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Abstract

In this paper we develop a vector time series model which allows long-term disequilibri-
ums to have epochs of non-stationarity, giving the impression that long term relationships
between economic variables have temporarily broken down, before they endogenously col-
lapse back towards their long term relationship. The autoregressive conditional root (ACR)
process is shown to be geometrically ergodic, stationary and posess all moments under simple
conditions. Furthermore, we establish consistency and asymptotic normality of the maximum
likelihood estimators in the ACR model.

Keywords: Cointegration; Equilibrium correction model; GARCH; Hidden Markov model; Like-
lihood; Regime switching; STAR model; Stochastic break; Stochastic unit root; Switching re-
gression; Threshold autoregression; Unit root hypothesis.

1 Introduction

1.1 The ACR model

Much of macroeconomic theory is concerned with long term relationships between variables

such as the quantity theory of money and purchasing power parity (PPP). The variables are

frequently considered non-stationary and modern econometrics analyses long term relationships

between them using the cointegration framework developed by Engle and Granger (1987). In

terms of dynamics, cointegration allows short term deviations from long term relationships by

imposing stationarity on the transitory disequilibriums.

With the disequilibriums in mind, we introduce a general multivariate non-linear time series

model which allows the disequilibriums to have epochs of seeming non-stationarity, giving the
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impression that the long term relationships have temporarily broken down, before they endoge-

nously collapse back towards their long term relationship. We show that despite the epochs

of seeming non-stationarity the time series is indeed stationary under suitable regularity con-

ditions. Stated differently, the collapses regularise the periods of non-stationarity forcing the

disequilibrium to be globally stationary. This type of behavior is reflected in, for example, an

economic theory model developed by Bec, Ben Salem, and Carrasco (2001) where it is shown

how trading costs in a two-country stochastic general equilibrium model create a region of no

trade where the PPP does not hold, while stationarity holds outside this region.

Our analysis of transitory disequilibriums will be based around an autoregression whose

autoregressive root(s) switches endogenously and stochastically between being possibly unity

and being stable. We call this model an autoregressive conditional root (ACR) model. In

addition to establishing stationarity we also show that the maximum likelihood (ML) estimator

of the parameters in the model are consistent and asymptotically normal. We believe this is

the first paper which provides the distribution theory of the maximum likelihood estimator of a

model which shifts between epochs of being stationary and non-stationary.

1.2 Univariate ACR(1) example

To fix ideas in this introduction we will focus solely on the simplest fully parametric form

corresponding to a univariate autoregression of order one, the ACR(1) process, which is given

by the equation

xt = ρstxt−1 + εt, for t = 1, 2, . . . , T. (1)

Here st is binary, ρ is a real number and εt is an i.i.d.N(0,σ2) sequence. In the next Section

the general vector version, with k lags and no assumed parametric distribution on εt will be

spelt out. Here our aim is to convey the flavour of the model. The ACR(1) model can be

reparametrized as an equilibrium correction model (ECM)

∆xt = stπxt−1 + εt, (2)

where ∆ is the difference operator. We assume the prediction probability has the form

Pr(st = 1|xt−1, εt) = pxt−1 , (3)

where the notation pxt−1 reflects dependence solely on xt−1. By assumption st and εt are inde-

pendent conditionally on xt−1. Vitally if the regime st is zero the process behaves locally like a

random walk, while the case st = 1 implies it is locally like a stationary autoregression of order

one provided |ρ| = |π + 1| < 1.
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Clearly, the dynamics of the regime are determined entirely endogenously and so are similar

to the threshold models of Tong (1990) and Enders and Granger (1998). However, now the

threshold is actually stochastic rather than deterministic. The essential requirement for the

conditional probability pxt−1 , will be that it tends to one as |xt−1| tends to infinity in addition

to it being measurable with respect to xt−1. Importantly we do not bound p· away from one.

In particular, we can allow processes of the type

pxt−1 =
{

1, if |xt−1| > c > 0,
0, otherwise.

which is a Tong (1990) threshold autoregressive process, for it implies

xt =
{

ρxt−1 + εt, if |xt−1| > c,
xt−1 + εt, otherwise.

The implication is that we can view ACR models as softening the thresholds in autoregressive

threshold models.

We show that an initial distribution exists such that xt is indeed strictly stationary and

possess all of its moments provided the regime corresponding to st = 1 is stationary, or equiv-

alently, |ρ| = |1 + π| < 1 in (1) and (2) respectively. No other condition is needed apart from

the mentioned convergence of the probability p·. As emphasized this means that the model can

have epochs of seeming non-stationarity, but at the same time be globally stable or stationary.

Estimation is straightforward for the likelihood function can be computed via a prediction de-

composition. We argue that inference is regular while we briefly mention aspects of inference in

the case of xt being a random walk for the entire period.

In a recent paper, written independently and concurrently from our paper, Gourieroux and

Robert (2001) have studied in detail the above process in the case where there is switching

between white noise and a random walk (i.e. the case of the above process when ρ = 0). Their

wide ranging paper, motivated by value-at-risk considerations in financial economics, allows a

flexible distribution on εt and studies specifically the tail behaviour of the marginal distribution

of xt, the distribution of epochs of non-stationary behaviour and discuss geometric ergodicity

of xt in this case. Our analysis will be complementary, focusing on estimation and asymptotic

inference for use in empirical work in the general and also multivariate version of the ACR

model.

The following simple example allows us to gain a better understanding of the behaviour of

this process. We have chosen to write the dynamics in terms of the logistic transform

λ(xt−1) = log
{
pxt−1/

(
1 − pxt−1

)}
= α + βx2

t−1, (4)
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with α and β being freely varying reals. So long as β is non-negative and α and β are finite,

λ(xt−1) will be bounded and so the process xt in (1) will be stationary as demonstrated below.

Example 1 Figure 1(a) shows a sample path from the simplest Markov ACR process (4), to-

gether with the associated conditional probabilities pxt−1 given in Figure 1(b). The parameter
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Figure 1: (a) Simulations from the Markov model yt. (b) corresponding pt. (c) Likelihood
function as a function of α. (d) Likelihood function as a function of β. Code: regime sim.ox.

values are α = −100, β = 2.0, ρ = 0.5, and σ = 0.8. This process delivers a jagged realisations

for pxt−1, which never spends substantial consecutive periods close to one. This is enough how-

ever for the xt series to be stable, never going much above ten in absolute value. The likelihood

function for this model, as a function of α and β, is drawn in Figures 1(c) and 1(d) respectively.

The likelihood function will be detailed in Section 3 of the paper. It is drawn here by varying

only one parameter at a time, fixing the others at their true parameter values.

1.3 Related models

The ACR model seems new. However, it is related to a number of well known models. Apart

from the already mentioned threshold class of models, perhaps the closest is the stochastic

root model introduced by Granger and Swanson (1997) and further studied by Leybourne,

McCabe, and Mills (1996). Those papers use (1) but place an exogenous process on the root
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— allowing stationary, unit and explosive values. An example of this is where the log of the

root is specified as being a Gaussian autoregression. These models have many virtues, but the

likelihood function cannot usually be computed explicitly. Further, they do not have the clear

cut epoch interpretation of the ACR process.

In the very large Markov switching literature in economics, following Hamilton (1989), the

regime st is regarded as a latent variable which follows a Markov process specified by the prob-

ability Pr (st = 1| st−1, xt−1) = Pr (st = 1| st−1) . Thus in contrast to the ACR process the pre-

diction probability is determined implicitly. In the Markov switching literature st is usually

employed to shift the intercept in a time series model, but it has been used to make the variance

to change (Hamilton and Susmel (1994)) delivering a simple stochastic volatility process and

even to make the root of an autoregression move between a unit root and a stationary root

(Karlsen and Tjøstheim (1990)) or an explosive root (Hall, Psaradakis, and Sola (1999)). In

this framework the regimes are an exogenous process with the observable xt not feeding back

into the regime. The likelihood function for this model can be computed via a relatively simple

filtering argument so long as the model has an autoregressive structure of finite order. This

model can be generalised in a number of ways, allowing explanatory variables to influence the

probabilities which govern the switching between the regimes. Two papers which carries this

out in some detail in the context of macroeconomics are Diebold, Lee, and Weinbach (1994) and

Durland and McCurdy (1994). In statistics and engineering the above model is often called the

hidden Markov model (HMM) and is a special case of a state space or parameter driven model

(e.g. Harvey (1989) and Cox (1981)). An early important reference in the HMM literature is

Baum, Petrie, Soules, and Weiss (1970).

A related approach is the switching regression idea introduced into economics by Goldfeld

and Quandt (1973). In our context this would build a model for the regime st in (1) which can

depend upon explanatory variables and lagged values of the xt process. A simple example of

this is given by defining λ(xt−1) = α + βxt−1 in (4). This is outside our structure as it does not

bound λ (·) away from minus infinity and so there is a possibility that the process will indeed be

absorbed into the random walk state. Hence this model has an entirely different interpretation

than the ACR model. The time series setup of λ(xt−1) = α + βxt−1 was explicitly studied

recently by Wong and Li (2001), although its stochastic properties were not derived. Of course

this can be generalised to allow λ(xt−1) to depend upon many lags of xt or other potentially

helpful explanatory variables.

The conditional expectation of equilibrium correction form of the ACR model is

E(∆xt|xt−1) = πpxt−1xt−1.
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Suppose we again define λ(xt−1) = α + βx2
t−1 then

E(∆xt|xt−1) = π
exp

(
α + βx2

t−1

)
1 + exp

(
α + βx2

t−1

)xt−1.

If we recast this as

∆xt = π
exp

(
α + βx2

t−1

)
1 + exp

(
α + βx2

t−1

)xt−1 + ηt,

where ηt is a martingale difference sequence, then this is a smooth transition autoregression (see

Luukkonen, Saikkonen, and Teräsvirta (1988), Tong (1990) and Granger and Teräsvirta (1993,

Section 4.2)). Hence the ACR model has many of the features of STAR models. Importantly

however, STAR models do not have epochs of nonstationary behaviour.

Finally, recently Engle and Smith (1999) have proposed an interesting stochastic break model

which has some of the above features. They write, in their simplest model

∆xt = qtεt, εt|Ft−1 ∼ N(0, σ2)

and qt is a deterministic function of εt, bounded below by zero and above by one. Further,

∂qt/∂ |εt| is assumed to be finite and strictly negative. A simple example of this is where

qt =
ε2
t

γ + ε2
t

, γ > 0.

This model has shocks which are all permanent but of varying magnitude. It is quite different

from the model we desire, which moves between stationary and non-stationary behaviour, but

is globally stationary. Our model is more in the stochastic root tradition.

1.4 Outline of the paper

This paper has three other main sections. In Section 2 we extend the model to the multivariate

case, including more lags, and derive the stochastic properties of the ACR process including

the existence of moments and stationary solutions. Section 3 gives an asymptotic likelihood

analysis for the multivariate model. In particular, we state conditions under which the maximum

likelihood estimators are consistent and asymptotically normally distributed. We also briefly

discuss the use of various testing procedures to look at special cases of the model structure.

Section 4 discusses possible extensions and finally Section 5 concludes the paper, while in the

Appendix we prove the theorems stated in the paper.

Some notation is used throughout the paper: With A a matrix, ρ(A) denotes the spectral

radius or equivalently, the maximal modulus of the eigenvalues of A. The matrix norm ‖A‖
is given by ‖A‖2 = tr {A′A} and similarly for a vector a, ‖a‖2 = a′a. We use the notational

definition A⊗2 = AA′. Moreover we apply the notation, dL(A, dA) for the differential of the

matrix function L (·) with increment dA; see also Appendix B.
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2 Stability and existence of moments for the vector ACR(k)
process

In this section we introduce the general multivariate ACR(k) process and discuss some of its

properties. In particular we study conditions under which it is stationary and all of its moments

exist.

2.1 The vector ACR(k) process

Our general m-dimensional vector ACR(k) process is defined by the equation

Xt = st (A1Xt−1 + ... + AkXt−k) + (1 − st) (B1Xt−1 + ... + BkXt−k) + εt

= stAXt−1 + (1 − st)BXt−1 + εt (5)

together with the prediction probability equation

P (st = 1|Xt−1, εt) = 1 − P (st = 0|Xt−1, εt) = pxt−1 , (6)

for t = 1, 2, ..., T . We have used the notational convention,

Xt−1 = (X ′
t−1, ..., X

′
t−k)

′ (7)

A = (A1, ..., Ak) and B = (B1, ..., Bk). (8)

Here Ai and Bi are m × m matrices and εt is an i.i.d. mean-zero sequence with variance Ω

positive definite. Furthermore εt is assumed to have a positive and continuous density with

respect to the Lebesgue measure. The two autoregressive regimes are governed by the m × mk

dimensional matrices A and B respectively. As previously noted the notation pxt−1 for the

prediction probability for switches between the two regimes, indicates that it is a function of

Xt−1 alone so that in particular st and εt are independent conditional on Xt−1.

The generalisation differs from the univariate ACR(1) process in (1) in that we allow for a

vector process (of dimension m), a richer lag structure (of order k), potentially non-Gaussian

errors and additional flexibility in the dynamics by the introduction of the additional autore-

gressive regime parameter B. Specifically, the univariate ACR(1) example in (1) has m = 1,

k = 1, A = ρ and B = 1. Here A governs the locally stationary regime, while B = 1 governs

the unit-root regime. In the multivariate extension consider as an example the case of k = 2.

Choosing, say, B = (B1, Im − B1) introduces (at least) m unit-roots in the B regime as desired

and which reflects the flexibility in the dynamics in the current parametrization.

Below we demonstrate how the regime governed by B can have unit and even explosive-roots

while Xt is globally stationary as a process provided the A-regime has no unit or explosive-roots.
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2.2 Stationarity and ergodicity

In order to address stationarity and ergodicity of the ACR(k) process in (5) we consider the

companion form of Xt as given by

Xt = stAXt−1 + (1 − st)BXt−1 + et (9)

P (st = 1|Xt−1, et) = 1 − P (st = 0|Xt−1, et) = pxt−1 (10)

with A, B the mk × mk matrices defined as

A =




A1 A2 · · · Ak

Im 0 · · · 0
. . . . . .

...
0 Im 0


 , B =




B1 B2 · · · Bk

Im 0 · · · 0
. . . . . .

...
0 Im 0




and likewise et = (ε′t, 0, ..., 0)′. By definition Xt is a Markov chain on R
p, p = mk and below we

state the regularity conditions for which this chain is geometrically ergodic and has moments.

The geometric ergodicity implies in particular that a stationary version exists.

We formulate the conditions more generally than the specific choice of A, B and et cor-

responding to the companion form of Xt in (5) is treated. Specifically, we show that if the

eigenvalues of A in absolute value are smaller than one and under suitable conditions on the

functional form of pxt−1 the process Xt has appropriate moments and is stable in the sense that

an invariant distribution exists for Xt. We note as a corollary that this implies that the same

holds for Xt. First, we turn to regularity conditions on the transition probabilities:

Assumption 1 Consider the Markov chain Xt defined by (9) with et an i.i.d. mean zero se-

quence with finite variance, E ‖et‖2 < ∞. With B
p being the Borel σ-algebra on R

p, assume that

for all sets A ∈ B
p and for some integer k ≥ 1, that the k step transition density with respect to

the Lebesgue measure, f ( ·| ·) as defined by

P (Xt ∈ A|Xt−k = x) =
∫

A
f(y|x)dy

is strictly positive and continuous in both arguments.

Assumption 1 is, in particular, satisfied if the sequence of the form et = (ε′t, 0, ..., 0)′ is εt is

i.i.d.N m(0, Ω) with a positive definite covariance matrix, Ω > 0, see Corollary 1. Note also that

we could replace the requirement of continuity by lower semi-continuity.

Next, turn to the assumption on the autoregression matrices A and B:

Assumption 2 The spectral radius of A is smaller than one,

ρ(A) < 1.
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In other words, in the regime governed by A the process behaves – locally – as a stationary

vector autoregressive process. There are no restrictions on the matrix B whatsoever and there-

fore regime switches between stationary and non-stationary, even explosive regimes are allowed

for.

Finally, we turn to the assumption on the functional form of the state probability p·.

Assumption 3 The prediction probability function px is continuous in x and converges to one

as ‖x‖ tends to infinity. Equivalently,

(1 − px) = o(1) (11)

as ‖x‖ → ∞.

As emphasized in the introductory section, of particular interest for us is the case of a logistic

function where

log {px/ (1 − px)} = λ(x) = α + β ‖x‖2 (12)

which is a continuous function in (the norm of) x. Trivially,

(1 − px) = (1 + expλ(x))−1 = o(1)

provided β > 0. In other words, the probability is such that whatever state the process is in,

there is always a non-negative probability that we will (re-)enter the state governed by the A

matrix in (9) corresponding to a stationary regime. In addition, the structure is such that the

further away the process gets from the regime governed by A the probability of staying there

tends to zero.

Theorem 1 Consider the p-dimensional ACR process Xt defined by (9). Then under Assump-

tions 1, 2 and 3, Xt is geometrically ergodic and X0 can be given an initial distribution such

that Xt is stationary. Furthermore, Xt has finite second order moments.

Remark 1 In the special case where B represents a pure random walk regime, Assumption 3

can be replaced by the requirement that px ≥ δ > 0 for all x, where δ is some constant. For the

particular choice of a logistic function in (12) this implies that β ≥ 0 as opposed to β > 0 which

was required for general B.

The results on the existence of higher order moments are generalised in the following way:

Theorem 2 Consider the p-dimensional ACR process Xt defined by (9). Then under Assump-

tions 1, 2 and 3, Xt is geometrically ergodic and has finite 2m’th order moments, E ‖Xt‖2m < ∞
provided E ‖et‖2m < ∞.
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Remark 2 Note that in the case of et being Gaussian trivially E ‖et‖2m < ∞ for all m.

Finally, we are now in position to state the corollary which establishes the properties of the

vector ACR(k) process:

Corollary 1 The multivariate ACR(k) process Xt defined by (5) is geometrically ergodic if pxt−1

satisfies Assumption 3 and if
∣∣∣Im − A1z − ... − Akz

k
∣∣∣ = 0 ⇒ |z| > 1, z ∈ C. (13)

In particular, (X0, ..., X−k+1) = X0 can be given an initial distribution such that Xt is stationary.

Furthermore, E ‖Xt‖2m < ∞ provided E ‖εt‖2m < ∞.

3 Inference

3.1 Likelihood based estimation and testing

In this section we consider asymptotic inference for the multivariate ACR model defined by (5)

and (6) under the specialised assumptions of a logistic prediction probability function (12) as

well as normality of the innovations εt. We study how to test hypotheses which leave the epochs

or mixing structure intact. In addition, we discuss inference for hypotheses, such as the unit root

hypothesis, which do not allow epochs of either mean-reversion or random-walk type behaviour.

3.2 Distribution of the ML estimator

The ACR model is given by (5) as

Xt = stAXt−1 + (1 − st)BXt−1 + εt (14)

for t = 1, ..., T and with A, B and Xt defined in (8). For the statistical analysis we assume

that εt is i.i.d.N(0, Ω) where Ω > 0. Furthermore the logistic prediction probability function

P (st = 1|Xt−1, εt) is given by (12),

log
{
pxt−1/(1 − pxt−1)

}
= λ(Xt−1) = α + β ‖Xt−1‖2 . (15)

The freely varying parameters A, B are mk × mk matrices, α, β are scalars and Ω > 0.

Denote by θ = {A, B, α, β,Ω}, then the log-likelihood function (given the initial observation

X0) can be written as

LT (θ) =
∑T

t=1 log fθ(Xt|Xt−1) =
∑T

t=1t (θ) , (16)

where

t (θ) = log
{
pxt−1φ

A
t + (1 − pxt−1)φ

B
t

}
. (17)
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Here the convenient notation

φM
t = |Ω|−1/2 exp

[−1
2 tr

{
Ω−1(Xt − MXt−1)⊗2

}]
, (18)

for M = A, B has been used for the Gaussian density, deliberately ignoring constants. The

likelihood function in (16) is numerically maximised to obtain the maximum likelihood estimator,

θ̂. Numerical aspects of this tasked are addressed in the next subsection.

Here we state the asymptotic behavior of θ̂ restricting the parameter space appropriately.

It should be emphasized that the results show that the maximum likelihood estimators are

asymptotically Gaussian even if the regime goverened by B allows unit (even explosive) roots,

provided of course that the A regime has only stationary roots. Thus we provide distribution

theory for a model which allows epochs of stationarity and epochs without. As mentioned, we

believe this is the first paper providing this kind of result: In particular in existing literature on

e.g. TAR models, both regimes need stationary roots for distributional theory, or the estimation

is not based on maximum likelihood. We comment further on the results and assumptions

immediately after the theorem.

Theorem 3 Consider the ACR model defined by equations (9), (10) and (12). Then if the

assumption about the characteristic roots in (13) holds for the A-regime and A �= B and finally

Assumption 3 holds, there exists with probability tending to one as T tends to infinity a sequence

of θ̂ = {Â, B̂, α̂, β̂, Ω̂} which satisfies the score equation,

dLT (θ, dθ)|θ=θ̂ = 0

for all dθ. The sequence is consistent,

θ̂
P→ θ,

and furthermore asymptotically Gaussian,

√
T
(
θ̂ − θ

)
D→ N (0, Σ) .

Here Σ−1 is defined in Appendix B, Lemma 3. A consistent estimator of Σ−1 can be derived

from equation (31) corresponding to the observed information. Finally, likelihood ratio tests for

simple hypotheses on θ are asymptotically χ2 distributed.

The proof is based on establishing the standard Cramér type conditions for consistency and

asymptotic normality and is given in Appendix B. Note that also likelihood ratio tests for

composite hypotheses on θ as given by h(φ) = θ, say, are asymptotically χ2 under the usual

(rank) regularity conditions for the mapping h (·).
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The results are derived specifically for the parametrization and functional choice of

λ(x) = α + β ‖x‖2

in (4). However, while our derivations do depend on the chosen logistic structure for the proba-

bilities px, it is straightforward to modify the results to accommodate alternative specifications

of λ(·). Specifically, for transparency we have formulated all sufficient and relevant quantities

in terms of the derivative of λ(·) with respect to the parameters in θ in Lemmas 2, 4 and 5. In

addition recall that the results on ergodicity have been formulated for flexible choices of λ(·).
Clearly the imposed restrictions on the parameter space rule out the possibility of a unit root

in both regimes as well as the possibility of absorption in either of the two regimes. Consider

the univariate case with xt given by (1) or (2). The null of xt being a random walk without any

epochs of stationarity can be parametrized by π = 0 and likewise the null of an autoregressive

process can be reparametrized in the ACR(1) model as γ = 0 where, say, γ = exp(−α). While

both hypotheses are simple, the parameter β vanishes under the null (as does α for the unit

root hypothesis) and usual asymptotic expansions in terms of score and information are therefore

problematic as discussed in general in Andrews and Ploberger (1994), Davies (1987) and Hansen

(1996).

Some related issues have been recently analysed in the context of threshold autoregressive

(TAR) models. Hansen (1997) discusses the theory of Wald type testing for the hypothesis that

one of the regimes in a stationary model is an absorbing state. His theory is based upon the

least squares method. Testing for a unit root in both regimes is treated in Caner and Hansen

(2001) and Bec, Ben Salem, and Carrasco (2001).

3.3 On optimisation of the likelihood

In order to carry out likelihood inference we have to numerically maximise the likelihood func-

tion. Experimenting has lead us to favour maximising the likelihood function via the EM

algorithm (e.g. Dempster, Laird, and Rubin (1977) and Ruud (1991)). With X = (X1, ..., XT )

this regards the indicators s = (s1, ..., sT ) as missing data, iteratively computing the conditional

mean E {log f(X, s)|XT , XT−1, . . . ,X0} and then maximising it with respect to the parameters

of the model. As is well-known repeated switching between these the expectation (E) and the

maximisation (M) steps leads to an algorithm which maximises log f(X).

More precisely for the EM algorithm consider the log-likelihood function for s = (s1, ..., sT )
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and X = (X1, ..., XT ) conditional on X0 as given by

log f(X, s) = −T
2 log |Ω| − 1

2

∑T
t=1tr

[
Ω−1 {Xt − (stA + (1 − st)B)Xt−1}⊗2

]
+ st log

{
pxt−1

(1−pxt−1)

}
+ log

(
1 − pxt−1

)
,

see also (16). Conditioning on XT , XT−1, . . . ,X0 and taking expectations, one finds that

E (st|XT , XT−1, . . . ,X0) = E (st|Xt,Xt−1) = E
(
s2
t |XT , XT−1, . . . , X0

)
= p∗xt

, (19)

where

p∗xt
=

pxt−1φ
A
t

pxt−1φ
A
t + (1 − pxt−1)φB

t

, (20)

with φA
t and φB

t defined in (18). It immediately follows that E {log f(X, s)|XT , XT−1, . . . ,X0}
equals

− 1
2

∑T
t=1tr

{
Ω−1

[
X⊗2

t + p∗xt
(AXt−1)⊗2 + (1 − p∗xt

)(BXt−1)⊗2 − 2(p∗xt
A − (1 − p∗xt

)B)Xt−1X
′
t

]}
(21)

− T

2
log |Ω| + ∑T

t=1

[
p∗xt

log

{
pxt−1(

1 − pxt−1

)
}

+ log(1 − pxt−1)

]
.

The M-step maximises this with respect to the parameters, holding p∗xt
fixed. Importantly the

first two components depend only on A, B and Ω, while the last is a function of only the

parameters which determine pxt−1 . Hence these two parts can be maximised separately.

An attractive feature of this problem is that the maximisation can be carried out analytically.

In particular, maximizing the first two parts in (21) gives,

Â =
∑T

t=1p
∗
xt−1

XtX′
t−1

(∑T
t=1p

∗
xt−1

Xt−1X′
t−1

)−1
,

B̂ =
∑T

t=1(1 − p∗xt−1
)XtX′

t−1

(∑T
t=1p

∗
xt−1

Xt−1X′
t−1

)−1
,

while

Ω̂ = 1
T

∑T
t=1

[
X⊗2

t + p∗xt
(ÂXt−1)⊗2 + (1 − p∗xt

)(B̂Xt−1)⊗2

−(p∗xt
Â − (1 − p∗xt

)B̂)Xt−1X
′
t − XtX′

t−1(p
∗
xt

Â′ − (1 − p∗xt
)B̂′)

]

The last component of (21) can be rewritten as

∑T
t=1

[
p∗xt

λ(Xt−1) − log {1 + exp (λ(Xt−1))}
]
, (22)

which has to be optimised numerically. In cases where λ(Xt−1) is a linear function of past data,

such as in the pure autoregressive scheme

λ(Xt−1) = α + βg(Xt−1),

13



where g(x) = x′x or some other known function, then (22) takes on the form of a logistic

regression for the “observations” p∗xt
. As a result the likelihood function is concave, a property

which extends to any dynamic model where λ(·) is linear in functions of lagged data. For more

general model structures this is not the case which implies the M-step in the EM algorithm has

to be carried out using automatic numerical optimisation algorithms. Having completed the

M-step we have to return to the E-step, to perform another iteration of the algorithm.

4 Potential extensions

In this Section we discuss briefly discuss some natural extensions of the ACR model structure,

focusing on cointegration, deterministic components and conditional heteroskedasticity.

4.1 ACR based cointegration models

At the start of this paper we motivated the development of the ACR model as a way to formalise

the idea that a long term equilibrium or cointegration between variables breaks down yielding a

disequilibrium which is a random walk. As the size of the equilibrium grows so the chance the

long-term relationship reasserts itself increases. Thus in the very long-term the disequilibrium

is stationary.

A generalization of the univariate model to the multivariate case would furthermore allow

for analysis of not only the real exchange rate, but also potentially include, say, money and

bonds markets and in particular interest rate parities — see Taylor (1995) for an overview and

Frydman and Goldberg (2002) for a recent discussion with non-linear type dynamics.

In econometrics there already exists a substantial literature on cointegration models where

the cointegrating relationships change through time. These are usually phrased in terms of

threshold models and leading references include Enders and Granger (1998), Tsay (1989) and

Tsay (1998).

To incorporate the ACR kind of dynamics in cointegration consider the first order m-

dimensional canonical equilibrium correction model as given by

∆Xt = γδ′Xt−1 + εt,

where εt is an i.i.d.N(0, Ω) sequence. Leading references to this model structure include Hendry

(1995), Engle and Granger (1987) and Johansen (1995). The disequilibrium term δ′Xt here

measures the size of the out of equilibrium. Then suppose that the PPP, say, is given by the

univariate process δ′Xt. It immediately follows that the vector ACR process

∆Xt = γstδ
′Xt−1 + εt.

14



has some of the desired features: In particular, the process δ′xt,

∆δ′Xt = st(δ′γ)δ′Xt−1 + δ′εt

is a univariate ACR process and so is strictly stationary using the results discussed above

provided |δ′γ| < 1. Likewise with γ⊥ denoting the m × m − 1 dimensional matrix of full rank

m − 1 and with γ′γ⊥ = 0,

∆γ′
⊥Xt = γ′

⊥εt

there are m − 1 common trends. In epochs where st is zero the series has no cointegrating

relationships even though they exist in the long run.

4.2 Deterministic components

It is straightforward to extend the basic ACR model to handle deterministic components. This

can be carried out without removing the important properties of ergodicity and existence of

moments. Consider, say, the case where the model for the observed Xt allows for a constant

level through the parameter µ which is given by

Xt = µ + Yt

where Yt follows an ACR(1) model. The probabilistic properties of Xt can be directly derived

from those of Yt — in particular the Xt process has a level µ in both regimes. With respect to

estimation, we can write Xt as the solution to

∆Xt = stπ(Xt−1 − µ) + εt

which we reparameterise as

∆Xt = st(πXt−1 − γ) + εt

with π and γ freely varying. This line of argument generalises to flexibly parameterised trend

components. A detailed discussion of these types of issues is given in Nielsen and Rahbek (2000).

4.3 Conditional heteroskedasticity

ACR models could also be developed for models of conditional variance, which is a commonly

used concept in financial econometrics. Consider first the traditional model with

xt|Ft−1 ∼ N(0, σ2
t ),

where the conditional variance follows a GARCH type recursion (see for a review Bollerslev,

Engle, and Nelson (1994)) such as

σ2
t = α0 + α1x

2
t−1 + α2σ

2
t−1 = α0 + α1

(
x2

t−1 − σ2
t−1

)
+ ρσ2

t−1

15



where

ρ = α1 + α2.

Here α0, α1 and α2 are non-negative reals and, say, Ft = σ {xt, σt, ...}. Although this GARCH

model is strictly stationary even if ρ = 1, this unit root implies that the process is not covariance

stationary and the multistep forecasts of volatility will trend upwards. This is often regarded as

being unsatisfactory, however empirically near unit root GARCH models are often estimated.

See the discussion in, for example, Bollerslev and Engle (1993) and Engle and Lee (1999).

We can use the ACR structure to construct a GARCH model which behaves mostly like

a unit root process, but which is regularised by periods of stationary GARCH. This is simply

achieved by writing

xt|Ft−1, st ∼ N(0, σ2
t )

and then we change the conditional variance into

σ2
t = α0 + {(α1 + α2)

st − α2}x2
t−1 + α2σ

2
t−1.

Now when st = 0 the GARCH process has a unit root, while when st = 1 the process is locally

covariance stationary. The idea would be to allow, in the simplest case,

λ(σ2
t−1) = α + γσ2

t−1,

with γ being positive. This would mean that if the conditional variance becomes large the

process has a chance to switch to a covariance stationary process, while then the conditional

variance is low the process behaves like an integrated GARCH.

5 Conclusions

This paper has proposed a new type of time series model, an autoregressive conditional root

model, which endogenously switches between being stationary and non-stationary. The periods

of stationarity regularise the overall properties of the model implying that although the process

has epochs of true non-stationarity overall the process is both strictly and covariance stationary.

This model was motivated by our desire to reflect the possibility that long-term economic

relationships between variables seem to sometimes breakdown over quite prolonged periods, but

when the disequilibrium becomes very large there is a tendency for the relationship to reassert

itself. This type of behaviour is quite often predicted by economic theory. Now we have a rather

flexible time series model which can test for this type of behaviour within the framework of some

established econometric theory.
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Appendix

The Appendix is divided into two parts: Appendix A is concerned with Markov chain theory

which focuses on the essential elements for the proof of geometric ergodicity developed in Section

2. Appendix B is about asymptotic inference in Markov chain models. This is mostly covered

in Section 3 of the paper. Both parts include a brief introduction to the relevant material as

well as the proofs needed in the paper.

A Drift Criteria

A.1 Introduction

To address geometric ergodicity and stationarity of xt Markov chain theory will be used, see e.g.

Meyn and Tweedie (1993) and Chan and Tong (1985) for further details. Let (Xt)t=0,1,2,... be a

general p-dimensional time homogenous Markov chain on (Rp, Bp) which satisfies Assumption 1.

By Lemma 1 below we show that the chain is irreducible with respect to the Lebesgue measure

µ, it is aperiodic and compact sets C ⊂ R
p are small, see also An, Chen, and Huang (1997,

Lemma 2.5) and Hansen and Rahbek (1998) for similar results in different settings.

Lemma 1 Under Assumption 1 the homogenous Markov chain (Xt)t=0,1,.. on (Rp, Bp) is µ-

irreducible, aperiodic and compact sets C ⊂ R
p are small.

Proof of Lemma 1: First note that for any n, the n-step transition probabilities can be defined

recursively as follows, P 1 (A|x) = P (X1 ∈ A|X0 = x) and

Pn (A|x) =
∫

RpP
n−1 (A| y) dP 1 (y|x) for n ≥ 2, x ∈ R

p and A ∈ B
p
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with P the chains kernel. Assumption 1, states that for some n = k,

P k (A|x) =
∫
Af(y|x)dy,

with f positive and continuous. Next turn to irreducibility, aperiodicity and smallness of com-

pact sets:

(i): Irreducibility with respect to µ follows by Meyn and Tweedie (1993, Proposition 4.2.1

(ii)) by simply noting that

∑∞
n=1P

n (A|x) ≥ P k (A|x) =
∫
Af (y|x) dy > 0

by Assumption 1 and the result follows.

(ii): An irreducible chain is periodic if it has period d > 1 and aperiodic if it has period

d = 1. If it has period d > 1,then by Meyn and Tweedie (1993, Theorem 5.4.4)) there exists

disjoint sets D0, D1, ..., Dd−1 in B
p such that

P 1 (Di+1|x) = 1 for x ∈ Di and i = 0, 1, .., d − 1 (mod d)

and furthermore

ψ(
⋃d

i=1Di−1)c = 0,

where ψ is a maximal irreducibility measure. Now, by Meyn and Tweedie (1993, Proposition

4.2.2 (ii)) the Lebesgue measure µ is absolutely continuous with respect to ψ and therefore also

µ(
⋃d

i=1Di−1)c = 0.

For this to hold at least one of the sets D1, say, must have µ(D1) > 0 which by Assumption 1

again implies P k (D1|x) > 0 for all x. Iterating k times one gets for some j the contradiction,

P k (D1|x) = 0 with x ∈ ⋃
i�=jDi.

Hence the chain has period d = 1 and is therefore aperiodic.

(iii): If C is a compact set, f (·|·) attains its minimum on C × C which is strictly positive

since f > 0. In other words,

f (y|x) ≥ δ

for some δ > 0 and (x, y) ∈ C × C. For any x ∈ C and any A ∈ B
p,

P k(A | x) ≥ P k(A ∩ C | x) =
∫
A∩Cf(y|x)dy ≥ δµ (A ∩ C) .

Hence for all x ∈ C, P k(· | x) is minorized by µ(· ∩ C ) and therefore C is by definition small,

cf. Meyn and Tweedie (1993, p. 106). �
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A.2 Proof of Theorem 1

Proof of Theorem 1: By Lemma 1 Xt is a Markov chain for which we can apply the drift

criterion as stated in e.g. Meyn and Tweedie (1993, Theorem 15.0.1 (iii)). As to the choice of

drift function we use

g(x) = 1 + x′V x ≥ 1, V =
∑∞

0 Ai′Ai

corresponding to the second order moment of Xt. The drift function is well-defined by Assump-

tion 2 as ρ (A ⊗ A) < 1. An equivalent choice of drift function appears in Feigin and Tweedie

(1985) for the analysis of the class of random coefficients autoregressive processes (which does

not include the ACR). It follows that

E(g(Xt)|Xt−1 = x) = 1 + tr{V Ω} + pxx′A′V Ax + (1 − px)x′B′V Bx

= 1 + tr{V Ω} + x′A′V Ax + (1 − px)h(x), (23)

where

h(x) = x′(B′V B − A′V A)x.

It follows that,

E(g(Xt)|Xt−1 = x) = 1 + tr(ΩV ) + x′A′V Ax + (1 − px)h(x)

=
{

1 + ε + tr(ΩV ) + x′V x − x′x + (1 − px)h(x)
g(x)

}
g(x)

=
{

1 − x′x − tr(ΩV ) − (1 − px)h(x)
g(x)

}
g(x).

Next, define for some λc > 0 the compact set

C =
{

x ∈ R
p| x′V x ≤ γc

}
.

On Cc it holds by definition that

g(x) = 1 + x′V x ≤ x′V x
(
1 + 1

γc

)
≤ 2x′V x

and therefore for γc large enough,

x′x−tr(ΩV )−(1−px)h(x)
1+x′V x ≥ x′x

2x′V x − tr(ΩV ) + (1 − px)h(x)
1 + x′V x

≥ 1
2ρ(V ) −

tr(ΩV ) + (1 − px)h(x)
1 + x′V x

≥ η > 0

using Assumption 3 which implies

tr(ΩV ) + (1 − px)h(x)
1 + x′V x

→ 0
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as ‖x‖2 → ∞. In short,

E(g(Xt)|Xt−1 = x) ≤ (1 − η)g(x)

for x ∈ Cc. On C, E(g(Xt)|Xt−1 = x) given by (23) which is continuous and hence bounded

on the compact set. �

A.3 Proof of Corollary

Proof of Corollary 1: The process Xt is a mk-dimensional ACR(1) Markov chain for which the

k-step transition density is continuous and positive. To see this note that the density of Xt+k

conditional on Xt is given by,

f(Xt+k|Xt) = f (Xt+k, . . . , Xt+1|Xt, . . . , Xt−k+1) =
f (Xt+k, . . . , Xt, . . . , Xt−k+1)

f (Xt, . . . , Xt−k+1)

=
∏k

i=1f (Xt+i|Xt−1+i, . . . , Xt−k+i) ,

where the last line follows by k-dependence in Xt. Hence by definition f(Xt+k|Xt) as each term

in the product is continuous and positive and Theorem 1 gives the result.

A.4 Proof of Theorem 2:

Proof of Theorem 2: Apart from modifications, the proof structure is similar to the proof of

Theorem 1 above and the proof of Feigin and Tweedie (1985, Theorem 5). We illustrate the

proof for m = 2 or fourth order moments. Define

X̄t = (Xt ⊗ Xt), Ā = (A ⊗ A) and likewise B̄ = (B ⊗ B).

Next note that under Assumption 2, ρ(Ā ⊗ Ā) < 1 and therefore the p2 × p2 positive definite

matrix V̄ as well as the drift function ḡ are well-defined, where

V̄ =
∑∞

i=0Ā
i′Āi and ḡ(x) = 1 + x̄′V̄ x̄ with x̄ = (x ⊗ x).

Similarly to the proof of Theorem 1, one finds

E(ḡ(Xt)|Xt−1 = x) = 1 + x̄′Ā′V̄ Āx̄ + K(A, V̄ , x) + (1 − px)h̄(x). (24)

Here

h̄(x) = x̄′{B̄′V̄ B̄ − Ā′V̄ Ā}x̄ + K(B, V̄ , x) − K(A, V̄ , x) = O(‖x‖4)

and K(M, V̄ , x) for M = A,B is the sum of terms which apart from x, M and V̄ involves 4th

order moments of εt, 3rd order moments (4 terms) and second order moments (6 terms). Similar

to Feigin and Tweedie (1985, p.13) it follows that

K(M, V̄ , x) ≤ (25)

ρ(V̄ )
{

6ρ(M′M)tr(Ω) ‖x̄‖ + 4ρ(M′M)1/2 ‖x̄‖1/2 E ‖εt‖3 + E ‖εt‖4
}

= O(‖x‖2).
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Now,

E(g(Xt)|Xt−1 = x) = 1 + x̄′Ā′V̄ Āx̄ + K(A, V̄ , x) + (1 − px)h̄(x)

=
{

1 − x̄′x̄−K(A,V̄ ,x)−(1−px)h̄(x)
1+x̄′V̄ x̄

}
ḡ(x) ≤ (1 − η)ḡ(x)

for η > 0, provided that for some constants κi, using (25),

‖x̄‖2 ≥ ρ(V̄ )
{

η ‖x̄‖2 + κ1 ‖x̄‖ + κ2 ‖x̄‖1/2 + κ3

}

which holds if ηρ(V̄ ) < 1 and ‖x̄‖2 large enough since ḡ(x) = ‖x‖4. The rest now follows as in

the proof of Theorem 1. �

B Regularity conditions for the asymptotic inference

As noted the proof establishes standard Cramér or Wald type conditions which appear in various

forms in the literature. We apply the formulation in Billingsley (1961) Theorems 2.1 and 2.2.

The results therein are formulated for a Markov chain dependence structure which by Basawa,

Feigin, and Heyde (1976) apply also to the k-dependence structure as in the ACR(k) model.

The regularity Conditions 1.1 and 1.2 in Billingsley (1961) corresponds to (B1)-(B7) Basawa,

Feigin, and Heyde (1976) and these we restate as Conditions 1 and 2 below for the current case.

Some notation is needed in order to handle derivatives of functions of matrices, see Magnus

and Neudecker (1988) for a general introduction to matrix differential calculus. Consider the

mapping G,

G : R
k×l → R

m×n

where k, l, m and n are integers. Then G is differentiable of order three in X ∈ Ξ ⊂ R
k×l if

G(X + H) = G(X) + dG(X, H) + d2G(X, H, H) + d3G(X, H, H, H) + o
(
‖H‖3

)

as ‖H‖ → 0. Here, say, dG(X, H) is the differential of G at X with increment H and X + H

is in the interior of the set Ξ. To ease the presentation we use the notation dG(X, dX) below.

Although we shall not use this here, we note that alternatively one can work with the Jacobian,

∂

∂vec(X)
vec {G(X)}

and that the differential and Jacobian are connected through the vec-operator by the identity,

vec {dG(X, H)} =
[
∂vec {G(X)}
∂ {vec(X)}′

]′
vec(H)

Likewise for the second order derivative or Hessian, see Magnus and Neudecker (1988).
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B.1 First regularity condition

Condition 1 For the transition density fθ (Y |X)

(i): For all X the set of Y for which fθ (Y |X) > 0 does not depend on θ.

(ii): For all Y,X the log-likelihood t(θ) = log fθ is well-defined except for a set of measure zero

with respect to fθ (Y |X). Also fθ is three times continuously differentiable in θ.

(iii): Edt(θ, dθ)2 < ∞ and

E
(
dt(θ, dθ)2

)
= −E

(
d2t(θ, dθ, dθ)

)
> 0 (26)

for all dθ.

(iv): For each θ there exists a neighbourhood N(θ) of θ such that

E sup
θ̃∈N(θ)

∣∣d3t(θ, dθ, dθ, dθ)
∣∣ < ∞ (27)

Together the Lemmas 2, 3 and 4 in the following show that Condition 1 applies to the ACR

model.

Lemma 2 With pxt−1 on the logistic form in (15) the first order differential for the model in

(9) is given by

dt(θ, dθ) =
(
p∗xt

− pxt−1

)
dλ(θ, dθ) +

{
p∗xt

d log φA
t (θ, dθ) +

(
1 − p∗xt

)
d log φB

t (θ, dθ)
}

(28)

such that

dt (θ, dA) = p∗xt
tr
(
Ω−1eAtX′

t−1dA′)
dt (θ, dB) = (1 − p∗xt

)tr
(
Ω−1eBtX′

t−1dB′)
dt

(
θ, d(α, β)′

)
=

(
p∗xt

− pxt−1

)
d(α, β)zt

dt (θ, dΩ) = −1
2 tr

(
Ω−1dΩ

)
+ 1

2 tr
[{

p∗xt
eAte

′
At + (1 − p∗xt

)eBte
′
Bt

}
Ω−1dΩΩ−1

]
.

Here p∗xt
is defined in (20), φA

t , φB
t are given by (18) and finally,

eMt = Xt − MXt−1 for M = A, B (29)

zt =
(
1, ‖Xt−1‖2

)′
. (30)

Proof of Lemma 2: The result follows by direct differentiation of the log likelihood function in

(16) combined with the identity (20). �

Next turn to the second order differential.
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Lemma 3 Under the assumptions of Theorem 3 then

d2t(θ, dθ, dθ) (31)

=
{

p∗xt
d2 log φA

t (θ, dθ, dθ) +
(
1 − p∗xt−1

)
d2 log φB

t (θ, dθ, dθ)
}
− (

1 − pxt−1

)
pxt−1 {dλ(θ, dθ)}2

+
(
1 − p∗xt−1

)
p∗xt−1

{
dλ(θ, dθ) + d log φA

t (θ, dθ) − d log φB
t (θ, dθ)

}2
.

Note that,

d log φA
t = tr

(
Ω−1eAtX′

t−1dA′) (32)

d2 log φA
t (θ, dA, dA) = tr

(
Ω−1dAXt−1X′

t−1dA′) (33)

such that in particular,

d2t(θ, dA, dA) = −p∗xt
tr
(
Ω−1dAXt−1X′

t−1dA′) (34)

+ (1 − p∗xt
)p∗xt

{
tr
(
Ω−1eAtX′

t−1dA′)}2

d2t(θ, d(α, β)′, d(α, β)) =
{
(1 − p∗xt

)p∗xt
− (1 − pxt−1)pxt−1

} {d(α, β)zt}2 (35)

d2t(θ, dΩ, dΩ) = tr
{(

1
2 − [

p∗xt
eAte

′
At + (1 − p∗xt

)eBte
′
Bt

]
Ω−1

) (
Ω−1dΩΩ−1dΩ

)}
+ (1 − p∗xt

)p∗xt

[
1
2 tr

{
(eAte

′
At − eBte

′
Bt)Ω

−1dΩΩ−1
}]2 (36)

Moreover, (26) in Condition 1 holds.

Note that the expressions for the score and ‘information‘ can alternatively be derived by using

the EM algorithm and treating st as unobserved, see Louis (1982) and Ruud (1991).

Proof of Lemma 3: It follows directly that

d2t(θ, dθ, dθ) = p∗xt
d2 log φA

t (θ, dθ, dθ) +
(
1 − p∗xt

)
d log φB

t (θ, dθ, dθ)

+
(
p∗xt

− pxt−1

)
d2λ(θ, dθ, dθ) +

[
dp∗xt

(θ, dθ) − dpxt−1(θ, dθ)
]
dλ(θ, dθ)

+ dp∗xt
(θ, dθ)

(
dφA

t (θ, dθ) − dφB
t (θ, dθ)

)
which equals (31) using the identities

dpxt−1(θ, dθ) =
(
1 − pxt−1

)
pxt−1dλ(θ, dθ)

dp∗xt
(θ, dθ) =

(
1 − p∗xt

)
p∗xt

d log
(

p∗xt

1 − p∗xt

)
=

(
1 − p∗xt

)
p∗xt

(
dλ(θ, dθ) + d log φA

t (θ, dθ) − d log φB
t (θ, dθ)

)
and the fact that d2λ(θ, dθ, dθ) = 0. In particular, we find (34)-(36) by using (32) and (33) as

well as standard matrix calculus results such as d log |Ω| = tr
{
Ω−1dΩ

}
.
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Next to see that e.g. E
(
dt(θ, dA)2

)
= −E

(
d2t(θ, dA, dA)

)
for all p×p matrices dA we use

the conditional independence of st and εt given Xt−1: First note that

steAt = st(Xt − AXt−1) = st {(st − 1)[A − B]Xt−1 + εt} = stεt

and hence using (20),

E
(
p∗xt

eAt

∣∣Xt−1

)
= E (E (st|Xt,Xt−1) eAt|Xt−1) = E (stεt|Xt−1) = 0. (37)

Recall that by definition

E
(
p∗xt

∣∣Xt−1

)
= E (st|Xt−1) = pxt−1 . (38)

Therefore

(
dt(θ, dA)2

)
+ d2t(θ, dA, dA) = p∗xt

[
tr
{
Ω−1eAtX′

t−1dA′}2 − tr
{
Ω−1dAXt−1X′

t−1dA′}]

and it holds that

E
((

dt(θ, dA)2
)

+ d2t(θ, dA, dA)
∣∣Xt−1

)
= 0

as desired. Likewise for the remaining terms in (26) the results follow by repeated use of the

additional identities

(1 − st)(eBt − εt) = 0 (39)

E
(
(1 − p∗xt

)eBt

∣∣Xt−1

)
= 0 (40)

E
(
p∗xt

eAte
′
At + (1 − p∗xt

)eBte
′
Bt

∣∣Xt−1

)
= stΩ + (1 − st)Ω = Ω (41)

Cov
(
tr
{
εtε

′
tP

}
, tr

{
εtε

′
tQ

})
= 2tr {PΩQΩ} (42)

for P, Q symmetric p×p matrices. For instance, using (42) together with (41) and (40) it follows

that

E (dt(θ, dΩ))2 + E
(
d2t(θ, dΩ, dΩ)

)
= 1

4E
[
tr
{
εtε

′
tΩ

−1dΩΩ−1
}]2 − [

1
4 tr

{
Ω−1dΩ

}2 + 1
2 tr

{[
Ω−1dΩ

]2}] = 0.

Next, observe that E(dt(θ, dθ))2 > 0 for all dθ, is equivalent to linear independence of the first

order differentials or simply,

dt(θ, dA) + dt(θ, dB) + dt(θ, d(α, β)′ + dt(θ, dΩ) = 0

implies dA = dB = d(α, β) = dΩ = 0. Note initially that by the definition of p∗xt
in (20) then

p∗xt
− pxt−1 = pxt(1 − pxt)(φ

A
t − φB

t ) (43)

24



Thus if A = B then by (43) p∗xt
= pxt−1and the claimed implication does not hold. More precisely,

conditioning on Xt−1 and choosing dA = ρdB �= 0 for some real ρ, dt(θ, dA) + dt(θ, dB) = 0.

This is a consequence of the fact that conditional on Xt−1, and with α and β known, the

considerations simplify to the well-known for mixed normal models, see e.g. Titterington, Smith,

and Makov (1985). Therefore we focus on the non-singularity of the derivative with respect to

(α, β)′,

dt(θ, d(α, β)′ = dt

(
θ, d(α, β)′

)
=

(
p∗xt

− pxt−1

)
d(α, β)zt

=
(
p∗xt

− pxt−1

) (
dα + ‖Xt−1‖2 dβ

)
By (43) and Assumption 3,

(
p∗xt

− pxt−1

) �= 0 almost surely (as β > 0). Next, the proof

of geometric ergodicity of Xt implies that the Markov chain has the Lebesgue measure as a

irreducibility measure. This again implies, by the Lebesgue decomposition, that the invariant

measure has a component which has a strictly positive density w.r.t. Lebesgue measure and

hence that,

Pr
(
‖Xt−1‖2 �= constant

)
> 0.

and therefore dt(θ, d(α, β)′ �= 0 almost surely. �

Lemma 4 Under the assumptions of Theorem 3 then (27) in Condition 1 holds.

Proof of Lemma 4: The result is shown by using Lemma 3 and noting that with

vM
t = d log φM

t = tr
{
Ω−1

[
XtX′

t−1 − MXt−1X′
t−1

]
dM

}
(44)

for M = A, B, cf. (32), then

∣∣vM
t

∣∣ ≤ κ1

∥∥Xt−1X
′
t

∥∥ + κ2

∥∥Xt−1X′
t−1

∥∥
for θ̃ ∈ N (θ) and some constants κi, i=1,2. Consider first the direction of A,

∣∣d3t(θ, dA, dA, dA)
∣∣

=
∣∣∣(p∗xt

− 1)p∗xt
vA
t tr

{
Ω−1dAXt−1X′

t−1dA′} + (1 − 2p∗xt
)p∗xt

(
vA
t

)3
∣∣∣

≤ κ̃1

∣∣vA
t

∣∣ ‖Xt‖2k + κ̃2

∣∣vA
t

∣∣3
for some constants κ̃i, i=1,2. Hence

Eθ sup
θ̃∈N(θ)

∣∣d3t(θ, dA, dA, dA)
∣∣

is finite by existence of all moments of Xt. Apart from tedious calculus similar results hold for

the remaining third order differentials. �
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B.2 Second regularity condition

Condition 2 Independently of choice of initial distribution and as T → ∞:

(v): Provided φ(·, ·) is measurable and E ‖φ (Xt,Xt−1)‖ < ∞, then for each θ

1
T ΣT

t=1φ (Xt,Xt−1)
P→ Eφ (Xt,Xt−1) .

(vi): Furthermore,
1
T ΣT

t=1dt (θ, dθ) D→ N
(
0, E [dt(θ, dθ)]2

)
,

where E [dt(θ, dθ)]2 satisfies (26).

Lemma 5 Condition 2 holds for the ACR model under the assumptions of Theorem 3.

Proof of Lemma 5: Note that dt(θ, dθ) is a Martingale difference sequence with respect to

Ft = σ (Xt, Xt−1, ...) . Specifically,

E {dt(θ, dθ)| Ft−1} = E {dt(θ, dθ)|Xt−1} = 0

using the expression for the differentials in Lemma 2 together with the identities (37), (38), (40)

and (41) applied in the proof of Lemma 3. The established geometric ergodicity and existence

of moments imply that
1
T

∑T
t=1E

(
[dt(θ, dθ)]2

∣∣∣Xt−1

)2

converges in probability by the law of large numbers in Meyn and Tweedie (1993, Theorem

17.0.1). Furthermore, the Lindeberg condition in Brown (1971) applies and the claimed asymp-

totic normality of the first order differential follows by Brown (1971). The chain defined by

X̃t = (Xt, Xt−1), t = 1, 2, .. is geometrically ergodic and Condition 2 (v) using follows again by

Meyn and Tweedie (1993, Theorem 17.0.1). �
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