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1. Introduction

Consider a market consisting of agents with different demand functions or correspon-

dences and different incomes. The typical question in demand aggregation is to ask for the

conditions which will guarantee that aggregate demand takes on a particular property.

There are two mutually non-exclusive approaches to problems of this sort. The more

obvious way is simply to ask for the conditions on individual demand which will guaran-

tee that the aggregate property holds. This approach is most useful when the property

required is straightforwardly aggregable. So one way of ensuring that aggregate demand is

a continuous function of price is to assume that individual demand is a continuous function

of price, which in turn follows from preferences which are continuous and strictly convex.

Sometimes the solution is less straightforward. For example, it is well known that aggregate

demand need not satisfy the strong or weak axioms, even when the agents who make up

that market satisfy those properties. In these instances, stronger properties have to be

imposed at the individual level to obtain the desired aggregate properties. For example,

the strong axiom (essentially the existence of a representative consumer) is guaranteed if

all agents have preferences representable by the Gorman polar form; the weak axiom in the

aggregate holds provided agents individually obey the law of demand.

This approach to aggregation problems is distinguished by two features: the property

required at the individual level are at least as strong as the aggregate property required and

once it is satisfied, the precise distribution of demand and income characteristics does not

matter. The focus of this paper is on another approach in which these features are reversed.

In this second approach, the assumptions made at the individual level are weaker than, or
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at least different from, the aggregate property required, and the aggregate property arises

because of the distributional assumptions imposed. This approach is sufficiently common

that it is worth giving it a name. We propose that it be called heterosis. The suffix ‘-osis’,

following the Greek, is used in English to denote a process or condition: heterosis refers to

the phenomenon in which the distributional characteristics, i.e., heterogeneity, of a market,

imbues market demand with properties which are not always present at the individual level.1

Examples of heterosis abound. An application of Lyapunov’s theorem guarantees that

when the measure space of agents is atomless, the aggregate demand correspondence is

convex valued, even when each type of agent may not have a convex valued demand corre-

spondence (see Hildenbrand (1974)). Beyond this, there is a substantial literature on when

a market will have a continuous or smooth demand function, even when non-convexities

are present at the individual level (see, for example, Dierker et al (1980)). Another well

known example of heterosis is the result due to Hildenbrand (1983). It says that a market

in which all agents have the same demand function which obeys the weak axiom will satisfy

a stronger property - the law of demand - provided the income distribution has a downward

sloping density function.

The focus of this paper is the family of heterotic models first studied by Grandmont

(1992). Grandmont considers a market consisting of agents with the same income and

different demand functions belonging to the same affine equivalence class. Affine transfor-

mations and equivalence classes are defined in Section 3; what should be noted here is that

affine transformations preserve rationality properties like the weak and strong axioms, so

that Grandmont’s model has the important feature that all agents in the market can satisfy
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the classical rationality restrictions, even though these restrictions are not required for his

aggregation result. Assuming that there are l goods in this market, demand functions can

then be parametrized by elements in Rl. When the density function on the parameter is suf-

ficiently flat in some precise sense, market demand becomes increasingly Cobb-Douglas like,

i.e., the proportion of market expenditure devoted each good is approximately constant.

A model closely related to Grandmont’s is the heterotic model of Quah (1997). By

modifying the parametric assumptions in Grandmont (1997), Quah identifies the conditions

under which a market will take on homothetic-like (but not necessarily Cobb-Douglas-

like) properties; in particular, aggregate demand is approximately linear in income and the

aggregate of income effects is approximately positive semi-definite.

Section 2 of this paper is a careful re-examination of the mathematical features common

to these models. We show that what underlies these results is really a theorem about

translations of a function, which can be stated in the following way: a translation of the

function f : Rl → Rm is another function ft, where t is in Rl and ft(x) = f(x + t); under

certain assumptions, on any bounded subset X of Rl, there exists density functions h such

that F (x) =
∫
Rl ft(x)h(t)dt becomes approximately independent of x in X. The main

mathematical result of this paper is that by endowing the set of functions with a suitable

topology and with certain additional assumptions, the closure of the set of translations of f

becomes a compact set. On this compact set of functions, there exists a distribution which

guarantees that the average function is a constant, i.e., exactly independent of x.

After establishing this mathematical result in Section 2, we go on to apply it in Section

3. We identify the assumptions which guarantee that the distribution of demand is such
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that the market’s average expenditure share on each good is independent of prices, i.e., the

market demand function behaves as though it is generated by a Cobb-Douglas preference.

This result is therefore an exact version of Grandmont’s theorem. We then apply the result

to Quah’s model, where we identify distributional conditions under which market demand

becomes exactly linear in income and the aggregate of income effects is exactly positive

semi-definite. Section 3 also includes a brief discussion of the relationship between this

paper and the exact aggregation results in Giraud and Maret (2001).

An issue which has attracted some debate recently is the precise nature of the heterosis at

work in Grandmont’s model. Hildenbrand and Kneip (1999) have a model in which agents’

individual behavior are allowed to depart from the Cobb-Douglas form, but large departures

occur for different agents at different parts of the price space (hence the “heterogeneity” in

the title of their paper). This has the effect that at any single price vector, only a small

fraction of agents actually have large deviations from Cobb-Douglas behavior and so Cobb-

Douglas behavior holds approximately in aggregate. They show that Grandmont’s model,

with some additional assumptions, can be understood as an example of heterosis in this

sense.2 This is a legitimate view of the mechanism at work behind Grandmont’s theorem,

but it is not the only possible view. In particular we show in Section 4 that the aggregate

Cobb-Douglas behavior guaranteed by the theorem could arise from complementary or sign-

balancing heterogeneity. (The terms are loosely borrowed from B. de Villemeur (2001) and

Hildebrand and Kneip (1999) respectively.) In other words, the average expenditure share

on each good is approximately constant because, while some agents may increase their

expenditure share on a good as prices change, this is perfectly balanced by other agents
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who choose to reduce their expenditure share on the same good. This is unlike the situation

depicted in Hildenbrand and Kneip (1999) because the set of agents who deviate significantly

from Cobb-Douglas behavior at each price need not be small.

2. The Main Results

Let P be a set and consider a function s̄ : P × Rl → Rm. With any t in Rl, we can

define st, a function from P ×Rl to Rm by st(p, x) = s̄(p, x + t). So st is just a translation

of s̄. We denote by S the set {st : t ∈ Rl}. If s̄(p, ·) is measurable and bounded, then

for any density function h : Rl → R+, the integral
∫

st(p, x)h(t)dt exists; abusing notation

somewhat, we will denote it by sh(p, x). So sh(p, x) is the average value of st(p, x) when t

is distributed according to h. The next result is essentially due to Grandmont (1992) and

is at the heart of his aggregation results.

Proposition 2.1. Suppose s̄(p, ·) is measurable and |s̄j(p, ·)| is bounded by M . If the

density function h is C1, then

∣∣∣sj
h(p, x) − sj

h(p, x̃)
∣∣∣ ≤ MB(h) max

1≤i≤l
{|xi − x̃i|},

where B(h) =
∑l

i=1

∫
Rl |∂h/∂ti|dt.

Proof: Note that sh(p, x̃) =
∫
Rl s̄(p, x̃+t)h(t)dt =

∫
Rl s̄(p, x+t)h(t+x− x̃)dt. Therefore,

|sj
h(p, x) − sj

h(p, x̃)| ≤
∣∣∣∣
∫

Rl
s̄j(p, t + x) (h(t) − h(t + x − x̃)) dt

∣∣∣∣
≤ M

∫
Rl

|h(t) − h(t + x − x̃)| dt.

Writing x − x̃ as α, we see that
∫
Rl |h(t) − h(t + α)|dt is bounded by

l∑
i=1

∫
Rl

∣∣∣h(t1 + α1, t2 + α2, ..., ti−1 + αi−1, ti, ..., tl) − h(t1 + α1, t2 + α2, ..., ti + αi, ti+1, ..., tl)
∣∣∣ dt
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=
l∑

i=1

∫
Rl

∣∣∣∣∣
∫ |αi|

0

∂h

∂ti
(t1 + α1, t2 + α2, ..., ti + yi, ti+1, ..., tl)dyi

∣∣∣∣∣ dt

≤
l∑

i=1

∫ |αi|

0

∫
Rl

∣∣∣∣∂h

∂ti
(t1 + α1, t2 + α2, ..., ti + yi, ti+1, ..., tl)

∣∣∣∣ dtdyi

=
l∑

i=1

|αi|
∫

Rl

∣∣∣∣∂h

∂ti
(t)

∣∣∣∣ dt.

This last term is in turn bounded by B(h) max1≤i≤l{|xi − x̃i|}. QED

The interesting thing to note in Proposition 2.1 is that when B(h) is small, |sj
h(p, x) −

sj
h(p, x̃)| becomes small as well; more precisely, on any bounded subset of Rl, sj

h(p, ·) will

become increasingly independent of x if h can be found such that B(h) is arbitrarily small.

It is not hard to see that such density functions exist. First we choose any density function

h such that B(h) is finite. Then one can easily verify that for the sequence of density

functions {hn}n≥1 where hn(t) = n−1h(n−1t), B(hn) tends to zero as n tends to infinity.

What we aim to do is to establish the existence of a distribution on S (or, as it turns

out, on a slightly larger set) such that its average value becomes exactly, rather than just

approximately, independent of x. To do this, we need to impose more structure on the

problem.

We assume that P is a metric space; we also assume that it is σ-compact, by which

we mean that there is a sequence of compact sets {Pn}n≥1 such that ∪∞
n=1Pn = P and

Pn ⊂ P o
n+1, where the latter refers to the interior of Pn+1. (Note that these conditions

permit the set P to be compact.) The set of continuous functions from P × Rl to Rm, to

be denoted by C(P × Rl, Rm) can be endowed with the metric

d(f, g) =
∞∑

n=1

2−n maxPn×Tn |f(p, x) − g(p, x)|
1 + maxPn×Tn |f(p, x) − g(p, x)| ,
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where the sequence of sets {Tn}n≥1 is chosen to have the same properties in Rl as {Pn}n≥1

has in P . The topology generated by d coincides with the topology of uniform convergence

on compacta. The next two lemmas are straightforward and establish the properties we

need.

Lemma 2.2. If s̄ : P × Rl → Rm is continuous, so are the following functions:

(i) ψ : Rl → C(P × Rl, Rm), where ψ(t) = st and

(ii) Φ : P × Rl × C(P × Rl, Rm) → Rm, where Φ(p, x, s) = s(p, x).

Proof: Let M be any compact subset of P ×Rl and let tn be a sequence in Rl converging

to t. It is easy to check that there is M ′, also compact, such that (p, x + tn) is in M ′ for

all (p, x) in M and tn, n ≥ 1. Then |stn(p, x) − st(p, x)| = |s̄(p, x + tn) − s̄(p, x + t)| can

be made uniformly small on M for a large enough n since s̄ is continuous and therefore

uniformly continuous on M ′. This establishes the continuity of ψ.

To show that Φ is continuous, let (pn, xn, sn) converge to (p, x, s). Note that

|sn(pn, xn) − s(p, x)| ≤ |sn(pn, xn) − s(pn, xn)| + |s(pn, xn) − s(p, x)|.

Since the sequence (pn, xn) is contained in a compact set, and sn converges to s uniformly

on compact sets, the first term on the right hand side can be made arbitrarily small for

large enough n. Similarly, the continuity of s guarantees that the second term on the right

hand side can also be made arbitrarily small for large n. QED

Lemma 2.3. Suppose that s̄ : P × Rl → Rm is uniformly continuous, and for every p,

s̄(p, ·) is bounded. Then S̄ (the closure of S) is a compact set.

Proof: Let {sn}n≥1 where sn = stn for some tn in Rl be a sequence of functions in S.

We need only show that it has a subsequence converging to a function in C(P × Rl, Rm).
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Since sn(p, x) = s̄(p, x + tn) and s̄(p, ·) is uniformly bounded, the sequence sn is pointwise

bounded. The sequence is also equicontinuous, because s̄ is uniformly continuous. By

Ascoli’s Theorem (see Royden (1968)), there is a subsequence snk
and a function g in

C(P ×Rl, Rm) such that snk
tends to g pointwise and uniformly on compact sets. It is now

trivial to check that d(snk
, g) tends to zero as nk tends to infinity. QED

Our final result is an exact aggregation theorem, analogous to the approximate aggre-

gation result of Proposition 2.1.

Theorem 2.4. Suppose that s̄ : P × Rl → Rm is uniformly continuous, and for every

p, s̄(p, ·) is bounded. Suppose also that H : V × Rm → Rn, where V is a metric space, is

a continuous function. Then there exists a continuous function H∗ : V × P → Rn and a

Borel probability measure µ∗ on S̄ such that for all x in Rl,

∫
S̄

H(v, Φ(p, x, s))dµ∗ =
∫
S̄

H(v, s(p, x))dµ∗ = H∗(v, p).

Proof: Let hn be a sequence of density functions defined on Rl such that B(hn) goes to

zero as n goes to infinity. Let νn be the probability measure on Rl induced by hn. This in

turn induces a probability measure µn on S̄, given by µn(S′) = νn(ψ−1(S′)) for any Borel

measurable set S′ in S̄. The continuity, hence measurability, of ψ (Lemma 2.2) guarantees

that this definition is good. By Lemma 2.3, S̄ is compact, so there is a subsequence µnk

which converges weakly to a measure µ∗ (see Billingsley (1968)). We wish to show that

∫
S̄ H(v, Φ(p, x, s))dµ∗ =

∫
S̄ H(v, Φ(p, x̃, s))dµ∗ for all x and x̃ in Rl.
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To see this we note that |∫S̄ H(v, Φ(p, x, s)) − H(v, Φ(p, x̃, s))dµ∗| is less than

∣∣∣∣
∫
S̄

H(v, Φ(p, x, s))dµ∗ −
∫
S̄

H(v, Φ(p, x, s))dµn

∣∣∣∣+
∣∣∣∣
∫
S̄

H(v, Φ(p, x, s))dµn −
∫
S̄

H(v, Φ(p, x̃, s))dµn

∣∣∣∣
+

∣∣∣∣
∫
S̄

H(v, Φ(p, x̃, s))dµn −
∫
S̄

H(v, Φ(p, x̃, s))dµ∗
∣∣∣∣ .

The function H(v, Φ(p, x, ·)) is uniformly continuous and bounded when restricted to the

compact set S̄ (by Lemmas 2.2 and 2.3), so the weak convergence of µnk
to µ∗ guaran-

tees that when nk is arbitrarily large, the first term (and similarly the last term) will be

arbitrarily small. Note that the second term is just

∣∣∣∣
∫

H(v, s̄(p, x + t))hnk
(t)dt −

∫
H(v, s̄(p, x̃ + t))hnk

(t)dt

∣∣∣∣ ;
Proposition 2.1 guarantees that this term will be arbitrarily small when nk becomes large

since H(v, s̄(p, ·)) is a measurable and bounded function . Thus we have established our

claim: the value of
∫
S̄ H(v, Φ(p, x, s))dµ∗ is independent of x, and we may write it as

H∗(v, p).

We need only show that H∗ is continuous. Let (vn, pn) tend to (v, p). The sequence of

functions on S̄, {H(vn, Φ(pn, x, ·)}n≥1 is uniformly bounded since H and Φ are continuous

and S̄ is a compact set. By the dominated convergence theorem,
∫
S̄ H(vn, Φ(pn, x, s))dµ∗

converges to
∫
S̄ H(v, Φ(p, x, s)dµ∗, but this is equivalent to saying that H∗(vn, pn) converges

to H∗(v, p). QED

If we choose V to be a singleton and H to satisfy H(v, y) = y for all y in Rm, we obtain

the following corollary.

Corollary 2.5. Suppose that s̄ : P × Rl → Rm is uniformly continuous, and for every

p, s̄(p, ·) is bounded. Then there exists a continuous function s∗ : P → Rm and a Borel
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probability measure µ∗ on S̄ such that for all x in Rl,
∫
S̄ s(p, x)dµ∗ = s∗(p).

3. Some Examples

Grandmont (1992) develops a model of an exchange economy where the excess demand

function obeys gross substitubility. In essence, he considers an economy consisting of groups

of agents where the distribution of demand behavior in each group is such that the group’s

mean demand has an approximate Cobb-Douglas behavior; it is then easy to check that

an economy consisting of such groups will have an excess demand function which obeys

gross substitubility (from which one obtains the uniqueness and stability of equilibrium and

other nice properties). Our first example applies the results of the last section to show

how Cobb-Douglas behavior, in both its approximate and exact form, can be obtained in

aggregate.

Example 1. Let f̄ : Rl
++ → Rl

++ be a function satisfying q · f̄(q) = w̄, where w̄

is some positive scalar. We interpret f̄(q) as the demand of an agent with income w̄

and facing price q. The expenditure share function of f̄ is s̄ : Rl → Rl
++, defined by

s̄i(x) = exi
f̄ i(ex1

, ex2
, ..., exl

)/w̄ for i = 1, 2, ..., l . So s̄i(x) is the share of expenditure

devoted to good i when the price is (ex1
, ex2

, ..., exl
). Note that

∑l
i=1 s̄i(x) ≡ 1. With f̄

and given t in Rl, we may define ft by f i
t (q) = eti f̄ i(q1et1 , q2et2 , ..., qletl) for i = 1, 2, ..., l.

Following the literature, we will refer to ft as an affine transformation of f̄ . It is trivial to

check that the expenditure share function of f̄t, which we denote by st, is related to s̄ by

st(x) = s̄(t + x).

The special value of affine transformations lies in the fact that it preserves standard
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rationality properties that f̄ might satisfy. In particular the following claims are easy to

check: (a) if f̄ is generated by a utility function, so is ft; (b) if f̄ satisfies the weak axiom,

so will ft; and (c) if f̄ satisfies the law of demand, so will ft.3

Consider a market consisting of agents with the same income w̄ and expenditure share

functions drawn from the set S (as defined in Section 2). If the distribution of t is governed

by the density h : Rl → R+, then this market’s mean demand at price q = (ex1
, ex2

, ..., exl
)

is
∫

ft(q)h(t)dt, while the mean expenditure share on good i is si
h(x) =

∫
si
t(x)h(t)dt. Propo-

sition 2.1 and the discussion following it tells us that there exists density functions h such

that sh(x) is approximately independent of x. In other words, the distribution of demand

behavior could be such that the mean expenditure devoted to any good is approximately

independent of prices. This is the central claim in Grandmont (1992).

To obtain an exact version of this result, we assume that agents’ expenditure share

functions are drawn from a slightly larger set, S̄. Agents in this market all have income

w̄, so to each s in S̄ is associated a demand function fs : Rl
++ → Rl

+ where f i
s(q) =

w̄si(ln q1, ln q2, ..., ln ql)/qi. Clearly, if s = st for some t, then fs = ft. (It is clear that

notation has been abused.) When f̄ satisfies a rationality property like (a), (b) or (c), fs

need not satisfy the property exactly, but on any compact set of strictly positive prices,

it will be arbitrarily close to a function fs′ which does satisfy the property. This follows

easily from the fact that the members of S̄ are either translations of s̄ or arbitrarily close,

on compact sets, to translations of s̄. If the distribution of characteristics in this market

is governed by a Borel probability measure µ on S̄, then market demand at price q is

F (q) =
∫
S̄ fs(q)dµ.
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The function s̄ is bounded by definition. If in addition it is uniformly continuous,

then Corollary 2.5 tell us that there is a probability measure µ∗ such that
∫
S̄ s(x)dµ∗ =

s∗, where
∑l

i=1 s∗i = 1. In other words, the mean expenditure devoted to any good is

independent of the prevailing price. More formally, F i(q) = s∗iw̄/qi, which coincides with

the demand at price q and income w̄ of an agent with the Cobb-Douglas utility function

u(x) =
∑l

i=1 s∗i lnxi.

The first model of exact Cobb-Douglas aggregation is in Giraud and Maret (2001). The

assumptions we make here are generally weaker than theirs, but the stronger assumptions

in that paper allow for some stronger conclusions. Notice that our result allows the measure

µ∗ to be concentrated on just a few elements of S̄ though, as we shall see in the next section,

there is a straightforward way of guaranteeing that it is not concentrated on just a single

function in that set. Giraud and Maret (2001) identify conditions which guarantee that µ∗

is spread out across many elements. Loosely speaking, they show that if S is compact in

the sup norm, then µ∗ can be chosen to assign a non-zero measure to open subsets of S.

Note that the assumption made in this case imposes a strong restriction on the generating

function s̄. Giraud and Maret (2001) also show that µ∗ can be approximated by measures of

finite support in a way which leads to approximate Cobb-Douglas behavior for the market.

(Related results on finite approximations can also be found in Quah (1997).)

Example 2. It is not always essential that mean demand obeys Cobb-Douglas behavior.

We may be interested in a weaker property. Quah (1997) considers a market where the

distribution of characteristics are such that its mean demand is approximately linear in

income; in other words, market demand takes on homothetic-like (but not necessarily Cobb-
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Douglas-like) properties.4 Once again, in the right mathematical context, this could be

sharpened to exact linearity in income.

Let ḡ : P×R+ → Rl
+ be a function satisfying p·ḡ(p, w) = w. We interpret g̃ as a demand

function, in which case, P (a subset of Rl
++) is the set of prices under consideration. The

expenditure share function s̄ : P ×R → Rl
++ gives the share of expenditure devoted to each

good, so s̄i(p, x) = pie−xḡi(p, ex) for i = 1, 2, ..., l. Given ḡ, we may define gt : P ×R+ → Rl
+

by gt(p, w) = e−tḡ(p, wet). It is usual to refer to gt a homothetic transformation of ḡ; if ḡ is

homogeneous of degree zero, then a homothetic transformation is a special case of an affine

transformation. The expenditure share function of gt, which we denote by st, is related to

s̄ by st(p, x) = s̄(p, x + t). Once again, it is easy to check that if ḡ satisfies the rationality

properties (a), (b) or (c), so will gt.

Consider a market consisting of agents with the same income, and with expenditure

share functions drawn from the set S. If the distribution of t is governed by the density

h : R → R+, then this market’s mean expenditure share at price p and when each agent

has an income of ex is sh(p, x). Proposition 2.1 and the discussion following it tells us that

there exists density functions h such that sh(p, x) is approximately independent of x. In

other words, the mean expenditure devoted to any good is approximately independent of

income or mean demand becomes approximately homothetic.

For an exact version of this result, we assume as before that all agents have the same

income, while expenditure share functions are drawn from S̄. To each s in S̄ we may

associate a demand function gs in the obvious way. A market where all agents face the

price p and have the same income w, and where expenditure share functions are drawn from
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the set S̄ according to the probability measure µ will have aggregate demand of G(p, w) =

∫
S̄ gs(p, w)dµ. The average expenditure share on good i when w = ex is

∫
S̄ si(p, x)dµ.

The function s̄ is bounded by definition. If in addition it is uniformly continuous, then

Corollary 2.5 tells us that there is a probability measure µ∗ such that
∫
S̄ s(p, x)dµ∗ = s∗(p),

where
∑l

i=1 s∗i(p) = 1. In other words, the share of expenditure devoted to each good is

independent of the income ex. More formally, Gi(p, w) = s∗i(p)w/pi for 1 ≤ i ≤ l.

In the next example, we consider a market where agents individually obey the weak ax-

iom and where a suitable distribution of characteristics will guarantee that market demand

satisfies a stronger property, namely, the law of demand.

Example 3. We retain the setup of Example 2. We impose the additional assumption

that P is open and convex set in Rl
++ and that ḡ is C1, so its associated expenditure share

function s̄ is also C1. Consider the map σ̄ from P × R to R2l+l2 given by

(p, x) →
(

s̄(p, x),
∂s̄i

∂pj
(p, x)1≤i,j≤l,

∂s̄i

∂x
(p, x)1≤i≤l

)
.

Define σt by σt(p, x) = σ̄(p, x + t) and the set Σ = {σt : t ∈ R}. We denote its closure by

Σ̄. Provided σ̄ is uniformly continuous and σ̄(p, ·) is bounded for all p in P , the set Σ̄ is

compact (Lemma 2.3). Furthermore, for every σ in Σ̄ there is a C1 function s : P ×R → Rl
+

such that

σ(p, x) =

(
s(p, x),

∂si

∂pj
(p, x)1≤i,j≤l,

∂si

∂x
(p, x)1≤i≤l

)
.

To every σ in Σ̄ we can associate the demand function gσ : P × R+ → Rl
++ in the

usual way, namely, gi
σ(p, w) = σi(p, lnw)w/pi for 1 ≤ i ≤ l. The function gσ is C1 and

its derivative matrix with respect to price, which we will denote by ∂pgσ(p, w), can be

15



decomposed into the substitution and income effect matrices. If ḡ satisfies the weak axiom,

its substitution effect matrix is negative semi-definite; it is not hard to check that this

implies that the substitution effect matrix of gσ is also negative semi-definite.

Consider a market where σ is drawn from Σ̄ according to the Borel probability measure

µ. Market demand is G(p, w) =
∫
Σ̄ gσ(p, w)dµ. We wish to show that there is µ∗ such that,

when µ = µ∗, the matrix ∂pG(p, w) is negative semi-definite for all (p, w) in P × R+. This

will guarantee that G satisfies the weak law of demand, i.e., (p−p′) ·(G(p, w)−G(p′, w)) ≤ 0

for all (p, w) and (p′, w) in P × R+.

Each ∂pgσ(p, w) can be decomposed into its substitution and income effect matrices,

with the former being negative semi-definite, so all that we need to do is to show that the

aggregate of income effect matrices

I(p, w) =
∫
Σ̄

gσ(p, w)
(

∂gσ

∂w
(p, w)

)T

dµ

is a positive semi-definite matrix.

To see this, we let V = Rl and consider the map H : Rl×R2l+l2 → R by H(v, θ) = (v ·θ̂)2

where θ̂ refers to the first l entries in θ. H is clearly a continuous function, so Theorem 2.4

tells us that there is H∗ : Rl × P → R such that

∫
Σ̄

H(v, Φ(p, x, σ))dµ∗ =
∫
Σ̄

[v · s(p, x)]2 dµ∗ = H∗(v, p) ≥ 0,

where s(p, x) refers to the first l entries of σ(p, x). Therefore, with µ = µ∗, and writing

v = (p1u1, ..., plul),

v · I(p, w)v =
1
2

∂

∂w

∫
Σ̄

[v · gσ(p, w)]2 dµ∗
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=
1
2

∂

∂w

(
w2

∫
Σ̄

[
v · gσ(p, w)

w

]2

dµ∗
)

= H∗(u, p)w ≥ 0.

So we have shown that there is a distribution over Σ̄ such that market demand G satisfies

the law of demand. In fact, it satisfies the stronger property that the matrix I(p, w) is

negative semi-definite. This property is known as increasing dispersion and empirical tests

of the law of demand typically test this stronger property. (See W. Hildenbrand (1994)

for some empirical work and Jerison (1999) for a theoretical discussion of this property

and its variants.) It is not hard to check that by suitably re-defining H we can obtain a

measure µ∗ such that G is both monotonic and a linear function of income (as in Example

2). In Quah’s (1997) model of an exchange or production economy satisfying the law of

demand, the economy consists of groups of households in which both these properties, in

their approximate versions, hold simultaneously for each group.

4. Guaranteeing Heterosis

The models presented in the last section have usually been understood as examples of

the heterotic phenomenon at work. So in Example 2, agents need not individually have

demand functions which are linear in income; it is the distribution of demand behavior in

the market which leads to that property. This is a valid interpretation, provided s̄ satisfies

certain conditions.

It is best to begin with cases where such an interpretation is problematic. We confine

our observations to the model described in Example 2, though these observations apply

just as aptly to Example 1. In Example 2, one trivial situation which is clearly not an
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example of heterosis, indeed not even an example of heterogeneity, is when g̃ is itself linear

in income; then s̄ will be independent of x and S is a singleton consisting of s̄. In this case,

Proposition 2.1, Theorem 2.4, and Corollary 2.5 are all trivially true, but the market, which

consists of essentially just one very well-behaved agent, is clearly not heterogenous in any

reasonable sense of the word.

A less obvious and more interesting situation has been pointed out by B. de Villemeur

(1998) and K. Hildenbrand (1998). The essence of what they are saying could be seen

in Figure 1, which shows the graph of s̄i(p, ·). Suppose we are interested in the behavior

of si
h(p, x) for x in some compact interval X. From Proposition 2.1 and the subsequent

discussion we know that the value of si
h(p, x) in X becomes increasingly independent of

x as the density of h becomes increasingly flat. However, in this case, there is a sense

in which it is misleading to say that this approximate independence on x is caused by

heterogeneity. The reason is that as h becomes increasingly flat, it places most of its weight

on the values of t that are either very large or very small. If the function s̄ has limits as

x goes to positive or negative infinity, the behavior of st, at least within the interval X,

becomes itself increasingly independent of x for very large or small t, since st(x) = s̄(x + t)

(see Figure 1). In other words, market behavior in the set X, as represented by sh(p, x),

becomes increasingly independent of x, but only because the agents who make up that

market increasingly take on the same property in X. Such a market can be described as

heterogenous in the sense that it is composed of agents with different expenditure share

functions, but, provided we judge agents’ demand only by its behavior in X, this is clearly

not an example of heterosis at work.
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There is another way of seeing essentially the same thing. In Figure 1, s̄i(p, ·) has a

limit of Li as x goes to infinity and a limit of M i as x goes to minus infinity. It is trivial

to check that the constant functions ŝi(p, x) ≡ Li and s̃i(p, x) ≡ M i are in S̄. So there

certainly is a measure µ∗ such that
∫
S̄ si(p, x)dµ∗ is independent of x: simply choose a

measure which places all its weight on ŝi(p, ·) and s̃i(p, ·). Once again there is heterogeneity

but no heterosis.

On the other hand, the function s̄i(p, ·) can look like the one depicted in Figure 2. In

this case, it is clear that si
t(p, x) will not be approximately independent of x in X for any t.

Then if si
h(p, x) is approximately independent of x - as it will be if h is sufficiently flat - this

phenomenon must arise from the distribution of t. In other words, as x is increased, si
t(p, x)

rises for some values of t and falls for other values in a way which approximately cancels

out. We may say that the agents exhibit a complementary or sign-balancing heterogeneity

in their demand behavior. (The terms are loosely borrowed from B. de Villemeur (2001)

and W. Hildenbrand and A. Kneip (1999).) This is a bona fide model of heterosis.

If we wish to guarantee that we have a model of complementary heterogeneity, then we

should impose conditions on s̄ so that it looks like Figure 2 and not like Figure 1. This is

straightforward. We say that a function H : Rl → Rm satisfies uniform variation if there is

δ and ε such that at any point x in Rl, the compact neighborhood around x with radius δ

contains elements x′ and x′′ satisfying |H(x′′)−H(x′)| > ε. The property simply guarantees

that within sets of sufficient size, there will be a uniformly large variation in the function

H. A family H of functions from Rl to Rm satisfies equi-variation if there is δ and ε such

that at any point x in Rl and for any H in H, the compact neighborhood around x with
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radius δ contains elements x′ and x′′ (which depends on H) satisfying |H(x′′)−H(x′)| > ε.

The next lemma has a completely trivial proof which we will omit.

Lemma 4.1 If s̄(p, ·) satisfies uniform variation, then the set {s(p, ·) : s ∈ S̄} satisfies

equi-variation.

The import of this observation is that provided s̄(p, ·) satisfies uniform variation for

some p in P , the functions s(p, ·), where s is in S̄, are never independent of x. So that when

we find some µ∗ such that, for all p in P ,
∫
S̄ s(p, x)dµ∗ is independent of x, this is indeed a

manifestation of heterosis arising from complementary heterogeneity.

A difficulty with this uniform variation requirement has been raised by some researchers

(for example, K. Hildenband (1998)): they observe that it is implausible (though not irra-

tional in the sense of violating the standard rationality properties) for expenditure shares

to behave that way, where there is no nice limiting behavior as income becomes very small

or very large. In other words, any interpretation of the models of market demand given in

Section 3 as models of complementary heterogeneity requires implausible assumptions. We

do not share this view. When one is modelling demand behavior, it is not usually demand

behavior in the entire price-income space that is being modelled, but rather the behavior

of demand in some pre-determined set of prices and income that is bounded and bounded

away from the margins (like the set X in Figure 1). One may model demand in this set by

the elements of S or its closure; whether or not the model is realistic depends on whether

the elements of S (or S̄) adequately represent the variety of demand behavior in that set. It

is on this basis that one should judge the suitability of the generating function s̄; the real-

ism or otherwise of s̄ as a description of a consumer’s behavior over the entire price-income
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space is not relevant in itself.5,6

CNRS UMR 7522, Bureau d’Economie Theorique et Appliquee, 61, avenue de la Foret

Noire, 67000, Strasbourg, France.; ggiraud@cournot.u-strasbg.fr

and

St Hugh’s College, Oxford, OX2 6LE. U.K.; john.quah@economics.ox.ac.uk

References

Billette De Villemeur, E. (2001): “Behavioral Complementarity (not Heterogeneity)

Causes the Law of Demand,” Personal Manuscript.

Billingsley, P. (1968): Convergence of Probability Measures. New York: Wiley.

Giraud, G. and I. Maret (2001): “Behavioral Heterogeneity in Large Economies,”

mimeo.

Grandmont, J.-M. (1992): “Transformations of the commodity space, behavioral het-

erogeneity, and the aggregation problem,” J. Econ Theory, 57, 1-35.

Hildenbrand, K. (1998): “On J. M. Grandmont’s Modelling of Behavioral Heterogene-

ity,” Bonn discussion Paper, A-580.

Hildenbrand, W. (1974): Core and Equilibria of a Large Economy. Princeton: Prince-

ton University Press.

— (1983): “On the Law of Demand,” Econometrica, Vol. 51, 997-1019.

— (1994): Market Demand. Princeton: Princeton University Press.

21



Hildenbrand, W. and A. Kneip (1999): “On Behavioral Heteorgeneity,” Bonn Discus-

sion Paper, A-589.

Jerison, M. (1999): “Dispersed excess demands, the weak axiom and uniqueness of

equilibrium,” J. Math Econ., Vol. 31, 15-48.

Quah, J. K.-H. (1997): “The Law of Demand when Income is Price Dependent,” Econo-

metrica, Vol. 65, No. 6, 1421-1442.

Quah, J. K.-H. (2001): “Demand is Heterogenous in Grandmont’s Model,” Nuffield

College Working Paper, W12.

Royden, H. L. (1968): Real Analysis, 2nd. edition. London: Macmillan.

22



Footnotes

1. ‘Heterosis’ is not a new word, though it is fairly obscure. The Oxford English Dictionary

gives it a few different meanings, but its most common use (and apparently even this use is

not that common) is in biology, where it means hybrid vigor. The meaning we are giving

to this word is different, but it follows just as naturally from its Greek roots. Of course,

economists have been known to borrow words from other disciplines: ‘hysteresis’ being just

one example.

2. The crucial assumption in Hildenbrand and Kneip’s (1999) interpretation of Grandmont’s

result is that the expenditure share function generating the affine class has, in a certain

sense, finitely many turning points (Assumption 3 in their paper). For a more detailed

discussion of these issues see Quah (2001).

3. A function f : Rl
++ × R+ → Rl

++ satisfies the weak axiom if p · f(p′, w′) ≤ p · f(p, w)

implies p′ · f(p, w) > p′ · f(p′, w′). It satisfies monotonicity or the law of demand if

(p − p′) · (f(p, w) − f(p′, w)) < 0. For a discussion of these concepts see Mas-Colell et

al (1996). In the case of (a), if f̄ is generated by u, then ft is generated by ut, where

ut(x) = u(e−t1x1, e−t2x2, ..., e−tlxl).

4. A preference generates a demand function which is linear in income if and only if it

is homothetic. For this reason and for convenience, we use the terms ‘homotheticity’ and

‘linearity in income’ interchangeably, but the reader should bear in mind that even when

market demand is linear in income it need not be generated by a preference.

5. Part of this discussion was first reported in Quah (2001).

6. Since a homothetic or affine transformation of a demand function will inherit any im-
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plausible boundary behavior it has, excluding the situation depicted in Figure 2 may be

reasonable if a model assumes agents to have demand functions which coincide with these

transformations on the entire set of prices and incomes. Indeed, this assumption is made in

Grandmont (1992) and Quah (1997), but while it simplifies the exposition, in neither case

is the assumption essential. The authors were principally interested in the global unique-

ness and stability of the equilibrium price. For simplicity, consider an exchange economy.

Then the strategy is as follows. Firstly, some assumptions are made (and there are many

variations, beyond the ones supplied by those authors) which guarantee that the equilib-

rium prices lie within some compact set of strictly positive prices, P; given P , and given

the endowments of the agents, we can find a compact interval of strictly positive incomes

which agents in the model can achieve given the prices in P . Secondly, in the set P × W ,

but not necessarily outside that set, agents have demand functions which belong to homoth-

etic classes in the case of Quah (1997) and affine classes in the case of Grandmont (1992).

Suitable distributional assumptions within these classes plus other assumptions then guar-

antee an aggregate demand structure nice enough to ensure uniqueness and stability of the

equilibrium price.
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