) = ME
(
σ2

1,n

)
= ∆−1ξ,

Cov(vn, un) = 2µ∆E
(
σ2

1,n

)
= 2M−1µξ,

and

Var(un) = 4µ2∆2M−1E
(
σ2

1,n

)
+ 2ME

(
σ4

1,n

)
= 4µ2∆M−2ξ + 2M

{
∆2M−2ξ2 + 2ω2r∗∗

(
∆M−1

)}
.

18



For short-memory volatility models we have seen in (13) that M2E
(
σ4

1,n

)
converges to a

constant as M goes to infinity. Hence

Cov
(

vn√
Mun

)
→

(
∆−1ξ 0
0 2∆2

(
cω2 + ξ2

) )
, as M → ∞.

Of course vn does not converge to being normally distributed as M goes to infinity, although
√
Mun will again converge to a mixed normal. This implies that for large M the return yn has

barely any information in it about the volatility process. Indeed it seems sensible to entirely

ignore the effect of the drift term, only correcting for it in the offset term in the representation

of s2
n in (19). However, even this correction seems relatively unimportant.

4 Diurnal affects and actual volatility

An important aspect of the realised volatility series is that it is not very sensitive to the substan-

tial and complicated intra-day diurnal pattern in volatility found in many empirical studies (e.g.

Andersen and Bollerslev (1997) and Andersen and Bollerslev (1998b)) as well as being clear from

the top left of Figure 1. To understand this it is helpful to think of the instantaneous volatility

as the sum of a deterministic diurnal component, σ2
ψ {mod(t,∆)} where t = ∆ represents a year,

plus a stochastic process, σ2
λ(t), then we have

σ2(t) = σ2
ψ {mod(t,∆)}+ σ2

λ(t).

As a result

σ2
n = c+ σ2

n,λ, where c =
∫ ∆

0
σ2

ψ {mod(u,∆)} du

and

σ2
n,λ = σ2∗

λ (n)− σ2∗
λ {(n− 1)} , and σ2∗

λ (t) =
∫ t

0
σ2

λ(u)du.

Hence in this structure the dynamics of realised volatility is unaffected by the presence of a

diurnal effect. Of course, in practice this additive structure should be regarded as holding only

approximately, in which case the diurnal effect may not be completely ignorable. However, in

this paper we will neglect this deficiency.

5 Extensions

5.1 Basics

There are at least three important extensions to these results. Each of these results are more

intricate than the ones we report here and so we have discussed them at length in Barndorff-

Nielsen and Shephard (2001b). Here we just outline the problems. The first deals with the case

where β, in (1), is not zero. This does not raise too many new problems.
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The second extension allows for the introduction of a leverage term into the model. This can

be carried out in a number of ways. In Barndorff-Nielsen and Shephard (2001a) we parameterise

the effect as

dx∗(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t) + ρdz(λt),

where we assume the volatility process is of OU type (8). Here the Lévy process which drives

the volatility also appears in the price equation. This is quite a significant change to the process

for now the log-prices do not have continuous sample paths, but will jump at the same time that

the volatility jumps. A major advantage of this approach is that it is still possible to produce

analytic option pricing formulae based on these types of models — see Nicolato and Venardos

(2000). The corresponding quadratic variation for this process is

[x∗](t) = σ2∗(t) + ρ2[z](λt).

Hence realised volatility will not consistently estimate integrated volatility.

5.2 Multivariate case

The final extension we could think of is to the multivariate case. A simple multivariate structure

for a log-price vector can be generated off a N ×1 multivariate SV model. In particular a simple
extension of the univariate setup is to write

dx∗(t) = {µ+Σ(t)β} dt+Σ(t)1/2dw(t),

where w(t) is a vector of independent standard Brownian motions. Then the return vector

yn = x∗ (n∆)− x∗ ((n− 1)∆) ,

is a multivariate mixture of normals. In particular

yn|Σn ∼ N(µ∆+Σnβ,Σn),

where

Σn = Σ∗ (n∆)− Σ∗ ((n− 1)∆) and Σ∗(t) =
∫ t

0
Σ(t)dt.

We call Σ∗(t) integrated covolatility and Σn actual covolatility. For the above SV model the

quadratic covariation is Σ∗(t), i.e. we have

[x∗](t) =p− lim
r→∞

∑
{x∗(tri+1)− x∗(tri )}{x∗(tri+1)− x∗(tri )}′ = Σ∗(t) (20)

for any sequence of partitions tr0 = 0 < tr1 < ... < trmr
= t with supi{tri+1 − tri } → 0 for r → ∞.

Again this is a robust measure as it produces the integrated covolatility even if µ and β are
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non-zero. However, it is an entirely asymptotic concept and so is not directly applicable in

practice.

The actual covolatility can be estimated using intra-day observations

Sn =
M∑

j=1

yi,ny
′
i,n, where yi,n = x∗

(
(n− 1)∆ + ∆i

M

)
− x∗

(
(n− 1)∆ + ∆(i− 1)

M

)
.

This is consistent as M goes to infinity (see Barndorff-Nielsen and Shephard (2001a)) and is

unbiased if µ and β is zero. We call Sn realised covolatility. Some of the empirical properties of

{Sn} are studied in Andersen, Bollerslev, Diebold, and Labys (2000a) in the bivariate case.
When µ and β are zero then

Sn = Σn + Un, where Un = Sn − Σn

where Un is a zero mean, white noise error which is uncorrelated with all of the elements

of actual covolatility. Its properties are studied at length in Barndorff-Nielsen and Shephard

(2001b). Although the properties of the elements of Sn are intricate, they raise no new issues

compared to the univariate case.

6 Conclusion

In this paper we have studied the statistical properties of realised volatility in the context of SV

models. Our results are entirely general, providing both a central limit theory approximation to

their distribution as well as an exact second order analysis. These results can be used within a

linear state space representation, in conjunction with a model for the dynamics of volatility, to

produce a more accurate estimate of actual volatility. Further, a simple quasi-likelihood results

which could be used to perform computationally quite simple estimation.

The results extend to allow us to deal with drift, skewness, leverage and the multivariate

cases. Potentially they allow us to exploit the availability of high frequency data in financial

economics, giving us relatively simple and efficient ways of estimating these stochastic processes.
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Zaköian on ARMA models with mixing white noise error terms.

8 Appendix

In the appendix we derive two results. First we discuss the asymptotic theory of realised volatility

as M → ∞. Second we present the details of the linear state space form for realised volatility.

8.1 Asymptotic distribution of realised volatility

For this subsection we introduce the notation

τj = σ2∗ (
jM−1∆

) − σ2∗ {
(j − 1)M−1∆

}
, j = 1, 2, ...,M,

and then note the error term for realised volatility for day one is

u1 = s2
1 − σ2∗(∆)

=
M∑

j=1

[
x∗

(
jM−1∆

) − x∗
{
(j − 1)M−1∆

}]2 − σ2∗(∆).

Then the conditional cumulant function of u1 is

log φ(ζ;u1|τ1, ..., τM ) = −1
2

M∑
j=1

{log(1− 2iζτj)− iζτj} .

For |ζ|max1≤j≤M τj < 1 we find, by Taylor’s formula,

log φ(ζ;u1|τ1, ..., τM ) = −1
2

M∑
j=1

{log(1− 2iζτj)− iζτj}

= −ζ2M
M∑

j=1

τ2
j

∫ 1

0

1− u

1− iζτju
du.

Since E (τj) = ∆ξM−1 and Var (τj) = 2ω2r∗∗(∆M−1) ∼ r(0+)ω2∆2M−2 we have, under mild

regularity conditions, that

|
√
M | max

1≤j≤M
τj

p→ 0

for M → ∞. It follows that the conditional characteristic function of √Mu1 satisfies

lim
M→∞

log φ(ζ;
√
Mu1|τ1, ..., τM ) = −ζ2 lim

M→∞
M

M∑
j=1

τ2
j .
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Hence
s2
1 − σ2

1√
2

∑M
j=1 τ

2
j

L→ N(0, 1).

8.2 State space representation of s2
n for single OU process

Recall actual volatility σ2
n has an ARMA(1,1) representation while

s2
n = σ2

n + un, where un = s2
n − σ2

n,

where un is a zero mean white noise process with variance (17) which we write as σ2
u. This

noise process is uncorrelated with actual volatility. Hence the process has a linear state space

representation
s2
n = ∆ξ + xnαn + un, un ∼ WN(0, σ2

u)
αn+1 = Tnαn +Gnvn, vn ∼ WN(0, 1).

Here WN(., .) denotes white noise errors. The error terms un and vn are uncorrelated while

xn = (1 0) , Tn =
(

φ 1
0 0

)
, Gn =

(
σσ

σσθ

)
,

where φ, θ and σσ represent the autoregressive root, the moving average root and the variance

of the innovation to this process. Software, based on the Kalman filter, for carrying out best

linear estimates of
{
σ2

n

}
using the realised volatility is available in Koopman, Shephard, and

Doornik (1999).
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