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Abstract

Limit distribution results on quadratic and higher order variation quantities are derived
for certain types of continuous local martingales, in particular for a class of OU-based stochas-
tic volatility models.
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1. Introduction

In a recent study by Barndorff-Nielsen and Shephard (2001d) of the properties of realised volatil-

ity, that is the sum of squares of intra-day returns on speculative assets, it became necessary

in addition to quadratic variation of the stochastic processes to consider also aspects of higher

order variation. The requisite mathematical results on higher order variation seem of some

independent interest and are therefore discussed separately here.

The modelling framework in the paper referred to is that of stochastic volatility models of

the form

y∗(t) = µt+ βτ∗(t) +
∫ t

0
τ1/2(s)dw(s), (1.1)

where µ and β are parameters, w(t) denotes Brownian and τ(t), the stochastic volatility, is a

stationary and positive stochastic process, assumed independent of τ ; finally,

τ∗(t) =
∫ t

0
τ(s)ds.

(For some general information on processes y∗ of this type, see for example Barndorff-Nielsen

and Shephard (2001a-c) and Ghysels, Harvey and Renault (1996)).

Because of the independence between w and τ we may, and shall in the context of the

present paper, simply consider τ in (1.1) as a deterministic positive cadlag or caglad function on

[0,∞). For the general setting, with τ random, the same conclusions will hold with probability



1 provided τ has, almost surely, the properties just mentioned. This is the case, in particular,

when (as in Barndorff-Nielsen and Shephard (2001a)) τ is a superposition of non-Gaussian OU

processes or if τ is a continuous solution of a stochastic differential equation driven by a Brownian

motion independent of .w.

Our results continue to hold for a more general type of semimartingale

y∗(t) = a(t) +
∫ t

0
τ1/2(s)dw(s) (1.2)

where a and τ are assumed to be jointly independent of w and a is a cadlag or caglad process

satisfying a certain additional requirement.

Section 2 lists the results of the paper and proofs are provided in Section 3.

Extension to several dimensions will be discussed in a separate paper, which will also contain

empirical work additional to that presented in Barndorff-Nielsen and Shephard (2001d).

2. Results

We first introduce some notation for higher order variation quantities of an arbitrary semimartin-

gale x. Fix t, let δ be positive real and write M = �t/δ�, where �t� for any positive number t

denotes the largest integer less and or equal to t, and let

xδ(t) = x(�t/δ� δ).

Further, for r positive real we define

[xδ][r](t) =
M∑

j=1

|x (jδ)− x((j − 1)δ|r. (2.1)

Then, in particular, for M → ∞,
[xδ][2](t)

p→ [x](t),

where [x] is the quadratic variation process of the semimartingale x. Note also that

[xδ][2] = [xδ].

When r > 2 we speak of (2.1) and similar quantities as higher order variations.

Now, returning to processes of the form (1.2) we impose throughout the condition

(C) τ > 0 and a are cadlag or caglad functions on [0,∞) and a has the property

lim
δ↓0

max
1≤j≤M

δ−1|a(jδ)− a((j − 1)δ)| < ∞ (2.2)
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This condition is satisfied in particular if a is of the form

a(t) = µt+ βτ∗(t),

as in the stochastic volatility model (1.1), or in the more general setting when

a(t) =
∫ t

0
g(τ(s))ds.

where g is a smooth function.

Note also that condition (C) implies that τ and a are bounded Riemann integrable functions.

Define

τ r∗(t) =
∫ t

0
τ r(s)ds.

Theorem 2.1 For δ ↓ 0 and r positive real

δ−r+1[τ∗δ ]
[r](t)→ τ r∗(t).

�

Henceforth q denotes a positive integer and cq = {1 · 3 · · · · · (2q − 1)}−1.

Theorem 2.2 Let y∗ be a stochastic process of the form (1.2). Then, for δ ↓ 0

δ−q+1cq[y∗δ ]
[2q](t)

p→ τ q∗(t).

�

Theorem 2.3 Let y∗ be a stochastic process of the form (1.2). Then, for δ ↓ 0,
[y∗δ ](t)− τ∗(t)√

2
3 [y

∗
δ ]

[4](t)

L→ N(0, 1). (2.3)

�

This considerably sharpens the well known important result that for models (1.2) [y∗] = τ∗.

Note also that Theorems 2.2 and 2.3 together imply that when τ is a stationary process whose

sample paths satisfy condition (C) then δ−1/2{[y∗δ ](t)− τ∗(t)} follows asymptotically a normal
variance mixture. Otherwise put,

δ−1/2{[y∗δ ](t)− τ∗(t)}√
2τ2∗(t)

L→ N(0, 1)

as δ ↓ 0.
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3. Proofs

Let

y∗0(t) =
∫ t

0
τ1/2(s)dw(s).

It is helpful to introduce the following notation

u0j = y∗0(jδ)− y∗0((j − 1)δ)

and

τj = τ∗(jδ)− τ∗((j − 1)δ),

εj = a(jδ)− a((j − 1)δ).

We may now rewrite [τ∗δ ]
[r](t) and [y∗δ ]

[2q](t) as

[τ∗δ ]
[r](t) =

M∑
j=1

τ r
j (3.1)

and

[y∗δ ]
[2q](t) = [y∗0δ]

[2q](t) +
2q∑

k=1

(
2q
k

) M∑
j=1

εj
ku0j

2q−k. (3.2)

Proof of Theorem 2.1 For every j = 1, ...,M there exists a constant θj such that

inf
(j−1)δ≤s≤jδ

τ(s) ≤ θj ≤ inf
(j−1)δ≤s≤jδ

τ(s)

and

τj = θjδ.

Hence, by (3.1),

δ−r+1[τ∗δ ]
[r](t) = δ−r+1

M∑
j=1

τ r
j =

M∑
j=1

θj
rδ

→
∫ t

0
τ r(s)ds = τ r∗(t)

�

To handle the expression (3.2) we establish some lemmas (that also are of some independent

interest). Let

D0 = cq[y∗0δ]
[2q](t)− [τ∗δ ][q](t)

and recall Taylor’s formula with remainder term:

f(x) = f(0) + f ′(0)x+ x2

∫ 1

0
(1− u)f ′′(ux)du. (3.3)
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Lemma 3.1 The cumulant function of D0 is of the form

log E{exp(iζD0)} = −1
2
ζ2δ2qR

where

R = 2
M∑

j=1

θj
2q

∫ 1

0
(1− u)k′′q (δ

qθj
qζu)du

and kq denotes the log Laplace transform of cqξ
2q for ξ a standard normal random variable. �

Proof Note first that u0j is distributed as N(0, τj). Hence

cq[y∗0δ]
[2q](t) = cq

M∑
j=1

u2q
0j ∼

M∑
j=1

cqξ
2q
j τ q

j

where the ξj are independent copies of the standard normal variate ξ and ∼ means ‘distributed
as’. Since E{cqξ

2q} = 1 we find, using (3.3), that

log E{exp(iζD0)} = −ζ2
M∑

j=1

τ2q
j

∫ 1

0
(1− u)k′′q (τ

q
j ζu)du

= −ζ2δ2q
M∑

j=1

θj
2q

∫ 1

0
(1− u)k′′q (δ

qθj
qζu)du

�

Lemma 3.2 For δ ↓ 0

δ−q+1/2
{
cq[y∗0δ]

[2q](t)− [τ∗δ ][q](t)
} L→ N(0, k′′q (0)τ

2q∗(t)).

�

Proof From Lemma 3.1 we find

log E{exp(iζδ−q+1/2D0)} = −1
2
ζ2δR,

with

R = 2
M∑

j=1

θj
2q

∫ 1

0
(1− u)k′′q (δ

qθj
qζu)du.

By the boundedness of τ on [0, 1] we have

lim
δ↓0

δqmax
j

θj
q = 0

and hence, for δ ↓ 0,
δR → k′′q (0)τ

2q∗(t).
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Therefore

log E{exp(iζδ−q+1/2D0)} = −1
2
ζ2k′′q (0)τ

2q∗(t) + o(1) (3.4)

and the lemma follows.

�

Lemma 3.3 For δ ↓ 0,

log E{exp(iζδ−1/2([y∗0δ](t)− τ∗(t))} = −1
2
ζ22τ2∗(t) +O(δ1/2).

�

Proof This follows from (3.4) on setting q = 1 and noting that k′′1(0) = Var{ξ2} = 2,

[y∗0δ]
[2](t) = [y∗0δ](t), and

[τ∗δ ]
[1](t) = τ∗(�t/δ� δ) = τ∗(t) +O(δ).

�

Lemma 3.4 For δ ↓ 0,

δ−q{[y∗δ ][2q](t)− [y∗0δ]
[2q](t)} = Op(1).

�

Proof By formula (3.2) the left hand side, say L, in the above formula may be written

L = L1 + L2

where

L1 = 2qδ−q
M∑

j=1

εju
2q−1
0j

L2 = δ−q
2q∑

k=2

(
2q
k

) M∑
j=1

εj
ku0j

2q−k.

Recall that u0j ∼ N(0, τj) and let µr = E{|ξ|r} for r > 0 and ξ ∼ N(0, 1). Then, with

mq = max0≤l≤2q−2 µl we have

E{|L2|} ≤ mq

(
2q
q

) 2q∑
k=2

δk/2
M∑

j=1

(δ−1|εj |)k(δ−1τj)q−k/2.

On account of condition (C) there exists a constant c > 1 such that, for all δ,

max
1≤j≤M

δ−1|εj | ≤ c (3.5)
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and hence, for δ < 1,

E{|L2|} ≤ mq

(
2q
q

)
c2qδ−1

2q∑
k=2

δk/2
M∑

j=1

δ−(q−k/2)+1τj
q−k/2

≤ mq

(
2q
q

)
c2qK,

where

K =
2q∑

k=2

δ−(q−k/2)+1[τ∗δ ]
[q−k/2](t)

→
2q∑

k=2

τ (q−k/2)∗(t)

for δ ↓ 0 (and where τ (0)∗(t) = t). Consequently L2 = Op(1).

The mean of L1 is 0 and for its variance we find, using again (3.5),

Var{L1} = 4q2µ4q−2δ
−2q

M∑
j=1

ε2
jτ

2q−1
j

≤ 4q2µ4q−2c
2

M∑
j=1

θj
2q−1δ

and since
M∑

j=1

θj
2q−1δ → τ (2q−1)∗(t),

also L1 = Op(1), and the proof is complete. �

Proof of Theorem 2.2 We have

δ−q+1cq[y∗δ ]
[2q](t)− τ q∗(t) = δ−q+1cq{[y∗δ ][2q](t)− [y∗0δ]

[2q](t)}
+ δ−q+1

{
cq[y∗0δ]

[2q](t)− [τ∗δ ][q](t)
}

+ δ−q+1{[τ∗δ ][q](t)− τ q∗(t)}

and the result now follows as a consequence of Lemmas 3.4 and 3.2 and Theorem 2.1.

�

Proof of Theorem 2.3 By Lemma 3.3

δ−1/2{[y∗0δ](t)− τ∗(t)}√
2τ2∗(t)

L→ −1
2
ζ2

and since, by Lemma 3.4,

δ−1/2{[y∗δ ](t)− [y∗0δ](t)} = Op(δ1/2)
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we have that δ−1/2{[y∗δ ](t)− τ∗(t)} has the same limit law as δ−1/2{[y∗0δ](t)− τ∗(t)}, i.e.
[y∗δ ](t)− τ∗(t)√

δ2τ2∗(t)
L→ −1

2
ζ2

Finally, Theorem 2.2 with q = 2 shows that δ−1 1
3 [y

∗
δ ]

[2q](t) is a consistent estimator of τ2∗(t)

and this implies (2.3).

�
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