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Abstract. Many groups are required to make collective decisions over multiple interconnected 
propositions. The “doctrinal paradox” or “discursive dilemma” shows that propositionwise majority voting 
can lead to inconsistent collective outcomes, even when the judgments of individual group members are 
consistent. How likely is the occurrence of this paradox? This paper develops a simple model for 
determining the probability of the paradox’s occurrence, given various assumptions about the probability of 
different individual judgments. Several convergence results will be proved, identifying conditions under 
which the probability of the paradox’s occurrence converges to certainty as the number of individuals 
increases, and conditions under which that probability vanishes. The present model will also be used for 
assessing the “truth-tracking” performance of two escape-routes from the paradox, the premise- and 
conclusion-based procedures. Finally, the results on the probability of the doctrinal paradox will be 
compared with existing results on the probability of Condorcet’s paradox of cyclical preferences. It will be 
suggested that the doctrinal paradox is more likely to occur than Condorcet’s paradox.  

 
A new paradox of aggregation, the “doctrinal paradox” or “discursive dilemma”, has 
been the subject of a growing body of literature in the fields of law, economics and 
philosophy (Kornhauser and Sager 1986; Kornhauser 1992; Kornhauser and Sager 1993; 
Chapman 1998; Brennan 2001; Pettit 2001; List and Pettit 2002a, 2002b; Chapman 
2001a, 2001b; Bovens and Rabinowicz 2001). A simple example illustrates the problem. 
Suppose that a panel of three judges has to decide on whether a defendant is liable under 
a charge of breach of contract. Legal doctrine requires that the court should find that the 
defendant is liable (proposition R) if and only if it finds, first, that the contract was valid 
(proposition P), and, second, that the defendant’s behaviour amounted to a breach of that 
contract (proposition Q). Thus legal doctrine stipulates the connection rule (R ↔ (P ∧ 
Q)). Suppose the opinions of the three judges are as in table 1. 
 
Table 1: The Doctrinal Paradox (Conjunctive Version) 

 P Q (R ↔ (P ∧ Q)) R 
Judge 1 Yes Yes Yes Yes 
Judge 2 Yes No Yes No 
Judge 3 No Yes Yes No 
Majority Yes Yes Yes No 

                                                           
1 The author wishes to express his gratitude to Philip Pettit and Wlodek Rabinowicz for discussion. Address 
for correspondence: Nuffield College, Oxford OX1 1NF, U.K.; E-mail christian.list@nuffield.oxford.ac.uk.  
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All judges accept the connection rule, (R ↔ (P ∧ Q)). Further, judge 1 accepts both P and 
Q and, by implication, R. Judges 2 and 3 each accept only one of P or Q and, by 
implication, they both reject R. If the court applies majority voting on each proposition, it 
faces a paradoxical outcome. A majority accepts P, a majority accepts Q, and yet a 
majority rejects R, in spite of the unanimous acceptance of (R ↔ (P ∧ Q)). 
Propositionwise majority voting yields an inconsistent collective set of judgments.2 
 
Pettit (2001) has argued that the paradox occurs not only in the context of aggregation of 
judgments according to legal doctrine, but that it poses a much more general “discursive 
dilemma”, which any group may face when it seeks to form collective judgments on the 
basis of reasons. Versions of the problem may arise, for example, when a committee has 
to make a decision that involves the resolution of several premises; or when a political 
party or interest group seeks to come up with an entire policy package, where such a 
package consists of several interconnected propositions. Although the label “doctrinal 
paradox” will be used here, the more general nature of the problem should be kept in 
mind. 
 
How likely is the occurrence of this paradox? The aim of the present paper is to give a 
theoretical answer to this narrow, but important, question. Inevitably, a large range of 
other important questions raised by the doctrinal paradox cannot be addressed here. In 
section 1, necessary and sufficient conditions for the occurrence of the paradox will be 
identified. In section 2, a probability-theoretic model will be developed for determining 
the probability of its occurrence, given various assumptions about the probability that 
individuals hold different sets of judgments. Some convergence results will be proved, 
identifying conditions under which the probability of the paradox’s occurrence converges 
to 1 as the number of individuals increases, and conditions under which that probability 
converges to 0. In section 3, two frequently discussed escape-routes from the paradox, the 
premise- and conclusion-based procedures of decision-making, will be discussed, and, 
following a recent paper by Bovens and Rabinowicz (2001), their performance in terms 
of tracking the “truth” will be investigated. The present model yields alternative proofs of 
some of the results by Bovens and Rabinowicz. It will also be shown that, under certain 
conditions, if each individual is better than random at tracking the “truth” on each of the 
                                                           
2 The doctrinal paradox is related to Anscombe’s paradox, or Ostrogorski’s paradox, as these paradoxes, 
like the doctrinal paradox, are concerned with aggregation over multiple propositions (Anscombe 1976; 
Kelly 1989; Brams, Kilgour and Zwicker 1997). Unlike the doctrinal paradox, however, they do not 
explicitly incorporate logical connections between the relevant multiple propositions.   
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premises, but not very good at it, then the probability of the occurrence of the doctrinal 
paradox converges to 1 as the number of individuals increases. Section 4 addresses 
possible extensions and generalizations of the present results. And, in section 5, finally, 
the present results on the probability of the doctrinal paradox will be compared with 
existing results on the probability of cycles in the realm of preference aggregation. The 
paper will show that, under plausible assumptions, the doctrinal paradox is more likely to 
occur than Condorcet’s paradox of cyclical preferences. These findings should underline 
that the doctrinal paradox and its escape-routes deserve attention. 
 
1. Necessary and Sufficient Conditions for the Occurrence of the Paradox 
 
Suppose that there are n individuals and three propositions, P, Q and R. Suppose further 
that all individuals accept the connection rule (R ↔ (P ∧ Q)). Admitting only consistent 
individual sets of judgments over P, Q and R, there are 4 logically possible sets of 
judgments an individual might hold, as shown in table 2.3 
 
Table 2: All logically possible consistent sets of judgments over P, Q and R, given (R 
↔ (P ∧ Q)) 

Label Judgment on P Judgment on Q Judgment on R 
PQ Yes Yes Yes 

P¬Q Yes No No 
¬PQ No Yes No 

¬P¬Q No No No 
 
Let nPQ, nP¬Q, n¬PQ, n¬P¬Q be the numbers of individuals holding the sets of judgments 
PQ, P¬Q, ¬PQ, ¬P¬Q, respectively. A collective inconsistency (a “doctrinal paradox”) 
will occur if and only if there are majorities for each of P and Q, and there is a majority 
against R. If there are ties, we allow that these may be broken in whichever way 
collective consistency requires. Thus the following proposition holds. 
 

                                                           
3 I make no empirical claims as to whether or not it is plausible to assume that individuals hold consistent 
sets of judgments. For the present purposes, it is sufficient to note that admitting only consisting individual 
sets of judgments makes the occurrence of inconsistent collective sets of judgments less likely rather than 
more likely. If we can still show that, in a large class of cases, collective inconsistencies will occur, then the 
argument will effectively have been strengthened rather than weakened by the exclusion of inconsistent 
individual sets of judgments. 
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Proposition 1. Given the connection rule (R ↔ (P ∧ Q)), there will be a collective 
inconsistency under propositionwise majority voting if and only if (nPQ + nP¬Q > n/2) and 
(nPQ + n¬PQ > n/2) and (nPQ < n/2). 
 
2. A Probability-Theoretic Framework 
 
To study the likelihood of the occurrence of collective inconsistencies, we assume that (i) 
each individual has probabilities pPQ, pP¬Q, p¬PQ, p¬P¬Q of holding the sets of judgments 
PQ, P¬Q, ¬PQ, ¬P¬Q, respectively (where pPQ + pP¬Q + p¬PQ + p¬P¬Q = 1); and (ii) the 
judgments of different individuals are independent from each other.4 An impartial culture 
is the situation of perfect equiprobability across all logically possible sets of judgments, 
i.e. pPQ = pP¬Q = p¬PQ = p¬P¬Q. The function for calculating the probability of each 
logically possible combination of individual sets of judgments is stated in appendix 1. 
 
Table 3 shows the probability that there will be a collective inconsistency under 
propositionwise majority voting for various values of pPQ, pP¬Q, p¬PQ, p¬P¬Q and various 
values of n, where the connection rule is (R ↔ (P ∧ Q)). 
 
Table 3: Probability that there will be a collective inconsistency under 
propositionwise majority voting (given (R ↔ (P ∧ Q))), for various scenarios  
 Scenario 1  

pPQ = 0.25 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 
0.25 

Scenario 2 
pPQ = 0.26 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 
0.24 

Scenario 3  
pPQ = 0.3 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 
0.2 

Scenario 4 
pPQ = 0.24 
pP¬Q = 0.27 
p¬PQ = 0.25 
p¬P¬Q = 
0.24 

Scenario 5  
pPQ = 0.49 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 
0.11 

Scenario 6  
pPQ = 0.51 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 
0.09 

Scenario 7 
pPQ = 0.55 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 
0.05 

Scenario 8 
pPQ = 0.33 
pP¬Q = 0.33 
p¬PQ = 0.33 
p¬P¬Q = 
0.01 

n = 3 0.0938 0.0975 0.1125 0.0972 0.1176 0.1224 0.1320 0.2156 
n = 11 0.2157 0.2365 0.3211 0.2144 0.3570 0.3432 0.2990 0.6188 
n = 31 0.2487 0.2946 0.4979 0.2409 0.5183 0.4420 0.2842 0.9104 
n = 51 0.2499 0.3101 0.5815 0.2405 0.5525 0.4414 0.2358 0.9757 
n = 71 ≈ 0.2500 0.3216 0.6417 0.2393 0.5663 0.4327 0.1983 0.9930 
n = 101 ≈ 0.2500 0.3362 0.7113 0.2375 0.5798 0.4201 0.1562 0.9989 
n = 201 ≈ 0.2500 0.3742 0.8511 0.2317 0.6118 0.3882 0.0774 ≈ 1.0000 
n = 501 ≈ 0.2500 0.4527  0.9754 0.2149 0.6729 0.3271 0.0124 ≈ 1.0000 
n = 1001 ≈ 0.2500 0.5426 0.9985 0.1897 0.7366 0.2634 0.0008 ≈ 1.0000 
n = 1501 ≈ 0.2500 0.6097 0.9999 0.1676 0.7808 0.2192 0.0001 ≈ 1.0000 

                                                           
4 The simplifications implicit in these assumptions follow the classical Condorcet jury theorem. 
Specifically, we assume (i) identical probabilities for different individuals, and (ii) independence between 
different individuals. However, it is known in the literature on the Condorcet jury theorem that the types of 
convergence mechanisms based on the law of large numbers invoked in the present paper apply, with 
certain modifications, also when probabilities vary across individuals and when there are certain 
dependencies. See in particular Grofman, Owen and Feld (1983) and Borland (1989). 
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Note that slight differences in the probabilities that individuals hold the different possible 
sets of judgments correspond to substantial differences in the resulting probability that a 
collective inconsistency will occur under propositionwise majority voting. In the special 
case of an impartial culture (scenario 1), the probability of the occurrence of a collective 
inconsistency appears to converge to 0.25 as the number of individuals increases.5 Slight 
deviations from an impartial culture, however, entail a completely different convergence 
pattern. This is confirmed by the following convergence results, proved in appendix 3. 
 
Proposition 2. Let the connection rule be (R ↔ (P ∧ Q)).  
(a) Suppose (pPQ + pP¬Q > 1/2) and (pPQ + p¬PQ > 1/2) and (pPQ < 1/2). Then the 

probability of a collective inconsistency under propositionwise majority voting 
converges to 1 as n tends to infinity. 

(b) Suppose (pPQ + pP¬Q < 1/2) or (pPQ + p¬PQ < 1/2) or (pPQ > 1/2). Then the probability 
of a collective inconsistency (given under propositionwise majority voting converges 
to 0 as n tends to infinity. 

 
Scenarios 2, 3, 5 and 8 in table 3 satisfy the conditions of proposition 2a, and scenarios 4, 
6 and 7 satisfy the conditions of proposition 2b. The numerical values in table 3 thus 
provide illustrations of the convergence mechanisms identified by proposition 2.  
 
The convergence results are effectively a consequence of the law of large numbers. If 
pPQ, pP¬Q, p¬PQ, p¬P¬Q are the probabilities that an individual holds the sets of judgments 
PQ, P¬Q, ¬PQ, ¬P¬Q, respectively, then npPQ, npP¬Q, np¬PQ, np¬P¬Q are the expected 
numbers of these sets of judgments across n individuals, and pPQ, pP¬Q, p¬PQ, p¬P¬Q are 
the expected frequencies (i.e. the expected numbers divided by n). If n is small, the actual 
frequencies may differ substantially from the expected ones, but as n increases, the actual 
frequencies will approximate the expected ones increasingly closely. In particular, if the 
probabilities pPQ, pP¬Q, p¬PQ, p¬P¬Q satisfy a set of strict inequalities, the actual 
frequencies (and by implication the actual numbers) are increasingly likely to satisfy a 
matching set of strict inequalities. But if these are the inequalities corresponding to the 
occurrence or absence of a collective inconsistency (compare proposition 1), this means 
that the probability of the occurrence or absence of such an inconsistency will converge 

                                                           
5 To avoid complications raised by ties, we here assume that the number of individuals is odd. 
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to certainty. The described mechanism will be used to prove other convergence results 
below. Lemma 1 in appendix 3 captures the mechanism formally. 
 
3. Voting for the Premises Versus Voting for the Conclusion 
 
Premise-based and conclusion-based procedures of decision-making have been proposed 
as possible escape-routes from the doctrinal paradox (see, for example, Pettit 2001). 
According to the premise-based procedure, the group applies majority voting on 
propositions P and Q, the “premises”, but not on proposition R, the “conclusion”, and lets 
the connection rule, (R ↔ (P ∧ Q)), dictate the collective judgment on R, effectively 
ignoring the majority verdict on it. Given the individual judgments in table 1, the 
premise-based procedure leads to the collective acceptance of P and Q and, by 
implication, R. According to the conclusion-based procedure, the group applies majority 
voting only on R, but not on P and Q, thereby effectively ignoring the majority verdicts 
on these propositions. Given the individual judgments in table 1, the conclusion-based 
procedure leads to the collective rejection of R. This illustrates that the premise-based and 
conclusion-based procedures may produce divergent outcomes. 
 
In a recent paper, Bovens and Rabinowicz (2001) have compared the epistemic 
performance of the two procedures (see also Pettit and Rabinowicz 2001). Supposing – in 
the framework of the Condorcet jury theorem – that there is an independent fact of the 
matter on whether each of P and Q is true (and, by implication, on whether R is true), 
they study the likelihood that the premise- and conclusion-based procedures reach the 
correct decision on R. In this section, the Condorcet jury framework will be connected 
with the present probability-theoretic framework, and the implications of the Condorcet 
jury assumptions for the probability of collective inconsistencies will be discussed. I will 
also present alternative proofs of some of the results by Bovens and Rabinowicz, 
including convergence results (some of them in appendix 3).6 
 
Following Bovens and Rabinowicz, we assume (i) that each individual has probabilities p 
and q of making a correct judgment on P and Q, respectively, where p, q > 0.5 
(informally, these probabilities are interpreted as the "competence" of the individual); (ii) 

                                                           
6 For an informal discussion of conjunction problems in a Condorcet jury framework, see also Levmore 
(2001). 
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each individual’s judgments on P and Q are independent from each other; (iii) the 
judgments of different individuals are independent from each other.  
 
Suppose the truth-values of P and Q are fixed (though not necessarily known). Then the 
values of p and q induce corresponding values of pPQ, pP¬Q, p¬PQ, p¬P¬Q. In other words, 
from the probabilities corresponding to each individual's decisions on P and Q, we can 
infer the probabilities corresponding to each individual's holding each of the sets of 
judgments PQ, P¬Q, ¬PQ, ¬P¬Q. The four possible cases are shown in table 4. 
 
Table 4: pPQ, pP¬Q, p¬PQ, p¬P¬Q as derived from p and q 
 P Q pPQ pP¬Q p¬PQ p¬P¬Q 

Case 1 true true pq p(1-q) (1-p)q (1-p)(1-q) 
Case 2 true false p(1-q) pq (1-p)(1-q) (1-p)q 
Case 3 false true (1-p)q (1-p)(1-q) pq p(1-q) 
Case 4 false false (1-p)(1-q) (1-p)q p(1-q) pq 

 
Proposition 3. Let the connection rule be (R ↔ (P ∧ Q)).  
(a) Suppose P and Q are true.  

• Suppose 0.5 < p, q < √(0.5). Then the probability of a collective inconsistency 
under propositionswise majority voting converges to 1 as n tends to infinity.  

• Suppose p, q > √(0.5). Then the probability of a collective inconsistency under 
propositionwise majority voting converges to 0 as n tends to infinity. 

(b) Suppose that not both P and Q are true and p, q > 0.5. Then the probability of a 
collective inconsistency under propositionswise majority voting converges to 0 as n 
tends to infinity.  

 
See appendix 3 for a proof. Bovens and Rabinowicz distinguish between reaching the 
truth for the right reasons, and reaching it regardless of reasons. Reaching the truth for 
the right reasons requires deducing the correct decision on the conclusion from correct 
decisions on each of the premises, whereas reaching the truth regardless of reasons 
includes the possibility of reaching the correct decision on the conclusion accidentally, 
while making a wrong decision on at least one of the premises.  
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Table 5 shows the conditions, in terms of the present framework, under which the 
premise- and conclusion-based procedures reach the correct decision on R (i) regardless 
of reasons and (ii) for the right reasons, for different truth-values of P and Q. 
 
Table 5: Conditions under which the premise- and conclusion-based procedures 
reach the correct decision on R (given (R ↔ (P ∧ Q))) (i) regardless of reasons and 
(ii) for the right reasons, for different truth-values of P and Q 

Premise-based procedure reaches correct 
decision on R 

Conclusion-based procedure reaches 
correct decision on R 

 
 
 

P 

 
 
 

Q 
regardless of 
reasons 
if and only if … 

for the right 
reasons 
if and only if … 

regardless of 
reasons 
if and only if … 

for the right 
reasons 
if and only if … 

true true there are majorities for each of P and Q  
i.e.  
(nPQ + nP¬Q > n/2) and (nPQ + n¬PQ > n/2) 

 
(1) 

there is a single majority supporting 
both P and Q  
i.e.  
nPQ > n/2                                                   

(2) 
true false there is a majority 

for P and a 
majority against Q 
i.e.  
(nPQ + nP¬Q > n/2) 
and (nP¬Q + n¬P¬Q > 
n/2) 

(4) 

there is a single 
majority 
supporting P and 
rejecting Q 
i.e.  
nP¬Q > n/2 

(8) 

false true there is a majority 
against P and a 
majority for Q 
i.e.  
(n¬PQ + n¬P¬Q > n/2) 
and (nPQ + n¬PQ > 
n/2) 

(5) 

there is a single 
majority rejecting 
P and supporting 
Q 
i.e.  
n¬PQ > n/2 

(9) 
false false 

there are not 
majorities for each 
of P and Q 
i.e. 
(nPQ + nP¬Q < n/2) or 
(nPQ + n¬PQ < n/2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3) 

there are 
majorities against 
each of P and Q 
i.e.  
(n¬PQ+n¬P¬Q>n/2) 
and (nP¬Q + n¬P¬Q > 
n/2) 

(6) 

there is not a single 
majority 
supporting both P 
and Q 
i.e.  
nPQ < n/2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(7) 

there is a single 
majority rejecting 
both P and Q 
i.e.  
n¬P¬Q > n/2 
 
 

(10) 

 
Bovens and Rabinowicz show in detail that the premise-based procedure is always better 
at reaching the correct decision on R for the right reasons, whereas the conclusion-based 
procedure may sometimes be better at reaching it regardless of reasons. Some of these 
results can be derived from table 5.  
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• Suppose we are concerned with reaching the correct decision on R for the right 
reasons. To compare the two procedures, we need to compare the relevant conditions 
corresponding to the four logically possible combinations of truth-values on P and Q. 
Condition (2) implies condition (1), condition (8) implies condition (4), condition (9) 
implies condition (5), and condition (10) implies condition (6). Hence the premise-
based procedure is always at least as good as the conclusion-based procedure in terms 
of reaching the correct decision on R for the right reasons. 

• Suppose we are concerned with reaching the correct decision on R regardless of 
reasons. Here we need to distinguish two cases. 

o Suppose both P and Q are true. Again, condition (2) implies condition (1), and 
hence the premise-based procedure is always at least as good as the 
conclusion-based procedure in terms of reaching the correct decision on R 
regardless of reasons. 

o Suppose not both P and Q are true. Here condition (3) implies condition (7), 
and hence the conclusion-based procedure is always at least as good as the 
premise-based procedure in terms of reaching the correct decision on R 
regardless of reasons.7 

 
Appendix 2 shows, in terms of the present framework, how to calculate the probabilities 
that, for a fixed number of individuals n and fixed truth-values of P and Q, the premise- 
and conclusion-based procedures reach the correct decision on R (i) regardless of reasons 
and (ii) for the right reasons. 
 
The results by Bovens and Rabinowicz also imply several results on the convergence of 
these probabilities as the number of individuals increases. The present framework 
provides alternative proofs of some of these results, given in appendix 3. 
 
Proposition 4 (see also Bovens and Rabinowicz 2001). Let the connection rule be (R ↔ 
(P ∧ Q)). The probabilities, as n tends to infinity, that the premise- and conclusion-based 
procedures reach a correct decision on R (i) regardless of reasons and (ii) for the right 
reasons, under various scenarios, are as shown in table 6. 

                                                           
7 These results are compatible with results by Grofman (1985) showing that, when a group decision on a 
conjunctive composite proposition can be disaggregated into separate group decisions on each of the 
conjuncts, disaggregation is superior in terms of reaching the correct decision (regardless of reasons) for 
true propositions, but not for false decisions.  
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Table 6: Probability, as n tends to infinity, of a correct decision on R (given (R ↔ (P 
∧ Q))) under the premise- and conclusion based procedures (i) regardless of reasons 
and (ii) for the right reasons, under various scenarios 

Premise-based procedure: 
Probability, as n tends to infinity, of … 

Conclusion-based procedure: 
Probability, as n tends to infinity, of … 

 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 
 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 

 
0.5 < p, q < √(0.5) 
P and Q both true 

 
0 

(b) 
0.5 < p, q < √(0.5) 

not both  
P and Q true 

 
1 

(c) 

 
0 

(d)
 

p, q > √(0.5) 

 
 
 
1 
 
 
 
 

(a) 

 
1 

(e) 

 
Note that, for a large class of conditions, the performance of the conclusion-based 
procedure is poor. If we are concerned with tracking the “truth” for the right reasons, the 
probability that the conclusion-based procedure will be successful will always converge 
to 0 as the number of individuals increases, unless the competence of individuals exceeds 
√(0.5). If we are concerned with tracking the “truth” regardless of reasons, then the 
probability that the conclusion-based procedure will be successful will still converge to 0, 
unless at least one of the premises is false. By contrast, the probability that the premise-
based procedure tracks the “truth”, both for the right reasons and regardless of reasons, 
will converge to 1 as soon as the competence of individuals is above 0.5.8 
 
4. Extensions and Generalizations 
 
So far we have discussed only one specific version of a problem of aggregation over 
multiple interconnected propositions, namely the conjunctive version of the doctrinal 
paradox, where the conjunction of two premises is a necessary and sufficient condition 
for a conclusion. It is known that the paradox can be generalized. Disjunctive versions of 
the paradox have been discussed, as well as extensions to more than two propositions 

                                                           
8 Note, however, that when P and Q are not both true, then the probability that the conclusion-based 
procedure reaches the correct decision on R regardless of reasons converges to 1 faster than the probability 
that the premise-based procedure reaches the correct decision on R regardless of reasons. This follows from 
the fact (remarked above) that condition (3) in table 5 implies condition (7), whereas the converse 
implication does not hold. 
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(see, amongst others, Chapman 1998 and Pettit 2001). Moreover, for any system of 
multiple propositions with certain logical interconnections, collective inconsistencies 
under propositionwise majority voting are possible.9 The aim of the present section is to 
illustrate that the present method of determining the probability of collective 
inconsistencies under propositionwise majority voting is applicable to other problems of 
aggregation over multiple propositions too. I will discuss two applications of the method, 
first an application to the disjunctive version of the doctrinal paradox, and second an 
application to the conjunctive version of the paradox with more than two premises. 
 
4.1. The Disjunctive Version of the Doctrinal Paradox 
 
Table 7: The Doctrinal Paradox (Disjunctive Version) 

 P Q (R ↔ (P ∨ Q)) R 
Judge 1 Yes No Yes Yes 
Judge 2 No Yes Yes Yes 
Judge 3 No No Yes No 
Majority No No Yes Yes 

 
In the disjunctive version of the doctrinal paradox, there are two premises, P and Q (e.g. 
“there is possibility 1 for jurisdiction” and “there is possibility 2 for jurisdiction”), and a 
conclusion, R (“there is a possibility for jurisdiction, all things considered”), and all 
judges accept that the disjunction of P and Q is necessary and sufficient for R. Given the 
individual judgments in table 7, a majority rejects P and a majority rejects Q, but a 
majority accepts R, in spite of the unanimous acceptance of (R ↔ (P ∨ Q)).  
 
Once again, there are 4 logically possible consistent sets of judgments an individual 
might hold, as shown in table 8. 
 

                                                           
9  This follows from a more general theorem by List and Pettit (2001) showing that there exists no 
procedure for aggregating individual sets of judgments over these propositions into collective ones in 
accordance with a set of minimal conditions. 
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Table 8: All logically possible consistent sets of judgments over P, Q and R, given (R 
↔ (P ∨ Q)) 

Label Judgment on P Judgment on Q Judgment on R 
PQ Yes Yes Yes 

P¬Q Yes No Yes 
¬PQ No Yes Yes 

¬P¬Q No No No 
 
Note that the connection rule (R ↔ (P ∨ Q)) is logically equivalent to (¬R ↔ (¬P ∧ 
¬Q)). Therefore all the results on the conjunctive version of the paradox in section 2 can 
be restated for the disjunctive version too. To state the corresponding results for the 
disjunctive version of the paradox, we simply need to swap P and ¬P, Q and ¬Q and R 
and ¬R in all the propositions and proofs. 
 
The following proposition is the counterpart of propositions 1 and 2 above. Let nPQ, nP¬Q, 
n¬PQ, n¬P¬Q be the numbers of individuals holding the sets of judgments PQ, P¬Q, ¬PQ, 
¬P¬Q in table 8, respectively. 
 
Proposition 5. Let the connection rule be (R ↔ (P ∨ Q)). 
(a) There will be a collective inconsistency under propositionwise majority voting if and 

only if (n¬P¬Q + n¬PQ  > n/2) and (n¬P¬Q + nP¬Q > n/2) and (n¬P¬Q < n/2). 
(b) Suppose (p¬P¬Q + p¬PQ  > 1/2) and (p¬P¬Q + pP¬Q > 1/2) and (p¬P¬Q < 1/2). Then the 

probability of a collective inconsistency under propositionwise majority voting 
converges to 1 as n tends to infinity. 

(c) Suppose (p¬P¬Q + p¬PQ  < 1/2) or (p¬P¬Q + pP¬Q < 1/2) or (p¬P¬Q > 1/2). Then the 
probability of a collective inconsistency under propositionwise majority voting 
converges to 0 as n tends to infinity. 

 
If scenarios 1 to 8 in table 3 are replaced with scenarios 1* to 8*, as shown in table 9 
below, the probability that there will be a collective inconsistency under propositionwise 
majority voting for the new connection rule (R ↔ (P ∨ Q)) can be read off directly from 
table 3. 
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Table 9: Scenarios corresponding to the probability that there will be a collective 
inconsistency under propositionwise majority voting (given (R ↔ (P ∨ Q))) 
Scenario 1*  
pPQ = 0.25 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 0.25 

Scenario 2* 
pPQ = 0.24 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 0.26 

Scenario 3*  
pPQ = 0.2 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 0.3 

Scenario 4* 
pPQ = 0.24 
pP¬Q = 0.25 
p¬PQ = 0.27 
p¬P¬Q = 0.24 

Scenario 5*  
pPQ = 0.11 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 0.49 

Scenario 6*  
pPQ = 0.09 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 0.51 

Scenario 7* 
pPQ = 0.05 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 0.55 

Scenario 8* 
pPQ = 0.01 
pP¬Q = 0.33 
p¬PQ = 0.33 
p¬P¬Q = 0.33 

 
The conditions of proposition 5b – convergence of the probability of a collective 
inconsistency to 1 – are satisfied in scenarios 2*, 3*, 5* and 8*; the conditions of 
proposition 5c – convergence of the probability of a collective inconsistency to 0 – are 
satisfied in scenarios 4*, 6* and 7*. 
 
We will now again use the Condorcet jury framework introduced in section 3. 
 
Proposition 6. Let the connection rule be (R ↔ (P ∨ Q)).  
(a) Suppose P and Q are both false.  

• Suppose 0.5 < p, q < √(0.5). Then the probability of a collective inconsistency 
under propositionswise majority voting converges to 1 as n tends to infinity.  

• Suppose p, q > √(0.5). Then the probability of a collective inconsistency under 
propositionwise majority voting converges to 0 as n tends to infinity. 

(b) Suppose that at least one of P and Q is true and p, q > 0.5. Then the probability of a 
collective inconsistency under propositionswise majority voting converges to 0 as n 
tends to infinity.  

 
The premise- and conclusion-based procedures of decision-making provide escape-routes 
from the disjunctive version of the doctrinal paradox too. Further, as in the conjunctive 
case, we can distinguish between reaching the correct decision for the right reasons and 
reaching it regardless of reasons. Table 10 shows the conditions under which the premise- 
and conclusion-based procedures reach the correct decision on R (given (R ↔ (P ∨ Q))) 
(i) regardless of reasons and (ii) for the right reasons, for different truth-values of P and 
Q. 
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Table 10: Conditions under which the premise- and conclusion-based procedures 
reach the correct decision on R (given (R ↔ (P ∨ Q))) (i) regardless of reasons and 
(ii) for the right reasons, for different truth-values of P and Q 

Premise-based procedure reaches correct 
decision on R 

Conclusion-based procedure reaches 
correct decision on R 

 
 
 

P 

 
 
 

Q 
regardless of 
reasons 
if and only if … 

for the right 
reasons 
if and only if … 

regardless of 
reasons 
if and only if … 

for the right 
reasons 
if and only if … 

false false there are majorities against each of P 
and Q 
i.e. 
(n¬P¬Q + nP¬Q > n/2) and (n¬P¬Q + n¬PQ > 
n/2) 

(1) 

there is a single majority against both P 
and Q 
i.e.  
n¬P¬Q > n/2                                                   

(2) 
true false there is a majority 

for P and a 
majority against Q 
i.e.  
(nPQ + nP¬Q > n/2) 
and (nP¬Q + n¬P¬Q > 
n/2) 

(4) 

there is a single 
majority 
supporting P and 
rejecting Q 
i.e.  
nP¬Q > n/2 

(8) 
false true there is a majority 

against P and a 
majority for Q 
i.e.  
(n¬PQ + n¬P¬Q > n/2) 
and (nPQ + n¬PQ > 
n/2) 

(5) 

there is a single 
majority rejecting 
P and supporting 
Q  
i.e.  
n¬PQ > n/2 

(9) 
true true 

there is a majority 
for at least one of P 
and Q 
i.e. 
(nPQ + nP¬Q > n/2) or 
(nPQ + n¬PQ > n/2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3) 

there are 
majorities for each 
of P and Q 
i.e.  
(n¬PQ+nPQ>n/2) and 
(nP¬Q + nPQ > n/2) 

(6) 

there is not a single 
majority against 
both P and Q 
i.e.  
n¬P¬Q < n/2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(7) 

there is a single 
majority 
supporting both P 
and Q 
i.e.  
nPQ > n/2 

(10) 

 
In table 10, the same implications as in table 5 hold, and we can deduce the following 
propositions: 
 
• The premise-based procedure is always at least as good as the conclusion-based 

procedure in terms of reaching the correct decision on R for the right reasons. 
• Suppose we are concerned with reaching the correct decision on R regardless of 

reasons. Here we need to distinguish two cases. 
o Suppose both P and Q are false. Then the premise-based procedure is always 

at least as good as the conclusion-based procedure in terms of reaching the 
correct decision on R regardless of reasons. 
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o Suppose at least one of P and Q is true. Then the conclusion-based procedure 
is always at least as good as the premise-based procedure in terms of reaching 
the correct decision on R regardless of reasons.10 

 
Proposition 7. Let the connection rule be (R ↔ (P ∨ Q)). The probabilities, as n tends to 
infinity, that the premise- and conclusion-based procedures reach a correct decision on R 
(i) regardless of reasons and (ii) for the right reasons, under various scenarios, are as 
shown in table 11. 
   
Table 11: Probability, as n tends to infinity, of a correct decision on R (given (R ↔ 
(P ∨ Q))) under the premise- and conclusion based procedures (i) regardless of 
reasons and (ii) for the right reasons, under various scenarios 

Premise-based procedure: 
Probability, as n tends to infinity, of … 

Conclusion-based procedure: 
Probability, as n tends to infinity, of … 

 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 
 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 

 
0.5 < p, q < √(0.5) 
P and Q both false 

 
0 

(b) 
0.5 < p, q < √(0.5) 

at least one of 
P and Q true 

 
1 

(c) 

 
0 

(d)
 

p, q > √(0.5) 

 
 
 
1 
 
 
 
 

(a) 

 
1 

(e) 

 
As in the conjunctive case, for a large class of conditions, the performance of the 
conclusion-based procedure is poor, particularly if we are concerned with tracking the 
“truth” for the right reasons. Unlike in the conjunctive case, however, the probability that 
the conclusion-based procedure will track the “truth” regardless of reasons converges to 1 
if at least one of the premises is true.11  
 
                                                           
10 These results are also compatible with results by Grofman (1985). Grofman showed that, when a group 
decision on a disjunctive composite proposition can be disaggregated into separate group decisions on each 
of the disjuncts, disaggregation is superior in terms of reaching the correct decision (regardless of reasons) 
for false propositions, but not for true decisions. 
11 Here, when P and Q are not both false, then the probability that the conclusion-based procedure reaches 
the correct decision on R regardless of reasons converges to 1 faster than the probability that the premise-
based procedure reaches the correct decision on R regardless of reasons. This follows from the fact that 
condition (3) in table 10 implies condition (7), whereas the converse implication does not hold. Compare 
note 8. 
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4.2. The Conjunctive Version of the Doctrinal Paradox with More than Two 
Premises 
 
First we will generalize propositions 1 and 2 to the case of three premises. We will then 
generalize propositions 3 and 4 to the case of k premises. 
 
Table 12: The Doctrinal Paradox (The Case of Three-Premises) 

 P Q R 
 

(S ↔  
(P ∧ Q ∧ R)) 

S 

Individual 1 Yes Yes No Yes No 
Individual 2 No Yes Yes Yes No 
Individual 3 Yes No Yes Yes No 

Majority Yes Yes Yes Yes No 
 
If the individual judgments are as in table 12, there are propositionwise majorities for 
each of the three premises, P, Q and R; all individuals accept that the conjunction of the 
three premises is necessary and sufficient for the conclusion, S; and yet S is unanimously 
rejected.  
 
This time there are 8 logically possible consistent sets of judgments an individual might 
hold, as shown in table 13. 
 
Table 13: All logically possible consistent sets of judgments over P, Q, R and S, given 
(S ↔ (P ∧ Q ∧ R)) 

 P Q R S 
PQR Yes Yes Yes Yes 

PQ¬R Yes Yes No No 
P¬QR Yes No Yes No 

P¬Q¬R Yes No No No 
¬PQR No Yes Yes No 

¬PQ¬R No Yes No No 
¬P¬QR No No Yes No 

¬P¬Q¬R No No No No 
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Let nPQR, nPQ¬R, nP¬QR, nP¬Q¬R, n¬PQR, n¬PQ¬R, n¬P¬QR, n¬P¬Q¬R be the numbers of 
individuals holding the sets of judgments in table 13, and let pPQR, pPQ¬R, pP¬QR, pP¬Q¬R, 
p¬PQR, p¬PQ¬R, p¬P¬QR, p¬P¬Q¬R be the corresponding probabilities.  
 
Proposition 8. Let the connection rule be (S ↔ (P ∧ Q ∧ R)).  
(a) There will be a collective inconsistency under propositionwise majority voting if and 

only if (nPQR+nPQ¬R+nP¬QR,+nP¬Q¬R  > n/2) and (nPQR+nPQ¬R+n¬PQR+n¬PQ¬R  > n/2) 
and (nPQR+nP¬QR+n¬PQR+n¬P¬QR > n/2) and (nPQR < n/2).  

(b) Suppose (pPQR+pPQ¬R+pP¬QR,+pP¬Q¬R  > 1/2) and (pPQR+pPQ¬R+p¬PQR+p¬PQ¬R  > 1/2) 
and (pPQR+pP¬QR+p¬PQR+p¬P¬QR > 1/2) and (pPQR < 1/2). Then the probability of a 
collective inconsistency under propositionwise majority voting converges to 1 as n 
tends to infinity. 

(c) Suppose (pPQR+pPQ¬R+pP¬QR,+pP¬Q¬R  < 1/2) or (pPQR+pPQ¬R+p¬PQR+p¬PQ¬R  < 1/2) or 
(pPQR+pP¬QR+p¬PQR+p¬P¬QR < 1/2) or (pPQR > 1/2). Then the probability of a collective 
inconsistency under propositionwise majority voting converges to 0 as n tends to 
infinity. 

 
The proof of proposition 8 is given in appendix 3. To illustrate, the conditions of 
proposition 8b – convergence of the probability of a collective inconsistency to 1 – are 
satisfied when pPQR = 0.126, p¬P¬Q¬R = 0.124 and pPQ¬R = pP¬QR = pP¬Q¬R = p¬PQR = 
p¬PQ¬R = p¬P¬QR = 0.125; or when pPQR = 0.49, p¬P¬Q¬R = 0.03 and pPQ¬R = pP¬QR = 
pP¬Q¬R = p¬PQR = p¬PQ¬R = p¬P¬QR = 0.08. The conditions of proposition 8c – 
convergence of the probability of a collective inconsistency to 0 – are satisfied when pPQR 
= 0.124, p¬P¬Q¬R = 0.126 and pPQ¬R = pP¬QR = pP¬Q¬R = p¬PQR = p¬PQ¬R = p¬P¬QR = 0.125; 
or when pPQR = 0.51, p¬P¬Q¬R = 0.01 and pPQ¬R = pP¬QR = pP¬Q¬R = p¬PQR = p¬PQ¬R = 
p¬P¬QR = 0.08. 
 
We will now generalize propositions 3 and 4 to the case of k premises. This 
generalization will serve to illustrate how easily a collective inconsistency can occur 
when the number of propositions is large. We will consider an aggregation problem with 
k premises, P1, P2, ..., Pk, whose conjunction is necessary and sufficient for a conclusion, 
R. Again, we assume (i) that each individual has probabilities (individual “competence”) 
p1, p2, ..., pk of making a correct judgment on P1, P2, ..., Pk, respectively, where p1, p2, ..., 
pk > 0.5; (ii) each individual’s judgments on P1, P2, ..., Pk are independent from each 
other; (iii) the judgments of different individuals are independent from each other. The 



 18 

proofs of propositions 9 and 10 are perfectly analogous to the proofs of their counterparts 
for two premises (propositions 3 and 4 above). Note that the probability that an individual 
holds the conjunction of correct judgments on P1, P2, ..., Pk is the product p1 p2 ... pk. In 
particular, if p1, p2, ..., pk < k√(0.5), then p1 p2 ... pk < 0.5; and if p1, p2, ..., pk > k√(0.5), 
then p1 p2 ... pk > 0.5. 
 
Proposition 9.  Let the connection rule be (R ↔ (P1 ∧ P2 ∧ ... ∧ Pk)). 
(a) Suppose P1, P2, ..., Pk are true.  

• Suppose 0.5 < p1, p2, ..., pk < k√(0.5). Then the probability of a collective 
inconsistency under propositionswise majority voting converges to 1 as n 
tends to infinity.  

• Suppose p, q > k√(0.5). Then the probability of a collective inconsistency 
under propositionwise majority voting converges to 0 as n tends to infinity. 

(b) Suppose that not all of P1, P2, ..., Pk are true and p1, p2, ..., pk > 0.5. Then the 
probability of a collective inconsistency under propositionswise majority voting 
converges to 0 as n tends to infinity.  

 
Proposition 10. The probabilities, as n tends to infinity, that the premise- and 
conclusion-based procedures reach a correct decision on R (i) regardless of reasons and 
(ii) for the right reasons, under various scenarios, are as shown in table 14. 
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Table 14: Probability, as n tends to infinity, of a correct decision on R (given (R ↔ 
(P1 ∧ P2 ∧ ... ∧ Pk))) under the premise- and conclusion based procedures (i) 
regardless of reasons and (ii) for the right reasons, under various scenarios 

Premise-based procedure: 
Probability, as n tends to infinity, of … 

Conclusion-based procedure: 
Probability, as n tends to infinity, of … 

 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 
 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 

 
0.5 < p1, p2, ..., pk 
< k√(0.5) 

P1, P2, ..., Pk all 
true 

 
0 

(b) 

0.5 < p1, p2, ..., pk 
< k√(0.5) 

not all of P1, P2, 
..., Pk true 

 
1 

 
(c) 

 
0 

(d)
 

p1, p2, ..., pk 

> k√(0.5) 

 
 
 
 
1 
 
 
 
 
 

(a) 

 
1 

(e) 

 
Several points can be noted from propositions 9 and 10. For a large number k of 
premises, the level of individual competence required for the avoidance of collective 
inconsistencies (when all premises are true) is very high; the requisite lower bound on 
each of p1, p2, ..., pk, namely k√(0.5), converges to 1 as k increases. Moreover, unless the 
competence of individuals is above that bound, the performance of the conclusion-based 
procedure in terms of reaching a correct decision on the conclusion for the right reasons 
is very poor. Moreover, if the premises are all true, the conclusion-based procedure will 
also perform poorly in terms of reaching a correct decision on the conclusion regardless 
of reasons. The premise-based procedure, by contrast, will reach a correct decision on the 
conclusion more reliably, both for the right reasons and regardless of reasons.12 
 
5. The Probability of Inconsistent Collective Sets of Judgments Compared with the 
Probability of Cycles 
 
The doctrinal paradox invites comparison with Condorcet’s paradox, according to which 
consistent individual preferences can lead to inconsistent collective preferences under 
pairwise majority voting.13 To state Condorcet’s paradox, suppose there are three 
individuals, where one prefers option x1 to option x2 to option x3, the second prefers 
                                                           
12 A remark similar to note 8 above applies. 
13 For a discussion of the parallels between the two paradoxes, see List and Pettit (2002b). 
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option x2 to option x3 to option x1, and the third prefers option x3 to option x1 to option x2. 
Then there is a majority for x1 against x2, a majority for x2 against x3, and a majority for x3 
against x1, a cycle. 
  
Several recent papers have addressed the likelihood of the occurrence of Condorcet's 
paradox in a large electorate (Tangian 2000; Tsetlin, Regenwetter and Grofman 2000; 
List and Goodin 2001). The robust finding is that, given plausible assumptions about the 
distribution of individual preferences, the probability of cyclical collective preferences 
vanishes as the number of individuals increases. In what follows, I will briefly compare 
existing results on the probability of cycles with the present results on the probability of 
inconsistent collective sets of judgements, using the example of the conjunctive version 
of the doctrinal paradox.  
 
We have seen in section 2 that slight deviations from an impartial culture can imply 
convergence of the probability of collective inconsistencies under propositionwise 
majority voting to either 0 or 1 as the number of individuals increases, depending on the 
precise pattern of deviation. A similar result holds for the aggregation of preferences.  
 
If there are three options, x1, x2 and x3, there are 6 logically possible strict preference 
orderings, as shown in table 15. 
 

Table 15: All logically possible strict preference orderings over three options 

Label 1st preference 2nd preference 3rd preference 
PX1 x3 x1 x2 
PY2 x3 x2 x1 
PZ1 x2 x3 x1 
PX2 x2 x1 x3 
PY1 x1 x2 x3 
PZ2 x1 x3 x2 

 
Let pX1, pX2, pY1, pY2, pZ1, pZ2 be the probabilities that an individual holds the orderings 
PX1, PX2, PY1, PY2, PZ1, PZ2, respectively (where the sum of the probabilities is 1). As 
before, an impartial culture is the situation in which pX1 = pX2 = pY1 = pY2 = pZ1 = pZ2. 
 
In an impartial culture, the probability of a cycle increases as the number of individuals 
increases (Gehrlein 1983). But, as in the case of the doctrinal paradox, an impartial 
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culture is a special case (see in particular Tsetlin, Regenwetter and Grofman 2000). 
Given suitable systematic, however slight, deviations from an impartial culture, the 
probability of a cycle under pairwise majority voting will converge to either 0 or 1 as the 
number of individuals increases.  
 

Proposition 11 (List 2001).  

(a) Suppose ((pX1 > pX2 and pY1 > pY2 and pZ1 > pZ2) or (pX1 < pX2 and pY1 < pY2 and pZ1 < 

pZ2)) and (|pX1 - pX2| < δ/2) and (|pY1 - pY2| < δ/2) and (|pZ1 – pZ2|< δ/2), where δ = |pX1 

- pX2| + |pY1 - pY2| + |pZ1 - pZ2|. Then the probability of a cycle under pairwise majority 

voting converges to 1 as n tends to infinity. 

(b) Suppose ((pX1 < pX2 or pY1 < pY2 or pZ1 < pZ2) and (pX1 > pX2 or pY1 > pY2 or pZ1 > pZ2)) 
or (|pX1 - pX2| > δ/2) or (|pY1 - pY2| > δ/2) or (|pZ1 – pZ2| > δ/2), where δ = |pX1 - pX2| + 
|pY1 - pY2| + |pZ1 - pZ2|. Then the probability of a cycle under pairwise majority voting 
converges to 0 as n tends to infinity. 

 
Propositions 11a and 11b correspond, respectively, to propositions 2a and 2b above. 
Proposition 11a, like proposition 2a, states conditions under which the probability of an 
inconsistent (here cyclical) outcome converges to 1. Proposition 11b, like proposition 2b, 
states conditions under which this probability converges to 0.  
 
So far this seems like a perfect analogy between the probability of cycles and the 
probability of inconsistent collective sets of judgments. In both cases, an impartial culture 
is a special case, implying a non-zero probability of the paradox. Further, in both cases, 
systematic deviations from an impartial culture imply convergence of that probability to 
either 0 or 1. Can we nonetheless find a criterion for determining whether the occurrence 
of one of the two paradoxes is more likely than that of the other? The criterion would 
have to determine what distributions of probabilities over all logically possible preference 
orderings, or over all logically possible sets of judgments, are the empirically most 
plausible ones. We would then have to ask, in the case of the doctrinal paradox, whether 
these distributions satisfy the conditions of proposition 2a or those of proposition 2b, and 
in the case of Condorcet’s paradox, whether they satisfy the conditions of proposition 11a 
or those of proposition 11b. 
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An initial inspection suggests that both the conditions of proposition 2a and those of 
proposition 2b can easily be met. For instance, the conditions of proposition 2a – 
convergence of the probability of a collective inconsistency to 1 – are already met if pPQ  
= 1/4 + ε, p¬P¬Q = 1/4 - ε and p¬PQ = pP¬Q = 1/4, for any arbitrarily small number ε > 0. 
The conditions of proposition 2b – convergence of that probability to 0 – are already met 
if pPQ  = 1/4 - ε, p¬P¬Q = 1/4 + ε and p¬PQ = pP¬Q = 1/4. By contrast, the conditions of 
proposition 11b – convergence of the probability of cycles to 0 – appear to be logically 
less demanding than those of proposition 11a – convergence of that probability to 1. 
While the former are already met if at least one of pX1 < pX2, pY1 < pY2, pZ1 < pZ2 and at 
least one of pX1 > pX2, pY1 > pY2, pZ1 > pZ2 hold, the latter would require all of (pX1 < pX2 
and pY1 < pY2 and pZ1 < pZ2) or all of (pX1 > pX2 and pY1 > pY2 and pZ1 > pZ2) and three 
additional conjuncts. For instance, the conditions of proposition 11b are already satisfied 
if pX1 = 1/6 - ε, pY1 = 1/6 + ε and pX2 = pY2 = pZ1 = pZ2 = 1/6, while no equally simple 
deviation from an impartial culture is sufficient for the conditions of proposition 11a. 
However, an a priori inspection of the conditions can hardly be sufficient to settle the 
question of whether the occurrence of one of the two paradoxes is more or less likely than 
that of the other. 
 
In what follows we will again invoke a Condorcet jury framework. In such a framework, 
I will suggest that the conditions under which the probability of cycles converges to 0 are 
more plausible than the conditions under which the probability of inconsistent collective 
sets of judgments converges to 0.  
 
Given k options, x1, x2, ..., xk, we assume that (i) each individual has probabilities p1, p2, 
..., pk of voting for x1, x2, ..., xk, respectively, where each individual is at least minimally 
"competent" in that, if xj is the "correct" option, then, for all i (where i≠j), pj > pi; and (ii) 
the preferences of different individuals are independent from each other. We consider the 
special case k = 3. 
 
Supposing that the correct option is fixed, the values of p1, p2 and p3 can be used to 
construct values of pX1, pX2, pY1, pY2, pZ1, pZ2, corresponding to each individual's holding 
each of the 6 logically possible strict preference orderings.14 This corresponds to the 

                                                           
14 Specifically, we will define the probability for the strict ordering xi1 > xi2 > xi3 (where i1, i2, i3 ∈ {1, 2, 3}) 
to be pi1 pi2 / (1-pi1) (see List and Goodin 2001). 
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construction of pPQ, pP¬Q, p¬PQ, p¬P¬Q from the values of p and q, as discussed in section 
3.  
 
The present assumptions are analogous to the assumptions of the Condorcet jury 
framework introduced in section 3. The present assumptions imply that the probability 
distribution over all logically possible strict preference orderings is skewed in favour of a 
preference for the “correct” option over the other options. The assumptions of section 3 
imply that the probability distribution over all logically possible individual sets of 
judgments is skewed in favour of the “correct” judgment on each premise.  
 
Under the present assumptions – specifically, for all i (where i≠j), pj > pi, where xj is the 
"correct" option –, the probability that the “correct” option will be the Condorcet winner 
converges to 1 as the number of individuals increases (List and Goodin 2001).15 The 
conditions of proposition 11b will be satisfied, and, in consequence, the probability of a 
cycle will converge to 0.  
 
By contrast, turning to the aggregation over multiple propositions, if the premises P and 
Q are both true, then the assumptions of section 3 – specifically, 0.5 < p, q < √(0.5) – 
imply the conditions of proposition 2a, and the probability of a collective inconsistency 
under propositionwise majority voting converges to 1 as the number of individuals 
increases (see proposition 3).  
 
These considerations break the apparent similarity between the probability of cycles and 
the probability of inconsistent collective sets of judgments. If individuals have a level of 
competence that is better than random but not especially high, then the probability of a 
Condorcet paradox will converge to 0 while the probability of a doctrinal paradox will 
converge to 1. Given the results of section 4, we may expect this effect to be even greater 
when the number k of premises is large. If there are k premises (supposing, for our 
argument, all are true), any level of individual competence above 0.5 but below k√(0.5) 
implies that the probability of inconsistent collective judgments converges to 1 as the 
number of individuals increases. 
 

                                                           
15 A Condorcet winner is an option that beats, or at least ties with, all other options in pairwise majority 
voting. 
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The theoretically predicted discrepancy between the probability of cycles and the 
probability of inconsistent collective sets of judgments seems consistent with two pieces 
of anecdotal evidence. The theoretically predicted low probability of cycles in a large 
electorate seems consistent with the striking lack of empirical evidence for cycles.16 The 
theoretically predicted higher probability of doctrinal paradoxes in a large electorate 
seems consistent with the findings of an empirical study of voting on referenda (Brams, 
Kilgour and Zwicker 1997). The study showed that, for three related propositions on the 
environment in a 1990 referendum in California, less than 6% of the (sampled) electorate 
individually endorsed the particular conjunction of these three propositions (acceptance 
of two, rejection of the third) that won under propositionwise majority voting. If the 
winning combination of propositions were to serve as jointly necessary and sufficient 
premises for some other conclusion (which would presumably fail to get majority 
support), we would have a straightforward instance of an inconsistent collective set of 
judgments. 
 
Finally, note that the theoretical results should be viewed from the perspective of the 
typical size of those decision-making bodies faced with problems of preference 
aggregation and those faced with problems of aggregation over multiple interconnected 
propositions. While preference aggregation often involves large electorates, for instance 
in elections, the kinds of bodies faced with decision-making over systems of multiple 
propositions are typically smaller: examples are courts, committees, or parliaments, with 
between a handful and a few hundred members. Large-scale referenda over multiple 
propositions like the ones in California may be an exception. However, as table 3 in 
section 2 illustrates, the probability of collective inconsistencies under propositionwise 
majority voting may be substantial even in groups of just a few dozen or a few hundred 
individuals, depending on the distribution of probabilities over all logically possible 
individual sets of judgments. 
 
6. Concluding Remarks  
 
The aim of this paper has been to discuss the likelihood of collective inconsistencies 
under propositionwise majority voting. We have developed a model for determining the 
probability of such inconsistencies, and applied the model to conjunctive and disjunctive 

                                                           
16 See Mackie (2000) for a critique of several purported empirical examples of cycles. 
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versions of the doctrinal paradox with two premises, and also to the conjunctive version 
of the paradox with more than two premises.  
 
We have identified conditions under which the probability of collective inconsistencies 
under propositionwise majority voting converges to 1 and conditions under which it 
converges to 0. Both sets of conditions can occur in plausible circumstances. In the case 
of the conjunctive version of the doctrinal paradox, convergence of the probability of the 
paradox to 1 is implied by standard competence assumptions in a Condorcet jury 
framework when all premises are true and individual competence is not particularly high. 
Convergence of the probability of the paradox to 0 occurs when either at least one of the 
premises is false or individual competence is very high. In the disjunctive case, 
convergence of the probability of the paradox to 1 occurs when all premises are false and 
individual competence is not particularly high. Convergence of the probability of the 
paradox to 0 occurs when either at least one of the premises is true or individual 
competence is very high.  
 
Since decision problems with medium individual competence seem empirically plausible, 
the occurrence of the doctrinal paradox may be quite likely. This reinforces the 
importance of identifying escape-routes from the paradox and of asking what methods 
groups can and do employ to avoid the paradox (see also List and Pettit 2002a).  
 
With regard to possible escape-routes, following Bovens and Rabinowicz (2001), we 
have seen that, for a large class of cases, the premise-based procedure of decision-making 
is superior to the conclusion-based procedure in terms of tracking the “truth” (where 
there is a truth to be tracked), especially when we are concerned with tracking the “truth” 
for the right reasons. Finally, we have compared the present results with existing results 
on the probability of Condorcet's paradox, suggesting that the doctrinal paradox is more 
likely to occur than Condorcet’s paradox, and may thus be more of a threat.  
 
The present results should be viewed as initial results, not as the final word on the 
probability of collective inconsistencies under propositionwise majority voting. More 
sophisticated probability-theoretic models could be constructed, for instance allowing 
different probabilities corresponding to different individuals, and certain dependencies 
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between the decisions of different individuals.17 But even the present initial results 
support one strong conclusion. The occurrence of the doctrinal paradox is not implausible 
at all, and the paradox deserves attention. 
 
Appendix 1: Calculating the Probability of a Collective Inconsistency under 
Propositionwise Majority Voting for Finite Values of n 
 
Let XPQ, XP¬Q, X¬PQ, X¬P¬Q be the random variables whose values are the numbers of 
individuals holding the sets of judgments PQ, P¬Q, ¬PQ, ¬P¬Q, respectively. The joint 
distribution of XPQ, XP¬Q, X¬PQ, X¬P¬Q is a multinomial distribution with the following 
probability function: 
 
 P(XPQ=nPQ, XP¬Q=nP¬Q, X¬PQ=n¬PQ, X¬P¬Q=n¬P¬Q) 
           n! 
  =   pPQ

nPQ  pP¬Q
nP¬Q p¬PQ

n¬PQ p¬P¬Q
n¬P¬Q . 

       nPQ! nP¬Q! n¬PQ! n¬P¬Q!    
 
Using proposition 1 and the stated probability function, we can infer the following 
proposition on the probability of collective inconsistencies under propositionwise 
majority voting. 
 
Proposition 12. Let the connection rule be (R ↔ (P ∧ Q)). Suppose there are n 
individuals,  where each individual has independent probabilities pPQ, pP¬Q, p¬PQ, p¬P¬Q 
of holding the sets of judgments PQ, P¬Q, ¬PQ, ¬P¬Q, respectively. Then the 
probability that there will be a collective inconsistency under propositionwise majority 
voting is 
 

P((XPQ + XP¬Q > n/2) and (XPQ + X¬PQ > n/2) and (XPQ < n/2)) 
 

             n! 
= ∑<nPQ,nP¬Q,nP¬Q,n¬P¬Q>∈NPQ¬R  pPQ

nPQ  pP¬Q
nP¬Q p¬PQ

n¬PQ p¬P¬Q
n¬P¬Q, 

                 nPQ! nP¬Q! n¬PQ! n¬P¬Q!    
 

                                                           
17 Compare note 4 above. 
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where NPQ¬R := {<nPQ, nP¬Q, n¬PQ, n¬P¬Q> : (nPQ + nP¬Q > n/2) and (nPQ + n¬PQ > n/2) and 
(nPQ < n/2) and (nPQ + nP¬Q + n¬PQ + n¬P¬Q = n)} (set of all vectors <nPQ, nP¬Q, n¬PQ, 
n¬P¬Q> for which there are majorities for each of P and Q, and a majority against R). 
 
The probabilities of all other logically possible combinations of majorities for or against 
P, Q and R can be calculated analogously. 
 
Appendix 2: Calculating the Probability of the Various Scenarios in Table 5 
 
For each of the 10 scenarios in table 5, let M be the set of all vectors <nPQ, nP¬Q, n¬PQ, 
n¬P¬Q> (with sum n) for which the condition corresponding to the relevant scenario is 
satisfied. Using the probability function for the joint distribution of XPQ, XP¬Q, X¬PQ, 
X¬P¬Q (see appendix 1), the desired probability is 
 
     n! 
       ∑<nPQ,nP¬Q,nP¬Q,n¬P¬Q>∈M  pPQ

nPQ  pP¬Q
nP¬Q p¬PQ

n¬PQ p¬P¬Q
n¬P¬Q. 

                nPQ! nP¬Q! n¬PQ! n¬P¬Q!    
 
For example, if P and Q are both false and we are interested in the probability that the 
conclusion-based procedure reaches the correct decision on R for the right reasons 
(scenario 10), then we simply put M := {<nPQ, nP¬Q, n¬PQ, n¬P¬Q> : (n¬P¬Q > n/2) and 
(nPQ + nP¬Q + n¬PQ + n¬P¬Q = n)}.  
 
Appendix 3: Proofs 
 
A condition φ on a set of k probabilities, p1, p2, …, pk, is a mapping whose domain is the 
set of all logically possible assignment of probabilities to p1, p2, …, pk and whose co-
domain is the set {true, false}. Whenever φ(p1, p2, …, pk) = true, we shall say that the 
probabilities p1, p2, …, pk satisfy φ; and whenever φ(p1, p2, …, pk) = false, we shall say 
the probabilities p1, p2, …, pk violate φ. 
 
Examples of φ for the probabilities pPQ, pP¬Q, p¬PQ, p¬P¬Q are  
• (pPQ + pP¬Q > 1/2) and (pPQ + p¬PQ > 1/2) and (pPQ < 1/2) 
• (pPQ  ≥ 1/2) 
• (pPQ  > 1/2) and (pP¬Q > 1/2) 
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A condition φ is consistent if there exists at least one logically possible assignment of 
probabilities to p1, p2, …, pk satisfying φ. A condition φ is strict if, for every assignment 
of probabilities p1, p2, …, pk satisfying φ, there exists an ε > 0 such that, whenever the 
probabilities p*1, p*2, …, p*k lie inside a sphere in Rk with centre p1, p2, …, pk and radius 
ε, then the probabilities p*1, p*2, …, p*k also satisfy φ. It is easily seen that the condition 
(pPQ + pP¬Q > 1/2) and (pPQ + p¬PQ > 1/2) and (pPQ < 1/2) is both consistent and strict; the 
condition (pPQ  ≥ 1/2) is consistent, but not strict; and the condition (pPQ  > 1/2) and (pP¬Q 
> 1/2) is not consistent. 
 
Let X1, X2, …, Xk be a set of k random variables whose joint distribution is a multinomial 
distribution with the following probability function: 
 
                   n! 
 P(X1=n1, X2=n2, …, Xk=nk) =   p1

n1  p2
n2 … pk

nk,  
                             n1! n2! … nk!    
 
where n1 + n2 + … + nk = n. 
 
Lemma 1 (Convergence Lemma). Let φ be any consistent strict condition on a set of k 
probabilities, and suppose the probabilities p1, p2, …, pk satisfy φ. Then P(X1/n, X2/n, …, 
Xk/n satisfy φ) converges to 1 as n tends to infinity. 
 
Proof of lemma 1. Consider the vector of random variables X* = <X*1, X*2, …, X*k>, 
where, for each i, X*i:= Xi/n. We know that the joint distribution of nX* is a multinomial 
distribution with mean vector np = <np1, np2, …, npk> and with variance-covariance 
matrix nΣ = (sij), where, for each i, j, sij = npi(1-pi) if i=j and sij = -npipj if i≠j. By the 
central limit theorem, for large n, (X*-p)√(n) has an approximate multivariate normal 
distribution N(0, Σ), and X*-p has an approximate multivariate normal distribution N(0, 
1/n Σ). Let fn : Rk → R be the corresponding density function for X*-p. Using this density 
function, P(X1/n, X2/n, …, Xk/n satisfy φ) ≈ ∫t∈S fn(t)dt, where  

S:= {t = <t1, t2, ..., tk> ∈ Rk : (t1+p1), (t2+p2), ..., (tk+pk) satisfy φ}.  
By assumption, the probabilities p1, p2, …, pk satisfy φ, and hence 0∈S. Since φ is strict, 
there exists an ε>0 such that S0,ε ⊆ S, where S0,ε  is a sphere in Rk around 0 with radius ε. 
Then, since fn is nonnegative, ∫t∈S fn(t)dt ≥ ∫t∈S0,ε fn(t)dt. But, as fn is the density function 
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corresponding to N(0, 1/n Σ), ∫t∈S0,ε fn(t)dt → 1 as n → ∞, and hence ∫t∈Sfn(t)dt → 1 as n →  
∞, as required. Q.E.D. 
 
Proof of proposition 2.  
(a) (pPQ + pP¬Q > 1/2) and (pPQ + p¬PQ > 1/2) and (pPQ < 1/2) is a consistent strict 

condition. By lemma 1, P((XPQ + XP¬Q > n/2) and (XPQ + X¬PQ > n/2) and (XPQ < n/2)) 
→ 1 as n → ∞. The result then follows from proposition 1. Q.E.D.  

(b) (pPQ + pP¬Q < 1/2) or (pPQ + p¬PQ < 1/2) or (pPQ > 1/2) is a consistent strict condition. 
By lemma 1, P((XPQ + XP¬Q < n/2) or (XPQ + X¬PQ < n/2) or (XPQ > n/2)) → 1 as n → 
∞. The result then follows from proposition 1. Q.E.D. 

 
Proof of proposition 3.  
(a) P and Q are true.  

The relevant case in table 4 is case 1. For the first part, it is sufficient to show that 
pPQ, pP¬Q, p¬PQ, p¬P¬Q satisfy the conditions of proposition 2a. Suppose 0.5 < p, q < 
√(0.5). Then 

 pPQ + pP¬Q = pq + p(1-q) = p > 0.5 
pPQ + p¬PQ = pq + (1-p)q = q > 0.5 
pPQ = pq < 0.5, 

as required. For the second part, it is sufficient to show that pPQ, pP¬Q, p¬PQ, p¬P¬Q 
satisfy the conditions of proposition 2b. Suppose √(0.5) < p, q. Then 

 pPQ = pq > 0.5, 
as required. Q.E.D. 

(b) Not both P and Q are true.  
The relevant cases in table 4 are cases 2, 3 and 4. It is sufficient to show that pPQ, 
pP¬Q, p¬PQ, p¬P¬Q satisfy the conditions of proposition 2b. Suppose 0.5 < p, q.  
In case 2, pPQ + p¬PQ = p(1-q) + (1-p)(1-q) = 1-q < 1/2, as required. 
In case 3, pPQ + pP¬Q = (1-p)q + (1-p)(1-q) = 1-p < 1/2, as required. 
In case 4, pPQ + pP¬Q = (1-p)(1-q) + (1-p)q = 1-p < 1/2, as required. Q.E.D. 

 
Proof of proposition 4.  
(a) Suppose 0.5 < p, q. It is sufficient to show that the probability that the premise-based 

procedure reaches a correct decision on R for the right reasons (implying also that it 
reaches a correct decision regardless of reasons) converges to 1 as n tends to infinity. 
Consider the four cases in table 4.  
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Case 1: pPQ + pP¬Q = pq + p(1-q) = p > 0.5 and pPQ + p¬PQ = pq + (1-p)q = q > 0.5, 
a consistent strict condition. By lemma 1, P((XPQ + XP¬Q > n/2) and (XPQ + 
X¬PQ > n/2)) → 1 as n →  ∞ (compare condition (1) in table 5). 

All other cases are analogous. In each case, the relevant consistent strict condition 
will be identified, and the result will follow from lemma 1. 
Case 2: pPQ+pP¬Q  = p(1-q) + pq = p > 0.5 and pP¬Q + p¬P¬Q = pq + (1-p)q = q > 

0.5. P((XPQ + XP¬Q > n/2) and (XP¬Q + X¬P¬Q  > n/2)) → 1 as n →  ∞  
(compare condition (4) in table 5). 

 Case 3: p¬PQ + p¬P¬Q = pq + p(1-q) = p > 0.5 and PQ +p¬PQ = (1-p)q+pq = q > 0.5.  
P((X¬PQ + X¬P¬Q > n/2) and (XPQ + X¬PQ  > n/2)) → 1 as n →  ∞  
(compare condition (5) in table 5). 

 Case 4: p¬PQ+p¬PQ = p(1-q) + pq = p > 0.5 and pP¬Q+p¬P¬Q = (1-p)q+pq = q > 0.5.  
P((X¬PQ + X¬PQ > n/2) and (XP¬Q + X¬P¬Q > n/2)) → 1 as n →  ∞  
(compare condition (6) in table 5). 

(b) Suppose 0.5 < p, q < √(0.5), and both P and Q (and by implication R) are true. Then 
pPQ = pq < 0.5. P(XPQ < n/2) → 1 as n →  ∞ (compare condition (2) in table 5).  

(c) Suppose 0.5 < p, q < √(0.5), and not both P and Q are true. By part (a) (cases 2, 3 and 
4), the probability that there will not be a majority for P and a majority for Q 
converges to 1 as n tends to infinity. This implies in particular that P(XPQ < n/2) → 1 
as n →  ∞ (compare condition (7) in table 5). 

(d) Suppose 0.5 < p, q < √(0.5). The relevant cases in table 4 are cases 2, 3 and 4. 
 Case 2: pP¬Q  = pq < 0.5. P(XP¬Q < n/2) → 1 as n →  ∞  

(compare condition (8) in table 5). 
 Case 3: p¬PQ = pq < 0.5. P(X¬PQ < n/2) → 1 as n →  ∞ 

(compare condition (9) in table 5). 
 Case 4: p¬P¬Q = pq < 0.5. P(X¬P¬Q < n/2) → 1 as n →  ∞  

(compare condition (10) in table 5). 
(e) Suppose p, q > √(0.5). It is sufficient to show that the probability that the conclusion- 

based procedure reaches a correct decision on R for the right reasons (implying also 
that it reaches a correct decision regardless of reasons) converges to 1 as n tends to 
infinity. Consider the four cases in table 4.  

 Case 1: pPQ  = pq > 0.5. P(XPQ > n/2) → 1 as n →  ∞  
(compare condition (2) in table 5). 

 Case 2:  pP¬Q  = pq > 0.5. P(XP¬Q > n/2) → 1 as n →  ∞  
(compare condition (8) in table 5). 
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 Case 3: p¬PQ = pq > 0.5. P(X¬PQ > n/2) → 1 as n →  ∞  
(compare condition (9) in table 5). 

 Case 4: p¬P¬Q = pq > 0.5. P(X¬P¬Q > n/2) → 1 as n →  ∞  
(compare condition (10) in table 5).  

Q.E.D. 
 
Proof of proposition 8.  
A collective inconsistency (given (S ↔ (P ∧ Q ∧ R))) under propositionwise majority 
voting will occur if and only if there are majorities for each of P, Q and R and there is a 
majority against S. Proposition 8a is simply a statement of these conditions. To prove the 
propositions 8b and 8c, it is sufficient to note that  

(pPQR+pPQ¬R+pP¬QR,+pP¬Q¬R  > 1/2) and (pPQR+pPQ¬R+p¬PQR+p¬PQ¬R  > 1/2) and 
(pPQR+pP¬QR+p¬PQR+p¬P¬QR > 1/2) and (pPQR < 1/2)  

and 
(pPQR+pPQ¬R+pP¬QR,+pP¬Q¬R  < 1/2) or (pPQR+pPQ¬R+p¬PQR+p¬PQ¬R  < 1/2) or 
(pPQR+pP¬QR+p¬PQR+p¬P¬QR < 1/2) or (pPQR > 1/2) 

are each consistent strict conditions. The desired results then follow from lemma 1 and 
proposition 8a. Q.E.D.  
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