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ABSTRACT. In the classical Condorcet jury model, different jurors’ votes are independent random 
variables, where each juror has the same probability p>1/2 of voting for the correct alternative. The 
probability that the correct alternative will win under majority voting converges to 1 as the number of 
jurors increases. Hence the probability of an incorrect majority vote can be made arbitrarily small, a result 
that may seem unrealistic. A more realistic model is obtained by relaxing the assumption of independence 
and relating the vote of every juror to the same "body of evidence". In terms of Bayesian trees, the votes are 
direct descendants not of the true state of the world (‘guilty’ or ‘not guilty’), but of the “body of evidence”, 
which in turn is a direct descendant of the true state of the world. This permits the possibility of a 
misleading body of evidence. Our main theorem shows that the probability that the correct alternative will 
win under majority voting converges to the probability that the body of evidence is not misleading, which 
may be strictly less than 1. 
 
KEY WORDS: Condorcet jury theorem, conditional independence, interpretation of evidence, Bayesian 
trees 
 

1. INTRODUCTION 
 
Suppose a jury has to reach a decision on whether or not a defendant is guilty. There are 
two possible states of the world: x = 1 (the defendant is guilty) and x = 0 (the defendant is 
not guilty). Given that the state of the world is x, each juror has the same probability 
(competence) p > ½ of voting for x and the votes of different jurors are independent from 
each other. Then the probability that a majority of jurors votes for x, given the state of the 
world x, converges to 1 as the number of jurors increases. This is the classical Condorcet 
jury theorem. The result implies that, so long as the number of jurors is sufficiently large, 
the reliability of a majority decision can be made arbitrarily close to certainty. 

Something about this result may seem puzzling. What if, for instance, all jurors 
are tricked by the same evidence, which seems ever so compelling? What if, against all 
odds, the unbelievable happens and the wind blows a hair of an innocent person to the 
exact scene of the crime and the jurors all come to believe that there is no plausible way 
in which that hair could ever have arrived there without the person? What if the evidence 
is so sparse that, no matter how many jurors are consulted, the sheer lack of evidence 
makes it impossible to solve a case conclusively?  

In response, it might be argued that all we need to do to rule out each of these 
scenarios is to increase the number of jurors sufficiently. Suppose each juror views the 
scene of the crime from a different perspective. Or suppose each juror has obtained a 
separate item of evidence about the crime, where all such items of evidence are perfectly 
independent from each other. And suppose further that we can find as many jurors (and 
items of evidence) as we like that all satisfy this description. Then the jury might indeed 
be able to reach a correct decision with a probability approaching 1. In that case the jury 
would be able to aggregate arbitrarily many independent items of evidence into a single 
overall verdict. Call this case A. But often there are not arbitrarily many independent 
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items of evidence. Rather, the jury as a whole reviews the same body of evidence, and 
each juror has to decide whether he or she believes that this body of evidence establishes 
guilt beyond any reasonable doubt. Call this case B. 

Case A does indeed satisfy the conditions of the classical Condorcet jury theorem. 
But case B does not, or so we will argue. We develop a new model for formalizing case 
B. In our model, different jurors are not independent conditional on the state of the world 
(as in the classical Condorcet jury model), but they are independent only conditional on 
the evidence. The model shows that, no matter how many jurors are consulted and how 
competent each juror is, the overall reliability of the jury is always bounded above by the 
probability that the evidence is not misleading. And that probability may differ from case 
to case and may in principle rule out the kind of reliability predicted by the classical 
Condorcet jury theorem. We prove that, as the number of jurors increases, the probability 
that a majority of jurors votes for x, given that the state of the world is x, converges to the 
probability that the evidence about this state of the world is not misleading, a value that is 
typically strictly less than one. The results imply that, to the extent that real world jury 
decisions are more similar to case B than to case A, the classical Condorcet jury theorem 
fails to apply to real world jury decisions.  

In the large literature on the Condorcet jury theorem (see, amongst many others, 
Grofman, Owen and Feld 1983; Young 1988; Austen-Smith and Banks 1996; Berend and 
Paroush 1998; List and Goodin 2001), only a few papers address dependencies between 
the votes of different jurors. Among the discussions of dependencies, there has been a 
focus on the role of opinion leaders – i.e. jurors on whose views the views of other jurors 
are dependent – (Grofman, Owen and Feld 1983; Nitzan and Paroush 1984; Boland 1989; 
Boland, Proschan and Tong; Estlund 1994) and on the effect of free speech on keeping 
correlations low (Lahda 1992). However, existing models of dependencies have usually 
preserved the classical result that the probability of a majority for the correct alternative 
converges to 1 as the number of jurors increases, so long as the votes of different jurors 
are not too highly correlated. In particular, these models do not impose an upper bound 
on the totality of evidence available to the jury, and they usually suggest that the key 
difference between the classical framework and a framework with dependencies (unless 
these dependencies are too great) lies in a different (i.e. slower) speed of convergence, 
but not in a different limit. Our model, on the other hand, shows that dependencies 
resulting from the use of the same body of evidence by all jurors may lead to 
convergence of the reliability of the jury verdict to a different limit, namely to the 
probability that the evidence is not misleading. 
 

2. THE MODEL 
 
We assume there are n jurors, labelled i = 1, 2, ..., n. The state of the world is represented 
by a binary variable X which takes the value 1 for ‘guilty’ and 0 for ‘not guilty’. The 
votes of the jurors are represented by the binary random variables V1, V2, ..., Vn, where 
each Vi takes the value 1 for a ‘guilty’ vote and 0 for a ‘not guilty’ vote. A juror makes a 
correct judgment if and only if the value of Vi coincides with the value of X. As a 
notational convention, we use capital letters to denote random variables and 
corresponding small letters to denote particular values. 

The classical Condorcet jury theorem assumes the following: 
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Competence (Cclassical). For each x∈{0, 1} and all jurors i = 1, 2, ..., n, 
p:=P(Vi=x|X=x)>½. 
 

Independence (Iclassical). For each x∈{0, 1}, V1, V2, ..., Vn are independent from 
each other, given the state of the world x.  

 
DIAGRAM 1: BAYESIAN TREE FOR THE CLASSICAL CONDORCET JURY 

MODEL 
 

X 
 

     
 
 

           V1             V2 V3 ... Vn 
 

The (conditional) independence assumption (Cclassical) can be illustrated by the 
Bayesian tree shown in diagram 1. Each juror receives an independent signal about the 
state of the world and votes exactly on the basis of that signal. The signal is noisy, but it 
is biased towards the truth, in so far as p > ½. The classical Condorcet jury theorem states 
that majority voting over the independent signals received by different jurors reduces the 
noise.  

Let V = Σi=1,…,nVi. Then V > n/2 corresponds to a majority for ‘guilty’, and V < n/2 
corresponds to a majority for ‘not guilty’. 
 
THEOREM 1. (Condorcet jury theorem) If we have (Cclassical) and (Iclassical), then the 
probabilities P(V>n/2|X=1) and P(V<n/2|X=0) converge to 1 as n tends to infinity. 
 

The new model gives up the assumption that each juror receives an independent 
signal about the state of the world. Instead, the state of the world generates a single 
overall signal, E, interpreted as a body of evidence; E is a random variable which takes 
values in some set Ε of all possible bodies of evidence. The value of E can be interpreted 
as the totality of available information about the state of the world, including for instance 
the testimony of a witness or the particular appearance of the defendant in court (relaxed 
or stressed, smiling or serious etc.). What matters is not the particular nature of the signal, 
which will usually have a complex form, but the fact that every juror observes the same 
signal. The probability distribution of E depends on the state of the world. The 
distribution of E given guilt (x=1) is different from that given innocence (x=0). For 
instance, in the case of guilt we might expect a greater probability of observing stressed 
behaviour on the part of the defendant than in the case of innocence.  

This model captures not only the fact that in real world jury decisions the 
available evidence is usually finite and limited, but also the common legal norm that 
jurors are not allowed to obtain or use any evidence other than the one presented in the 
actual courtroom, or to discuss the case with any persons other than the other jury 
members.  
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DIAGRAM 2: BAYESIAN TREE FOR THE NEW MODEL 
 

X 
 
 

 
 

E 
 

     
 
 

           V1             V2 V3 ... Vn 
 

The structure of the new model can be illustrated by the Bayesian tree in diagram 
2. All jurors base their votes solely on the same value e of E. The difference in judgments 
between the jurors results not from different signals, but from different interpretations of 
the same signal e. One juror might interpret a smile on the face of the defendant as a sign 
of innocence, while another juror might give the opposite interpretation. We also allow 
the case that not all jurors have observed the entire signal e. For instance, some jurors 
might have missed the smile of the defendant. Hence, what matters is not that all jurors 
base their decision on the “full” signal e, but that the information used by each juror is 
contained in e. The signal e is thus interpreted as the maximal available information, i.e. 
the information pool out of which each juror’s individual information is taken, whether 
the jury contains 5 or 100 jurors. In a slight abuse of language, a juror’s interpretation of 
e is intended to capture both the fact that the juror might have received only part of the 
information contained in e and the fact that the juror has an individual way of reading that 
information.1 

How “competent” is each juror? While in the classical Condorcet jury model 
competence was modelled by each juror’s probability p > 1/2 of making a correct 
decision, conditional on the state of the world, we here propose to model competence in 
terms of the probability of giving an ideal interpretation of the evidence, conditional on 
that evidence. Specifically, we suppose that for any body of evidence e in Ε there exists 
an “ideal” interpretation or vote, f(e), that would be given by a hypothetical ideal 
observer (interpreter) of e. This ideal observer does not know the true state of the world x, 
but gives the ideal (best possible) interpretation of the available body of evidence. Again, 
f(e) = 1 means that the ideal observer would vote for ‘guilty’ and f(e) = 0 means that the 
ideal observer would vote for ‘not guilty’. We call f(e) the “ideal” vote, by contrast to the 
“correct” vote, which is the vote matching the true state of the world.2 While knowledge 
                                                 
1 This model applies in great generality. It even allows us to capture the case of deliberation among the 
jurors, by interpreting the “body of evidence” e very broadly. In that case, e would include not only the 
“evidence” in a narrow sense, but also the entire jury deliberation process, up to the point where a vote is 
taken. 
2 To make the notion of an ideal vote tractable, we might give a Bayesian account, which we here illustrate 
for the special case where the set Ε of all possible bodies of evidence is countable. Suppose that, by 
knowing the evidence-generating stochastic process, the ideal observer knows the probabilities P(E=e|x=1) 
and P(E=e|x=0). Suppose, further, that the ideal observer assigns some (typically low) prior probability 
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of the true state x would allow a correct vote, the ideal vote results from the best possible 
interpretation of e. Crucially, the ideal vote and the correct vote will differ in the case of 
misleading evidence, for instance when the wind blows a hair of an innocent person to 
the exact scene of the crime (and when this unfortunate person has no other alibi etc.). 

We can now formulate the assumptions of our modified jury model. Our 
competence and independence assumptions resemble the assumptions of the classical 
model, but with the important difference that we conditionalize on the evidence e rather 
than on the state of the world x (as in the classical model). 
 
 Common signal (S). For each e∈Ε and each x∈{0, 1}, the joint probability 
distribution of V1, V2, …,Vn given both E=e and X=x is the same as that given just E=e. 
 
 Informally, the jurors’ votes depend on the true state of the world only through 
the available evidence. Once the evidence is given, what the true state of the world is 
makes no difference to the probability distribution of the jurors’ votes. 
 

Competence (C). For each e∈Ε, each x∈{0, 1} and all jurors i = 1, 2, ..., n, 
pe:=P(Vi=f(e)|E=e)>½. The value of pe depends on e. 
 
 Informally, the probability that juror i’s vote matches the ideal vote f(e) given the 
evidence e is a number pe > ½ that is identical for all jurors.  
 

Independence (I). For each e∈Ε, V1, V2, ..., Vn are independent from each other, 
given the evidence e.  
 
 Informally, once the evidence is given, the votes of different jurors are 
independent from each other.  

In general, the competence pe is a function of the evidence e. If the body of 
evidence e is easily interpretable, for instance in the case of overwhelming evidence for 
innocence, the probability that an individual juror’s vote matches the ideal vote f(e)=0 
might be high, say pe=0.95, whereas if the body of evidence e is sparse or ambiguous that 
probability might be only pe=0.55. Thus our notion of competence is in general a whole 
family {pe : e∈Ε} of probabilities. The term ‘competence’ here corresponds to the ability 
to interpret the different possible bodies of evidence e∈Ε in a way that matches the ideal 
interpretation. For simplicity, one might prefer to replace (C) with the stronger (and less 
realistic) assumption of homogeneous competence, according to which pe is identical for 
all possible e∈Ε.  
                                                                                                                                                 
r:=P(x=1) to the proposition that the defendant is guilty. Then, using Bayes’s theorem, the ideal observer is 
able to arrive at a posterior probability that the defendant is guilty, given the evidence e, i.e. P(x=1|E=e) = 
rP(E=e|x=1) / (rP(E=e|x=1) + (1-r)P(E=e|x=0)). Now the ideal observer might set a (normative) criterion of 
when he or she believes, beyond any reasonable doubt, that the defendant is guilty, given the evidence e. 
Specifically, the ideal observer might vote for ‘guilty’ (i.e. f(e)=1) if P(x=1|E=e) > 1-ε (for some suitably 
chosen ε > 0) and for ‘not guilty (i.e. f(e)=0) otherwise. Different values of the prior probability r 
correspond to what degree of belief the ideal observer assigns to the innocence of the defendant (namely 1-
r) before having seen any evidence; and different values of ε correspond to differentially demanding 
criteria of what degree of belief counts as ‘beyond any reasonable doubt’. These considerations illustrate 
that the notion of an ideal interpretation is, in part, a normative notion. 
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Homogeneous competence (C*). For each e∈Ε, each x∈{0, 1} and all jurors i = 
1, 2, ..., n, p:=P(Vi=f(e)|E=e)>½. The value of p does not depend on e. 
 
3. THE PROBABILITY DISTRIBUTION OF THE JURY’S VOTE GIVEN THE TRUE 

STATE OF THE WORLD 
 
We now derive the probability distribution of the jury's vote V = Σi=1,…,nVi given the true 
state of the world (theorems 2 and 3). We see that, given guilt, the probability of a simple 
majority for guilt is at most as high as (and typically strictly smaller than) it is in the 
classical Condorcet model (corollary 1).  

We first assume (S), (C*) and (I). Since (C*) holds, we further assume for 
simplicity that Ε = {0, 1}, where, for each e∈Ε, f(e) = e. Now, by (C*) and (I), given the 
evidence e, if e=1 then each juror's vote Vi has an independent Bernoulli distribution, 
with a probability p of Vi = 1 and a probability (1-p) of Vi = 0; if e=0 then each Vi also has 
an independent Bernoulli distribution, but with a probability p for Vi = 0 and a probability 
(1-p) for Vi = 1. Hence, given the evidence e, if e=1 the jury's vote V = Σi=1,…,nVi has a 
Binomial distribution with parameters n and p, and if e=0 it has a Binomial distribution 
with parameters n and (1-p): 
 
                          n               n 
P(V=v|E=1) = (   )pv(1-p)n-v,   P(V=v|E=0)=(   )pn-v(1-p)v                (*) 
                          v               v 
 
Now, the probability of obtaining precisely v out of n votes for 'guilty' given the true state 
of the world x is the following: 
 
P(V=v|X=x) = P(V=v|E=1 and X=x)P(E=1|X=x) + P(V=v|E=0 and X=x)P(E=0|X=x). 
 
By (S), conditionalizing on both E=e and X=x is equivalent to conditionalizing on E=e 
only, so that: 
 
P(V=v|X=x) = P(V=v|E=1)P(E=1|X=x) + P(V=v|E=0)P(E=0|X=x). 
 
Since f(E) = E, (*) implies the following theorem: 
 
THEOREM 2. If we have (S), (C*) and (I), the probability of obtaining precisely v out of 
n votes for 'guilty' given the true state of the world x is  
 
                               n                   n 
P(V=v|X=x) = P(f(E)=1|X=x)(   )pv(1-p)n-v + P(f(E)=0|X=x)(   )pn-v(1-p)v.                   
                              v                  v 
 
Note that P(f(E)=0|X=x)=1-P(f(E)=1|X=x). 
 

Theorem 3 below implies that theorem 2 still holds if we relax the assumption that 
Ε = {0, 1} and consider a more general Ε. 

If there is a non-zero probability of misleading evidence – specifically if 
0<P(f(E)≠x|X=x)<1 – the jury's vote V given the state of the world x does not have a 
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binomial distribution, in contrast to the classical Condorcet jury model. The reason for 
this is that the votes V1, V2, ..., Vn are not independent from each other given the state of 
the world x, but they are only independent from each other given the evidence e. The sum 
of dependent Bernoulli variables does not in general have a binomial distribution. If, on 
the other hand, the probability of misleading evidence is zero – i.e. P(f(E)≠x|X=x)=0 – the 
probability in theorem 2 reduces to the one in the classical Condorcet jury model. 
 In the appendix we derive the probability P(V=v|X=x) for the more general case 
where we assume (C) rather than (C*) and where the set of all possible bodies of 
evidence Ε can be more general. Note that since E is a random variable, E induces a 
random variable pE which always takes as its value the competence pe associated with the 
value e of E. To avoid confusion with the random variable E, we write the expected value 
operator as Exp(.). 
 
THEOREM 3. If we have (S), (C) and (I), the probability of obtaining precisely v out of n 
votes for 'guilty' given the true state of the world x is  
 
                n 
P(V=v|X=x) = P(f(E)=1|X=x)(   )Exp(pE

v(1-pE)n-v |f(E)=1 and X=x) 
                v 

 
                  n 
+ P(f(E)=0|X=x)(    )Exp(pE

n-v(1-pE)v|f(E)=0 and X=x). 
                    v 
 

In theorems 2 and 3, by taking x=1 we get the probability of V=v given guilt, and 
by taking x=0 we get the probability of V=v given innocence. Also, by taking x=1 and 
summing the probabilities over all v > n/2, we obtain the probability of a simple majority 
for 'guilty' given guilt; and, by taking x=0 and summing the probabilities over all v < n/2, 
we obtain the probability of a simple majority for 'not guilty' given innocence. 

If (C*) holds, we can deduce an interesting inequality. In the formula of theorem 
2, assume that v>n/2 (more votes for 'guilty' than for 'not guilty'). Then  
 
pn-v(1-p)v =pv(1-p)n-v((1-p)/p)2v-n <pv(1-p)n-v, 
 
since 2v-n>0 and p>1/2. Further since P(f(E)=1|X=x)+P(f(E)=0|X=x)=1, we deduce: 
 
COROLLARY 1. Suppose we have (S), (C*) and (I). Let v>n/2. Then the probability of 
obtaining precisely v out of n votes for 'guilty' given guilt satisfies 
 
    n 
P(V=v|X=1) ≤ (     )pv(1-p)n-v, 
    v 
and the probability of obtaining a majority for 'guilty' given guilt satisfies  
     n 
P(V>n/2|X=1) ≤ ∑v>n/2(   )pv(1-p)n-v. 
     v 
 

Thus the probability of obtaining precisely v votes for 'guilty' given guilt in our 
model is less than or equal to that in Condorcet's model with the same competence 
parameter p. The same holds for the probability of obtaining a majority for 'guilty' given 
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guilt. Similarly, one can show that in our model the probability of a majority for 'not 
guilty' given innocence is bounded above by the corresponding probability in the 
classical model. In both inequalities in corollary 1, equality holds if and only if the 
probability of misleading evidence is zero, i.e. if and only if P(f(E)=0|X=1)=0.  

Informally, unless the evidence always “tells the truth”, the jury in our model will 
reach a simple majority for the correct alternative with a lower probability than in the 
classical Condorcet jury model.  
 

4. A MODIFIED CONDORCET JURY THEOREM 
 
We now state our modified version of the Condorcet jury theorem (theorem 4). The first 
part of the theorem is concerned with the probability that the majority of jurors matches 
the ideal vote, and the second part with the probability that the majority of jurors matches 
the true state of the world.  
  
THEOREM 4. Suppose we have (S), (C) and (I).  
(i) Let W be the number of jurors i∈{1, 2, ..., n} such that Vi = f(E). For each x∈{0,1}, 

P(W > n/2|X=x) converges to 1 as n tends to infinity. 
(ii) P(V>n/2|X=1) converges to P(f(E)=1|X=1) as n tends to infinity, and P(V<n/2|X=0) 

converges to P(f(E)=0|X=0) as n tends to infinity. 
 

Part (i) states that, given the state of the world, the probability that a simple 
majority of jurors matches the ideal interpretation of the evidence converges to 1 as n 
tends to infinity; part (ii) states that the probability that a simple majority of jurors 
matches the true state of the world converges to the probability that the ideal 
interpretation of the evidence is correct, i.e. that the evidence is not misleading. Theorem 
4 immediately implies that, given the state of the world, the probability that there will be 
no simple majority for the ideal interpretation of the evidence converges to 0 as n tends to 
infinity; and the probability that there will be no simple majority that matches the true 
state of the world converges to the probability that the evidence is misleading, i.e. that the 
ideal interpretation of the evidence is incorrect. 

This theorem allows the interpretation that, by increasing the size of the jury, it is 
possible to approximate the ideal interpretation of the evidence, no more and no less. The 
problem of insufficient or misleading evidence cannot be avoided by adding new jurors. 
Irrespective of the size of the jury, the probability of a correct majority decision remains 
bounded above by the probability that the evidence “tells the truth”, i.e. that it leads to an 
ideal interpretation which matches the state of the world. Since there is typically a 
nonzero probability of misleading evidence – i.e. a nonzero probability that the evidence, 
even when ideally interpreted, points to ‘guilt’ when the defendant is innocent or vice-
versa – there is also a nonzero probability that the jury will fail to track the truth, 
regardless of how large the jury is and what the competence parameters pe are in 
assumption (C).3  
                                                 
3 It is possible to prove a slightly stronger result than the one in theorem 4. Given the state of the world x, 
the ratio V/n converges with probability 1 to the random variable defined by pE (>1/2) if f(E)=1 and 1-pE 
(<1/2) if f(E)=0 (<1/2). Among these two possible limits the one that corresponds to a majority for the 
correct alternative happens with probability P(f(E)=x|X=x). Hence, with probability 1, there is convergence 
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5. SUMMARY 
 
On the basis of the Bayesian tree shown in diagram 2 above, we have developed a model 
of jury decision making where all jurors have the same evidence. We have suggested that 
the new model is more realistic than the classical Condorcet jury model. First, it captures 
the fact that in real world jury decisions the available evidence is limited, and that it is 
simply not possible to find arbitrarily many jurors who each have an independent signal 
about the true state of the world. Second, our model is more consistent with the common 
legal requirement that jurors must not obtain or use any evidence other than the one 
presented in the courtroom. This means that, even if – hypothetically – the jurors could 
each obtain an independent signal about the true state of the world, they would be 
required by law not to make use of such information. 

Our model makes three key assumptions: 
• According to the common signal assumption, the jurors’ votes depend on the true 

state of the world only through the available evidence.  
• According to the competence assumption, for each possible body of evidence e, each 

juror has a probability pe greater than ½ of matching the ideal interpretation of the 
evidence e. On the homogeneous version of the competence assumption pe is the 
same for all possible bodies of evidence e, whereas on the heterogeneous version pe 
may depend on e. 

• According to the independence assumption, the votes of different jurors are 
independent from each other conditional on the evidence.  

Then:  
• The probability of a majority decision that matches the true state of the world (given 

that state of the world) is typically less than, and at most equal to, the corresponding 
probability in the classical Condorcet jury model (assuming homogeneous 
competence in our model).  

• As the number of jurors tends to infinity, the probability of a majority decision 
matching the true state of the world (given that state of the world) converges to the 
probability that the evidence is not misleading, i.e. to the probability that the ideal 
interpretation of the evidence matches the true state of the world. Unless the evidence 
is never misleading, that probability is strictly less than one.  

• Our model reduces to the classical Condorcet jury model if and only if we assume 
both that the evidence is never misleading and that the competence parameter pe is 
the same for all possible bodies of evidence (homogeneous competence). If we think 
that these assumptions are inadequate in the case of real world jury decisions, it 
follows that the classical Condorcet jury model, as it stands, fails to apply to real 
world jury decisions. 

 

                                                                                                                                                 
to a stable majority as the number of jurors increases, where this majority supports the correct alternative 
with the probability that the evidence “tells the truth”. 
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APPENDIX 
 
Proof of theorem 3.  
 
First, we use the law of iterated expectations to write 
 
P(V=v|X=x) = Exp(P(V=v|E and X=x)|X=x). 
 
By (S) we have P(V=v|E and X=x) = P(V=v|E), so that we deduce 
 
(*) P(V=v|X=x) = Exp(P(V=v|E)|X=x). 
 
By (C) and (I), conditional on E the votes V1, V2, ..., Vn are independent and Bernoulli 
distributed with parameter pE if f(E)=1 and 1-pE if f(E)=0. Hence the sum V has a 
binomial distribution with first parameter n and second parameter pE if f(E)=1 and 1-pE if 
f(E)=0: 
 
                           n 
  (    ) pE

v(1-pE)n-v if f(E)=1 
     v  
P(V=v|E) = { 
     n 
  (    ) pE

n-v(1-pE)v if f(E)=0. 
     v 
 
In other words, 
 
                       n          n 
P(V=v|E) =  (    ) pE

v(1-pE)n-v1{f(E)=1} +  (   ) pE
n-v(1-pE)v v1{f(E)=0}, 

            v          v 
 
where 1{f(E)=1} and 1{f(E)=0} are characteristic functions (1A  is the random variable defined 
as 1 if the event A holds and as 0 if it doesn’t). 
 
So, by (*) and the linearity of the (conditional) expectation operator Exp(.|X=x), 
                n 
P(V=v|X=x) = P(f(E)=1|X=x)(   )Exp(pE

v(1-pE) n-v |f(E)=1 and X=x) 
                v 

                  n 
+ P(f(E)=0|X=x)(    )Exp(pE

n-v(1-pE)v|f(E)=0 and X=x). � 
                    v 
 
Proof of theorem 4.  
 
(i) Let W be the number of jurors i∈{1, 2, ..., n} such that Vi = f(E). 
 
We conditionalize on E. By (C) and (I), W is the sum of n independent Bernoulli 
variables with parrameter pE. The weak law of large numbers implies that the average 
W/n converges in probability to pE. Since pE>1/2, it follows that 
 
limn→∞P(W>n/2|E)=1.  
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Applying the (conditional) expectation operator on both sides (which corresponds to 
averaging with respect to E), we obtain 
 
Exp(limn→∞P(W>n/2|E) | X=x))=Exp(1 | X=x)=1. 
 
By the dominated convergence theorem, we can interchange the expectation operator 
with the limit operator on the left hand side, so that 
 
limn→∞ Exp(P(W>n/2|E) | X=x) = 1. 
 
By (S) we can replace P(W>n/2|E) by P(W>n/2|E and X=x). This leads to 
 
limn→∞ Exp(P(W>n/2|E and X=x) | X=x) = 1,  
 
and hence by the law of iterated expectations 
 
limn→∞ P(W>n/2 | X=x) = 1. 
 
(ii) Using the weak law of large numbers in a similar way as in (i), it is possible to prove 
that the probability P(V>n/2|E)=P(V/n>1/2|E) converges to 1 if f(E)=1 and to 0 if f(E)=0 
(as n tends to infinity). Hence 
 
(*) limn→∞ P(V>n/2 | E)=1{f(E)=1},  
 
where 1{f(E)=1} is the random variable defined as 1 if f(E)=1 and as 0 if f(E)=0. 
 
By the law of iterated expectations, 
 
P(V>n/2|X=1)=Exp(P(V>n/2|E and X=1)|X=1), which by (S) simplifies to:  
 
(**) P(V>n/2|X=1)= Exp(P(V>n/2|E)|X=1). 
 
Further, we have 
 
P(f(E)=1|X=1)=Exp(1{f(E)=1} |X=1)=Exp(limn→∞ P(V>n/2 | E)|X=1), 
 
where the last step uses (*). We now interchange the expectation operator with the limit 
(by the dominated convergence theorem) and then use (**) to obtain  
 
P(f(E)=1|X=1)=limn→∞ Exp(P(V>n/2 | E)|X=1)= limn→∞ P(V>n/2|X=1). 
 
As for the case X=0, it can be shown similarly that 
 
P(f(E)=0|X=0)=limn→∞ P(V<n/2|X=0). � 
 
 



 12

ACKNOWLEDGEMENTS 
 
A previous version of this paper was presented at the International Summer School on 
Philosophy and Probability, University of Konstanz, September 2002. We are grateful to 
Luc Bovens, Branden Fitelson, Daniel Rost and Jon Williamson for comments and 
discussion. 
 

REFERENCES 
 
Austen-Smith, D., and J. Banks (1996), Information Aggregation, Rationality, and the Condorcet Jury 

Theorem, American Political Science Review 90: 34-45. 
Berend, D., and J. Paroush (1998), When is Condorcet's jury theorem valid, Social Choice and Welfare 15: 

481-488. 
Boland, P. J. (1989), Majority Systems and the Condorcet Jury Theorem, Statistician 38: 181-189. 
Boland, P. J., F. Proschan and Y. L. Tong (1989), Modelling dependence in simple and indirect majority 

systems, Journal of Applied Probability 26: 81-88. 
Estlund, D. (1994), Opinion leaders, independence and Condorcet’s jury theorem, Theory and Decision 36: 

131-162. 
Grofman, B., G. Owen and S. L. Feld (1983), Thirteen theorems in search of the truth, Theory and Decision 

15: 261-278. 
Lahda, K. K. (1992), The Condorcet Jury Theorem, Free Speech, and Correlated Votes, American Journal 

of Political Science 36: 617-634. 
List, C., and R. E. Goodin (2001), Epistemic Democracy: Generalizing the Condorcet Jury Theorem, 

Journal of Political Philosophy 9: 277-306. 
Nitzan, S., and J. Paroush (1984), The significance of independent decisions in uncertain dichotomous 

choice situations, Theory and Decision 17: 47-60. 
Young, H. P. (1988), Condorcet’s theory of voting, American Political Sciene Review 82: 1231-1244. 
 
Addresses for correspondence: F. Dietrich, Group on Philosophy, Probability and Modelling, Center for 
Junior Research Fellows, University of Konstanz, 78457 Konstanz, Germany; 
franz.dietrich@brasenose.oxford.ac.uk; C. List, Nuffield College, Oxford OX1 1NF, U.K.; 
christian.list@nuffield.oxford.ac.uk. 


