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Abstract

A new semiparametric proportional hazard rate model is proposed which
extends standard models to include a dynamic speci�cation. Two main prob-
lems are resolved in the course of this paper. First, the partial likelihood ap-
proach to estimate the components of a standard proportional hazard model is
not available in a dynamic model involving lags of the log integrated baseline
hazard. We use a discretisation approach to obtain a semiparametric estimate
of the baseline hazard. Second, the log integrated baseline hazard is not ob-
served directly, but only through a threshold function. We employ a special
type of observation driven dynamic which allows for a computationally simple
maximum likelihood estimation. This speci�cations approximates a standard
ARMA model in the log integrated baseline hazard and is identical if the
baseline hazard is known.

It is shown that this estimator is quite exible and easily extended to in-
clude unobserved heterogeneity, censoring and state dependent hazard rates.
A Monte Carlo study on the approximation quality of the model and an em-
pirical study on BUND future trading at the former DTB complement the
paper.
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1 Introduction

In this paper, we propose a dynamic extension to semiparametric proportional hazard

models. This can be seen as an alternative to the recently proposed ACD model by Engle

and Russell (1998) and Engle (2000) that captures the dynamic structure of durations

in the context of special accelerated failure time models and the approach of Gamerman

and West (1987) building on the dynamic generalized linear model framework suggested

by West, Harrison, and Migon (1985).1 Our approach is a special type of modulated

renewal process in the sense of Cox (1972b) and thereby a special type of proportional

hazard model. The latter class of models is widely employed in microeconometrics when

the waiting times of individuals, households or �rms in particular states is of primary

interest.2 Hence, in this sense, the proposed approach is particularly useful to analyze

data which have typical duration characteristics, like censoring structures or unobservable

heterogeneity e�ects but which also reveal serial dependencies. The model dynamic is

speci�ed based on an observation driven autoregressive process for the log integrated

baseline hazard and we call it semiparametric autoregressive conditional proportional

hazard (ACPH) model.

Since this speci�cation involves dynamics in terms of the log integrated baseline

hazard, the partial likelihood approach proposed by Cox (1972a), (1975) and Oakes and

Cui (1994) leading to a two step estimation of covariates and the baseline hazard function,

1For a general exposition of durations models, see e.g. the recent survey by Oakes (2001) or Cox and

Oakes (1984), Kalbeisch and Prentice (1980) or Lancaster (1997).
2A well known example is the analysis of the length of unemployment spells which is studied by

a wide range of theoretical and empirical papers, see e.g. van den Berg and van der Klaauw (2001),

McCall (1996), Gritz (1993), Meyer (1990), MoÆtt (1985), Heckmann and Singer (1984), Nickell (1979),

Lancaster (1979) among many others.
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is not available. A further problem is that the log integrated baseline hazard is not

observable directly, and thus the usual prediction error decomposition, see e.g. Harvey

(1990, chapter 3.5), is not applicable.

To circumvent these problems, we use a discretisation approach based on the work

of Han and Hausman (1990). A categorisation of the durations allows us to estimate the

autoregressive parameters and discrete points of the baseline hazard function simultane-

ously. Instead of a parameter driven dynamic model, in the sense of Cox (1981), which

would involve a computationally cumbersome maximum likelihood (ML) estimation, we

propose an observation driven model. For this speci�cation computationally simple ML

estimators of the dynamic parameters and of the underlying distribution function at a

�nite number of points are directly available. Given that there are many ways to specify

an observation driven dynamic, we specify a model which approximates the properties,

especially the autocorrelation function, of a corresponding parameter driven model. This

approximation is better, the �ner the chosen categorization. It is shown that this model is

equivalent to a simple ARMA model for the log integrated baseline hazard, if the baseline

hazard is known.

Subsequently, we illustrate that higher order AR(p) and MA(q) terms are easily

incorporated in the model, yielding a semiparametric ACPH(p,q) model. Moreover, we

show that further extensions, like the inclusion of exogenous regressors, the consideration

of censoring mechanisms, unobserved heterogeneity or state dependent hazard rates are

easily accommodated in the model framework.

Some small sample evidence on the quality of this approximation is provided on the

basis of a Monte Carlo study for the semiparametric ACPH(1,0) and ACPH(0,1) model.

Results indicate that the approximation works nicely for a reasonable number of categories
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and a moderate sample size. Finally, we provide a brief demonstration of the estimator

in the context BUND future trading at the former DTB in Frankfurt.

The outline of the rest of the paper is as follows: in section 2 we propose the

semiparametric ACPH model. Section 3 outlines some possible extensions. Small sample

evidence on the approximation quality is provided in section 4. Section 5 reports on an

application to BUND future trading and section 6 concludes.

2 Semiparametric autoregressive conditional propor-

tional hazard models

2.1 Semiparametric proportional hazard models

Consider a sequence of events taking place at times #0; #1; : : : ; #T with #0 = 0 and #0 <

#1 < : : : < #T being a stochastic process. Associated with this process of arrival times is

a process of the durations between individual events, de�ned as the �rst di�erence of the

original process, i.e. �t := #t � #t�1, t = 1; : : : ; T . Denote the information generated by

this process and potential covariates xt as Ft = �(�t; �t�1; : : : ; �1; xt+1; xt; : : : ; x1)
3.

To capture the information contained in the process of durations �t, one way to

proceed is to specify a stochastic model based on the hazard rate of �t, following the

approach suggested by Cox (1972a), (1975).

The hazard rate is de�ned as the limit of the conditional probability to observe an

event in a small time interval, given that the event has not occurred until the beginning

3The inclusion of xt+1 into the information set Ft simpli�es the notation in the rest of the paper since

it allows us to condition on past durations and contemporaneous covariates. This notation will be used

in section 2.4.
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of the small interval, i.e.

�� (s) := lim
�!0

Prob [s � � < s+� j� � s ]

�
(1)

The relationship to the distribution function Q� of � is simply

�� (s) = �
@ log(1�Q� (s))

@s
: (2)

In order to include explanatory variables xt in a cross-sectional context, frequently a

proportional hazard model is speci�ed as the product of a baseline hazard �0(s) > 0 and

a strictly positive function of xt with coeÆcients � as

�� (sjxt) = �0(s) exp(�x
0
t�); t = 1; : : : ; T: (3)

The baseline hazard �0(s) corresponds to �� (sjxt = 0), i.e. if the regressors are centered,

�0(s) has an interpretation as the hazard function for the mean values of xt. Note that

the information generated by past covariates xs, s < t, and past durations does not enter

this speci�cation.

Much insight can be gained, if one transforms the dependent variable �t to another

random variable ~�t which has a at, i.e. constant, hazard rate, implying that the time

since the start of the spell is uninformative. This is achieved by taking the integral of (3)

and using the fact that this integral is a random variable described by a unit exponential

distribution, i.e.
R �t

0
�� (sjxt)ds � Exp(1), see e.g. Lancaster (1997, p. 19),

~�t = exp(x0t�)�t; �t � Exp(1); with ~�t :=

�tZ
0

�0(s)ds: (4)

Note that the exponential distribution implies indeed a at hazard rate, which is easily

veri�ed from (2). Taking the log of (4) yields a model linear in the transformed duration

� �t = ln ~�t,

� �t = x0t� + ��t ; (5)
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where ��t is an identically independently type II extreme value distributed error term

with mean & � E[��] = �0:577216, variance Var[��] = �2=6 (see e.g. Johnson, Kotz, and

Balakrishnan (1994)), and density function

f(s) = exp(s� exp(s)): (6)

Due to the one-to-one nature of the transformation applied to the durations �t, the infor-

mation sets generated by either dependent variable �t or � �t are equal, i.e.

Ft = F�
t � �(� �t ; �

�
t�1; : : : ; �

�
1 ; xt+1; xt; : : : ; x1). This rather peculiar setup, is chosen since

the distribution of the durations �t contains valuable information on the point process

generating the observations, beyond the marginal e�ects of regressors xt. The latter is

quite di�erent from a standard linear regression model where one is content with a model

having i.i.d. errors, which implies that no information is missed by the model. In the

context of point processes however, even an i.i.d. error still contains valuable information

on the DGP in the form of the slope of the hazard rate. Thus, a good regression model

should imply not only an i.i.d. error structure but a at hazard rate for the error term of

the transformed model (4) as well.

By having made the transition from �t to � �t , the information on the shape of the

hazard rate of �t is actually captured by a transformation of the dependent variable. In

the framework of Cox (1972a), �0 is an arbitrary unspeci�ed baseline hazard function

leading to a model which is suÆciently exible for many applications. In this context the

transformation from �t to � �t is unknown, thus (5) corresponds to a latent model driving

the observable outcomes of �t.

For the estimation of this model, di�erent solutions have been proposed. Cox (1975)

proposed the partial likelihood approach which is based on the fact that the baseline haz-

ard �0 and the coeÆcients � can be estimated separately. The estimation of the baseline

7



hazard follows from a modi�cation of the estimator by Kaplan and Meier (1958) pro-

posed by Breslow (1972), (1974). An alternative proceeding relies on the relationship

between conventional binary response models and proportional hazard speci�cations for

grouped durations models (see Sueyoshi, 1995). Based on this framework Han and Haus-

man (1990) introduce a model which allows for a simultaneous estimation of � and �0 at

discrete points.4 A further strand of econometric duration literature is based on Bayesian

estimation methods, see, for example, Campolieti (2001), (2000) or Ruggiero (1994). A

fourth method to estimate the semiparametric proportional hazard model uses recent re-

sults on the estimation of (censored) regression models with an unknown transformation

of the dependent variable. Based on the work of Horowitz (1996), Gorgens and Horowitz

(1999) introduce an approach for a general class of censored regression models where the

left hand variable is an unknown increasing function of an observable variable5. An im-

portant special case of this class of models is the (censored) semiparametric proportional

hazard model with unobserved heterogeneity. In this context the unknown distribution

function as well as the unknown transformation of the left hand variable are estimated

nonparametrically.

2.2 Dynamic proportional hazards models

Using the terminology of Cox (1981) there are two ways to incorporate a dynamic in the

proportional hazards model outlined in (4). On the one hand, there are observation driven

models, which are characterised by a mean function mt measurable with respect to the

observable information set Ft�1. On the other hand, there are parameter driven models

4A related approach has been introduced simultaneously by Meyer (1990). This class of speci�cations

is extended by Romeo (1999) in order to test hypotheses regarding the shape of the hazard function.
5For a related study see Abrevaya (1999).
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whose mean function is measurable with respect to the latent information set F�
t�1. At

�rst glance the distinction seems point-less since � �t = log�0(�t) is a one-to-one mapping

from �t to � �t and the information sets coincide. The importance of the distinction will

become clear once both approaches have been outlined in greater detail.

An observation driven dynamic model of � �t can be depicted as

� �t = m(Ft�1; �) + ��t ; (7)

where m is a possibly nonlinear function of past observed durations and present and past

exogeneous regressors xt and parameters �. The estimations of this type of model uses

again the partial likelihood procedure proposed by Cox (1975), which has been shown by

Oakes and Cui (1994) to be available, even in the dynamic case. Therefore, the two-step

estimation of parameters � and baseline hazard �0 is still possible. A simple example

would be to specify m(Ft�1; �) in terms of lagged durations. However, it turns out, that

the dynamic properties of such models are non-trivial and that the selection of a speci�c

functional form in empirical applications is a complicated task. See e.g. Hautsch (1999).

An alternative is to specify the model dynamics directly in terms of the log integrated

baseline hazard � �t leading to a parameter driven dynamic proportional hazard model.

The important di�erence of this speci�cation of the general form

� �t = m(F�
t�1; �) + ��t ; (8)

is that the latter type of models does not allow for a two step estimation. This becomes

obvious, if one considers an AR(1) process for � �t as a special case of (8)

� �t = �� �t�1 + ��t = � log�0(�t�1) + ��t : (9)

The baseline hazard enters explicitly the mean function and the partial likelihood ap-

proach is unfeasible. This is simply because � �t is a function of the baseline hazard �0
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and the latter is left unspeci�ed. Since � � is not observable directly, the usual predic-

tion error decomposition, again, is not available. To circumvent the problems induced

by a dynamic extension of the standard proportional hazard model, we propose a model

which embodies characteristics of observation driven speci�cations as well as parameter

driven models. In particular, we specify an observation driven dynamic process for the

log integrated baseline hazard. Since this model prevents a two step estimation of � and

�0, in the following subsection we present a discretisation approach which allows for a

simultaneous estimation of discrete points of the baseline hazard function and of the pa-

rameter vector. In section 2.4 we introduce a dynamic extension of the semiparametric

proportional hazard model which is quite easy to implement and allows for a standard

(conditional) maximum likelihood estimation of the unknown parameters.

Other avenues might be worthwhile pursuing in order to obtain speci�cations which

are more exible in a dynamic framework. On the one hand there are parametric ex-

tensions, which allow for more exible distributions. This naturally leads to a type of

semiparametric time series model as it is suggested by Drost and Klaassen (1997) for the

case of GARCH models and Drost and Werker (2000) for ACD models. On the other

hand, one might think of alternative nonparametric procedures along the lines of Gor-

gens and Horowitz (1999) or of speci�cations based on a kernel estimator of the baseline

hazard, as it was recently proposed by Horowitz (1999). The latter is however not easily

extended to account for dynamics as in the given context.

2.3 A discretisation approach

Since in a dynamic framework involving lags of the log integrated baseline hazard �0, the

estimation of �0 and the dynamic parameters are not separable, we use a discretisation
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approach for the estimation of the baseline hazard rate, see e.g. Oakes (1972), Breslow

(1972), Kalbeisch and Prentice (1973) or Han and Hausman (1990). We assume that the

baseline hazard function is constant over certain intervals of the support of the durations

�t. In doing so we follow the approach suggested by Han and Hausman (1990) and build on

a categorization of the durations �t leading to a semiparametric estimator of the baseline

hazard, �0, at a number of discrete points.

The discretisation rule d(�) by which a categorical random variable dt is derived from

the observable durations �t is as follows

d(�t) :=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1 if �t 2 (�1; �1];

2 if �t 2 (�1; �2];

...

K if �t 2 (�K�1;1):

(10)

where �k; k = 1; : : : ; K � 1; denote the boundaries of the K categories. For the sake

of a simple exposition, the K categories are denoted by integers, however the values

denoting individual categories can be chosen arbitrarily without having an inuence on the

estimated dynamic. Let Fd
t = �(d(�t); d(�t�1); : : : ; d(�1); xt+1; xt; : : : ; x1) the information

set generated by the categorized durations.

The discretisation rule in (10) describes the recoding of the data, while the random

variable dt is described by a categorical response type framework, i.e. we use � �t as a latent

11



variable, which is only observed through a step function g(�) de�ned using parameters ��,

g(� �t ; �
�) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1 if � �t 2 (�1; ��1];

2 if � �t 2 (��1; �
�
2];

...

K if � �t 2 (��K�1;1):

(11)

By this, the observation rule of the latent variable � �t is such that a duration within the

category (�k�1;�k] is observed if the latent variable � �t lies between the two thresholds

(��k�1;�
�
k].

The discretisation approach implies of course a certain loss in information, whereby

we have for the information generated by the discretized durations Fd
t � Ft. This is

a standard approach in the analysis of grouped durations, see e.g. Thompson (1977),

Prentice and Gloeckler (1978), Meyer (1990), Kiefer (1988), Han and Hausman (1990),

Sueyoshi (1995) and Romeo (1999).

By having introduced the discretisation of the data (10) and the observation rule

(11) of the latent process � �t , the model admits an interpretation as a special type of or-

dered response model based on an extreme value distribution. The functional relationship

between the duration �t and the log integrated baseline hazard � �t is estimated in a semi-

parametric fashion. Note the important di�erence between � and ��. The former being a

set of thresholds governing the precision of the semiparametric approximation. The latter

being the parameters of the model, which are directly related to the distribution function

of the errors in the linear model (5).

The relationship between the baseline hazard �0 in (3) and the baseline distribution
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function Q0 is just

Q0(s) = 1� exp

2
4�

sZ
0

�0(u)du

3
5 (12)

This relationship is exploited to relate the thresholds ��, which are parameters of the

model, to the baseline hazard �0. The unknown distribution function Q0 can be estimated

at K � 1 discrete points by a nonlinear function of the estimated thresholds ��k using

Q0(�k) = 1� exp(�exp(��k)); k = 1; : : : ; K � 1: (13)

Based on the discrete points of the baseline distribution function we can estimate a discrete

baseline hazard ~�0, corresponding to the conditional failure probability, given the elapsed

time since the last event, given by

~�0(�k) := Prob [�t 2 [�k; �k+1) j�t > �k ] (14)

=
Q0(�k+1)�Q0(�k)

1�Q0(�k)
; k = 0; : : : ; K � 2 (15)

with �0 � 0. This formulation serves as an approximation to the baseline hazard de�ned

in (1) if divided by the length of the discretisation interval, i.e. if the length of the intervals

goes to zero, the approximation converges to the original de�nition, thus

�0(�k) �
~�0(�k)

�k+1 � �k
: (16)

Although, this approximation yields results comparable to a nonparametric estimation

procedure, there are important di�erences. The most obvious is the missing theoretical

link between the number of categories K and the sample size T , as it is the case between

the bandwidth parameter and the sample size in a nonparametric estimation. Therefore,

the approximation of the baseline hazard (16) should not be termed nonparametric.
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2.4 Speci�cation and estimation of a semiparametric ACPH(p,q)

model

Using the discretisation approach, another obstacle is the estimation problem incurred if

a dynamic is attached to the latent of a limited dependent variable like (11). In general

this leads to a maximum likelihood estimator involving a T -fold integral, as has been

amply discussed in the literature, see e.g. the surveys by Hajivassiliou and Ruud (1994)

and Manrique and Shephard (1998). A viable alternative poses the observation driven

dynamic proposed by Gerhard (2001).

Therefore, we propose an observation driven dynamic for the conditional mean func-

tion of � �t . The main idea is to specify the dynamic on the basis of conditional expectations

of the error ��t

�t := E
�
��t j F

d
t

�
: (17)

Note that �t relates to a concept known in econometrics as generalised residuals, see

Gourieroux, Monfort, Renault, and Trognon (1987), or in statistics as Bayesian residuals,

see Albert and Chib (1995).

By using for expositional ease the simplest case of an AR(1) like dynamic, the

ACPH(1,0) model is given by

� �t = mt + ��t ; (18)

where mt is de�ned through a recursion, conditioned on an initial m0,

mt = �(mt�1 � x0t�1� + �t�1) + x0t�: (19)

Note that the computation of mt allows to use a conditioning approach which exploits the

observation of mt�1 and thus prevents us from computing cumbersome T-fold integrals.
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Therefore, the semiparametric ACPH(p,q) model is built on an ARMA structure based

on the conditional expectations of the past latent variables, given the observable cate-

gorized durations which correspond to generalized residuals in the sense of Gourieroux,

Monfort, Renault, and Trognon (1987). This speci�cation poses a dynamic extension to

the approach of Han and Hausman (1990), i.e. the autoregressive structure is built on

past values of a transformation of the baseline hazard which is assumed to be piecewise

constant.

Thus, the semiparametric ACPH model can be written in terms of the hazard rate

as

�� (sjF
d
t�1) = �0(s) exp(�mt): (20)

This speci�cation has two major advantages. First, it is shown that this model is equiv-

alent to a simple ARMA model for the log integrated baseline hazard, if the baseline

hazard was known. In this case, the step function g(�) is replaced by a Borel measurable

one-to-one function and d(�) is reduced to the identity mapping, so that Fd
t = Ft, see

e.g. Davidson (1994, theorem 10.3). Therefore, �t = ��t and mt = E[� �t jF
�
t ] � &, where

& � E[��] and thus the semiparametric ACPH(1,0) model would collapse to a standard

model of an ARMA(1,0) process of the log integrated hazard. Hence, the parameter �

can be interpreted as an approximation to the parameter � in the ARMA(1,0) model

� �t = �(� �t�1 � x0t�1�) + x0t� + ��t : (21)

Note that this approximation is the better the �ner the chosen categorization (see also

section 4).

The second major advantage is the straightforward computation of the likelihood of

the model, which does not necessitate the use of extensive simulation methods. Thus, a
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computationally simple maximum likelihood estimator of the dynamic parameter � and

the parameters of the baseline hazard approximation �� is directly available.

The mean function of the latent case, given in (19) for the case of an ACPH(1,0)

model can easily accommodate higher order AR(p) and MA(q) terms to yield an ACPH(p,q)

model. De�ne the matrices F and H and the dimension r of a generic state space model

as

F =

2
666666666666664

�1 �2 : : : �r�1 �r

1 0 : : : 0

0 1 0 : : :
...

...
. . . 0

0 : : : 0 1 0

3
777777777777775

; H 0 =

�
1 �1 : : : �r�1

�
; r = max(p; q + 1); (22)

where we have for the AR parameters �i = 0 for i > p and the MA parameters �i = 0 for

i > q. See e.g. Hamilton (1994, chap. 13.1). Thereby, the mean function mt can be given

as the function of the mean function st in a state space context as

mt = H 0st + x0t�; (23)

where the mean of the state process is assumed to follow

st = F (st�1 + e1�t�1); where e01 =

�
1 0 : : : 0

�
; (24)

conditional on some initial s0.

Once the system is cast in state space form, weakly exogenous variables can be

included not only statically in (23), corresponding to (19), but also in the dynamic (24)

leading to an in�nite lag structure. For the sake of brevity the explicit model is omitted

here.
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2.5 Computation of the log likelihood

Since the observation driven dynamic enables us to use the standard prediction error

decomposition, see e.g. Harvey (1990), the likelihood is evaluated in a straightforward

iterative fashion:

(a) The mean function st of the state process is initialised with its unconditional expec-

tation

s0 := E[st]: (25)

(b) The likelihood contribution of observation t given the observation rule (11) under

the given distributional assumptions is

Prob
�
dt
��Fd

t�1

�
=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Q(��1 �mt) if dt = 1;

Q(��2 �mt)�Q(��1 �mt) if dt = 2;

...

1�Q(��K�1 �mt) if dt = K;

(26)

where Q(:) denotes the c.d.f. of the extreme value distribution, given by

Q(s) = exp(� exp(s)):

(c) The generalized error �t, which drives the mean function is a (conditionally) deter-

ministic function of the observations, which make up the conditional expectation

17



mt and the present observation dt and is given by

�t = E
�
��t j F

d
t

�
= E [��t j dt; mt]

=

8>>>>>>>><
>>>>>>>>:

q(�t;1)

Q(�t;1)
if dt = 1;

q(�t;k)�q(�t;k�1)

Q(�t;k)�Q(�t;k�1)
if dt 2 f2; : : : ; K � 1g;

&�q(�t;K)

1�Q(�t;K)
if dt = K;

(27)

where �t;k = ��k �mt, q(s) �
sR

�1

uf(u)du and f(�) denotes the p.d.f. of the extreme

value distribution, eq. (6). See the original paper by Gourieroux, Monfort, Renault,

and Trognon (1987) for an extended discussion of generalized errors in the context

of non-dynamic models.

(d) The calculation of the conditional expectation of the future latent variable given the

present information and the de�nition of the mean processes mt and st in (23) and

(24).

(e) Steps 2 through 4 are repeated for all dt, t = 1; : : : ; T .

(f) The observable log likelihood is given by

logL( �dT j�; �; �; �
�) =

TX
t=1

KX
k=1

Æt;k logProb
�
dt = k

��Fd
t�1

�
; (28)

where

Æt;k =

8>>><
>>>:
1 if dt = k;

0 else;

and �dT collects all observations of dt, t = 1; : : : ; T .
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3 Extensions to the semiparametric ACPH model

3.1 Censoring

A typical property of economic duration data is the occurrence of censoring, leading to

incomplete spells. Therefore, a wide strand of econometric duration literature focusses on

the consideration of censoring mechanisms, see, for example, Orbe, Ferreira, and Nunez-

Anton (2000), Gorgens and Horowitz (1999), the survey by Neumann (1997) or Horowitz

and Neumann (1987), (1989). In the context of serial dependent arrival rates, censoring

occurs if some of the arrival times #t; t = 1; : : : ; T; cannot be observed. Assume that

for each arrival time #t there exists a censoring time #ct which is associated with the

beginning of a time period between #t�1 and #t+1 in which the occurrence of an event is

not observable.

If #t occurs after #
c
t , then #t is not observable and the observed duration is not �t =

#t�#t�1 but �
c
t = #ct �#t�1 with � ct � �t. In this case � ct is called 'right-censored' because

the exact stopping time is unknown. If the stopping time #t is also the starting time of

the next spell with duration �t+1, then instead of the exact duration �t+1 = #t+1�#t, only

the 'left-censored' duration � ct+1 = #t+1 � #ct is observable.

In this framework the observed duration process is f�t; ctg; t = 1; : : : ; T; where

ct =

8>>><
>>>:
1 if observation t is censored;

0 else

and the corresponding (observable) durations in t and t + 1 are �t = minf�t; �
c
t g and

�t+1 = minf�t+1; �
c
t+1g.

In the following we assume independent censoring, i.e. the censored durations � ct ;

and the true (but in the case of censoring, unobservable) durations are independent.
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This assumption is ful�lled if the censoring mechanism is determined exogenously and

is not driven by the duration process. For a detailed exposition and di�erent types of

censoring mechanisms see e.g. Neumann (1997). Under this assumption the likelihood

can be decomposed into

L( �dT ; �cT j�; �; �; �
�) = L( �dT j�cT ; �; �; �; �

�)L(�cT ); (29)

where �dT and �cT collects all observations of dt and ct, t = 1; : : : ; T . Note that in the

case of an exogenously given censoring scheme, the second factor does not depend on the

parameters of the model, thus the parameters �, �, � and �� are estimated by maximizing

the �rst factor of (29) and the corresponding conditional likelihood function is given by

logL( �dT j�cT ; �; �; �; �
�) =

TX
t=1

KX
k=1

(1� ct)(1� ct�1) � Æt;k log

��
k
�mtZ

��
k�1

�mt

f(s)ds (30)

+
TX
t=1

(1� ct�1)ct � log

1Z
��
l;r

f(s)ds+
TX
t=1

ct�1(1� ct) � log

1Z
��
l;l

f(s)ds+
TX
t=1

ct�1ct � log

1Z
��
l;lr

f(s)ds;

where ��l;r, �
�
l;l and ��l;lr, respectively, denote the corresponding thresholds of the lower

boundary of the censored duration � ct in the case of right-censoring (� ct = #ct � #t�1), left-

censoring (� ct = #t� #ct�1) and left-right-censoring (� ct = #ct � #ct�1). Hence, the �rst term

in (30) is the probability for observing a (noncensored) duration in category k while the

following terms are the probability for the duration �t to be determined by the particular

censoring scheme.

The maximum likelihood estimation proceeds along the lines described for the stan-

dard ACPH(p,q) model in section 2.4, where the likelihood in (30) accounting for the

pseudo-censoring takes the place of the original likelihood in (28). The derivation of gen-

eralised residuals needs to be slightly modi�ed in order to account for censoring. In (27)

the list of cases needs to be amended to accommodate for the conditional expectation of
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the error given a censored observation, which is computed as

�t =
& � q(�t;l)

(1�Q(�t;l))
if ct=1 or ct�1 = 1; (31)

where

�t;l =

8>>>>>>>><
>>>>>>>>:

��l;r �mt if (1� ct�1) � ct = 1;

��l;l �mt if ct�1 � (1� ct) = 1;

��l;lr �mt if ct�1 � ct = 1:

3.2 Unobserved heterogeneity

Because the ACPH model is based on the traditional proportional hazard speci�cation,

it is relatively easy to control for unobservable heterogeneity. From an econometric point

of view, accounting for unobserved heterogeneity can be interpreted as an additional

degree of freedom where Lancaster (1997) illustrates that the inclusion of a heterogeneity

variable can capture errors in the variables. From an economic point of view, in the

context of �nancial transaction data, unobservable heterogeneity e�ects can be associated

with di�erent kinds of traders or di�erent states of the market. The consideration of

unobserved heterogeneity is an ongoing topic in duration analysis. Lancaster (1979) or

Heckmann and Singer (1984) illustrated that ignoring unobserved heterogeneity can lead

to biased estimates of the hazard function. While in former studies either the underlying

duration distribution or the heterogeneity component was speci�ed nonparametrically (see

Heckmann and Singer, 1984, Honore, 1990, Bearse, Canals, and Rilstone (1996), 1996,

Han and Hausman, 1990 or Meyer, 1990), recent speci�cations, like Horowitz (1996) or

Gorgens and Horowitz (1999), allow for a nonparametric estimation of both components.6

6For a Monte Carlo study which analyzes the impact of misspeci�cations in both components, see

Baker and Melino (2000).
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Since in our approach a nonparametric estimation of unobserved heterogeneity ef-

fects would be quite cumbersome, we specify such e�ects, following Han and Hausman

(1990), by a random variable which enters the hazard function multiplicatively leading

to a mixed ACPH model. The standard procedure to account for unobserved hetero-

geneity in the semiparametric ACPH model is to introduce a random variable �t in the

speci�cation (20) to obtain

�� (sjF
d
t�1; �t) = �0(s) � �t � exp(�mt); t = 1; : : : ; T: (32)

We assume for the random variable �t a Gamma distribution with mean one and variance

��1, which is standard for this type of mixture models, see e.g. Lancaster (1997). The

distribution function of a compounded model ~Q is obtained by integrating out �t

~Q(sjFd
t�1) = 1�

2
41 + ��1 exp(�mt)

sZ
0

�0(u)du

3
5
��

: (33)

Note that this is identical to the distribution function of a BurrII model under appropriate

parametrisation.

The latter gives rise to an analogue model based on the discretisation approach

outlined in 2.3. By augmenting the log linear model of the integrated baseline hazard rate

by a compounder, we obtain an ACPH(p,q) model including unobserved heterogeneity

based on the modi�ed latent process

� �t = ln(�) +mt + ���t ; (34)

where the error term ���t follows a BurrII(�) distribution with density function

~f(s) =
� exp(s)

[1 + exp(s)]�+1
: (35)

It is easy to show that the BurrII(�) distribution includes the extreme value distribution

as a limiting case for ��1 = Var[�t]! 0, i.e. if no unobservable heterogeneity e�ects exist,

the model corresponds to the basic ACPH model.
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The estimation procedure is similar to the procedure described in section 2.4. The

di�erence is just that the model is now based on a BurrII(�) distribution. Apart from

an obvious adjustment to the generalised errors, the relationship between the estimated

thresholds and the estimation of the distribution function of the error term given in (13),

which relates directly to the baseline hazard, is slightly modi�ed, to

~Q0(�k) = 1�
1

[1 + exp(��k � ln(�))]�
; k = 1; : : : ; K � 1: (36)

Thus, the semiparametric ACPH model can also accommodate for unobserved hetero-

geneity, which can be of considerable importance, when some of the imminent market

microstructure e�ects are not modelled explicitly.

3.3 State dependent hazard rates

The standard proportional hazard model underlies the assumption that, for any two sets

of explanatory variables x1 and x2, the hazard functions are related by

�(sjx1) / �(sjx2):

Sometimes there exist important economic factors causing a violation of this relationship.

To obtain more exibility and to relax the proportionality assumption we stratify the data

set and de�ne state dependent baseline hazard functions �0;s(u); s = 1; : : : ; S; where the

index s denotes the particular state. In the context of transaction data the estimation

of state dependent hazard rates and survivor functions can be used as valuable tools to

obtain state dependent liquidity or volatility measures.

Assume a state de�ning variable zt, which is at least weakly exogenous and which

determines the functional relationship between � �t and the baseline hazard �0;s(u). Hence,
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the transformation from �t to � �t , as outlined in section 2.3, is now state-dependent and

is given by

� �t =
SX

s=1

1fzs�1
<zt�zsg

ln

�tZ
0

�0;s(u)du; (37)

where z0 < z1 < : : : < zS denote the state de�ning values of the variable zt. The as-

sumption of a model with S distinct hazard rates translates to S sets of distinct threshold

parameters ��k;s, where k = 1; : : : ; K � 1 and s = 1; : : : ; S. Correspondingly to (13) we

obtain S distribution functions evaluated at the K � 1 thresholds7

Q0;s(�k;s) = 1� exp(� exp(��k;s)); k = 1; : : : ; K � 1; s = 1; : : : ; S: (38)

Therefore, the generalized residuals are also state-dependent

�t := E
h
��t j F

d;z
t

i
=

SX
s=1

1fzs�1
<zt�zsg

�t;s;

where the information set Fd
t is extended to Fd;z

t in an obvious way and �t;s is computed

according to (27) based on the corresponding set of threshold parameters ��k;s.

Hence, a semiparametric ACPH model with state dependent hazard rates is de�ned

as

�(sjFd;z
t�1) =

SX
s=1

�0;s(s)1fzs�1
<zt�zsg

exp(�mt): (39)

The calculation of the log likelihood is based on the procedure proposed in section 2.4,

therefore, we obtain the log likelihood function by

logL( �dT j�zT ; �; �; �; �
�) =

TX
t=1

KX
k=1

SX
s=1

Æt;k1fzs�1
<zt�zsg

log

��
k;s
�mtZ

��
k�1;s

�mt

f(s)ds: (40)

7Note that it is also possible to use di�erent categorizations for the duration �t within each state,

thus, the number of thresholds estimated for each state could actually di�er.
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4 The approximation error in small samples

The main advantages of the given approach using a ACPH dynamic in contrast to a

dynamic in the log integrated hazard rate � �t , eq. (21), are the straightforward and fast

maximum likelihood estimation and the fact that the generalized errors �t employed in

the approximation are equal to the true errors ��t , if the baseline hazard �0 is known. Yet,

as it is at the core of our model that the baseline hazard �0 is not known, the question

to be answered in this section is how large is the approximation error, if the true baseline

hazard �0 is approximated at K � 1 discrete points using ~�0 given by (14).

To obtain some evidence on the bias incurred by the discretisation approach a small

Monte Carlo study is performed for an AR(1) process, like (21). The two speci�cations

considered are based on two (K1 = 2) and 11 (K2 = 11) categories. The former being

the worst possible approximation of the true baseline hazard �0 one could possible think

of in the context of the given model and the latter being a more realistic case of using a

moderate number of thresholds in the estimation.
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Table 1: Monte Carlo study of semiparametric ACPH(p,q)

model with K categories and T observations

p q K T bias MSE MAE

1 0 2 50 -0.0062 0.0294 0.1188

1 0 10 50 0.0045 0.0096 0.0734

1 0 2 500 0.0053 0.0024 0.0372

0 1 2 50 -.00795 0.0743 0.2025

0 1 10 50 -.00535 0.0189 0.0939

0 1 2 500 .01589 0.0200 0.0959

The K1 model is replicated for two sample sizes T11 = 50 and T12 = 500. The model with

more thresholds is only estimated for a small sample size T2 = 50. This set-up allows

to compare the improvement achieved by increasing the number of observations versus

the bene�t of a better approximation of the baseline hazard. Parameter estimation is

based on the semiparametric ACPH(1,0) model given by (19) and the semiparametric

ACPH(0,1). Since the focus is here on the bias of the dynamic parameters, the threshold

parameters are �xed to their true values. A range of parameter values for � and � are

covered in the simulations, concisely, �; � 2 Q = f�0:9;�0:8;�0:7; : : : ; 0:9g providing

Ni = 1; 000, i 2 Q, replications for each value. The errors ��t are drawn from the extreme

value distribution as in the assumed DGP.

Overall results for all N = 19; 000 replications are reported in table 1. It gives

descriptive statistics of the di�erence between true parameters and estimates, �i� �̂i, and

�i� �̂i, for i = 1; : : : ; N . Although aggregated over all parameter values, the small sample

properties match the expectation build from the asymptotic results, i.e. the variance
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decreases over an increasing sample size and likewise do the interquantile ranges. The

results indicate that even a moderately sized sample of 50 observations is quite suÆcient

to obtain reasonable results. The results indicate that for the ACPH(1,0) model the

asymptotic properties seem to hold quite nicely. The performance of the MA based

ACPH(0,1) model seems be worse than the corresponding ACPH(1,0) models.
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Figure 1: ACPH(1,0), K1 = 2, T11 = 50: Box plots of �i � �̂i

for 19 values of the parameter �i in a Monte Carlo study.
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Figure 2: ACPH(1,0), K2 = 10, T2 = 50: Box plots of �i � �̂i

for 19 values of the parameter �i in a Monte Carlo study.
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Figure 3: ACPH(1,0), K1 = 2, T12 = 500: Box plots of �i� �̂i

for 19 values of the parameter �i in a Monte Carlo study.

To gain more insight into the consequences the discretisation grid of the durations

bears for the estimation, the results of the Monte Carlo experiment are scrutinized with

respect to the parameters of the model, � and �, respectively. Simulation results for

each of the 19 considered values of the true parameter in the DGP are illustrated in

Box plots reported in �gure 1-3. The results are quite encouraging, indicating that the

quite considerable bias incurred for an ACPH(1,0) based on K = 2 categories is reduced

considerably once a more realistic model based on K = 11 categories is employed. For a

reasonable sample size (T12) even for the categories the performance of the estimator is

quite encouraging over all parameter values considered.

Figures 4-6 give the corresponding results for ACPH(0,1) models. Although, qual-

itattively similar, it is evident from the study that the ACPH(0,1) performs worse than

the corresponding AR model. After an increase in the number of categories from K = 2

to K = 11 the approximation reaches about the quality of the ACPH(1,0) process with
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K = 2 categories, except for the parameter value � = 0:9 The reason for this can be found

in the di�ering ACF of an AR(1) and an MA(1). The relatively bad performance of the

ACPH(0,1) process for parameters � with large absolute value is due to the attening out

of the ACF towards the limits of the invertible region. See also the similar results for

Gaussian models in Gerhard (2001).
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Figure 4: ACPH(0,1), K1 = 2, T11 = 50: Box plots of �i � �̂i

for 19 values of the parameter �i in a Monte Carlo study.

-1

-.5

0

.5

1

diff

-.9
-.8

-.7
-.6

-.5
-.4

-.3
-.2

-.1
0

.1
.2

.3
.4

.5
.6

.7
.8

.9

Figure 5: ACPH(0,1), K2 = 10, T2 = 50: Box plots of �i � �̂i

for 19 values of the parameter �i in a Monte Carlo study.
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Figure 6: ACPH(0,1), K1 = 2, T12 = 500: Box plots of �i� �̂i

for 19 values of the parameter �i in a Monte Carlo study.

5 An application to BUND Future trading

To illustrate a small application of the model we estimate hazard rates of inter-trade dura-

tions based on intra-day transaction data from the Bund Future trading at the electronic

trading system of the former Deutsche Terminb�orse (DTB)8, Frankfurt. The sample con-

tains data from 01/30/95 to 02/24/95, corresponding to 20 trading days. Within this

period the Bund-Future was one the most liquid futures in Europe and corresponded to

a 6% German government bond of DEM 250,000 face value. The Bund Future had a

maturity of 8.5 years and four contract maturities per year, March, June, September and

December. In the sampling interval prices were denoted in basis points of face value, thus,

one tick was equivalent to a value of DEM 25. The data set consists of 44,810 observa-

tions, where the overnight durations are omitted. Furthermore, we refrain from using the

�rst 10 minutes of a trading day to avoid the opening phase. The descriptive statistics of

8Now EUREX.
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the inter-trade durations are given in table 2. To account for intraday seasonalities we use

the exible Fourier form proposed by Andersen and Bollerslev (1998) based on Gallant

(1981) which is given by9

s(Æ; t�; P ) = Æ1 � t
� +

PX
p=1

(Æc;p cos(t
� � 2�p) + Æs;p sin(t

� � 2�p)) ; (41)

where p is identical with the order of the term, t� 2 [0; 1] is de�ned by

t� =
seconds since 8:40 a.m.

seconds between 8:40 a.m. and 5:15 p.m.
(42)

and Æc;p, Æs;p and Æ denote the corresponding coeÆcients10.

To illustrate the serial dependency of the inter-trade durations we computed the au-

tocorrelation function (ACF) based on the raw durations and seasonal adjusted durations

(�gure 7). The ACF indicates the typical shape of a process with high persistence indi-

cated by a relatively slowly decaying rate of dependence. Furthermore it is shown, that

the serial dependence is slightly reduced when deterministic intraday seasonality patterns

are taken into account.

Table 2: Descriptive statistics of inter-trade durations. Based

on BUND futures trading at DTB, Frankfurt, from 01/30/95 to

02/24/95. 44810 observations.

Mean Std. Dev. Quantiles

5% 10% 25% 50% 75% 90% 95%

14:16 26:56 1 1 2 6 16 35 54

9For an application of the exible Fourier form to intra-day and inter-day volatility estimation, see

e.g. Gerhard and Hautsch (2001).
10Within the observation period at the DTB trading took place between 8:30 a.m. and 5.15 p.m.
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Figure 7: Autocorrelation functions of inter-trade durations. Based on BUND futures trading

at DTB, Frankfurt, from 01/30/95 to 02/24/95. 44810 observations. Solid line: Raw durations.

Broken line: Seasonal adjusted durations (residuals of an OLS regression of the durations on a

exible Fourier form with order p = 4).

Table 5 shows the estimation results of the basic ACPH(1,1) model based on di�erent

categorizations. The strong similarity of the corresponding estimates in the particular

speci�cations indicates the robustness of the results against the choice of the categoriza-

tion. Thus, the estimates of the autoregressive parameters and the coeÆcients associated

with the explanatory variables seem not to be a�ected by the underlying categorization.

Con�rming the descriptive statistics, the estimated ARMA coeÆcients indicate a duration

process with strong persistence which is a typical result for inter-trade durations. Figure

8 depicts the daily pattern of survivor probabilities, especially the probability to observe

at least 30 seconds without a trade, computed based on the exible Fourier coeÆcients.

The �gure shows the typical intra-day seasonality pattern with a high market activity in

the morning, corresponding to low survivor probabilities, a signi�cant dip around lunch

time and a minimum after the opening of the American trading at 2:30 p.m.
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Table 3: Estimates of ACPH(1,1) models based on di�erent categoriza-

tions. Based on BUND futures trading at DTB, Frankfurt, from 01/30/95

to 02/24/95. 44810 observations. P-values based on asymptotic t-statistics.

Variables Coe�. p-value Coe�. p-value Coe�. p-value

Thresholds

�1 (�t = 1) -3.109 0.000 -3.095 0.000 -3.106 0.000

�2 (�t = 5) -2.043 0.000

�3 (�t = 10) -1.532 0.000 -1.519 0.000

�4 (�t = 15) -1.254 0.000 -1.256 0.000

�5 (�t = 20) -1.052 0.000 -1.040 0.000

�6 (�t = 25) -0.889 0.000

�7 (�t = 30) -0.763 0.000 -0.751 0.000 -0.766 0.000

�8 (�t = 35) -0.648 0.000

�9 (�t = 40) -0.546 0.000 -0.535 0.000

�10 (�t = 45) -0.463 0.000 -0.467 0.000

�11 (�t = 50) -0.386 0.000 -0.375 0.000

�12 (�t = 55) -0.313 0.000

�13 (�t = 60) -0.254 0.000 -0.242 0.017 -0.258 0.001

�14 (�t = 65) -0.196 0.000

�15 (�t = 70) -0.142 0.000 -0.131 0.125

�15 (�t = 75) -0.093 0.000 -0.097 0.134

�16 (�t = 80) -0.043 0.000 -0.032 0.388

�17 (�t = 85) -0.003 0.256

�18 (�t = 90) 0.035 0.000 0.047 0.339 0.031 0.360
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Table 3 continued: Estimates of ACPH(1,1) models based on di�erent

categorizations. Based on BUND futures trading at DTB, Frankfurt, from

01/30/95 to 02/24/95. 44810 observations. P-values based on asymptotic

t-statistics.

Variables Coe�. p-value Coe�. p-value Coe�. p-value

Intra-day Seasonalities

trend 0.230 0.002 0.242 0.003 0.241 0.002

Æc;1 -0.215 0.000 -0.211 0.000 -0.217 0.000

Æc;2 0.187 0.000 0.187 0.000 0.182 0.000

Æc;3 -0.076 0.001 -0.076 0.000 -0.066 0.002

Æc;4 0.044 0.031 0.044 0.026 0.044 0.026

Æs;1 0.210 0.000 0.209 0.000 0.205 0.000

Æs;2 0.063 0.027 0.070 0.006 0.076 0.003

Æs;3 -0.102 0.000 -0.102 0.000 -0.106 0.000

Æs;4 0.076 0.001 0.079 0.000 0.073 0.000

ARMA Parameters

AR1 0.978 0.000 0.978 0.000 0.978 0.000

MA1 -0.917 0.000 -0.916 0.000 -0.916 0.000

BIC and Mean Log Likelihood

BIC -92681 -69705 -57679

LL -2.064 -1.553 -1.285

The three plots in �gure 9 show the corresponding discrete baseline hazard functions

based on the estimated thresholds. In general, the hazard function depicts a decreasing

shape, i.e. the longer the last trade dates back the lower the probability for observing a

further trade in the next instant of time. Furthermore, these graphs illustrate the loss

of information induced by the choice of larger categories. Thus, while a categorization
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based on 5 secs provides a quite exact computation of the baseline hazard function, a

categorization based on 15 secs allows only for a relatively coarse computation.

Figure 8: Intra-day seasonality pattern of the probability to observe 30 seconds without a

trade. Based on BUND futures trading at DTB, Frankfurt, from 01/30/95 to 02/24/95. 44810

observations.

Figure 9: Estimated baseline hazard rates �0 based on di�erent categorizations (left:

5,10,: : :,90 secs, middle: 10,20,: : :,90 secs, right: 15,30,: : :,90 secs.) Based on BUND futures

trading at DTB, Frankfurt, from 01/30/95 to 02/24/95. 44810 observations.

Note that more sophisticated investigations, especially concerning the application of state

dependent hazard rates, are beyond the scope of the paper and are provided in Gerhard
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and Hautsch (2000).

6 Conclusions

In this paper we have proposed semiparametric ACPH(p,q) models as a special class

of semiparametric proportional hazard models. This approach has the virtue of being

relatively easy to estimate and yielding a model with an unspeci�ed baseline hazard and

a dynamic in the log integrated baseline hazard. The latter is in contrast to standard

ACD type models which focus usually on the conditional mean of the duration process.

A thorough comparison of the implications of either approach is well beyond this paper

which concentrates on the semiparametric estimation aspect and is to be pursued in future

research. It is demonstrated, that the model can be easily extended to accommodate

unobserved heterogeneity, censoring and state dependent hazard rates. In a small Monte

Carlo study the quality of the approximation involved by using a discrete approximation

to the unknown baseline hazard is assessed. An empirical study based on Bund future

data of the former DTB demonstrated the exibility of the approach.
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