
Clive G. Bowsher*
Nuffield College, University of Oxford, New Road, Oxford OX1 1NF, U.K.

10 October 2002

Abstract

A continuous time econometric modeling framework for multivariate market event (or ‘transactions’) data is developed in which the model is specified via the vector stochastic intensity. We introduce the class of generalised Hawkes models which allow the estimation of the dependence of the intensity on the events of previous trading days. The models thus take into account the existence of overnight periods when the stock market is closed. Analytic likelihoods are available and we show how to construct diagnostic tests based on the transformation of non-Poisson processes into standard Poisson processes using random changes of time scale. A proof of the validity of the diagnostic testing procedures is given that imposes only a very weak condition on the point process model, thus establishing the widespread applicability of these procedures in the context of models of financial market event data. A continuous time bivariate point process model of the timing of trades and mid-quote changes is presented for an NYSE stock and the empirical findings are related to the theoretical and empirical market microstructure literature.

Keywords: Point process, stochastic intensity, multivariate, market event, transactions data, trades, quotes, NYSE, NASDAQ, market microstructure

1 Introduction

The availability of so-called ‘ultra-high-frequency’ or ‘transactions’ data in empirical finance has resulted in considerable interest by econometricians in the development of models to analyse the intraday behaviour of financial markets. This data records the timing and characteristics of all occurrences of certain types of market event during the trading day. For example, the New York Stock Exchange (NYSE) Trade and Quote (TAQ) database analysed here reports the timing, price, and volume of all reported trades, together with the timing and details of all changes to the market quotes. Such datasets make possible an unprecedented view of the

*Correspondence should be sent to the author at clive.bowsher@nuffield.ox.ac.uk. Particular thanks are due to Neil Shephard, Bent Nielsen and Frank Gerhard. Personal correspondence with Jeff Russell concerning the ACI model was very helpful and much appreciated. All computational work was performed using Version 3.0 of Ox (see Doornik(2001)). Financial support from the ESRC under awards R42200034061 and R00023839 is gratefully acknowledged.

1Henceforth, we refer to such data as ‘market event data’ because the term ‘transactions’ is often taken to be synonymous with trades.
detailed workings of financial markets and allow researchers to evaluate the hypotheses of the theoretical market microstructure literature in relation to the data.

The particular contribution of this paper is the development of a continuous time econometric modelling framework for market event data that can readily be applied to the multivariate case. By multivariate, we mean that more than one type of event is considered – for example, in the bivariate case, trades and changes to the specialist’s quotes, or trades in two related assets. A relevant issue to be considered at this point is whether the obvious difficulties of modelling multivariate market event data could not be mitigated somewhat by adopting a simpler approach based on time series methods, rather than attempting to set the models in continuous time. Indeed, as Hasbrouck (1999) points out, these difficulties have strongly motivated simpler approaches such as specifying a time series model in ‘event time’ where t indexes trades (see, for example, Hasbrouck (1991)) or aggregating data over fixed intervals of real time (as in Hasbrouck (1999)).

We believe the development of statistical models for market event dataset in continuous, real time to be an important challenge in financial econometrics for the following reasons. First, models set in event time may well ignore aspects of the evolution of the market that are economically important. Indeed, a growing number of papers point to the economic importance of ‘wall-clock’ time. Easley and O’Hara (1992) establish in a sequential trade framework that when there is uncertainty over whether an information event has occurred, the intervals between trades are informative and so affect the quoted prices. Dufour and Engle (2000) provide empirical evidence that as the intensity of trading in real time increases, the price impact of trades, the speed of price adjustment to trade related information and the positive autocorrelation of signed trades increase. In addition, Hasbrouck (1999) examines empirically the issue of time deformation in equity markets and concludes that the roles of trades, orders and quotes are different in ‘fast’ and ‘slow’ markets (where these terms are taken to refer to the evolution of the market in real time). Such papers highlight the limitations of models that ignore real time altogether. In addition, most practical applications of models of market event data such as volatility measurement and the design of optimal order submission strategies (see Harris (1998)) require that the models relate somehow to real time.
A standard time series analysis of aggregated data using fixed intervals of real time is also problematic. Since the data records the timing and characteristics of individual market events, aggregation involves an undesirable loss of information. As Engle and Russell (1998) warn, “the characteristics and timing relations of individual transactions will be lost, mitigating the advantages of moving to transactions data in the first place.” The considerations set out above suggest that models for market event dataset in continuous time are likely to provide important economic insights into the functioning of financial markets. We view this modelling strategy as an alternative, potentially complementary approach to the time series based approaches discussed above.

Econometrically speaking, market event data can be viewed as the realisation of a Marked Point Process (MPP): that is, as the realisation of a double sequence \(\{T_i, Z_i\}_{i \in \{1,2,\ldots\}} \) of random variables where \(T_i \) is the random occurrence time of the \(i \)th event and \(Z_i \) is a vector of additional variables (or ‘marks’) associated with that event. We develop an econometric modelling framework for multivariate financial point process data – that is, for data generated by an MPP where \(Z_i \in \{1,2,\ldots,M\} \) indicates the type of the \(i \)th event. The distinguishing feature of our approach is that the model is specified via the vector stochastic intensity rather than directly specifying a model for the durations between events. Specifying the model via the intensity is particularly advantageous when a multivariate point process model or a model for a univariate point process conditional on some other continuous time process is needed. Consider, for example, a model for the timing of mid-quote changes for a NYSE stock where we condition on the timing of trades. Specifying the model via the mid-quote intensity rather than via the conditional distribution of durations between mid-quote changes allows the intensity to change immediately in response to the occurrence of a trade during a duration. Because the filtration is updated continuously in real time and includes the history generated by the trade arrival process, the additional information since the start of the duration can be taken into account.\(^2\)

Whilst considerable progress has been made in modelling the univariate case using time series models of durations (most notably the Autoregressive Conditional Duration models of Engle

\(^2\)Hamilton and Jordà (2001) use an intensity based approach to model a discrete time point process and also note the advantage that this offers in terms of being able to incorporate information that occurs after the most recent event has taken place.
and Russell (1997,1998)), multivariate extensions of this work have been slow to emerge in the econometrics literature.\(^3\) One such example is the model of Engle and Lunde (1999) for trades and quotes which is discussed in section 5.2 towards the end of the paper.

We believe that approaching the problem of modelling multivariate market event data by directly specifying the stochastic intensity provides a powerful, flexible framework for model building in this context. We describe here a family of models – which we refer to as generalised Hawkes models – for which analytic likelihoods are available and for which diagnostic tests based on the integrated intensity can be constructed. In contrast to previous work, the models are general enough to allow us to estimate the nature of the dependence of the intensity today on the events of previous trading days rather imposing strong \textit{a priori} assumptions about this dependence. This approach recognises an important feature of financial markets: namely, that for the majority of markets, the market does not operate continuously so that the question of dependence between trading days is of considerable importance. Furthermore, the models have intuitively appealing economic interpretations since the stochastic intensity for events of a particular type at time \(t\) can be interpreted as a conditional hazard – that is, as the conditional expectation in the limit (as \(s \downarrow t\)) of the number of such events that will occur per unit time in the interval \((t, s]\), given the multivariate filtration of the point process at time \(t\). Our approach is closest to that of Russell (1999) who also specifies a multivariate point process model via the stochastic intensity. A comparison with his modelling framework is provided in section 5.1.

The structure of the paper is as follows. Section 2 provides an introduction to the modern intensity theory of point processes and makes readily accessible those aspects of the point process literature that are particularly relevant to the econometric analysis of market event data. With the advent of high frequency intraday financial data, point processes are becoming an important tool for financial econometricians. However, these processes are relatively unfamiliar in econometrics and the issue of statistical inference for a broad class of point process models has received little attention in the literature to date. We have therefore devoted some space to the careful definition of central point process concepts and to the discussion of statistical infer-

\(^3\)Univariate models of market event data, and ACD models in particular, are surveyed by Bauwens and Giot (2001).
ence for the class of point process models where the stochastic intensity is available in closed form. Section 3 builds on the suggestions of Russell (1999) for the construction of diagnostic tests in this context. The tests are best thought of as being based on the transformation of non-Poisson processes into standard Poisson processes. We provide a proof, using a random change of timescale argument, of the \emph{i.i.d.} exponential property of the durations of the transformed point process that imposes a very weak condition on the point process model. We thus demonstrate the widespread applicability of our diagnostic testing procedures to point process models of financial market event data. Various diagnostic tests are proposed, some of which are new to the econometrics point process literature, and the issue of what critical values to use given that parameters must be estimated is considered. Section 4 presents the basic ‘building blocks’ of the new models in the simpler setting of a univariate model before the discussion is extended to the bivariate case in section 5. Both sections 4 and 5 contain empirical applications using data from the TAQ database and illustrate the usefulness of generalised Hawkes processes as models of market event data. In particular, Section 5 presents a continuous time bivariate point process model of the timing of trades and mid-quote changes for an NYSE stock and relates the empirical findings to the theoretical and empirical market microstructure literature. Section 6 explores connections between our work and previous research, and discusses possible extensions – in particular, modelling the evolution of the multivariate point process conditional on a wider filtration than its internal history. Section 7 concludes. The Appendix describes the adjustments that are made to the TAQ data that we use and presents the results of a sensitivity analysis that establishes the robustness of our empirical findings in section 5 to the particular adjustment rule that is employed. The Appendix also discusses how to numerically compute maximum likelihood estimates for the models.

2 Point Processes and Stochastic Intensities

This section describes how a statistical model for (possibly multivariate) point process data can be completely specified via a parametric family of stochastic intensities and establishes that a legitimate likelihood function and likelihood ratios are available for that model. In so doing, we provide rigorous definitions of an \emph{M}-variate point process, its associated counting process
\(N(t)\), and its internal history \(F_t^N\), and discuss in some detail the central concept of a stochastic intensity process. Theorem 2.1 expresses the likelihood in terms of the stochastic intensity. Finally, known asymptotic results concerning the maximum likelihood estimator (MLE) and likelihood ratio test for stationary point process models are stated and discussed. Textbook treatments of the modern, martingale-based intensity theory of point processes are given in Brémaud (1981) and Karr (1991), from which we draw extensively in this section.

2.1 Point and Counting Processes

Definition 1 Point Process. Let \(\{T_i\}_{i \in \{1, 2, \ldots\}}\) be a sequence of nonnegative random variables on some probability space \((\Omega, \mathcal{F}, P)\) such that \(0 < T_i \leq T_{i+1}\). Then the sequence \(\{T_i\}\) is called a point process on \([0, \infty)\). If in addition we have that \(T_i < T_{i+1}\) then the point process is a simple point process.

Definition 2 M-variate point process and counting process. Let \(\{T_i\}_{i \in \{1, 2, \ldots\}}\) be a simple point process on \([0, \infty)\) defined on \((\Omega, \mathcal{F}, P)\), and let \(\{Z_i\}_{i \in \{1, 2, \ldots\}}\) be a sequence of \(\{1, 2, \ldots, M\}\)-valued random variables (also defined on \((\Omega, \mathcal{F}, P)\), with \(1 \leq M < \infty\)). Then the double sequence \(\{T_i, Z_i\}_{i \in \{1, 2, \ldots\}}\) is called an M-variate point process on \([0, \infty)\). Define for all \(m, 1 \leq m \leq M\), and all \(t \geq 0\)

\[
N_m(t) = \sum_{i \geq 1} 1(T_i \leq t)1(Z_i = m). \tag{1}
\]

Then the M-vector process \(N(t) = (N_1(t), \ldots, N_M(t))\) is the M-variate counting process associated with \(\{T_i, Z_i\}\).\(^4\)

In our context, \(T_i\) will be the occurrence time of the \(i\)th market event and \(Z_i\) will indicate the event’s type.\(^5\) \(N_m(t)\) gives the random number of events of type \(m\) that have occurred up to and including time \(t\).\(^6\) Since \(\{T_i\}\) in the above definition is simple, the possibility of the simultaneous occurrence of two events (of either the same or different types) is ruled out. We shall make extensive use of stochastic Stieltjes integrals with respect to the counting process

\(^4\)We allow for the univariate case \((M = 1)\) in the definition of an M-variate point process as this simplifies the statement of some of the theorems that follow.

\(^5\)\(Z_i\) is sometimes referred to as the mark of the \(i\)th event. Indeed, an \(M\)-variate point process is a special case of a Marked Point Process, \(\{T_i, Z_i\}_{i \in \{1, 2, \ldots\}}\), in which the mark space, \(E_i\), is the finite set \(\{1, 2, \ldots, M\}\).

\(^6\)In what follows we sometimes refer, in a slight abuse of terminology, to ‘the point process \(N(t)\).’ This is harmless since there is a one-one mapping between the point and counting processes.
Let \(X(t) \) be a measurable process whose sample paths are either locally bounded or nonnegative. Then the stochastic integral of \(X \) with respect to \(N_m \) exists, and for each \(t \),

\[
\int_{[0,t]} X(s)dN_m(s) = \sum_{i \geq 1} 1(T_i^{(m)} \leq t)X(T_i^{(m)}),
\]

where \(T_i^{(m)} \) denotes the occurrence time of the \(i \)th \(m \)-type event.\(^7\) For each \(t \) and \(\omega \), the integral in (2) is the usual Lebesgue-Stieltjes integral.

We denote the internal history of the \(M \)-variate point process \(N(t) \) by the filtration \(\{F_t^N\}_{t \geq 0} \), where \(F_t^N = \sigma(N_A(s) : 0 \leq s \leq t, A \in \mathcal{E}) \), \(N_A(s) = \sum_{i \geq 1} 1(T_i \leq s)1(Z_i \in A) \), and \(\mathcal{E} \) is the \(\sigma \)-field of all subsets of \(\{1, 2, ..., M\} \).\(^8\) \(F_t^N \) corresponds to complete observation of the \(M \)-variate point process up to (and including) time \(t \). We use the notation \(F_t^{N_1} \) to denote the \(\sigma \)-field \(\sigma(T_1, Z_1, T_2, Z_2, ..., T_i, Z_i) \) which corresponds to observation of the first \(i \) points of the process together with their marks. Notice that in the univariate case \((M = 1) \) the definitions simplify to give \(N(t) = \sum_{i \geq 1} 1(T_i \leq t) \), \(F_t^N = \sigma(N(s) : 0 \leq s \leq t) \) and \(F_t^{N_1} = \sigma(T_1, T_2, ..., T_i) \).

2.2 Stochastic Intensities and Likelihoods

As was stated earlier, a distinguishing feature of the approach taken here is that the models are specified via the stochastic intensity. It is to this concept that we now turn.

Definition 3 Let \(N(t) \) be a simple point process on \([0, \infty)\) (defined on \((\Omega, \mathcal{F}, P)) \) that is adapted to some filtration \(\{\mathcal{F}_t\} \), and let \(\lambda(t) \) be a positive, \(\mathcal{F}_t \)-predictable process. If

\[
E[N(t) - N(s) | \mathcal{F}_s] = E \left[\int_s^t \lambda(u)du | \mathcal{F}_s \right] \quad P\text{-a.s.},
\]

for all \(s, t \) such that \(0 \leq s \leq t \), then we say that \(\lambda(t) \) is the \((P, \mathcal{F}_t)\)-intensity of \(N(t) \).\(^9\)

In words, (3) says that if one stands at time \(s \) having observed the history \(\mathcal{F}_s \) and wishes to predict the number of additional events that will occur by time \(t \) using the conditional expectation of \((N_t - N_s)|\mathcal{F}_s\), then one can equivalently use \(E[\int_s^t \lambda(u)du | \mathcal{F}_s] \).\(^10\) In the multivariate

\(^7\)The \(j \)th event, with occurrence time \(T_j(\omega) \), is said to be \(m \)-type (for that particular \(\omega \)) if \(Z_j(\omega) = m \).

\(^8\)Although we refer to the internal history of the process, the term natural filtration is widely encountered and would also be a suitable description here.

\(^9\)Note that: 1) sufficient conditions for \(\lambda(t) \) to be \(\mathcal{F}_t \)-predictable are that the sample functions of the process are left-continuous and have right-hand limits, and that \(\lambda(t) \) is adapted to \(\{\mathcal{F}_i\} \); 2) the conditional expectations in (3) are those defined with respect to the probability measure \(P \).

\(^10\)Under the conditions of definition (3) and the additional assumption that the point process \(N(t) \) is integrable (that is, \(E[N(t)] < \infty, t \geq 0 \)), (3) is equivalent to the statement that \(N(t) - \int_0^t \lambda(u)du \) is a \((P, \mathcal{F}_t)\)-martingale. That is, the difference between the point process and its compensator is a martingale.

7
case where \(N(t) = (N_m(t))_{m=1}^M, 1 \leq M < \infty \), we shall work with the \(M \)-variate intensity process given by \(\lambda(t) = (\lambda_m(t))_{m=1}^M \), where \(\lambda_m(t) \) is the \((P, \mathcal{F}_t^N)\)-intensity of the counting process \(N_m(t) \) and \(\mathcal{F}_t^N \) is the internal history of \(N(t) \).\(^{11}\) We note in passing that a strength of this framework is that it is straightforward conceptually to model the evolution of the point process conditional on a wider filtration (that could include, for example, the internal history of some covariate continuous time process \(Y(t) \)). In this case one then specifies the \((P, \mathcal{F}_t)\)-intensity of \(N_m(t) \) where \(\mathcal{F}_t \supseteq \mathcal{F}_t^N \forall t \).

Consider a simple point process on \([0, T]\), \(\{N(t)\}_{0 \leq t \leq T} \), with the \((P, \mathcal{F}_t)\)-intensity \(\lambda(t) \), where \(\int_0^t \lambda(s)ds < \infty \) P-a.s. for all \(t \) (which implies that, P-a.s., \(N_t < \infty \) for all \(t \)) and the sample paths of \(\lambda(t) \) are left-continuous with right-hand limits. Under the additional condition that \(\{\lambda(t)\}_{0 \leq t \leq T} \) is bounded by an integrable random variable, it is possible to show (see Lemma 3.3, Aalen (1978)) that
\[
\lim_{s \to t} \frac{1}{s - t} \mathbb{E}[N(s) - N(t) | \mathcal{F}_t] = \lambda(t+) \quad P\text{-a.s.},
\]
where \(\lambda(t+) = \lim_{s \uparrow t} \lambda(s) \). This is reminiscent of a more classical definition of the intensity.

In much of what follows, we work with a parametrised family of \(\mathcal{F}_t^N \)-stochastic intensities of an \(M \)-variate \((1 \leq M < \infty)\) point process. The following theorem is of fundamental importance since it establishes that legitimate likelihood functions and ratios are available for our statistical models.

Theorem 2.1 Let \(0 < T < \infty \) and \((N_m(t))_{m=1}^M \) be an \(M \)-variate point process on \([0, T]\), defined on \((\Omega, \mathcal{F})\) (where \(\mathcal{F}_t^N \subseteq \mathcal{F} \)), such that \(N_m(t) \) has \((P_0, \mathcal{F}_t^N)\)-intensity equal to 1 for \(m = 1, \ldots, M \). Suppose that \(\lambda(t) = (\lambda_m(t))_{m=1}^M \) is an \(M \)-variate, positive, \(\mathcal{F}_t^N \)-predictable process satisfying
\[
\sum_{m=1}^M \int_0^T \lambda_m(s)ds < \infty \quad P_0\text{-a.s.}
\]
Define the probability measure \(P \) (satisfying \(P \ll P_0 \)) by the following density with respect to \(P_0 \).\(^{12}\)
\[
\frac{dP}{dP_0} |_{\mathcal{F}_t^N} = \exp \left\{ \sum_{m=1}^M \left[\int_0^T (1 - \lambda_m(s))ds + \int_{(0, T]} \log \lambda_m(s)dN_m(s) \right] \right\}.
\]
Then \(N_m(t) \) has \((P, \mathcal{F}_t^N)\)-intensity \(\lambda_m(t) \) (for \(m = 1, \ldots, M \)).\(^{13}\) Let \(\tilde{P} \) be another probability measure such that \(N(t) \) also has \((\tilde{P}, \mathcal{F}_t^N)\)-intensity \(\lambda(t) \). Then, \(\tilde{P}(A) = P(A) \) for all \(A \in \mathcal{F}_t^N \).

Proof. Repeat the proof of Theorem 5.2, Karr (1991) setting the baseline intensity equal to \((1, 1, \ldots, 1) = 1_M \). For the uniqueness of \(P \), see Brémaud (1981), Theorem T8, p.64. \(\blacksquare \)

Given an \(M \)-variate, positive, \(\mathcal{F}_t^N \)-predictable process \(\lambda(t) \) satisfying (5), Theorem 2.1 establishes the existence of an \(M \)-variate point process \(N(t) \) and a unique probability measure \(P \) such that \(N(t) \) has \((P, \mathcal{F}_t^N)\)-intensity \(\lambda(t) \).

2.3 Intensity-based inference

2.3.1 Statistical models

In this paper each econometric model is specified via a parametric family of stochastic intensities \(\{\lambda_\theta(t)\}_{\theta \in \Theta} \), where \(\lambda_\theta(t) \) is an \(M \)-variate, positive, \(\mathcal{F}_t^N \)-predictable process satisfying (5) for all \(\theta \in \Theta \). Theorem 2.1 establishes the existence and uniqueness of the probability measure \(P_\theta \) such that the \(M \)-variate point process has \((P_\theta, \mathcal{F}_t^N)\)-intensity \(\lambda_\theta(t) \). The implication is that we only need to specify the parametric family of stochastic intensities in order to specify the statistical model completely. In econometrics, the family \(\{P_\theta\}_{\theta \in \Theta} \) would often be referred to as the potential Data Generating Processes (DGPs). Since \(\{P_\theta\}_{\theta \in \Theta} \) is a dominated family of probabilities – with dominating measure \(P_0 \) (the law of a multivariate Poisson process) – equation (6) constitutes a legitimate likelihood function. An advantage of the models that we propose is that, in all cases, integration of the sample path of the intensity can be performed analytically. This is extremely convenient when performing likelihood-based inference – since the intensity appears in the integrand of the first integral in (6) – and computing the diagnostic tests that we propose below.

2.3.2 Asymptotic distribution theory

Ogata (1978) establishes conditions under which the maximum likelihood estimator (MLE) for a simple, stationary (univariate) point process model is consistent and asymptotically normal as \(T \to \infty \), and under which the likelihood ratio test of a simple null hypothesis possesses

\(^{13}\)The Poisson processes \(N_1(t), \ldots, N_M(t) \) are independent under \(P_0 \). Since Poisson processes are \(\tilde{P} \)-independent iff they have no jumps in common \(\tilde{P} \)-a.s., it follows from \(P \ll P_0 \) that \(N(t) \) has no common jumps \(P \)-a.s.
the standard chi-squared asymptotic null distribution. Since the focus is on stationary point processes, the statistical model is taken to be for a point process on \((-\infty, +\infty)\), \(\{T_i; i = 0, \pm 1, \pm 2, \ldots\}\), which is observed during the interval \([0, T]\).\(^{14}\) Let \(\lambda^*(t)\) denote the complete intensity – that is the \(\mathcal{H}_{(-\infty,t]}\)-intensity, where \(\mathcal{H}_{(-\infty,t]}\) is the ‘infinite history’ of the process – and (for the purposes of section 2.3.2 only) let \(\lambda(t) = \mathbb{E}[\lambda^*(t)|\mathcal{H}_{(0,t]}].\(^{15}\) The exact log-likelihood for the statistical model, \(l_T(\theta)\), is then given by the logarithm of (6) with \(\lambda(t) = \mathbb{E}[\lambda^*(t)|\mathcal{H}_{(0,t]}\) (and \(M = 1\)). Define also the (theoretical) conditional log-likelihood under the information from the infinite past, \(l_T^*(\theta)\), by replacing \(\lambda(t)\) with \(\lambda^*(t)\) in the expression for \(l_T(\theta)\). The central results of Ogata (1978) are summarised in the following theorem.

Theorem 2.2 Let the true parameter value be denoted by \(\theta_0 \in \mathcal{R}^d\), and suppose that the regularity conditions A, B and C of Ogata (1978) are satisfied. Then, the MLE, \(\hat{\theta}_T\), converges in probability to \(\theta_0\) as \(T \to \infty\). Suppose further that \(\theta_0\) is in the interior of the parameter space. Then, as \(T \to \infty\)

\[
\sqrt{T}(\hat{\theta}_T - \theta_0) \to \mathcal{N}(0, I(\theta_0)^{-1}),
\]

in law, where \(I(\theta_0)\) is the matrix \(\{I_{ij}(\theta_0)\}_{ij}\) and

\[
I_{ij}(\theta_0) = \mathbb{E}_{\theta_0} \left[\frac{1}{\lambda^*_{\theta_0}(t)} \frac{\partial \lambda_{\theta_0}(t)}{\partial \theta_i} \frac{\partial \lambda_{\theta_0}(t)}{\partial \theta_j} \right] = -\mathbb{E}_{\theta_0} \left[\frac{1}{T} \frac{\partial^2 l_T^*(\theta_0)}{\partial \theta_i \partial \theta_j} \right].
\]

Under the above assumptions,

\[
\mathbb{E}_{\theta_0} \left\{ \int_0^T \left[\frac{1}{\lambda_{\theta_0}(s)} \frac{\partial \lambda_{\theta_0}(s)}{\partial \theta_i} \frac{\partial \lambda_{\theta_0}(s)}{\partial \theta_j} \right] ds \right\} = \mathbb{E}_{\theta_0} \left[\frac{\partial^2 l_T^*(\theta_0)}{\partial \theta_i \partial \theta_j} \right] \quad \forall i, j,
\]

and

\[
-\mathbb{E}_{\theta_0} \left[(1/T)(\partial^2 l_T(\theta_0))/\partial \theta_i \partial \theta_j \right] \to I_{ij}(\theta_0) \quad \forall i, j.
\]

Note that (9) is also valid when \(\{\lambda_{\theta_0}, l_T(\theta_0)\}\) is replaced by \(\{\lambda^*_{\theta_0}, l_T^*(\theta_0)\}\). Also, under the above assumptions,

\[
2[l_T(\hat{\theta}) - l_T(\theta_0)] \to \chi^2_d.
\]

\(^{14}\)Note that this is in contrast to the statistical models used in this paper in which the counting processes start at \(t = 0\).

\(^{15}\)We define \(\mathcal{H}_{(s,t]}\) to be the sigma field \(\sigma(N(t) - N(u); s < u \leq t)\). For a rigorous definition of a simple point process on \((-\infty, +\infty)\) and of an \(\mathcal{H}_{(-\infty,t]}\)-stochastic intensity for such a process, see Brémaud (1996). These definitions are the natural analogues of the definitions we have given for a simple point process on \([0, +\infty)\).

These are essentially the standard asymptotic properties of a MLE, but with an additional subtlety introduced: it is the complete intensity, \(\lambda_0(t) \), rather than \(\lambda_0(t) \) that appears in (8) and the conditions of the theorem do not imply that \(I_{ij}(\theta_0) = -E_{\theta_0} \left[(1/T)(\partial^2 l_T(\theta_0)/\partial \theta_i \partial \theta_j) \right] \). Nevertheless, the convergence result in (10) motivates the use of the normed Hessian matrix,
\[
(1/T)(\partial^2 l_T(\hat{\theta}_T)/\partial \theta \partial \theta'),
\]
to estimate \(\{I_{ij}(\theta_0)\}_{ij} \).

The development of further asymptotic distribution theory following on from the work of Ogata (1978) is an important area for future research. Results for the \(M \)-variate and non-stationary cases would be of particular interest in our context.

3 Diagnostic Testing

Consider the sequence, \(\{e^{(m)}_i\}_i \), obtained by integrating the sample path of the \(\mathcal{F}^N \)-intensity for \(m \)-type events over each \(m \)-type duration (that is, the time interval between adjacent \(m \)-type events). Russell (1999) suggests the use of this sequence as the basis for diagnostic testing and indicates that the results of Yashin and Arjas (1988) concerning the so called ‘exponential formula’ might be used to establish the \(i.i.d. \) exponential property of this sequence provided that a certain absolute continuity condition is satisfied. We discuss reasons why this particular condition is very restrictive in the context of multivariate point process models for market event data, thus highlighting the need for a general proof that relies on much weaker assumptions concerning the point process model. Using a proof of Brémaud (1981), we show how the \(i.i.d. \) exponential property of the \(\{e^{(m)}_i\}_i \) sequence can be derived by a random change of time scale argument. It turns out that the condition that the stochastic intensity must satisfy in order for this proof to apply is extremely natural in the context of models of financial market events, since it is equivalent to zero probability being assigned to sample paths in which no more \(m \)-type events ever occur after some point in time. We thus establish the broad applicability

\[\text{Ogata (1978) comments on the validity of the assumptions of Theorem 2.2 for the HawkesE(1) model defined later by equation (20) with } \mu(t) = \mu \forall t.\]
of diagnostic testing procedures based on the \(\{ e_i^{(m)} \} \) sequences \((m = 1, ..., M)\) to multivariate point process models of financial market event data. Various diagnostic tests are proposed, some of which are new to the econometrics point process literature, and the issue of how to combine the information in the \(M \) sequences is considered. Finally, we consider possible approaches to the question of what critical values should be used when the true parameter is not known but must be estimated.

3.1 A Proof using a random change of timescale

The difficulty in this context in applying the ‘exponential formula’ to obtain an expression for the conditional survivor function in terms of the integrated intensity is that the \(\sigma \)-field upon which conditioning takes place is not fixed. Consider the process \(F_i^{(m)}(x) = \Pr[S_i^{(m)} \leq x | \mathcal{G}_x] \), where \(\mathcal{G}_x \) is the observed history on which the assessment of the hazard is based and \(S_i^{(m)} = T_i^{(m)} - T_{i-1}^{(m)} \) is the \(i \)th successive duration between the \(m \)-type events.\(^{17}\) Since non \(m \)-type events can occur within this duration the conditioning is, to use the terminology of Yashin and Arjas (1988), ‘dynamic’ (that is, \(\mathcal{G}_x \) depends on \(x \)). \(\mathcal{G}_x \) should contain \(\sigma(T_1^{(m)}, ..., T_i^{(m)}) \) and the \(\sigma \)-fields generated by each \(\tilde{N}_{q,x}(t) \) \((q \neq m)\), where \(\tilde{N}_{q,x}(t) \) is equal to \(N_q(t) \) for \(t \leq T_{i-1}^{(m)} + x \) and is equal to zero otherwise. In order to apply the exponential formula given in the Corollary of Yashin and Arjas (1988) (see equation (8) therein) it is necessary that \(F_i^{(m)}(.) \) be absolutely continuous (with respect to the Lebesgue measure), which implies that \(F_i^{(m)} \) is a continuous function of \(x \) (with probability one). This is an undesirably restrictive condition for multivariate point process models of market event data since it does not allow \(F_i^{(m)} \) to exhibit jumps in response to the occurrence of \(q \)-type events \((q \neq m)\). Such jumps would occur when the influence of these events on \(S_i^{(m)} \) is ‘strong,’ which is a likely scenario in our context.

We use the following theorem (based on Theorem T16, p.41, Brémaud (1981)) in order to show that the \(\{ e_i^{(m)} \} \) sequence is the result of a transformation of a non-Poisson process into

\(^{17}\)Justifying the application of the Theorem and Corollary of Yashin and Arjas (1988) to yield an expression for \(\Pr[S_i^{(m)} \leq x | \mathcal{G}_x] \) in terms of the integral of the \(F_i^{(m)} \)-intensity for \(m \)-type events is not trivial and Russell (1999) does not provide details of the derivation. In particular, it would be necessary to define \(\mathcal{G}_x \) explicitly along the lines that will be suggested here and then to show that the correct intensity to use as the integrand in that case is the \(F_i^{(m)} \)-intensity \(\lambda_m(t) \). If the conditioning were on a fixed \(\sigma \)-field, the information observed since the \((i-1)\)th \(m \)-type point would be excluded and so an intensity other than the \(F_i^{(m)} \)-intensity \(\lambda_m(t) \) would then be required as the integrand. Our purpose here is not to explore these issues in any depth but rather to point out the considerable drawback of the absolute continuity restriction and so to provide motivation for pursuing a different approach to proving the i.i.d. exponential property of the \(\{ e_i^{(m)} \} \) sequence.
a standard Poisson process using a random change of time scale. This approach simplifies the proof of the i.i.d. exponential property considerably.

Theorem 3.1 Let \(N(t) \) be an \(M \)-variate point process \((M \geq 1)\) with internal history \(\mathcal{F}^N_t \) and \(N_m(t) \) \((m = 1, ..., M)\) be the associated `marginal' counting processes as given by Definition 2, let \(\mathcal{F}_t \) be a history of \(N(t) \) (that is, \(\mathcal{F}^N_t \subseteq \mathcal{F}_t \forall t \geq 0 \)), and suppose, for each \(m \), that \(N_m(t) \) has the \((P, \mathcal{F}_t)\)-intensity \(\lambda_m(t) \) where \(\lambda_m(t) \) satisfies

\[
\int_0^\infty \lambda_m(t)dt = \infty \quad P-a.s. \tag{12}
\]

Define for each \(t \) the \(\mathcal{F}_t \)-stopping time \(\tau_m(t) \) as the (unique) solution to\(^{18}\)

\[
\int_0^{\tau_m(t)} \lambda_m(s)ds = t. \tag{13}
\]

Then for each \(m \), the point process \(\tilde{N}_m(t) \) defined by

\[
\tilde{N}_m(t) = N_m(\tau_m(t)), \tag{14}
\]

is a standard Poisson process (that is, \(\tilde{N}_m(t) \) is a \((P, \mathcal{F}^N_{m,t})\)-Poisson process with intensity 1, where \(\mathcal{F}^N_{m,t} = \sigma(N_m(s) : 0 \leq s \leq t) \)).

Proof. Repeat the proof of Theorem T16, p.41, Brémaud (1981) replacing \(N_t \) by \(N_m(t) \) and setting (in the notation used there) \(\mathcal{G}_t = \mathcal{F}_t \). \(\blacksquare \)

Theorem T16 of Brémaud (1981) is stated for a univariate point process. Extending the theorem to the multivariate case where the change of time is applied to the ‘marginal’ counting processes, \(N_m(t) \), of an \(M \)-variate point process (using the \(\mathcal{F}_t \)-intensity of each, \(\lambda_m(t) \)) is straightforward since \(N_m(t) \) is itself a univariate point process.\(^{19}\) Since we allow \(\mathcal{F}^N_{m,t} \subseteq \mathcal{F}_t \) here, our diagnostic testing procedures can also be applied to models where we condition on a larger information set than the internal history of the point process. We note that Aalen and Hoem

\(^{18}\)Recall that \(\lambda_m(s) > 0 \ \forall s \) from our definition of a stochastic intensity. This avoids problems with multiple solutions to (13) that could occur if we allowed \(\lambda_m(s) = 0 \).

\(^{19}\)Theorem T16 of Brémaud (1981) does not require the intensity to be with respect to the internal history of the univariate point process in question (\(\mathcal{F}^N_{m,t} \) in this case). Rather, the requirement is that the univariate point process be adapted to the history with respect to which the intensity is defined. This requirement is clearly satisfied here since \(\mathcal{F}^N_{m,t} \subseteq \mathcal{F}^N_t \subseteq \mathcal{F}_t \forall t \).
(1978) provide an alternative proof of Theorem 3.1 together with a proof that \(\tilde{N}_1(t), ..., \tilde{N}_M(t) \) are independent Poisson processes.\(^{20}\)

Corollary 3.2 Let \(\{T_i^{(m)}\}_{i \in \{1,2,..\}} \) be the sequence of points associated with \(N_m(t) \) and define
\[
T_0^{(m)} := 0, \quad e_i^{(m)} := \int_{T_i^{(m)}}^{T_{i+1}^{(m)}} \lambda_m(s) ds \quad (i = 0, 1, 2, ...) .
\]
Then \(\{e_i^{(m)}\}_{i \in \{0,1,2,..\}} \) is an i.i.d. sequence of Exponential random variables with mean 1 for \(m = 1, ..., M \).

Proof. Let \(\{\tilde{T}_i^{(m)}\}_{i \in \{1,2,..\}} \) be the sequence of points associated with \(\tilde{N}_m(t) \) and define
\[
\tilde{T}_0^{(m)} := 0 .
\]
Let \(s \) satisfy \(\tilde{T}_{i-1}^{(m)} \leq s < \tilde{T}_i^{(m)} \) (for some \(i \geq 1 \)). Then (14) \(\Rightarrow \tau_m(s) < T_i^{(m)} \leq \tau_m(\tilde{T}_i^{(m)}) \).

Since \(\tau_m \) is continuous, letting \(s \rightarrow \tilde{T}_i^{(m)} \) establishes that \(\tau_m(\tilde{T}_i^{(m)}) = T_i^{(m)} \). It then follows from (13) that
\[
\tilde{T}_{i+1}^{(m)} - \tilde{T}_i^{(m)} = \int_{T_i^{(m)}}^{T_{i+1}^{(m)}} \lambda_m(s) ds \quad \text{for} \quad i = 0, 1, 2,
\]
Therefore \(\{e_i^{(m)}\}_{i \in \{0,1,2,..\}} \) is an i.i.d. sequence of Exponential random variables with mean 1 since the \(e_i^{(m)} \)'s are the durations of a standard Poisson process. \(\blacksquare \)

Note that the only condition that we require is given in (12) and that this holds if and only if \(\lim_{t \rightarrow \infty} N_m(t) = \infty \) P-a.s. (see Lemma L17, p.41 Brémaud (1981)). This condition is very natural in the context of models of financial market events since it is equivalent to zero probability being assigned to sample paths in which no more \(m \)-type events ever occur after some point in time.

3.2 Constructing diagnostic tests

We now go on to consider how to use Corollary 3.2 in order to construct diagnostic tests. It is worth noting at this point that whilst it is often the case for univariate models that the \(\{e_i\} \) series can be obtained by transforming the particular i.i.d. uniform series used for diagnostic evaluation by authors such as Shephard (1994), Kim, Shephard, and Chib (1998) and Diebold, Gunther, and Tay (1998), our diagnostic procedures for multivariate point processes cannot be interpreted as an implementation of multivariate extensions of this approach such as that described in Diebold, Hahn, and Tay (1999). Some additional explanation of this point is given below.

\(^{20}\)See Section 4.5 of Aalen and Hoem (1978). Note that the basic regularity conditions of their Section 2.1, referred to in Section 4.5, include the condition that each ‘distribution function’ \(\Pr[T_{i+1} - T_i \leq x; Z_{i+1} = m|F_i^x] \) is absolutely continuous in \(x \) and has a derivative which is left continuous and has right-hand limits at each point.
For clarity of exposition we first discuss the case of known parameters before treating the case where the parameters must be estimated. Since the \(M \)-variate point process has the \((P_{\theta}, \mathcal{F}_t)\)-stochastic intensity \(\lambda_{\theta}(t) = (\lambda_m(t; \theta))_{m=1}^M \), Corollary 3.2 implies that under the null hypothesis that the DGP is \(P_{\theta_0} \) we have that \(e_i^{(m)}(\theta_0) \sim \text{i.i.d.} \text{Exp}(1) \), where

\[
e_i^{(m)}(\theta) = \int_{T_i^{(m)}} \lambda_m(s; \theta) ds,
\]

for \(m = 1, \ldots, M \). There are many possible ways to construct diagnostic tests based on the \(M \) series that spring to mind. Consider first tests that are based on the individual series, say the \(m \)-th, using either the series directly or a series formed by applying some transformation to each \(e_i^{(m)}(\theta_0) \). Tests that use the series directly include Box-Ljung tests of zero autocorrelation of the series itself and the squared series, and tests based on the moments of the exponential distribution. One such test is the test of no excess dispersion suggested by Engle and Russell (1998) which is given by

\[
p_N m \left(\frac{\bar{\sigma}_e^2(m) - 1}{\bar{\sigma}_e^2} \right),
\]

where \(\bar{\sigma}_e^2(m) \) is the sample variance of the \(e_i^{(m)}(\theta_0) \). The test statistic has an asymptotic \(N(0, 1) \) distribution under the null hypothesis that \(\{e_i^{(m)}(\theta_0)\} \) is \(\text{i.i.d.} \text{Exp}(1) \).\(^{21}\) Alternatively, the series can be transformed to yield an \(\text{i.i.d.} \) uniform series under the null. Thompson (2001) derives the asymptotic distribution of various test statistics based on the centred empirical distribution function and the normalised cumulative periodogram under the null that the series is \(\text{i.i.d.} \) uniform and explains how to compute quantiles of the (finite sample) null distributions by simulation.\(^{22}\)

Other diagnostic testing possibilities arise by combining the \(M \) series in some way, either prior to or after the calculation of the test statistics. We noted above that Aalen and Hoem (1978) have proved under quite general conditions that the transformed processes, \(\tilde{N}_1(t), \ldots, \tilde{N}_M(t) \), are independent Poisson processes each with intensity 1. It follows that the superposition \(\sum_{m=1}^M \tilde{N}_m(t) \) is a Poisson process with intensity \(M \). Tests of the independence property of the transformed processes may therefore be constructed by ‘pooling’ the points associated with the \(M \) \(\{e_i^{(m)}(\theta_0)\} \)

\(^{21}\)Note that \(8 \) is the variance of \((e_i - 1)^2\) under the null hypothesis.

\(^{22}\)The evaluation of model specification using a transformation of the data that is approximately \(\text{i.i.d.} \) uniform has a long history, dating back to Rosenblatt (1952). Smith (1985) and Shephard (1994) were among the first to propose the use of the transformation given by the conditional distribution functions for the evaluation of time series models. In most cases, previous work other than that of Thompson (2001) has tended to concentrate on graphical assessments of independence and uniformity.
series (i.e. sorting the collection of points \(\{ \tilde{T}_i^{(m)} \}_{i,m} \) into ascending order) and then calculating tests of the IID Exp(1) property of the durations between those points (after rescaling the durations by multiplying by \(M \)) as described above. We have not pursued the possibility of either combining multiple tests based on the \(m \)th series into a single test or combining tests based on different series here. The distributional results of Thompson (2001) can be used to achieve the former. Two tests based on, say, the \(m \)th and \(q \)th \((m \neq q)\) series will be independent under the conditions of Aalen and Hoem (1978).

In practice parameters must be estimated, raising the question of how to adapt the above diagnostic testing procedures in that case. The approach adopted thus far in the econometrics literature concerned with modelling market event data has been to calculate the diagnostic test using the \(\{e_i^{(m)}(\hat{\theta})\} \) series and to then use the asymptotic critical values that would apply in the known parameter case as an approximation to the true asymptotic critical values. There follows a discussion of two alternative procedures that correct for the effect of parameter estimation, the first of which is applicable only to univariate point process models.

Thompson (2001) considers tests of correct model specification for a sequence of scalar random variables \(\{ S_i \} \) based on the fact that applying the transformations given by the true conditional distribution functions yields an i.i.d. uniform series. First the series \(\{ \hat{u}_i \} \) is formed, where \(\hat{u}_i = F_i(S_i, \hat{\theta}) \) and \(F_i(x, \theta) = \Pr[S_i \leq x|S_{i-1}, ..., S_0; \theta] \), and then the tests for independence and uniformity mentioned above are constructed using \(\{ \hat{u}_i \} \). Thompson (2001) provides both asymptotically exact critical values and upper bounds for the asymptotic critical values that take into account the fact that the parameter has been estimated. In order to see how the results of Thompson (2001) apply in a point process setting, let \(S_i = T_i - T_{i-1} \) be the \(i \)th duration of a univariate \((M = 1)\) point process with \(F_i^N \)-intensity \(\lambda(t) \). Then it is possible to show, provided that \(\lambda(t) \) can be expressed in a certain form, that

\[
F_i(x, \theta) = 1 - \exp \left(- \int_{T_{i-1}}^{T_{i-1}+x} \lambda(s; \theta)ds \right).
\]

Clearly, \(\{ \hat{u}_i \} = \{ F_i(S_i, \hat{\theta}) \} = \{ 1 - \exp(-e_{i-1}(\hat{\theta})) \} \) (where \(e_{i-1}(\hat{\theta}) \) is given by (15) and \(M = 1 \)).

\[23\] The condition that \(\lambda(t) \) must satisfy and the main part of the proof may be found in E5, p.63 of Brémaud (1981). (16) is an example of the ‘exponential formula’ referred to earlier.

\[24\] We note in passing that it is immediate from Corollary 3.2 that \(\{ F_i(x, \theta_0) \} = \{ 1 - \exp(-e_{i-1}(\theta_0)) \} \) is i.i.d. uniform on \((0, 1)\).
Thus, provided that the point process model in question satisfies the relevant assumptions of Thompson (2001), the critical values provided there will be valid for the tests of uniformity and independence based on \(\{1 - \exp(-\hat{e}_{i-1})\} \). However, as was mentioned at the outset, approaches based on the use of the transformations given by the conditional distribution functions are generally not feasible in the case of a multivariate point process model \((M > 1) \). For example, in the bivariate case, the series \(\{S_{i}^{(1)}, S_{i}^{(2)}\}_{i \in \{1,2,\ldots\}} \) can be readily constructed (where \(S_{i}^{(m)} = T_{i}^{(m)} - T_{i-1}^{(m)} \) is the \(i \)th successive duration between the \(m \)-type events) but the calculation of objects such as \(\Pr[S_{i}^{(m)} \leq x|S_{i-1}^{(2)}, S_{i-1}^{(1)}, S_{i}^{(2)}, S_{i}^{(1)}; \theta] \) and \(\Pr[S_{i}^{(m)} \leq x|S_{i}^{(q)}, S_{i-1}^{(2)}, S_{i-1}^{(1)}, S_{i}^{(2)}, S_{i}^{(1)}; \theta] \) \((q \neq m) \) is usually infeasible because the distribution functions are not known in closed form.

In the context of diagnostic testing for multivariate models, as in that of model specification, the switch in focus from durations to intensities is a very powerful one.

An alternative procedure that applies to both the univariate and multivariate cases is to minimise the diagnostic test statistic with respect to the parameters. Let \(T^{(m)}(\theta) \) denote the test statistic evaluated at the parameter value \(\theta \) (obtained by calculating the statistic using the series \(\{e_{i}^{(m)}(\theta)\} \)). The null of correct specification is rejected when

\[
T^{(m)} = \min_{\theta \in \Theta} T^{(m)}(\theta),
\]

exceeds the \((1 - \alpha) \) quantile of the null distribution of \(T^{(m)}(\theta_{0}) \) (where \(\theta_{0} \) is the true parameter value). Since \(T^{(m)} \leq T^{(m)}(\theta_{0}) \) everywhere, the probability of falsely rejecting the null is bounded above by \(\alpha \). The validity of the bound does not depend on any regularity conditions other than the one in (12) and so the procedure has widespread applicability. Furthermore, the bound is valid when \(\theta_{0} \) is on the boundary of the parameter space, a case which is of some importance for the generalised Hawkes models to be developed here.

In the empirical sections of the paper, we routinely report 3 diagnostic test statistics for each \(m = 1, \ldots, M \) : the Box-Ljung tests that the first 15 autocorrelations are all equal to zero for the \(\{e_{i}^{(m)}(\hat{\theta})\} \) and \(\{(e_{i}^{(m)}(\hat{\theta}))^{2}\} \) series, and the test for excess dispersion based on the \(\{e_{i}^{(m)}(\hat{\theta})\} \) series. The corresponding \(p \)-values are calculated using the asymptotic null distributions which hold in the case of known parameters. Preliminary results (not reported here) concerning the use of test statistics that have been minimised with respect to the parameter value as in (17)
are encouraging.25

4 Univariate intensity-based models

As has already been stated, our aim in this paper is to develop a continuous time econometric modelling framework for market event data that can be readily applied to the multivariate case. Nonetheless, we have chosen first to describe in some detail a model for univariate point processes. This allows the main ideas to be presented in the simpler setting of a univariate model. Extending the discussion to the bivariate case in section 4 below will then be more straightforward as the univariate and bivariate models share exactly the same basic ‘building blocks.’

Our univariate model – which we have called a generalised Hawkes model – is particularly well suited to the econometric analysis of market event data such as the timing of trades. The model is sufficiently general to allow the nature of the dependence between trading days to be estimated from the data, rather than imposing strong \textit{a priori} assumptions concerning the nature of this dependence. The models thus take into account the existence of overnight periods when the stock market is closed. An empirical application of the model is presented for the timing of trades in two different corporate stocks, one listed on the NASDAQ (National Association of Securities Dealers Automated Quotation) system and the other on the NYSE. In order to clarify the presentation of generalised Hawkes processes that follows, we first discuss the data transformation that is used throughout the paper.

4.1 Data transformation

The empirical applications of our models will consider the timing of trades and the timing of certain changes to the mid-quote that occur during normal trading hours – that is, during the 6.5 hour period between 9:30 EST and 16:00 EST. Since the equity markets in question do not operate continuously, the researcher is faced with the question of how to model data that is generated during trading days that are separated by overnight periods when the market is

25Calculation of the tests is computationally feasible using the BFGS algorithm and there is some evidence that the tests based on the centred empirical distribution function are more powerful than the excess dispersion tests. Applying the minimisation procedure using the Box-Ljung statistic results in a test with very poor properties since the numerical optimisation algorithm converges to parameter values that make the sample variance very large indeed.
closed. We take the following approach throughout the paper. Time zero is taken to be 9:30 on the first trading day of the sample and the data pertaining to each of the 6.5 hour trading days is then concatenated in order to remove the overnight periods. Thus, the occurrence times of the market events are mapped onto $[0, \infty)$ as follows: if x is the time in hours after 9:30 of an event occurring on the dth trading day included in the dataset ($d = 1, 2, \ldots$), then that event appears as an event at time $x + 6.5(d - 1)$ in our final dataset.\footnote{Note that the units of measurement for ‘wall-clock’ time, t, are hours in the empirical sections of this paper.}

Two comments concerning the above data transformation are in order. First, transforming the data in this way and treating it as a realisation of a single point process on $[0, T]$ allows us to make straightforward use of existing theorems in the point process literature. The alternative would be to view the data for each trading day as the realisation of a different point process and to specify the nature of the dependence between these point processes. This is unnecessarily complicated. One must be able to specify how the intensity on a particular trading day depends on the entire history of events (including those of previous trading days), but this can be achieved within the ‘single point process’ framework adopted here. However, it is important then to take into account the overnight periods during which the market is closed and to model carefully how the intensity today depends on events that occurred on previous trading days in real time. This is the motivation for the generalised Hawkes models introduced below. Second, other features such as events occurring outside normal trading hours and stock exchange opening procedures are excluded from the present analysis. This reflects the particular focus of our empirical work which is the modelling of the operation of the continuous market during normal trading hours. Nevertheless, it is in principle straightforward within our modelling framework to condition on such information by allowing the intensity at the start of the trading day to depend upon these additional events.\footnote{We have not developed such an approach here in any detail. A preliminary analysis for NASDAQ biotechnology stocks of quoting activity in the preopening period (including the occurrence of ‘crossed and locked’ quotes) failed to reveal a significant effect on the intensity of quote changes during normal trading hours.}

4.2 Generalised Hawkes Processes

The intensity of the generalised Hawkes (g-Hawkes) process is defined recursively in terms of the levels of the non-deterministic components of the intensity at the end of the $(d - 1)$th
trading day and the contributions of the events occurring on day \(d \). In accordance with the data transformation that we employ, we partition the real half-line into intervals of length \(l \) that correspond to the different trading days. This partition is written as
\[
(0, \infty) = (0, \tau_1] \cup (\tau_1, \tau_2] \cup ... \cup (\tau_{d-1}, \tau_d] \cup ...,
\]
where \(\tau_d = l \cdot d \ (d = 0, 1, 2,...) \). \(\tau_d \) denotes the time corresponding to the end of the \(d \)th trading day.\(^{28}\)

Our univariate g-HawkesE\((k)\) model is defined by the stochastic intensity
\[
\lambda(t) = \mu(t) + \sum_{j=1}^{k} \tilde{\lambda}_j(t), \tag{18}
\]
where \(\mu(t) \) is a positive, deterministic function of time and, for \(j = 1, 2, ..., k \),
\[
\tilde{\lambda}_j(t) = \pi_j \tilde{\lambda}_j(\tau_{d-1}) e^{-\rho_j(t-\tau_{d-1})} + \int_{[\tau_{d-1}, t)} \alpha_j e^{-\beta_j(t-u)} dN(u), \tag{19}
\]
for \(\tau_{d-1} < t \leq \tau_d \ (d = 1, 2,...) \), and \(\tilde{\lambda}_j(0) = 0, \alpha_j \geq 0, \beta_j > 0, \pi_j \geq 0, \rho_j > 0 \).\(^{29}\)

The stochastic intensity of the g-HawkesE\((k)\) model is thus the sum of a deterministic component, \(\mu(t) \), and \(k \) non-deterministic components, \((\tilde{\lambda}_j(t))_{j=1}^{k}\). Equation (19) expresses each \(\tilde{\lambda}_j(t) \) as the sum of the exponentially-damped value of \(\pi_j \cdot \tilde{\lambda}_j(\tau_{d-1}) \), where \(\tilde{\lambda}_j(\tau_{d-1}) \) is the level of the \(j \)th component at the end of the previous trading day, and the contributions of events occurring on day \(d \) and prior to time \(t \). Thus \(\tilde{\lambda}_j(t) \) depends on the timing of events occurring prior to day \(d \) only via the term \(\tilde{\lambda}_j(\tau_{d-1}) \). We call the first term in (19) the \((j)\) intensity ‘spillover effect’ between trading days. Evaluating the second term yields \(\sum_{t: \tau_{d-1} \leq T_i < t} \alpha_j e^{-\beta_j(t-T_i)} \). We refer to this as the \((j)\) ‘Hawkes-type’ term for reasons that will be made explicit later. A sample path of this term is left-continuous, jumping up by an amount equal to \(\alpha_j \) in response to the occurrence of an event and then decaying exponentially (according to the parameter \(\beta_j \)) until the occurrence of the next event.

It is clear that the g-HawkesE\((k)\) model allows the dependence of the intensity on events occurring on previous trading days to be estimated from the data. The model nests the important

\(^{28}\) \(l = 6.5 \) in all of the empirical sections of the paper, corresponding to a trading day that is 6.5 hours long.

\(^{29}\) The ‘E\((k)\)’ refers to the superposition of \(k \) non-deterministic components, \(\tilde{\lambda}_j(t) \), each of which is specified in terms of an Exponential ‘response function,’ \(\alpha_j e^{-\beta_j} \). This function gives the current ‘response’ to an event that occurred \(s \) time units ago. Clearly, other specifications of the response functions are possible, but are not considered here.
case where there is no dependence between trading days. This occurs when $\pi_j = 0 \forall j$. The g-
HawkesE(k) process is also equivalent to the ‘self-exciting’ process of Hawkes (1971b) when the
restrictions $\pi_j = 1, \rho_j = \beta_j$ for $j = 1, \ldots, k$ are imposed.\footnote{Despite their usefulness, Hawkes-type models do not seem to have been used before in financial econometrics. The probabilistic properties of Hawkes processes are discussed in Hawkes (1971b), Hawkes (1971a), Hawkes and Oakes (1974), and Brémaud (1996); MLE of self-exciting models is considered by Ogata (1978), and Ozaki (1979), Ogata and Akaike (1982); and application of such models to earthquake data is treated by Vere-Jones and Ozaki (1982), Ogata (1983) and Ogata and Katsura (1986).}
Note that from the point of view of a statistical model, this imposes a very restrictive form on the spillover effects. The Hawkes (1971b) model – which we refer to as the HawkesE(k) model – is given by

$$
\lambda(t) = \mu(t) + \int_{(0,t)} \sum_{j=1}^{k} \alpha_j e^{-\beta_j(t-u)} dN(u) \tag{20}
$$

where $\mu(t)$ is again a positive, deterministic function of time and $\alpha_j \geq 0, \beta_j > 0$ for $j = 1, \ldots, k$.\footnote{Strictly speaking, the original Hawkes (1971b) model is given by (20) with $\mu(t) = \mu \forall t$.}
The second term in (19) is the same as the inner sum in (20) except that the sum is not taken over $T_i < \tau_{d-1}$. The equivalence of the g-HawkesE(k) and HawkesE(k) models when $\pi_j = 1, \rho_j = \beta_j \forall j$ is a corollary of the following proposition that establishes a representation of the g-HawkesE(k) model in terms of the contributions of the events occurring on the previous trading days.

Proposition 4.1 Define $\tilde{\lambda}_j(t)$ for $j = 1, \ldots, k$ by

$$
\tilde{\lambda}_j(t) = \sum_{s=1}^{d-1} \pi_j^s C_j(d-s)e^{-\rho_j(t-(d-s))} + \int_{(\tau_{d-1}, t]} \alpha_j e^{-\beta_j(t-u)} dN(u), \tag{21}
$$

for $\tau_{d-1} < t \leq \tau_d$ ($d = 1, 2, \ldots$) and $\tilde{\lambda}_j(0) = 0$, where

$$
C_j(d) = \int_{(\tau_{d-1}, \tau_d)} \alpha_j e^{-\beta_j(t-u)} dN(u), \tag{22}
$$

is the contribution of the events occurring on day d. Then if $\tilde{\lambda}(t) = \mu(t) + \sum_{j=1}^{k} \tilde{\lambda}_j(t)$, and $\lambda(t)$ is the g-HawkesE(k) model defined above by (18) and (19), then the processes $\lambda(t)$ and $\tilde{\lambda}(t)$ are indistinguishable – that is $\lambda(t)_\omega = \tilde{\lambda}(t)_\omega, t \geq 0$ for all $\omega \in \Omega$.\footnote{Despite their usefulness, Hawkes-type models do not seem to have been used before in financial econometrics. The probabilistic properties of Hawkes processes are discussed in Hawkes (1971b), Hawkes (1971a), Hawkes and Oakes (1974), and Brémaud (1996); MLE of self-exciting models is considered by Ogata (1978), and Ozaki (1979), Ogata and Akaike (1982); and application of such models to earthquake data is treated by Vere-Jones and Ozaki (1982), Ogata (1983) and Ogata and Katsura (1986).}

Proof. Since the proof is straightforward only the basic approach is indicated here. Fix an $\omega \in \Omega$ and hence $\{T_i(\omega)\}$. Clearly $\lambda(0)_\omega = \tilde{\lambda}(0)_\omega = \mu(0)$. Then show that $\lambda(t)_\omega = \tilde{\lambda}(t)_\omega \forall t > 0$
by establishing that, for \(j = 1, \ldots, k \) and \(d = 1, 2, \ldots, \), \(\hat{\lambda}_j(t) \omega = \hat{\lambda}_j(t) \omega, \tau_{d-1} < t \leq \tau_d \). The latter fact may be established by induction on \(d \).

Corollary 4.2 The \(g \)-HawkesE\((k)\) model with the parameter restrictions \((\pi_j = 1, \rho_j = \beta_j)\) for \(j = 1, \ldots, k \) and the HawkesE\((k)\) model in (20) are identical models (that is, the processes are indistinguishable). This follows easily by substitution into (21) and some straightforward algebraic manipulation.

The representation of the \(g \)-HawkesE\((k)\) model given by Proposition 4.1 is intuitively appealing as it expresses the \(j \)th non-deterministic component of the intensity at time \(t \) (on day \(d \)) as the summation of a Hawkes-type term that depends only on day \(d \) events and the weighted sum of the contributions, \(C_j(d-s) \), of previous trading days. Provided that \(\pi_j > 0 \), the weights are declining in \(s \) iff \(6.5 \rho > \log \pi \) (a condition that is found to hold in all of our applications).\(^{32}\)

As was stated earlier, the strength of our approach is that rather than imposing strong, \textit{a priori} assumptions about the nature of the dependence between trading days, we are able to estimate the effect using the data. Our empirical results illustrate the value of avoiding such assumptions in improving the goodness of fit of models for market event data. Adopting an inappropriate \textit{a priori} assumption (such as a lack of dependence between trading days for some NASDAQ stocks) can result in the rejection of a model that is essentially well specified (apart, that is, from its treatment of the spillover effects). Since the nature of the dependence is likely to vary across different exchanges, stocks and calendar periods it is clearly desirable to estimate the effect from the data. The empirical application below provides an example of two stocks having very different estimated spillover effects.

Our approach thus recognises an important feature of financial markets: namely, that for the majority of markets, the market does not operate continuously. Previous work has tended not to focus on this feature of the data. Often a lack of dependence is assumed so that the intensity today depends only on the timing of trades that have occurred since today’s opening (see, for

\(^{32}\)It is also interesting to consider the contribution of the term that depends only on day \(d \) events to the \(j \)th component, \(\lambda_j(t) \), as \(t \) increases (for \(6.5d < t \). This component is of the form \(K(t)C_j(d) \). When \(\pi_j > 1 \), \(K(t) \) is strictly decreasing during the day but jumps up at the start of each day; when \(\pi_j = 1 \), \(K(t) \) is continuous and strictly decreasing in \(t \); and when \(0 < \pi_j < 1 \), \(K(t) \) is again strictly decreasing during the day and jumps down at the start of each day.
example, Engle and Russell (1998)). Russell (1999) maps the data onto the real half line as we do and then treats it as the realisation of a (multivariate) point process on $[0, \infty)$. However, the approach adopted there is analogous to the HawkesE(k) model in (20) in the following way: when there is an ‘infinite past’, identical past realisations of the process prior to time t imply that the non-deterministic component of the intensity at time t is the same whatever wall-clock time in the trading day t corresponds to.\footnote{By ‘identical past realisations’ we mean that the distance of all of the points from t is the same in both cases.}

We conclude this section by discussing hypothesis testing and the computation of maximum likelihood estimates for the g-HawkesE(k) model.\footnote{Note that when we view the g-HawkesE(k) model as a statistical model we impose the additional constraints $\beta_1 > \beta_2 > \ldots > \beta_k$ so that the model is identified.} Consider testing the null $H_0 : \alpha_2 = 0$, against the alternative $H_1 : \alpha_2 > 0$ (the maintained hypothesis being that $\alpha_2 \geq 0$). This testing problem violates two of the regularity conditions that are assumed to hold in standard testing problems. The parameter value under the null lies on the boundary of the maintained hypothesis, and there are nuisance parameters (π_2, ρ_2, β_2) that are identified under the alternative but not under the null. The same comments apply to a test of $H_0 : \pi_j = 0$ against the alternative $H_1 : \pi_j > 0$ (in which case ρ_j is unidentified under the null). A consequence is that the likelihood ratio tests of the various hypotheses will not possess the standard chi-squared asymptotic null distributions. Such a situation is not uncommon for econometric models – consider, for example, a test of the null hypothesis of no conditional heteroskedasticity in a GARCH(1,1) model – and is exactly the situation considered by Andrews (2001) in the context of time series models. Establishing analogous results for point process models is not a trivial task and is beyond the scope of the present paper. This matter will be explored in future work.

We now briefly describe the computation of MLEs for the univariate models. In order to simplify the presentation, we assume that the empirically relevant case in which the process is observed over an integer number of trading days holds (that is, T is a multiple of l). Taking logarithms of (6) (with $M = 1$) and decomposing the resultant log likelihood into the contributions of the different trading days yields

$$l(\theta) = \sum_{d=1}^{T/l} \left\{ \int_{A_d} (1 - \lambda_\theta(s)) ds + \int_{A_d} \log \lambda_\theta(s) dN(s) \right\}, \quad (23)$$

\[33\]
where \(A_d = (\tau_{d-1}, \tau_d] \) and \(\lambda_\theta(s) \) is the intensity of the g-HawkesE\((k)\) model given by (18) and (19). Decomposing the log likelihood in this way allows us to use the recursive specification given by (19) in order to compute the log likelihood. Evaluating (23) yields\(^3\)

\[
l(\theta; T_1, \ldots, T_{N(T)}) = T - \int_0^T \mu_\gamma(s) ds + \sum_{d=1}^{T/l} \sum_{T_i \in A_d} \log \lambda_\theta(T_i) - \sum_{d=1}^{T/l} \sum_{j=1}^k \left\{ \pi_j / \rho_j (1 - e^{-\rho_j}) \tilde{\lambda}_{j,\theta}(\tau_{d-1}) + \sum_{\tau_{d-1} \leq T_i < \tau_d} \alpha_j / \beta_j (1 - e^{-\beta_j(\tau_d - T_i)}) \right\}.
\]

Numerical optimisation of \(l(\theta; T_1, \ldots, T_{N(T)}) - T \) was performed using the BFGS algorithm with numerical derivatives (see Doornik (2001)). In order to estimate the g-HawkesE\((2)\) model, initial parameter values for the algorithm were obtained by a sequential estimation procedure in which the estimates obtained from each model determined the starting values used for the subsequent one. Full details of this procedure, the recursions used to improve computational efficiency and the reparametrisation of the log likelihood employed to impose the parameter constraints of the model are described in the Appendix.

4.3 An application to the timing of trades on NASDAQ and the NYSE

An illustration of the empirical usefulness and flexibility of the univariate g-HawkesE\((k)\) model is provided here by an analysis of two different datasets obtained from the TAQ database: the timing of trades in the biotechnology stock Genzyme General (GENZ) on NASDAQ during the period from 1 March 2000 to 26 April 2000 and the timing of trades in The Walt Disney Company (DIS) on the NYSE from 5 July 2000 to 29 August 2000. Each of these datasets comprises 40 trading days. We model the timing of trades that occur during normal trading hours (that is, 9:30 EST to 16:00 EST) only. As has already been discussed, the data is transformed so that the occurrence time of a trade is given by the number of normal trading hours that elapsed between 9:30 on the first trading day of the dataset in question and the occurrence of the event. Further details regarding amendments that we make to the TAQ data are provided in the Appendix.

Summary statistics of the durations between trades in the final datasets are given in Table

\(^3\)The specification and parametrisation of the deterministic component of the intensity, \(\mu_\gamma(t) = \mu(t; \gamma_1, \ldots, \gamma_k) \), is discussed in the following section.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of durations</td>
<td>70,102</td>
<td>46,210</td>
</tr>
<tr>
<td>Mean duration</td>
<td>0.222</td>
<td>0.338</td>
</tr>
<tr>
<td>Std deviation</td>
<td>0.365</td>
<td>0.368</td>
</tr>
<tr>
<td>Minimum</td>
<td>1/60</td>
<td>1/60</td>
</tr>
<tr>
<td>Maximum</td>
<td>7.550</td>
<td>11.933</td>
</tr>
<tr>
<td>BL</td>
<td>16 945 (0.000)</td>
<td>2721.5 (0.000)</td>
</tr>
</tbody>
</table>

Table 1: Summary Statistics of Intertrade durations for Genzyme General (GENZ) and Walt Disney Company (DIS). BL is the Box-Ljung statistic for zero autocorrelation calculated using the first 15 lags; the durations are measured in minutes.

1. The mean intertrade duration for GENZ (13 seconds) is considerably shorter than that for DIS (20 seconds). The autocorrelation functions of the durations (not shown here) exhibit long sequences of positive autocorrelations similar to those reported elsewhere for intertrade durations (see, for example, Engle and Russell (1998)).

It is well known that intradaily seasonality is an important feature of such data. In common with Russell (1999), we have found that adopting a piecewise linear spline (continuous over the course of the 6.5 hour trading day and with 8 nodes at 9:30,10:00,11:00,...,16:00) for the deterministic component $\mu_\gamma(t)$ works well in practice. Specifically, we set

$$
\mu_\gamma(t) = \begin{cases}
1_{v(t)\in(0,0.5]}[\gamma_1 + 2v(t)(\gamma_2 - \gamma_1)] + \\
\sum_{i=1}^{6} 1_{v(t)\in(i-0.5,i+0.5]}[\gamma_{i+1} + (v(t) - i + 0.5)(\gamma_{i+2} - \gamma_{i+1})] & \text{for } v(t) > 0, \\
\gamma_8 & \text{for } v(t) = 0,
\end{cases}
$$

where $v(t) = 6.5(t/6.5 - [t/6.5])$ is the number of hours that have elapsed since the end of the previous trading day, and $\gamma_i > 0$ ($i = 1,...,8$). The γ_i ($i = 2,...,7$) are the values of the deterministic component $(i - 1.5)$ hours into each trading day. Note that we allow $\gamma_1 \neq \gamma_8$.

Maximum likelihood estimates and diagnostic statistics for the (unrestricted) g-HawkesE(2) model and the g-HawkesE(2) model with the restrictions $\pi_j = 0$ ($j = 1,2$) imposed are presented for both stocks in Table 2. The latter model imposes a lack of dependence between trading days and is thus labelled as the ‘No dependence’ model here. Likelihood ratio tests of the restrictions $\pi_j = 1, \rho_j = \beta_j \forall j$ (which yield the HawkesE(2) model given by (20)) are also reported and are

36 The following practice is adopted for the reporting of test statistics throughout the paper: p-values are shown in parentheses and tests that reject at the 1% level are shown in bold.

37 $[x]$, the integer part of x, denotes the greatest integer that is less than or equal to x.

38 It is convenient to parametrise $\mu(t)$ by the γ_i rather than in terms of the slopes of the linear pieces since this makes it straightforward to impose the constraint $\mu(t) > 0$ when performing the numerical optimisation.
compared to the $\chi^2(4)$ distribution. For each parameter of the selected models, non-symmetric 95% confidence intervals are reported in square parentheses.39 In order to aid an intuitive understanding of the model, Figure 1 shows the various components of the estimated intensity for the GENZ stock on one randomly selected trading day of the dataset (namely, 16 March 2000). The main features of the results are as follows.

In the case of GENZ our preferred model is the g-HawkesE(2) model, whereas we tentatively accept the restrictions $\pi_j = 0$ ($j = 1, 2$) in the case of DIS. The results of the diagnostic tests and issues related to testing the restrictions $\pi_j = 0$ ($j = 1, 2$) are discussed below. Consideration of the MLEs of $(\alpha_1, \beta_1, \alpha_2, \beta_2)$ for the selected models reveals that, in both cases, the initial response of the intensity to a trade is mainly the result of the first exponential response function ($j = 1$) but that this component decays rapidly whilst the second response function ($j = 2$) is initially smaller but also decays much more slowly. The second function could be referred to as the ‘long lived’ response function. The deterministic components exhibit the ‘U-shaped’ pattern familiar from earlier studies (see, for example, Engle and Russell (1998) and Engle (2000)), with high intensity around the open and close, and the lowest intensity occurring around 13:00.40

These features can be seen in panels (a)-(c) of Figure 1 for GENZ, which show: (a) the total estimated intensity, $\hat{\lambda}(t)$, together with the estimated deterministic component, $\hat{\mu}(t)$; (b) H_1, the estimated Hawkes-type component of $\hat{\lambda}_1(t)$; and (c) H_2 and S_2, the estimated spillover and Hawkes-type components of $\hat{\lambda}_2(t)$. Also shown in both halves of the figure are the occurrence times of the trades, with the points randomly vertically ‘jittered’ to aid clarity. A striking feature revealed by the figure is that the $j = 2$ Hawkes-type component is very much smoother than the $j = 1$ equivalent. We also see that the deterministic component contributes a relatively small fraction of the total intensity.41 We have already discussed the difficulties associated with

39The confidence intervals (CIs) were calculated as follows. Letting θ denote the parameters of the selected model shown in Table 2, the log-likelihood was first parametrised by $\phi = \log \theta$ and a 95% CI for each element of ϕ was formed in the usual way using the inverse of the negative Hessian matrix. The end points of these CIs were then exponentiated to obtain 95% CIs for θ, thus ensuring that the final CI contains only positive values.

40We also estimated a g-HawkesE(2) model with a deterministic component, $\mu(t)$, that incorporates day of the week effects. Specifically, we set $\mu(t) = \mu_\text{day}(t) \cdot \gamma_{\text{day}}$, where $\mu_\text{day}(t)$ is again given by (25) and, for example, $\gamma_{\text{Mon}} = \gamma_{\text{Mon}}$ if t occurs on a Monday. γ_{day} was normalised to one. The likelihood ratio tests for the reduction to the (unrestricted) g-HawkesE(2) models shown in Table 2 accept for both stocks at the 5% level and there was little difference in the diagnostics obtained for either stock.

41In order to provide a rough guide to the importance of including the deterministic component in the model specification (whilst ensuring the positivity of the intensity) we estimated the g-HawkesE(2) model using the GENZ data, with the restrictions $\gamma_1 = \gamma_2 = \ldots = \gamma_8 = 0.001$ imposed. The log likelihood decreased by 210 and
Table 2: Generalised HawkesE(2) Models fitted to the times of trades for Genzyme (GENZ) and Walt Disney Company (DIS). The ‘No dependence’ model is the g-HawkesE(2) model with the restrictions $\pi_j = 0$ ($j = 1, 2$) imposed. 95% confidence intervals for the parameters of the selected models are shown in square parentheses. LR denotes a likelihood ratio test of the indicated restrictions. The mean and variance of the series on which the diagnostic tests are based are shown; BL is the Box-Ljung statistic for zero autocorrelation calculated using the first 15 lags; ED is the Engle and Russell (1998) test for excess dispersion; the diagnostic tests are described in detail in section 3.
Figure 1: Components of the estimated trade intensity of Genzyme General during 16 March 2000. (a) the estimated total intensity, $\hat{\lambda}(t)$, and estimated deterministic component, $\hat{\mu}(t)$; (b) H_1, the estimated Hawkes-type component of $\hat{\lambda}_1(t)$; (c) S_2 and H_2, the estimated Hawkes-type and spillover components of $\hat{\lambda}_2(t)$; (d) the $j = 1$ and $j = 2$ spillover components plotted during the first 0.5 trading hours. Also shown in both columns are the (vertically jittered) occurrence times of the trades. In all cases, the horizontal axis is time measured in hours.
testing boundary hypotheses such as $H_0 : \alpha_2 = 0$. Nevertheless, it is worth noting that imposing the restriction $\alpha_2 = 0$ and estimating the resultant g-HawkesE(1) model results in a reduction in the log likelihood of 466 and 30 for GENZ and DIS respectively. The g-HawkesE(3) model was also estimated for both stocks but the sum (over j) of the estimated response functions was exactly the same as for the g-HawkesE(2) model.42

Of particular interest here are the estimates of the parameters $(\pi_1, \rho_1, \pi_2, \rho_2)$ that govern the dependence between trading days and the effect of imposing the restrictions $\pi_j = 0$ ($j = 1, 2$). Again, in the absence of the necessary distribution theory, we cannot formally test the ‘boundary hypothesis’ $H_0 : \pi_j = 0$ ($j = 1, 2$) and so some of the comments that follow are necessarily tentative. In the case of GENZ, imposing these restrictions results in a reduction of 92.4 in the log likelihood and both Box-Ljung statistics having p-values of 0.000. An a priori modelling assumption of no dependence between trading days would be undesirable in this case. Panel (d) of Figure 1 shows the estimated $j = 1$ and $j = 2$ spillover effects during the first 0.5 trading hours of the selected day for GENZ. Whilst the decay is very rapid for $j = 1$, it takes about 15 minutes for the $j = 2$ spillover effect to decay to a value close to zero. Examining the results for DIS reveals that imposing the restrictions $\pi_j = 0$ ($j = 1, 2$) causes the log likelihood to decrease by only 0.7, has a negligible effect on the diagnostic statistics, and does not result in large differences between the restricted and unrestricted MLEs. The adoption of the minimum AIC procedure (Akaike (1977)) would result in the selection of the ‘No dependence’ model (with AIC of -595,675 compared to -595,668) as a result of the gain in parsimony. The No dependence model is thus tentatively accepted in the case of DIS.

We note that the likelihood ratio test of the restrictions implied by the HawkesE(2) model has a p-value of 0.000 for GENZ and that the restrictions result in an additional diagnostic test rejecting at the 5% level (the Box-Ljung test of the squares now has a p-value of 0.037). The particularly restrictive form of the spillover effects implied by the HawkesE(2) model are thus rejected for GENZ, again emphasising the benefits of estimating these effects from the data.

The diagnostic tests for the selected models are very well behaved indeed, especially given

42This finding appeared to be insensitive to the starting values used for numerical optimisation.
the size of the datasets used. The smallest p-value was that of the excess dispersion test for GENZ (0.004) and that of the Box-Ljung test for DIS (0.008). The selected models also represent a huge improvement over the fit of the non-homogeneous Poisson model to these datasets. This model is given by $\lambda_\theta(t) = \mu_\gamma(t)$, where $\mu_\gamma(t)$ is as in (25). The analogous diagnostic test statistics (BL, BL (squares), ED) for the non-homogeneous Poisson models are $(10571, 2065.0, 117.90)$ and $(539.70, 3.9096, 10.358)$ for GENZ and DIS respectively. The g-HawkesE(2) model thus describes well the self-exciting aspect of the dynamics of the processes, in addition to the deterministic, intradaily seasonality.

Overall, the results demonstrate the advantages of using a sufficiently general initial model that allows the nature of the dependence between trading days to be estimated from the data. As is apparent here, no single a priori modelling assumption is valid for all stocks. We have considered a particular specification in which the jth spillover effect depends on the level of the jth component of the intensity at the end of the previous trading day, $\lambda_j(\tau_{d-1})$. In an alternative specification that may prove useful the spillover effect depends on the entire path of the intensity during the previous day via the term $\int_{\tau_{d-2}}^{\tau_{d-1}} W(\tau_{d-1} - s)\lambda_j(s)ds$, where $W(.) \geq 0$ is a non-negative ‘weighting’ function. The model structure introduced here in which the non-deterministic components of the intensity on trading day d are specified recursively in terms of functionals of the intensity paths on previous days and the contributions of the events occurring on day d is very general. This structure provides a very useful framework for approaching the issue of dependence between trading days in point process models of financial markets.

5 Bivariate intensity-based models

Having discussed the basic ‘building block’ of our (univariate and bivariate) generalised Hawkes models – the $\lambda_j(t)$ in equation (19) above – and demonstrated how this allows us to model flexibly the dependence between trading days, we are now in a position to turn again to the main focus of the paper: namely, the specification of multivariate models for market event data. The bivariate g-HawkesE(k) model and likelihood are discussed below, drawing to a considerable extent on our earlier treatment of the univariate model. An application to the timing of trades and mid-quote changes for an NYSE stock is then presented and the empirical results are related
to the existing theoretical and empirical market microstructure literature. The application is of economic interest because the bivariate model allows the study of the two way interaction of the trade arrival process and volatility.

5.1 Bivariate g-HawkesE(k) models

The univariate generalised Hawkes models described in section 4 above can readily be extended to the M-variate case by including terms that capture the effect of q-type events on the mth stochastic intensity. In the bivariate (BV) case, equation (18) is replaced by

$$\lambda_m(t) = \mu_m(t) + \sum_{j=1}^{k} \tilde{\lambda}_{mmj}(t) + \sum_{j=1}^{k} \tilde{\lambda}_{mqj}(t),$$

for $m = 1, 2$, where $\mu_m(t)$ is a positive deterministic function, $q = 2$ if $m = 1$ and $q = 1$ otherwise, and

$$\tilde{\lambda}_{mrj}(t) = \pi_{mrj} \tilde{\lambda}_{mr}(t) e^{-\rho_{mr}(t-\tau_{d-1})} + \int_{[\tau_{d-1}, t]} a_{mrj} e^{-\beta_{mr}(t-u)} dN_r(u),$$

for $\tau_{d-1} < t \leq \tau_d (d = 1, 2, ...)$, $\tilde{\lambda}_{mr}(0) = 0$ and $mr \in \{1, 2\} \times \{1, 2\}$. The now familiar parameter restrictions $a_{mrj} \geq 0, \beta_{mrj} > 0, \pi_{mrj} \geq 0, \rho_{mrj} > 0 \ (\forall mr)$ apply. The crucial extension is the inclusion of the terms $\tilde{\lambda}_{mqj}(t)$ in (26), which allow the occurrence of q-type events to influence the intensity for m-type events. Whilst the notation necessarily becomes more cumbersome in the bivariate case, the essential building block of the model has not changed, as is evident from a comparison of equations (27) and (19) which have exactly the same form. We thus retain a key feature of the univariate model – that is, the flexible specification of intensity spillover effects from one trading day to the next. The model given by (26) and (27) is henceforth referred to as the BV-g-HawkesE(k) model. Analogously to the univariate case, we note two special cases of this model. First, under the restrictions $\pi_{mrj} = 1$ and $\rho_{mrj} = \beta_{mrj} \ \forall j, \forall mr$, the BV-g-HawkesE(k) model is equivalent to the ‘mutually exciting’ model given in Hawkes (1971b).\footnote{In line with our terminology for the univariate case, we refer to the BV-g-HawkesE(k) model with these parameter restrictions as the BV-HawkesE(k) model.} Second, when $\pi_{mrj} = 0 \ \forall j$ and $\forall mr$ there is no dependence between days since there are then no intensity spillover effects between days for either $\lambda_1(t)$ or $\lambda_2(t)$.\footnote{In line with our terminology for the univariate case, we refer to the BV-g-HawkesE(k) model with these parameter restrictions as the BV-HawkesE(k) model.}
Taking logarithms of (6) yields the following log likelihood for the BV-g-HawkesE(k) model

\[l(\theta) = l_1(\theta_1) + l_2(\theta_2), \]

(28)

where \(\theta = (\theta_1, \theta_2) \), \(\theta_m \in \Theta_m \) is the parameter vector of the \(m \)th stochastic intensity, and

\[l_m(\theta_m) = \sum_{d=1}^{T/l} \left\{ \int_{A_d} (1 - \lambda_m(s; \theta_m))ds + \int_{A_d} \log \lambda_m(s; \theta_m)dN_m(s) \right\}, \]

(29)

where \(\lambda_m(s; \theta_m) \) is given by (26) and (27), \(A_d = (\tau_{d-1}, \tau_d] \), and we have decomposed \(l_m(\theta_m) \) into the contributions of the different trading days as before. Writing \(\arg \max_{\theta_m} l_m(\theta_m) \) as \(\hat{\theta}_m \), it follows from the fact that \(\theta_1 \) and \(\theta_2 \) are variation free (i.e. \((\theta_1, \theta_2) \in \Theta_1 \times \Theta_1\)) that \(\arg \max_{\theta} l(\theta) = (\hat{\theta}_1, \hat{\theta}_2) \). We therefore obtain the MLE of \(\theta \) by separate numerical optimisation of (29) for \(m = 1 \) and \(m = 2 \) in order to reduce the dimensionality of the parameter space of the optimisation problem. Further computational details related to estimation of the BV-g-HawkesE(2) model are given in the Appendix.

5.2 Timing of trades and quote changes on the NYSE

The BV-g-HawkesE(2) model is now used to analyse the timing of trades and mid-quote changes occurring on the NYSE for the stock General Motors Corporation (GM). This application is of economic interest since the bivariate model allows the study of the two way interaction between the arrival processes for trades and price changes, thus providing a microstructure view of the relationship between trading activity and price volatility.

The period analysed is the 40 trading days from 5 July 2000 to 29 August 2000. The data transformation described in section 4.1 is used to map the times of all trades and all changes to the mid-quote onto \([0, \infty)\). As before, only market events occurring during normal trading hours

\[\text{If the parameters of interest are, say, the parameters of } \lambda_1(t) \text{ alone (denoted by } \theta_1) \text{, and we have some bivariate point process model satisfying that } \theta_1 \text{ and } \theta_2 \text{ are variation free (as is the case here), then the MLE of } \theta_1 \text{ is obtained from the conditional model } \lambda_1(t) \text{ and the associated ‘conditional likelihood’ } l_1(\theta_1). \text{ Under these conditions, we might say that } \{T_i^{(2)}\} \text{ is weakly exogenous for } \theta_1. \]

The numerical optimisation was again performed using the BFGS algorithm with numerical derivatives.

The ‘specialist’ or ‘market maker’ for each stock on the NYSE is required to report the best quotes (i.e. the highest bid and lowest offer) communicated to ‘the crowd’ by the specialist himself or a floor broker. The ‘mid-quote’ is defined here as the simple average of the reported bid and ask quotes. The quotes may consist of any of the following: the specialist’s own trading interest, the trading interest of floor brokers in the crowd, or limit orders in the specialist’s Display Book. The specialist is obliged to execute any order at a price that is at least as favourable as his published quote. Details of the institutional features of the NYSE, including reporting procedures for trades and quotes, may be found in Hasbrouck, Sofianos, and Sosebee (1993).
(9:30 EST to 16:00 EST) are included. The times of the mid-quote changes are then thinned (that is, a subset of the times is selected) to obtain the ‘mid-quote events’ that we model. We define a mid-quote event as occurring at the earliest time that the mid-quote changes by an amount greater than or equal to $1/16$ (in absolute value terms) compared to the mid-quote in force at the time of the previous mid-quote event.\(^{47}\) The aim of our analysis here is to examine at a microstructure level of detail the two-way interaction of trades and market quotes. It is therefore desirable not to set the threshold used to thin the quote data too high, in order to capture changes to the mid-quote over short time horizons. The threshold of $1/16$ used here is approximately equal to half of the average spread of 0.117, and thus represents a very small movement in the mid-quote.\(^{48}\) In order to avoid the model becoming overly complicated, we do not directly model the size of the change in the mid-quote between successive events. Given the way the mid-quote events are defined, the absolute size of this change can exceed $1/16$. However, analysis of this dataset showed that the majority (82.4\%) of these changes do indeed equal $1/16$.\(^{49}\)

Recall from definition (2) that, since the pooled process \(\{T_i\}\) is always simple, the \(M\)-variate point processes that we deal with here assign zero probability to the simultaneous occurrence of two events (of either the same or different types). In the case of the GM dataset analysed here, approximately 11 per cent of the mid-quote events have exactly the same timestamp as a trade. Since the simultaneous occurrence of a trade and a mid-quote event in the data will almost always be the result of lags between the (non-simultaneous) actual occurrence times of the events in continuous time and the reported times, we adjust the times of those mid-quote events that coincide with a trade by a small, \textit{i.i.d.} uniform amount. This procedure retains

\(^{47}\)The first mid-quote event is defined to occur at the time when the first pair of quotes were reported for the first trading day in the data set. Denote by \(\{T_1^{(1)}, T_2^{(1)}, \ldots\}\) the (transformed) times of all changes to the mid-quote. The first mid-quote event time is \(T_1^{(1)}\); the second mid-quote event time is \(\min\{T_i^{(1)} : i > 1, |q(T_i^{(1)}) - q(T_1^{(1)})| \geq 0.0625\}\), where \(q(T_i^{(1)})\) is the mid-quote reported by the specialist at time \(T_i^{(1)}\). Subsequent mid-quote events are defined similarly. Engle and Russell (1998) use an analogous procedure to define their price events.

\(^{48}\)The fit of the model when all changes to the mid-quote are included in the data is somewhat worse but suggests that perhaps some quite minor change to the model specification (such as the use of a more flexible functional form for the response function) could rectify the problem. We have not pursued this further in the current paper.

\(^{49}\)The absolute changes are always some multiple of $1/32$, with the proportion of the changes equal to $82/32$, $3/32$, $4/32$ being given by 82.4%, 12.9%, and 3.0% respectively. An equivalent analysis of the absolute value of \textit{all} changes to the mid-quote for this data set reveals that 85.9%, 11.1%, 1.9% are equal to $1/32$, $82/32$, $3/32$ respectively.
<table>
<thead>
<tr>
<th></th>
<th>Trade durations</th>
<th>Mid-quote event durations</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of durations</td>
<td>33,372</td>
<td>5,044</td>
</tr>
<tr>
<td>Mean duration</td>
<td>0.467</td>
<td>3.087</td>
</tr>
<tr>
<td>Std deviation</td>
<td>0.108</td>
<td>4.505</td>
</tr>
<tr>
<td>Minimum</td>
<td>1/60</td>
<td>1/60</td>
</tr>
<tr>
<td>Maximum</td>
<td>28.733</td>
<td>60.800</td>
</tr>
<tr>
<td>BL</td>
<td>4733.1 (0.000)</td>
<td>1192.1 (0.000)</td>
</tr>
</tbody>
</table>

Table 3: Summary statistics of the durations between trades and mid-quote events for General Motors Corporation. BL is the Box-Ljung statistic for zero autocorrelation calculated using the first 15 lags; the durations are measured in minutes.

the original sequence of the other events and leaves the occurrence time of the mid-quote event unchanged to the nearest second. The adjustment is uniformly distributed because we do not want to impose prior assumptions about the original ordering of the two events. A discussion of the adjustment procedure used and two possible alternatives is given in the Appendix, together with the results of a sensitivity analysis comparing the three adjustment rules. These results support the robustness of the main conclusions of our empirical findings.

Summary statistics of the intertrade durations and durations between successive mid-quote events are given in Table 3 for the GM data. The average duration between mid-quote events is approximately 6.6 times the average intertrade duration. The results of fitting a restricted BV-g-HawkesE(2) model with the restrictions \(\pi_{mn}^{(1)} = 0, \pi_{mq}^{(1)} = 0, \pi_{mq}^{(2)} = 0; m = 1, 2; q = 2 \text{ if } m = 1 \) and \(q = 1 \) otherwise) are shown in Table 4.\(^{50}\) The deterministic components, \(\mu_m(t; \gamma_{m1}, \ldots, \gamma_{m3}) \), had exactly the same form as in equation (25). The restrictions imposed imply that the non-deterministic components of the intensity exhibit zero spillover effects, except for the \(\tilde{\lambda}_{mm}^{(2)}(t) \) components \((m = 1, 2) \) which capture the \(j = 2 \) effect of \(m \)-type events on the \(m \)th intensity. The restricted model fits very well indeed, with only one of the diagnostic tests rejecting at the 5% level.\(^{51}\) Figure 2 graphs the estimated components of the mid-quote event and trade intensities (in panels (a),(c),(e) and (b),(d),(f) respectively) for a randomly selected trading day – day 21 of the dataset, i.e. 2 August 2000. The first panel of the \(m \)th column \((m = 1, 2) \) shows the estimated total intensity, \(\hat{\lambda}_m(t) \), and estimated deterministic component, \(\hat{\mu}_m(t) \); the second

\(^{50}\) The results of fitting the unrestricted BV-g-HawkesE(2) model are not shown here since the unrestricted model was found to have identical log-likelihood and diagnostic statistics. The ‘restricted parameters’ had MLEs very close to zero in the unrestricted model and the ‘unrestricted parameters’ were virtually identical for the two models.

\(^{51}\) Two sets of diagnostic statistics are reported: one based on the quote intensity and the other on the trade intensity – the reader is referred to section 3 for details.
shows the occurrence times of the q-type events ($q \neq m$) in order to highlight the impact of these events on $\hat{\lambda}_m(t)$; the third shows $\hat{\lambda}_{mq}(t)$ ($q \neq m$), which is the estimate of $\sum_{j=1}^{2} \hat{\lambda}_{mq}(t)$; and the fourth shows $\hat{\lambda}_{mm}(t)$, the estimate of $\sum_{j=1}^{2} \hat{\lambda}_{mm}(t)$, together with S_{mm}, the estimate of the spillover effect $\pi_{mm}^{(2)} \tilde{\lambda}_{mm}^{(2)}(\tau_{20}) e^{-\rho_{mm}^{(2)}(t-\tau_{20})}$.

Consider first the MLEs reported in Table 4. Non-symmetric 95 per cent confidence intervals were calculated as for the univariate case and are again shown in square parentheses in the table. The ‘U-shape’ of the deterministic component of the trade intensity, and the long lived $j = 2$ response functions which govern the evolution of the $\hat{\lambda}_{mm}(t)$ terms in (26) ($m = 1, 2$) are familiar from our univariate results. The deterministic component of the quote intensity is close to zero after the first hour of the day. Of particular economic interest are the estimates of $\alpha_{mq}, \beta_{mq}, \alpha^{(2)}_{mq}$ and $\beta^{(2)}_{mq}$ ($m = 1, 2; q \neq m$). We see that the the occurrence of a trade results in an upward jump in the estimated mid-quote event intensity (equal to $\hat{\alpha}_{12}^{(1)} + \hat{\alpha}_{12}^{(2)}$) and that the effect then decays away with time. Similarly, the occurrence of a mid-quote event results in an increase in the estimated trade intensity. These effects bring about the large, short lived spikes that are evident in the estimated total intensities $\hat{\lambda}_m(t)$ ($m = 1, 2$) in Figure 2. Notice that the magnitude of the spikes in $\hat{\lambda}_{12}(t)$ and $\hat{\lambda}_{21}(t)$ are large relative to the levels of $\hat{\lambda}_{11}(t)$ and $\hat{\lambda}_{22}(t)$ respectively. This is particularly pronounced in the case of the mid-quote intensity. The response functions of the ‘cross effect’ terms in (26), $\sum_{j=1}^{2} \hat{\lambda}_{mq}(t)$, are very short lived, with the $j = 1$ component having a half life of 3.1 seconds in the case of $\hat{\lambda}_{12}(t)$ and 1.6 seconds in the case of $\hat{\lambda}_{21}(t)$. The picture that emerges from Figure 2 is one in which the cross effect terms which capture the effect of q-type events on the mth intensity ($q \neq m$) exhibit large, short lived fluctuations and play an extremely important role in determining the dynamics of the process.

We shall consider the economic interpretation of these effects below.

The hypothesis $H_0 : \alpha_{12}^{(j)} = 0$ ($j = 1, 2$) corresponds to the case where the mid-quote event intensity does not depend on the history of trades. Again, since the parameter values under the

52The CIs were obtained by exponentiating the CIs for the elements of $\phi_m = \log(\theta_m)$ ($m = 1, 2$). The latter were based on the inverse of the negative Hessian matrix, as in the univariate case. A pragmatic approach was taken in order to avoid the problems associated with $\gamma_{13}, \gamma_{14}, \gamma_{15}$ and γ_{16} having values near to the boundary of the parameter space: the model was estimated with the additional restrictions $\gamma_{13} = \gamma_{14} = \gamma_{15} = \gamma_{16} = 0.0001$ imposed (in order to ensure positivity of the intensity process) and confidence intervals for the other quote intensity parameters were obtained using these restricted estimates. Imposing the additional restrictions had virtually no effect on the log likelihood and MLEs for the quote intensity.
Figure 2: Components of the estimated mid-quote event and trade intensities for General Motors on 2 August 2000. The first column of panels is for the mid-quote event intensity and the second for the trade intensity. (a) the estimated total intensity, $\hat{\lambda}_1(t)$, and estimated deterministic component, $\hat{\mu}_1(t)$; (c) $\hat{\lambda}_{12}(t)$, the estimate of $\sum_{j=1}^2 \tilde{\lambda}_{12}^{(j)}(t)$; (e) $\hat{\lambda}_{11}(t)$, the estimate of $\sum_{j=1}^2 \tilde{\lambda}_{11}^{(j)}(t)$, and S_{11}, the estimate of the spillover effect $\pi_{11}^{(2)} \lambda_{11}^{(2)}(\tau_{20}) e^{-\rho_{11}^{(2)}(t-\tau_{20})}$. The other components shown are defined analogously. Also shown in the first (resp. second) column are the (vertically jittered) occurrence times of the trades (resp. mid-quote events). Note that panels (a) and (c), and (b) and (d) are drawn to the same scale. In all cases, the horizontal axis is time measured in hours.
Table 4: MLEs and diagnostics for a restricted BV-g-HawkesE(2) model of the timing of trades and mid-quote changes of General Motors Corporation.

The parameters of the quote change intensity and the trade intensity are listed in the first and last columns respectively. 95% confidence intervals are shown in square parentheses. The maximised log likelihood for the bivariate model is $11,762 + 131,753 = 143,515$. The reported diagnostics are analogous to those reported for the univariate models earlier and are described in section 3; BL again denotes the Box-Ljung test and ED the excess dispersion test; a superscript (1) denotes a diagnostic based on the quote intensity and a (2) denotes one based on the trade intensity.

<table>
<thead>
<tr>
<th>θ_1</th>
<th>Quote intensity - $\lambda_1(t; \theta_1)$</th>
<th>Trade intensity - $\lambda_2(t; \theta_2)$</th>
<th>θ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_{11}^{(1)}$</td>
<td>1.7224 [1.2, 2.5]</td>
<td>10.388 [8.9, 12]</td>
<td>$\alpha_{22}^{(1)}$</td>
</tr>
<tr>
<td>$\alpha_{11}^{(2)}$</td>
<td>0.1469 [0.02, 1.1]</td>
<td>1.4838 [0.90, 2.4]</td>
<td>$\alpha_{22}^{(2)}$</td>
</tr>
<tr>
<td>$\beta_{11}^{(1)}$</td>
<td>8.6842 [5.3, 14]</td>
<td>42.716 [31, 59]</td>
<td>$\beta_{22}^{(1)}$</td>
</tr>
<tr>
<td>$\beta_{11}^{(2)}$</td>
<td>1.4072 [0.41, 4.9]</td>
<td>3.2561 [2.1, 5.0]</td>
<td>$\beta_{22}^{(2)}$</td>
</tr>
<tr>
<td>$\pi_{11}^{(2)}$</td>
<td>1.7270 [0.07, 43]</td>
<td>0.2103 [0.05, 0.84]</td>
<td>$\pi_{22}^{(2)}$</td>
</tr>
<tr>
<td>$\rho_{11}^{(2)}$</td>
<td>4.0172 [0.55, 29]</td>
<td>1.3812 [0.50, 3.8]</td>
<td>$\rho_{22}^{(2)}$</td>
</tr>
<tr>
<td>$\alpha_{12}^{(1)}$</td>
<td>41.009 [37, 46]</td>
<td>216.82 [180, 261]</td>
<td>$\alpha_{21}^{(1)}$</td>
</tr>
<tr>
<td>$\alpha_{12}^{(2)}$</td>
<td>4.4637 [2.7, 7.3]</td>
<td>38.830 [27, 55]</td>
<td>$\alpha_{21}^{(2)}$</td>
</tr>
<tr>
<td>$\beta_{12}^{(1)}$</td>
<td>810.43 [677, 971]</td>
<td>1550.8 [1155, 2083]</td>
<td>$\beta_{21}^{(1)}$</td>
</tr>
<tr>
<td>$\beta_{12}^{(2)}$</td>
<td>96.386 [64, 146]</td>
<td>101.42 [70, 148]</td>
<td>$\beta_{21}^{(2)}$</td>
</tr>
<tr>
<td>γ_{11}</td>
<td>21.740 [14, 34]</td>
<td>74.077 [53, 104]</td>
<td>γ_{21}</td>
</tr>
<tr>
<td>γ_{12}</td>
<td>2.6181 [0.76, 9.0]</td>
<td>45.906 [33, 63]</td>
<td>γ_{22}</td>
</tr>
<tr>
<td>γ_{13}</td>
<td>0.0000</td>
<td>15.580 [7.9, 31]</td>
<td>γ_{23}</td>
</tr>
<tr>
<td>γ_{14}</td>
<td>0.0000</td>
<td>21.365 [15, 30]</td>
<td>γ_{24}</td>
</tr>
<tr>
<td>γ_{15}</td>
<td>0.0000</td>
<td>17.928 [13, 25]</td>
<td>γ_{25}</td>
</tr>
<tr>
<td>γ_{16}</td>
<td>0.0000</td>
<td>26.408 [21, 33]</td>
<td>γ_{26}</td>
</tr>
<tr>
<td>γ_{17}</td>
<td>0.7743 [0.14, 4.4]</td>
<td>31.456 [25, 39]</td>
<td>γ_{27}</td>
</tr>
<tr>
<td>γ_{18}</td>
<td>0.4877 [0.01, 37]</td>
<td>69.602 [60, 80]</td>
<td>γ_{28}</td>
</tr>
<tr>
<td>$l_1(\theta_1)$</td>
<td>11,762</td>
<td>131,753</td>
<td>$l_2(\theta_2)$</td>
</tr>
<tr>
<td>Mean$^{(1)}$</td>
<td>0.9993</td>
<td>1.0000</td>
<td>Mean$^{(2)}$</td>
</tr>
<tr>
<td>Var$^{(1)}$</td>
<td>0.9741</td>
<td>1.0819</td>
<td>Var$^{(2)}$</td>
</tr>
<tr>
<td>BL$^{(1)}$</td>
<td>20.244 (0.163)</td>
<td>46.487 (0.000)</td>
<td>BL$^{(2)}$</td>
</tr>
<tr>
<td>BL$^{(1)}$ (squares)</td>
<td>12.313 (0.655)</td>
<td>4.7585 (0.994)</td>
<td>BL$^{(2)}$ (squares)</td>
</tr>
<tr>
<td>ED$^{(1)}$</td>
<td>-0.6499 (0.516)</td>
<td>1.2216 (0.222)</td>
<td>ED$^{(2)}$</td>
</tr>
</tbody>
</table>
null lie on the boundary of the maintained hypothesis and there are nuisance parameters that are unidentified under the null, the standard likelihood ratio test cannot be applied. Nevertheless, we note that in this case imposing the restrictions $\alpha^{(j)}_{12} = 0$ ($j = 1, 2$) on the $\lambda_1(t)$ intensity of the (unrestricted) BV-g-HawkesE(2) model yields a univariate g-HawkesE(2) model with a log likelihood of 10,672 – a sizeable reduction of 1090 when compared to a value of 11,762 for $l_1(\theta_1)$ in Table 4. All 3 diagnostic tests continue to accept at the 5% level. Similarly, imposing the restrictions $\alpha^{(j)}_{21} = 0$ ($j = 1, 2$) on $\lambda_2(t)$ results in a reduction in the log likelihood of 450 and in the excess dispersion test rejecting at the 1% level. It would seem that in this case, the bivariate model is a substantial improvement over the two univariate models which ignore the cross effects. Interestingly, this appears to be true not only of the mid-quote event intensity but also of the trade intensity, indicating that the effect of mid-quote events on the intensity for trades should not be ignored. A sensitivity analysis is presented in the Appendix comparing three different adjustment rules for the treatment of the simultaneous occurrence of trades and mid-quote events in the original data. The analysis strongly suggests that our finding of a positive effect of mid-quote events on the trade intensity is not the result of the particular adjustment rule that we have employed here.

An aim of one strand of empirical microstructure research is to investigate the relationship between the trade arrival process and volatility. In order to see how the mid-quote intensity of the BV-g-HawkesE(2) model can be used to obtain (an approximation to) the instantaneous volatility of the price process, consider the case where all changes to the mid-quote take values in $\{-c, +c\}$ and a mid-quote event is defined to occur whenever the mid-quote changes. Denote the time of the ith mid-quote event as usual by $T^{(1)}_i$ and the associated mid-quote change by Δ_i. Then define the instantaneous conditional volatility by

$$
\sigma^2(t) = \lim_{h \rightarrow 0} \mathbb{E} \left[\frac{1}{h} \left(\frac{P(t + h) - P(t)}{P(t)} \right)^2 \mid \mathcal{F}_t \right],
$$

where $\mathcal{F}_t = \sigma(P(t)) \lor \mathcal{F}_t^N$, N is the bivariate point process of trades and mid-quote events, and the right-continuous price process is given by $P(t) = P(0) + \sum_{t,T^{(1)}_i \leq t} \Delta_i$. Then, as Engle and Russell (1998) have noted, it is possible to express $\sigma^2(t)$ in terms of the mid-quote intensity.
Figure 3: Estimated instantaneous volatility and mid-quote event intensity for General Motors on 2 August 2000 between 14:30 and 15:30 EST. (a) Estimated instantaneous volatility, $\sigma^2(t)$, based on equation (31); (b) the estimated total intensity, $\lambda_1(t)$. Also shown are the (vertically jittered) occurrence times of the trades. Volatility is measured per trading year (where one year is 252×6.5 trading hours). The horizontal axes are time measured in hours since the start of the trading day.

Specifically,

$$\sigma^2(t) = c^2 \lambda_1(t+)/P(t)^2,$$

(31)

where we have used Lemma 3.3(ii) of Aalen (1978) and have assumed that $\lambda_1(t)$ is the mid-quote event intensity with respect to \mathcal{F}_t as well as \mathcal{F}_t^N (i.e. conditioning additionally on the current price level does not alter the intensity).

An approximate estimate of the instantaneous volatility can be formed using the estimates for the restricted BV-g-HawkesE(2) model obtained above by making the following substitutions in (31): replace $\lambda_1(t+)$ by the (right-continuous version of the) estimated intensity $\hat{\lambda}_1(t)$, set $c = \$1/16$ and let $P(t) = P(0) + \sum_{i:T_i^{(1)} \leq t} \Delta_i$ (where $T_i^{(1)}$ is the time of the ith mid-quote event for the dataset and Δ_i is the actual change to the mid-quote since the last mid-quote event).\footnote{There are 2 sources of approximation error here. First, the mid-quote is assumed to change only at the times of the mid-quote events whereas in reality it changes more frequently. Second, (31) holds exactly when $\Delta_i^2 = c^2$ for all i but we observe $\Delta_i^2 > c^2$ for a minority of mid-quote events in the data set. Nevertheless, the approximation is a useful one.}

This estimate is graphed together with the estimated mid-quote event intensity in Figure 3 for the trading hour between 14:30 and 15:30 EST on 2 August 2000 (the same day that was used in Figure 2). Showing just one hour in this way allows the detail of the functions and their
relation to the timing of the trades to be clearly seen. A prominent feature is the association of periods of high volatility with periods of high trading activity (so called ‘clusters’ of trades). As expected, this feature was evident for all of the trading days that we graphed. Note also that the volatility and intensity estimates are difficult to distinguish as a result of the relatively small variability of the price compared to that of the intensity. The BV-g-HawkesE(2) model can thus be used to obtain a microstructure view of the evolution of volatility during the trading day. It would be interesting to extend the approach taken here by conditioning also on the volume of trades and the size and direction of the price changes between mid-quote events. The extension of our approach to models that are conditional on a filtration wider than the internal history of the point process is discussed in section 6.3 below.

5.3 Market Microstructure

Much of the existing theoretical and empirical market microstructure literature concentrates on the impact of trades on prices rather than on the reciprocal effect of prices on the trade arrival process. By contrast, the econometric modelling framework presented here allows the two-way interaction of trades and mid-quote changes to be analysed. The empirical results of section 5.2 are related to both the theoretical and empirical market microstructure literature in turn below.

The theoretical microstructure literature is concerned with the role that the trading process plays in the formation of security prices, and in particular with how new information is incorporated into prices. O’Hara (1995) and Hasbrouck (1996) give book and review length treatments respectively of this literature. An important class of models for our purposes is the asymmetric information models, which date back to Bagehot (1971) and include the sequential trade models of Glosten and Milgrom (1985), Easley and O’Hara (1987) and Easley and O’Hara (1992). In these models the specialist potentially faces both informed and uninformed traders. When an information event occurs, the former possess superior information to the specialist and trade for speculative reasons. The specialist fixes a spread that compensates him for the risk of doing business with the superiorly informed traders. In the sequential trade models, the Bayesian specialist learns about the information held by the informed traders by observing the sequence of trade outcomes and sets his quotes equal to the expected terminal value of the asset conditional
on the past sequence of trading outcomes and a trade at the quote. Thus, the dynamics of the
posted quotes and of transaction prices result from the Bayesian updating performed by the
market maker. Crucially, trades convey information to the specialist and so impact the quoted
prices. A central feature of the Easley and O’Hara (1992) model is that uninformed market
participants, including the specialist, are uncertain whether an information event has occurred
prior to the start of a given trading day. This results in periods of low volatility tending to occur
in periods when there is little trade, since a period with little trade increases the probability the
specialist attaches to there having been no information event at the start of the trading day.

The finding in section 5.2 above that the occurrence of a trade causes the intensity for
a mid-quote change to increase is thus consistent with the central feature of the asymmetric
information models: namely, that the specialist updates his beliefs about the value of the stock
in response to the trades that he observes taking place. A change to the mid-quote is thus
more likely immediately following a trade. We note that a trade would also trigger a mid-quote
change when one of the sides to the trade was a limit order that constituted the market quote
before it was removed from the order book. Theoretical microstructure models have analysed
in much less detail the effects of quoted prices on the trade arrival process and so it is more
difficult to interpret our finding that the occurrence of a mid-quote change results in an increase
in the trade intensity. A broad explanation is that some market participants closely monitor the
quoted prices and rapidly submit market orders in order to take advantage of prices that are
favourable to them, whilst others may set their quotes in order to attract such market orders.
For example, when the mid-quote change is the result of inventory control by the specialist (see
O’Hara (1995)), the altered quote will tend to be ‘hit’ soon afterwards by an attracted market
order on the opposite side of the market. Asymmetric information considerations might predict
a longer run negative effect of quote changes on trading intensity, reflecting the incorporation of
private information into the stock price over time and hence reduced incentives for the informed
to trade. Such an effect is not possible in our model since the constraints \((\alpha_{2j}^{(i)} \geq 0 \ \forall j) \) are
imposed. As is discussed briefly in section 6.3 it is possible to allow for such negative effects in
our modelling framework and such an extension would be of some interest given our findings
here.
In our model, a cluster of trades with short intertrade durations results in a large increase in the mid-quote event intensity and thus a large increase in volatility (as was seen in Figure 3). A number of other empirical studies report similar findings. Engle and Lunde (1999) (whose model is discussed below) find that short intertrade durations predict short (observed forward) mid-quote event durations. Engle and Russell (1998) found that expected price durations were shorter following price durations with a higher number of trades per second. Engle (2000) reports that the conditional volatility per unit time over an intertrade duration was higher when both the expected and actual duration were shorter. Finally, Russell and Engle (1998) noted that the expected squared price change over an intertrade duration was a decreasing function of the expected length of that duration for their model. All of these findings, including our own, are consistent with a central prediction of the Easley and O’Hara (1992) model that was noted above – namely, that periods of low volatility tend to occur in periods when there is little trade.

With the exception of Engle and Lunde (1999), none of the papers just cited model the dependence of the intertrade durations on prices. Both Russell and Engle (1998) and Engle (2000) assume that intertrade durations are not Granger caused by prices. As has already been discussed, the bivariate modelling approach adopted here is ideally suited to the study of the two-way interaction between trades and prices. Dufour and Engle (2000) analyse the residuals of an estimated ACD model for the times of trades and provide preliminary evidence that short intertrade durations tend to follow durations with large absolute returns (and large trades). This is in line with our finding that the occurrence of a mid-quote change results in a large increase in the trade intensity. In contrast, Grammig and Wellner (2002) propose an extension to the UHF-GARCH models which allows the volatility process to impact the trade intensity and finds that higher lagged volatility significantly reduces trade intensity. However, this study analysed data for a stock on an electronic limit order book system in the five weeks following a large initial public offering, a situation in which asymmetric information effects would be expected to be particularly prevalent. The further investigation of the effect of prices on the trade arrival process is an interesting challenge for both theoretical and empirical microstructure research.

54 The price events of Engle and Russell (1998) are defined analogously to our mid-quote events except that the events that are thinned are the times of trades and the prices used are the mid-quote at the time of the trade. The threshold used to thin the events is also set higher than ours at $0.25.
The BV-g-HawkesE(2) model is an important step towards providing a detailed, microstructure view of the interaction between financial market volatility and its determinants. Extending the framework by modelling the price process more fully and conditioning on a wider filtration is likely to prove a fruitful avenue for further investigation.

6 Comparison with previous research and possible extensions

6.1 Model specification via durations

As discussed in the introduction, whilst progress has been made in modelling univariate market event data using time series models of the durations between events, multivariate extensions of this work have been slow to emerge in the econometrics literature. An exception is the bivariate model of Engle and Lunde (1999) (hereafter EL) for the occurrence of trades and mid-quote changes. However, it is important to note that the EL model does not (and does not claim to) constitute a full bivariate point process model. The model is briefly described below and a possible approach to specifying a full M-variate point process model via the conditional distribution of durations is then sketched out.

EL specify models for a bivariate sequence of durations $\{S^{(1)}_i, S^{(2)}_i\}_{i \in \{1,2,\ldots\}}$, where $S^{(m)}_i = T^{(m)}_i - T^{(m)}_{i-1}$ is the ith successive duration between the m-type events. The events are defined so that $S^{(1)}_i$ and $S^{(2)}_i$ refer to time intervals with a common origin in real time. In the setting of EL, $S^{(1)}_i$ is the ith intertrade duration and $S^{(2)}_i$ is the time from the start of the ith intertrade duration until the occurrence of the next trade or mid-quote change (whichever occurs first). When the next trade occurs before a mid-quote change, that trade is viewed as censoring the so-called ‘forward quote duration’. The trade arrival process is thus the ‘driving process’ and the arrival processes for trades and mid-quote changes are not treated symmetrically. This approach avoids the difficulty that arises in general when constructing bivariate models via conventional time series modelling of $\{S^{(1)}_i, S^{(2)}_i\}$: namely, that the origins of $S^{(1)}_i$ and $S^{(2)}_i$ may well be far apart in real time.

The EL model is a rather specialised model, designed with a particular economic question in mind – that is, the speed with which the information content of trades is incorporated into prices. This sharp focus does, however, limit the scope and wider applicability of the model. We
have already noted that the EL model does not constitute a full bivariate point process model. In particular, it does not imply an intensity in continuous time for mid-quote change events. Other restrictive features of the model are that the occurrence of a mid-quote change during an intertrade duration cannot influence the trade intensity during that duration, and that there is an implicit loss of information involved when multiple mid-quote changes occur without an intervening trade. Also, the selection of a single ‘driving process’ will often be difficult to justify on economic grounds when moving to higher dimensional multivariate point process models.

The above discussion prompts the question of how a full M-variate point process model, $\{(T_i, Z_i)_{i \in \{1,2,\ldots\}}; Z_i \in \{1,2,\ldots,M\} \forall i\}$, could be specified via the conditional distribution of durations. A shift in focus away from the vector sequence of durations between events of the same type, $\{S_i^{(1)}, \ldots, S_i^{(m)}, \ldots, S_i^{(M)}\}_i$, to the sequence of durations between events of the ‘pooled process’ is useful in approaching this difficult problem. By the pooled process we mean $\{T_i\}$, the occurrence times of all events irrespective of their types. We then suggest specifying

$$P[S_{i+1} \leq x, Z_{i+1} = m|\mathcal{F}_i^N] = \int_0^x f_{i+1}(s, m) \, ds, \quad (32)$$

for $m = 1, \ldots, M$, where $S_{i+1} = T_{i+1} - T_i$ is the $(i+1)$th duration of the pooled process, $\mathcal{F}_i^N = \sigma(T_1, Z_1, T_2, Z_2, \ldots, T_i, Z_i)$ is the internal history of the M-variate point process up to the ith point and $\sum_{m=1}^M \int_0^\infty f_{i+1}(s, m) \, ds = 1$. That is, we suggest specifying the conditional density of the time to the next event of the pooled process given the multivariate filtration at the start of the duration and given that the next event has type m.\footnote{Note that specifying $f_{i+1}(s, m)$ for $m = 1, \ldots, M$ and for all i determines $\lambda_m(t)$ uniquely.} Such an approach to the specification of multivariate point process models may prove useful. Indeed, we recently became aware of Kamionka (2001), which essentially adopts this approach to specify a bivariate model.

6.2 Russell (1999)

As has already been mentioned, Russell (1999) also approaches the problem of building multivariate models for market event data by specifying the model via the stochastic intensity. There follows a discussion of the Autoregressive Conditional Intensity (ACI) model introduced in that paper.
For purposes of exposition, we define here the bivariate ACI(1,1) model (with time varying intensity between events) that is estimated in the empirical section of Russell (1999).56 In our notation, this is a multivariate point process \(\{T_i, Z_i\}_{i \in \{1, \ldots \}} \) where \(Z_i \in \{1, 2\} \forall i \). The \(\mathcal{F}_t^N \)-intensity of the process is given by

\[
\lambda_m(t) = \mu_m(t) \exp[\phi_m(t)][U_m(t)]^{\varphi_{mm}}[U_n(t)]^{\varphi_{mn}},
\]

for \(m = 1, 2 \), where \(\mu_m(t) \) is a positive deterministic function, \(n = 2 \) if \(m = 1 \) and \(n = 1 \) otherwise, \(\omega_m, \varphi_{mm}, \varphi_{mn} \) are parameters, \(U_q(t) = t - \tilde{N}_q(t) \) is the so called backward recurrence time for \(q \)-type events \((q = 1, 2) \), and \(\tilde{N}_q(t) \) is the process with left continuous sample paths that counts the \(q \)-type events. The central feature of the model is the \(\phi_m(t) \) processes, whose sample paths are left continuous and constant over the durations of the ‘pooled process,’ \(\{T_i\} \). That is,

\[
\phi_m(t) = \phi_{m,i} \quad \text{for} \quad T_i < t \leq T_{i+1},
\]

so that \(\phi_m(t) \) may be written as \(\phi_{m, \tilde{N}(t)} \), as in Russell (1999). An autoregressive specification is adopted for \(\phi_i = (\phi_{1,i}, \phi_{2,i})' \), namely

\[
\phi_i = \begin{cases}
\eta_1 \varepsilon_i + B \phi_{i-1} & \text{if } Z_i = 1 \\
\eta_2 \varepsilon_i + B \phi_{i-1} & \text{if } Z_i = 2
\end{cases},
\]

where \(\eta_1 \) and \(\eta_2 \) are 2 dimensional parameter vectors and \(B \) is a 2x2 matrix of parameters. \(\varepsilon_i \) is the scalar random variable associated with the occurrence of the \(i \)th event of the pooled process at time \(T_i \). Let \(T_i^* \) denote the time of the most recent event that occurred prior to the \(i \)th event and is of the same type as that event. Formally, let \(T_i^* = \sup\{T_j : j < i \text{ and } Z_j = Z_i\} \) provided that this set is not empty and let \(T_i^* = 0 \) otherwise. Then, making the dependence on the point of the sample space explicit, the random variable \(\varepsilon_i(\omega) \) is given by

\[
\varepsilon_i(\omega) = 1 - \tilde{\varepsilon}_i(\omega) = 1 - \int_{T_i^*(\omega)}^{T_i(\omega)} \lambda_{Z_i}(\omega, s)ds.
\]

This completes the specification of the ACI(1,1) model.57

56The original notation of Russell (1999) has been adapted somewhat here, partly in order to highlight certain aspects of the model structure and partly to ensure consistent notation throughout this paper. The ACI model we describe is termed a (1,1) model because the specification of \(\phi_i \) in (35) below involves 1 lag of \(\phi_i \) and depends on \(\varepsilon_i \) but not on any lags of \(\varepsilon_i \). In the notation used here the model might be better described as an ACI(1,0) model (using ARMA(p,q) type nomenclature).

57Note that we have been careful to define the \(\lambda_m(t) \) so that they have left continuous sample paths and are thus predictable. The use of right continuous \(\lambda_m(t) \) in the expression for the likelihood in (6) is incorrect and introduces an error in the evaluation of the log likelihood.
In the univariate case, the above definitions simplify to give $T_i^* = T_{i-1}$, and $\phi_i = \eta \varepsilon_i + b \phi_{i-1}$, where $\{\varepsilon_i\}$ is an i.i.d. sequence of mean zero random variables (a fact that follows by setting $M = 1$ in Corollary 3.2 since λ is the \mathcal{F}_t^N-intensity). $\{\phi_i\}$ is thus an AR(1) process. This way of specifying the model allows the powerful methods of time series analysis to be brought into play. However, we have been unable to prove that the ε_i in (36) are independent (or even uncorrelated) in the bivariate case. It does not follow from Theorem 3.1 and Corollary 3.2 that $\{\varepsilon_i\}$ is an i.i.d. sequence of mean zero random variables in this case. Recalling the definition of the $\{e_i^{(m)}\}$ ($m = 1, 2$) series given in Corollary 3.2, our notation here highlights the fact that although a particular realisation, $\{\varepsilon_i(\omega)\}$, consists of some arrangement of the elements of $\{e_i^{(1)}(\omega)\}$ and $\{e_i^{(2)}(\omega)\}$, that arrangement is random (i.e. it varies with ω). It may be that further work will resolve this problem. An alternative model is given by leaving the specification unchanged except that ε_i is now given by

$$\varepsilon_i = 1 - \varepsilon_i = 1 - \int_{T_{i-1}}^{T_i} \sum_{m=1}^{2} \lambda_m(s)ds. \quad (37)$$

Since the \mathcal{F}_t^N-intensity of $N(t) = \sum_m N_m(t)$ is $\sum_m \lambda_m(t)$, it now follows easily from arguments identical to those in Theorem 3.1 and Corollary 3.2 that $\{\varepsilon_i\}$ is an i.i.d. sequence of standard exponential random variables in this case.

To sum up, the ACI-type model structure offers useful alternative model specifications to the generalised Hawkes models developed here. Given the complexity of financial market event data, the availability of different families of econometric models is to be welcomed. An advantage of the ACI framework is the rich variety of time series specifications that could be adopted for ϕ_i. Possible disadvantages are the technical difficulties sometimes involved in establishing the properties of the ε_i and the need to use numerical integration (in all but the simplest cases) to calculate the log likelihood and diagnostic tests based on the integrated intensity. Ultimately, both families of models will be judged by their ability to provide well specified empirical models whose parameters may be readily interpreted in economic terms.

58 In private correspondence, Jeffrey Russell has kindly informed me of the results of some simulation experiments which seem to support the conjecture that $\{\tilde{\varepsilon}_i\}$ is an i.i.d. sequence of standard exponential random variables.
6.3 Possible Extensions

An important strength of the econometric modelling framework developed in this paper is the ease with which the approach can be extended in order to model the evolution of the multivariate point process conditional on information that is additional to the internal history of the process, \mathcal{F}_t^N. In this case the econometrician specifies the intensity conditional on a wider filtration, or to be more exact, specifies the \mathcal{F}_t-intensity of $N_m(t)$ for $m = 1, ..., M$, where $\mathcal{F}_t \supset \mathcal{F}_t^N \ \forall t$.\(^{59}\)

Important additional information in this context includes the marks of the events other than the event type (for example, the size and direction of trades), data concerning news announcements that occur both ‘overnight’ and within normal trading hours, and data relating to stock exchange opening procedures.

A g-HawkesE(k) type intensity can be specified conditional on the marks of the events by making the jump that occurs in response to the occurrence of an event depend on that event’s marks.\(^{60}\) For example, consider the specification of the term $\tilde{\lambda}_{12}^{(j)}(t)$ in (26) and (27), and suppose that we are concerned with a bivariate model of trades and mid-quote events so that $\tilde{\lambda}_{12}^{(j)}(t)$ determines the (j)th effect of trades on the quote intensity. In equation (27) the jump in $\tilde{\lambda}_{12}^{(j)}(t)$ in response to a trade is always equal to $\alpha_{12}^{(j)}$. The suggested extension is to set the jump that occurs in response to the ith trade equal to Y_i, where Y_i is a parametrised function of the marks of that trade. Denoting the occurrence time and marks of the ith trade by $T_i^{(2)}$ and $Z_i^{(2)}$ respectively, the BV-g-HawkesE(k) type specification for $\tilde{\lambda}_{12}^{(j)}(t)$ thus becomes

$$\tilde{\lambda}_{12}^{(j)}(t) = \pi_{12}^{(j)} \tilde{\lambda}_{12}^{(j)}(t_{d-1})e^{-\rho_{12}^{(j)}(t-t_{d-1})} + \sum_{T_i^{(2)} \in [t_{d-1}, t)} Y_i e^{-\beta_{12}^{(j)}(t-T_i^{(2)})},$$

for $t_{d-1} < t \leq t_d$ ($d = 1, 2, ...$), where $Y_i = g(Z_i^{(2)})$ for some function g. Marks of the trade that might be included in $Z_i^{(2)}$ are its volume, its direction (i.e. whether it was buyer or seller initiated) and the prevailing spread at the time of the trade. Such an extension of the models presented in this paper should prove useful in future market microstructure research.\(^{61}\)

\(^{59}\)Theorem 3.1 requires that $\mathcal{F}_t \supset \mathcal{F}_t^N \ \forall t$. Our diagnostic testing procedures therefore continue to be valid for models where we condition on a wider filtration than the internal history of the point process.

\(^{60}\)Recall that we write a Marked Point Process as $\{T_i, Z_i\}_{i \in \{1, 2, \ldots\}}$. The marks that we condition on here are (potentially) all of the elements of the vector Z_i other than the event type. In this case an \mathcal{F}_t-intensity is specified where \mathcal{F}_t is the internal history of $\{T_i, Z_i\}_{i \in \{1, 2, \ldots\}}$.

\(^{61}\)If Y_i is allowed to take negative values, then the question arises of how to ensure the positivity of the intensity.
As a further example of conditioning on a wider filtration, suppose that data is available concerning whether a news announcement occurred overnight before the commencement of each trading day in the sample and denote these announcement variables by A_d ($d = 1, ..., T/6.5$). Then the information we condition on is given by $\mathcal{F}_t = \mathcal{F}_t^V \vee \sigma(A_1, ..., A_{(t/6.5)+1})$. A possible specification would be that the intensity on day d includes a term that depends on A_d and damps down during the day in a manner analogous to the spillover effects in our g-HawkesE(k) models. Conditioning on data related to opening procedures could be performed in a similar manner.

Finally, we note that if $Y(t)$ is a continuous time stochastic process with sample paths of locally bounded variation, and we take $\mathcal{F}_t = \sigma(N(s), Y(s) : 0 \leq s \leq t)$, then a possible generalisation of the univariate g-HawkesE(k) model is given by,

$$\lambda(t) = \mu(t) + \sum_{j=1}^{k} \tilde{\lambda}_j(t) + \int_{0}^{t} f(t-s)dY(s), \quad (39)$$

where $\tilde{\lambda}_j(t)$ is as in (19), $f(.)$ is a deterministic function, and the integral is the stochastic Stieltjes integral with respect to Y.

The econometric modelling framework presented in this paper raises a number of challenges for future research. In terms of the specification of useful empirical models, the case where M, the number of different types of event, is moderately large (say, $M = 5$) and alternative forms of spillover effect such as the one discussed towards the end of section 4.3 are of particular interest.

An important theoretical challenge is the development of a body of asymptotic distribution theory following on from the work of Ogata (1978), including the extension of those results to the multivariate case and establishing results for the case where parameters are on the boundary of the parameter space. Ogata (1981) extends Lewis’ thinning simulation algorithm to multivariate point processes which are absolutely continuous with respect to the (suitably multivariate) standard Poisson process. This provides an efficient way to simulate from point processes that are specified via the stochastic intensity and should prove useful in future work, including the study of the finite sample properties of various statistics.

A possible solution (for BV-g-HawkesE(k) type models) is to set the non-deterministic component of the mth intensity equal to $\max\{0, \sum_{j=1}^{k} \tilde{\lambda}_j^{(m)}(t) + \sum_{j=1}^{k} \lambda_m^{(j)}(t)\}$.

62 In contrast to the conventional definition, $\lfloor x \rfloor$ is taken here to be the greatest integer strictly less than x.

63 Ogata and Akaike (1982) make a similar observation.
7 Conclusion

We develop here a continuous time econometric modelling framework for multivariate market event data in which the model is specified via the stochastic intensity. Section 2 provides an introduction to the modern intensity theory of point processes and makes readily accessible those aspects of the point process literature that are particularly relevant to the econometric analysis of market event data. Using the specific example of generalised Hawkes models, a model structure is then introduced in which the non-deterministic components of the intensity on trading day d are specified recursively in terms of functionals of the intensity paths on previous days and the contributions of the events occurring on day d. This structure takes into account the existence of overnight periods when the stock market is closed and allows the dependence of the intensity on the events of previous trading days to be estimated using the data. Generalised HawkesE(2) models are estimated using both univariate and bivariate market event data. Analytic likelihoods are available for the models and diagnostic tests can be readily computed. Our empirical results highlight the importance of not imposing \textit{a priori} assumptions such as a lack of dependence between trading days and demonstrate the usefulness of generalised Hawkes processes as empirical models for financial market event data.

Building on the suggestions of Russell (1999) for the construction of diagnostic tests in this context, we provide a proof using a random change of timescale argument of the \textit{i.i.d.} exponential property of the series that underly these tests. The proof makes clear the widespread applicability of the diagnostic testing procedures to point process models of financial market event data. Various diagnostic tests are proposed, some of which are new to the econometrics point process literature, and the issue of what critical values to use given that parameters must be estimated is considered.

We present a full bivariate point process model of the occurrence times of trades and changes to the mid-quote in continuous ‘wall-clock’ time for an NYSE stock, and relate the empirical findings to both the theoretical and empirical market microstructure literature. Importantly, the bivariate g-HawkesE(2) model allows the study of the two-way interaction between trades and price changes. We find that not only do trades result in an increase in the intensity for mid-
quote events (as is expected from the sequential trade models), but mid-quote events also result in increased trade intensity. The estimated mid-quote intensity of the bivariate g-HawkesE(2) model is used to provide an approximation to the instantaneous price volatility of the stock and supports a central prediction of the Easley and O’Hara (1992) model – namely, that periods of low volatility tend to occur in periods when there are few trades. Finally, a comparison with previous related work is provided and suggested extensions to the modelling framework are discussed. An important strength of our framework is the ease with which the approach can be extended in order to model the evolution of the multivariate point process conditional on information that is additional to its internal history, such as the marks of the events, overnight news announcements or, more generally, some continuous time stochastic process.

8 Appendix

8.1 Data Adjustments

Trade and quote records relating to the NYSE and NASDAQ exchanges were extracted from the TAQ database for various corporate stocks and calendar periods. Our models consider the timing of trades and certain changes to the mid-quote that occur during normal trading hours (that is, 9:30 EST to 16:00 EST). In all cases, the data is mapped onto $[0, \infty)$ as follows: if x is the time in hours after 9:30 of an event occurring on the dth trading day included in the dataset ($d = 1, 2, \ldots$), then that event appears as an event at time $x + 6.5(d - 1)$ in our final dataset.

In all cases, the final data pertaining to trades was obtained as follows: for NYSE stocks, the first reported trade of each calendar day was deleted as this details the price and volume of the opening auction, and for NASDAQ stocks, trades occurring before 9:30 were deleted;64 trades occurring after 16:00 on a particular day and trades that were later cancelled were also deleted;65 and trades having the same timestamp were treated as a single trade with that timestamp. In all of the datasets analysed here, the occurrence of trades with identical reported timestamps was rare. For example, in the case of the General Motors (GM) data analysed in section 5.2, the number of trade events is reduced by only 0.26 per cent as a result of treating trades with

64Throughout, we have excluded from our analysis data relating to the preopening period on NASDAQ and the opening auction of the NYSE.

65Only trade records with a TAQ correction indicator equal to 0 or 1 were included in the analysis. In the case of trades that underwent correction, the original occurrence time of the trade is used.
identical timestamps as single trades.

The NYSE quote records in the TAQ database detail all changes to the specialist’s reported quotes, including quote revisions that alter the depth at the bid or the ask without altering the quoted prices. All quote records with a timestamp outside of normal trading hours were deleted, and the remaining occurrence times were mapped onto \([0, \infty)\) as described above. The quote records were then thinned (that is, a subset of the occurrence times was selected) to obtain the ‘mid-quote events’ that we model. The thinning procedure is described in detail in section 5.2. Finally, when this procedure resulted in more than one mid-quote event with the same timestamp, we treated this as a single event with that timestamp. Again, in the case of the GM data, this resulted in a reduction in the number of mid-quote events of only 0.14 per cent.

The \(M\)-variate point processes that we deal with in this paper assign zero probability to the simultaneous occurrence of two market events (of either the same or different types). The treatment of two events of the same type with identical timestamps has already been discussed. The treatment of the simultaneous occurrence of trades and mid-quote events is a more substantive issue. In the case of the GM data, approximately 11 per cent of the mid-quote events have exactly the same timestamp as a trade. We adjust the occurrence times of these mid-quote events as follows: if \(x\) is the original occurrence time (in seconds), then the time becomes \(x - 0.5 + U\) in the final dataset, where \(U\) is the realisation of a uniform random variable on \((0, 1)\).\(^{66}\) This adjustment procedure is referred to below as Algorithm 1. The resultant occurrence time is thus the same as the original time to the nearest second but is different from the trade time, and the sequence of the market events is otherwise unchanged.

Some comments concerning this procedure are in order. First, although the reported timestamps (in whole seconds) of the mid-quote event and the trade are the same in the data, the actual occurrence times (in continuous time) will rarely be the same. By the actual occurrence time we mean the time of trade execution by the specialist and the time when the specialist made known his revised quotes to the trading crowd. Consider the situation where the specialist calls out in one sentence the details of a trade and new quotes set in response to that trade. These

\(^{66}\)If this procedure does not result in a time different to that of the trade, then a further draw from \(U\) is generated. However, this was not necessary here.
events might well receive the same timestamp in the data although in reality trade execution occurred first. An alternative to the approach adopted here would be to define a third type of event as occurring whenever a trade and a mid-quote event have identical timestamps. However, this would be to aggregate market outcomes that are quite different economically: such timestamps could be the result of a trade execution occurring just prior to a quote change; a quote change occurring just prior to a trade execution; or the events occurring further apart in real time but being reported with identical timestamps as a result of lengthier reporting delays.

We thus prefer to adopt the adjustment procedure described above and regard the simultaneous occurrence of a trade and a mid-quote event in the data as almost always the result of lags between the (non-simultaneous) actual occurrence times of the events in continuous time and the reported times. The procedure has the feature that we do not impose assumptions about whether the actual occurrence time of the mid-quote event is more likely to have preceded that of the trade or vice versa. It is worth noting at this point that it has been suggested that the ‘5 second rule’ of Lee and Ready (1991) be applied when modelling a bivariate system of trade and quote times. This involves delaying every quote time by five seconds. However, the results presented by Lee and Ready (1991) show a frequency distribution for the difference between the timestamp of the trade and the quote when it is reasonable to believe that the actual occurrence times were very close together in real time (and trading is slow). The distribution has a mode of zero and 38.3 per cent of the trades are recorded prior to the quote change. This suggests that it is preferable not to adjust all quote times by a deterministic amount.

Since it would be expected that the estimates of $\alpha_{m,q}^{(1)}, \beta_{m,q}^{(1)}, \alpha_{m,q}^{(2)}, \beta_{m,q}^{(2)} (m = 1, 2; q \neq m)$ would be sensitive to the particular treatment of the identical timestamps that is adopted, we conducted a sensitivity analysis by comparing our results with those obtained using two other adjustment rules: in the first of these the adjusted mid-quote event time is given by $x + U$ (with U defined as before as a uniform random variable on $(0, 1)$), and in the second the trade with the identical timestamp is deleted from the data. The first (Algorithm 2) is designed to

67 A number of studies highlight the reporting delays associated with this sort of data (see, for example, Hasbrouck, Sofianos, and Sosebee (1993) and Lee and Ready (1991)) and it is known that the reported times of the events and the actual occurrence times may differ by several seconds. The time delays tend to be (but are not always) greater for trades than for quotes as a result of the different reporting mechanism that is sometimes used for trades, and the delays also vary across events of the same type (see, for example, the discussion relating to trade reporting at p.9, Hasbrouck, Sofianos, and Sosebee (1993)).
capture the assumption that the identical timestamps are very often the result of the specialist executing a trade and then very rapidly calling out details of the trade and the new quotes. The second rule (Algorithm 3) is an alternative way of avoiding strong a priori assumptions concerning the actual ordering of the mid-quote event and the trade. Since there are many more trades than quotes, Algorithm 3 results in only a small reduction in the number of trades. All three algorithms gave very similar MLEs for parameters other than \(\alpha_{mq}, \beta_{mq}, \alpha_{mq}, \beta_{mq} \) \((m = 1, 2; q \neq m)\), and resulted in diagnostic tests that accepted at the 1% level with the exception of the BL test for the trade intensity. The estimates of \((\alpha_{12}^{(1)}, \alpha_{12}^{(2)}, \beta_{12}^{(1)}, \beta_{12}^{(2)}; \alpha_{21}^{(1)}, \alpha_{21}^{(2)}, \beta_{21}^{(1)}, \beta_{21}^{(2)})\) were \((59.4, 6.3, 1163.5, 123.7; 81.6, 19.1, 436.1, 58.5)\) for Algorithm 2 and \((27.9, 2.04, 475.4, 55.4; 80.6, 19.7, 423.8, 57.5)\) for Algorithms 3. These should be compared with those for given for Algorithm 1 in Table 4. It is the positive effect of mid-quote events on the trade intensity that is perhaps the more surprising of our findings. Crucially, although the estimates of \(\alpha_{21}^{(1)}\) and \(\alpha_{21}^{(2)}\) are smaller for Algorithms 2 and 3 than for Algorithm 1, they are still far from zero. For example, when Algorithm 3 is employed, imposing the restrictions \(\alpha_{21}^{(j)} = 0 \ (j = 1, 2)\) on \(\lambda_{2}(t)\) results in a reduction in the log likelihood of 277 and in the excess dispersion test again rejecting at the 1% level. We conclude that our finding of a positive effect of mid-quote events on the trade intensity is not the result of having employed a data adjustment rule that was unduly biased in favour of finding such an effect.

8.2 Computation of MLEs

We describe in detail here the procedure used to compute maximum likelihood estimates for the univariate g-HawkesE\((k)\) models and discuss how to extend this procedure to the bivariate case.

Evaluating the log likelihood for the univariate g-HawkesE\((k)\) model given in (24) yields

\[
l(\theta; T_{1}, ..., T_{N(T)}) = - \int_{0}^{T} \mu(s; \gamma) ds - \sum_{d=1}^{T/l} \sum_{j=1}^{k} \left\{ \pi_{j}/\rho_{j}(1 - e^{-\rho_{j}}) \bar{\lambda}_{j, \theta}(\tau_{d-1}) + \right. \]

\[
\sum_{\tau_{d-1} \leq T_{i} < \tau_{d}} \alpha_{j}/\beta_{j}(1 - e^{-\beta_{j}(\tau_{d} - T_{i})}) \right\} + \sum_{d=1}^{T/l} \sum_{T_{i} \in \mathcal{A}_{d}} \log\left(\mu(T_{i}; \gamma) + \right)
\]

\[
\sum_{j=1}^{k} \left[\pi_{j}\bar{\lambda}_{j, \theta}(\tau_{d-1}) e^{-\rho_{j}(T_{i} - \tau_{d-1})} + \alpha_{j} A_{d,j}(i) \right] \right\} + T,
\]

53
where \(A_{d,j}(i) = \sum_{z: \tau_{d-1} \leq T_z < T_i} e^{-\beta_j(T_i - T_z)} \) for \(d = 1, 2, \ldots, T/l \) (and we adopt the convention that an empty sum is equal to zero). When computing (40) in practice, we use the recursion in (19) to calculate the \(\hat{\lambda}_{j,\theta}(\tau_{d-1}) \)'s. We also make use of the following recursion in \(i \)

\[
A_{d,j}(i + 1) = (1 + A_{d,j}(i))e^{-\beta_j(T_{i+1} - T_i)},
\]

in order to improve computational efficiency. For the purposes of numerical optimisation, the log likelihood was reparametrised in terms of \(\log \alpha_1, \ldots, \log \alpha_k, \log \beta_1, \log(\delta_2/(1 - \delta_2)), \ldots, \log(\delta_k/(1 - \delta_k)), \log \rho_1, \ldots, \log \rho_k, \log \gamma_1, \ldots, \log \gamma_8 \), where \(\delta_j = \beta_j/\beta_{j-1} \) (\(j = 2, \ldots, k \)). We thus impose the positivity constraints \(\alpha_j > 0, \pi_j > 0, \rho_j > 0 \) (\(j = 1, \ldots, k \)), \(\gamma_1 > 0, \ldots, \gamma_8 > 0 \), and \(\beta_1 > \beta_2 > \ldots > \beta_k > 0 \).

The evaluation of the log likelihood for the bivariate \(g \)-HawkesE(2) model given by (28) and (29) is a straightforward extension of (40) above. The log likelihood was reparametrised in the same way as for the univariate model (with the obvious extension to the bivariate case) when performing numerical optimisation. A slight complication arises in the need to calculate terms of the form

\[
A_{mq}^{(d,j)}(i) = \sum_{z: \tau_{d-1} \leq T_z < T_i} e^{-\beta_{mq}(T_i - T_z)},
\]

for all \(T_i \in (\tau_{d-1}, \tau_d) \) (where \(q = 2 \) if \(m = 1 \) and \(q = 1 \) if \(m = 2 \)). We then make use of the following recursion in \(i \)

\[
A_{mq}^{(d,j)}(i + 1) = A_{mq}^{(d,j)}(i)e^{-\beta_{mq}(T_{i+1} - T_i)} + \sum_{z: T_i \leq T_z < T_{i+1}} e^{-\beta_{mq}(T_{i+1} - T_z)}.
\]

When estimating the univariate \(g \)-HawkesE(2) model, initial parameter values for the BFGS algorithm were obtained by estimating the following sequence of models:

1) Non-homogeneous Poisson model given by \(\lambda(t) = \mu_\gamma(t) \), where \(\mu_\gamma(t) \) is given by (25);

2) HawkesE(1) model with \(\bar{\gamma} = \hat{\gamma} \);

3) HawkesE(2) model with \(\bar{\alpha}_1 = \hat{\alpha}_1, \bar{\beta}_1 = \hat{\beta}_1, \bar{\beta}_2 = 0.99\hat{\beta}_2, \bar{\gamma} = \hat{\gamma} \);

4) \(g \)-HawkesE(2) model with \(\bar{\alpha}_j = \hat{\alpha}_j, \bar{\beta}_j = \hat{\beta}_j, \bar{\rho}_j = \hat{\rho}_j, \bar{\gamma} = \hat{\gamma} \).

In order to estimate the bivariate \(g \)-HawkesE(2) model, we maximise \(l_m(\theta_m) - T \) for \(m = 1 \) and \(m = 2 \) separately (where \(l_m(\theta_m) \) is given by (29)). Initial parameter values were again

\[68\text{Initial values of parameters are indicated by a bar, and a hat indicates a parameter estimate obtained from estimation of the model in the previous step.}\]
obtained by maximising a sequence of log likelihoods, commencing with the maximisation of
$l_m(\theta_m) - T$ for the BV-HawkesE(2) model using as starting values the estimates obtained from
the univariate HawkesE(2) model for \(m \)-type events in step 3) above:

1) BV-HawkesE(2) model with

\[
\alpha_m^{(j)} = \hat{\alpha}_m^{(j)}, \beta_m^{(j)} = \hat{\beta}_m^{(j)}, \gamma_m = \hat{\gamma}_m (q \neq m);
\]

2) BV-g-HawkesE(2) model with

\[
\alpha_m^{(j)} = \hat{\alpha}_m^{(j)}, \beta_m^{(j)} = \hat{\beta}_m^{(j)}, \pi_m^{(j)} = 1, \rho_m^{(j)} = \hat{\rho}_m^{(j)}, \gamma_m = \hat{\gamma}_m (\forall mr).
\]

References

69\(^{\text{By the BV-HawkesE(2) model, we mean the BV-g-HawkesE(2) model with the restrictions (}} \pi_m^{(j)} = 1 \text{ and } \rho_m^{(j)} = \hat{\rho}_m^{(j)} (\forall j, \forall mq) \text{ imposed.}}\)

