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Abstract
Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in
empirical macroeconomics, but suffer from the large number of parameters employed and the res-
ulting estimation uncertainty associated with their impulse responses. In this paper we propose
general-to-specific model selection procedures to overcome these limitations. After showing that
single-equation procedures are efficient for the reduction of the SVAR, but generally not for the re-
duction of its reduced form, the proposed reduction procedure is computer-automated usingPcGets
and its small-sample properties are evaluated in a realistic Monte Carlo experiment. The model se-
lection procedure is shown to recover the DGP specification from a large unrestricted SVAR model
with controlled size and power. The impulse responses generated by the selected SVAR are com-
pared to those of the unrestricted and reduced VAR and found to be more precise and accurate. The
proposed reduction strategy is then applied to the US monetary system considered by Christiano,
Eichenbaum and Evans (1996). Although the selection process is hampered by the misspecification
of the unrestricted VAR, the results are consistent with the Monte Carlo and question the validity of
the impulses responses generated by the full system.
JEL Classification: C51, C32, E52.
Keywords: Model selection; Impulse responses; Vector autoregression; Structural VAR; Causal or-
der; Data mining.

1 Introduction

Over the last two decades, vector autoregressive (VAR) models have emerged as an important research
tool for the empirical analysis of macroeconomic time series, partly because of the critique in Sims
(1980) of traditional macro-econometric modelling. VARs have been widely exploited for the descrip-
tion of numerous macroeconomic data sets, offering fruitful insight on the interrelations between eco-
nomic variables. The popularity of VARs is due to various advantages of the approach: First, the
flexibility of the VAR framework in producing econometric models with useful descriptive characterist-
ics, within which statistical tests of economically meaningful hypothesis can be executed. Secondly, the
ease of the approach, as econometric models can be formulated and data characterized without having
to invoke economic theory to restrict the dynamic relations between variables. Thirdly, the character-
ization of macroeconomic models, as many completely specified economic models give rise to VAR
representations as the reduced form of the variables of the system. Fourthly, the compatibility with
quite a wide variety of hypotheses regarding the formation of expectations. Despite these advantages,
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it is widely acknowledged in the literature that, in general, the innovations of VARs are not identified
with the underlying structural errors due to the correlation of residuals across equations as in the case
of instantaneous causality,. Therefore, the impulse responses generated by such a VAR do not possess a
structural interpretation. While there is no unique best way to deal with this problem, a popular way of
overcoming the problem, since Sims (1980), is the transformation of the residuals to orthogonal form by
triangulating the system, which involves a causal ordering of the variables. The transformed VAR allows
the interpretation of the evolution of the system as a function of the orthogonalized innovations in the
variables of the system. A related approach to respond to the problem of interpreting VARs has been the
development of structural vector autoregressions (SVARs), which introduce ‘theoretical’ restrictions to
identify the underlying shocks. The SVAR approach tends to impose just enough restrictions to permit
a coherent interpretation of the shocks to the system. In this paper we focus on SVARs made recurs-
ive in contemporaneous variables. In contrast to SVARs in the spirit of Blanchard and Quah, 1989,
identification is achieved by short-run restrictions specifying the causal ordering of the variables in the
system.

SVAR models suffer from the fact that they rarely impose any restrictions upon the dynamics in
their implied structural equations. For example, the relatively small structural VAR models of Bernanke
and Blinder (1992) and Sims (1992) for the US economy have the distinctive feature that each struc-
tural equation is saturated with lagged variablesi.e. the dynamics are essentially unrestricted. In such a
just-identified SVAR, the number of parameters grows with the square of the number of variables and
quickly exhausts the degree of freedom (“curse of dimensionality”). Due to the large number of model
parameters, the structural equations of the SVAR are not only estimated imprecisely, but also hard to
interpret. These considerations point to the need for reductions of the systems which involve the utiliz-
ation of exclusion restrictions upon the dynamics contained in each structural equation, so as to allow
for easier interpretation of the system. It seems sensible to employ model reduction procedures, which
so far have been mainly used in the single-equation framework. For the construction of a recursive
SVAR of the Australian economy, Dungey and Pagan (2000) employ a modelling approach combining
simplifications based on statistical tests and economic considerations. In this paper, we present a reduc-
tion process proceeding by imposing zero restrictions according to the outcome of statistical tests and
abstract from the use of economic theory for the derivation of overidentifying restrictions

The existing literature on VAR model selection has mainly focused on the selection of lag order,
p, of an otherwise unrestricted reduced-form VAR. In these selection procedures, a model is usually
selected by an information criterion which penalizes the likelihood function for the number of paramet-
ers. Lütkepohl (1991) discusses various strategies for selecting subset VAR models (i.e., VARs with
zero constraints on the coefficients), which are based on the optimization of a specified model selec-
tion criterion for a given maximal order of the VAR including full search, search over complete VAR
matrices, top-down and bottom-up specification of the distributed lag lengths etc. Br¨uggemann and
Lütkepohl (2000) consider step-wise-regression-type single-equation reduction paths where the critical
value is chosen such that an acceptance of the null hypothesis guarantees a marginal increase in a given
information criterion.

In this paper, we propose ‘General-to-specific’ (Gets) model selection procedures for SVAR models
designed to overcome the limitations of just-identified SVAR models by reducing the number of required
parameters. We will argue that the reduction and identification of SVAR models is a natural area for
the application ofGetsreduction procedures. The proposed reduction process is designed to ensure that
the reduced SVAR model will convey all the information embodied in the unrestricted SVAR. This is
achieved by a joint selection and diagnostic testing process: starting from the unrestricted, congruent
general model, standard testing procedures are used to eliminate statistically-insignificant variables, with
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diagnostic tests checking the validity of reductions, ensuring a congruent final selection. By reducing
the complexity of the just-identified SVAR and simultaneously ensuring that the reduced SVAR will
convey all the information embodied in the unrestricted VAR, the selected simpler, more compact model
provides an improved statistical description of the economic world (see Hendry, 2000, for an overview
of the so-called ‘LSE’ methodology). A further merit of this modelling approach is that it systematically
checks for the presence of statistical misspecifications. In a substantial number of papers, the restrictions
used to identify the VAR are imposed without establishing the congruence with the data (e.g. absence
of regime changes and the constancy of the estimated coefficients: see,inter alia, Hendry and Mizon,
2000). For the economic interpretation of the SVAR and the generality of the derived impulse responses,
it is therefore essential to ensure the congruence of the assumptions made.

The recent developments in automatic model selection initiated by Hoover and Perez (1999) sug-
gests that the operational characteristics of some computer-automated model selection algorithms are
excellent across a wide range of states of nature. For the computer implementation of the proposed
model selection procedure for SVAR, we naturally focus onPcGetsdeveloped by Hendry and Krolzig
(2001). PcGetsautomates general-to-specific (Gets) modelling for linear, dynamic, single-equation
models based on the outlined theory of reduction. For a more detailed description of the algorithm
see Hendry and Krolzig (2003). In Krolzig (2001) and Br¨uggemann, Krolzig and L¨utkepohl (2002),
computer-automated model selection algorithms such asPcGetswere examined for the reduction of
reduced-form VAR models and found to deliver reasonable results. It will be shown that single-equation
procedures such asPcGetsare efficient for the reduction of reduced-form VAR models under the con-
dition of conditional independence, and for recursive structural VAR models in general.

The structure of the paper is as follows: The following section (§2) defines the reduced-form and
structural VAR model studied in this paper.§3 discusses the theoretical properties ofGetsreduction
procedures for the reduction of VAR processes. The small sample characteristics, foremost its selec-
tion properties and the precision and accuracy of the generated impulse-responses, of the proposedGets
model-selection procedure as implemented byPcGetsare then investigated by simulation. In the real-
istic Monte Carlo experiment of§4, the data generating process is an over-identified trivariate SVAR(1)
and the general unrestricted model is an SVAR(5) or VAR(5). An empirical illustration with a US mon-
etary system based on Christianoet al. (1996) evaluating the usefulness of the proposed approach for
the analysis of large macroeconomic data sets, follows in§5. In §6 we outline generalizations of the
proposed modelling approach (i) for the selection of the causal order of the variables of the system, (ii)
for the reduction of cointegrated time series models and (iii) for the search of simplifications as well as
omitted variables in identified simultaneous equation models. Finally§7 concludes.

2 The vector autoregressive model

2.1 The reduced-form VAR

The basic model considered in the following is a vector autoregression possibly including deterministic
terms and with independent Gaussian errors: then-dimensional time series vectoryt is generated by a
stationary vector autoregressive process of orderp, denoted VAR(p) model,

yt = ν +
p∑

i=1

Aiyt−i + εt, (1)

wheret = 1, . . . , T , theAi andν are coefficient matrices and the initial values ofY0 = (y0, . . . ,y1−p)
are fixed. Also,det (IK − A1z − . . . − Apz

p) 6= 0 for |z| ≤ 1. The innovation processεt is an
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unobservable Gaussian zero-mean vector white noise process with a time-invariant positive-definite
variance-covariance matrixE[εtε

′
t] = Σ is given by:

εt ∼ NID(0,Σ). (2)

The infinite-order vector moving-average representation of the VAR in (1) is

yt = µ +
∞∑

j=0

Ψjεt−j , (3)

whereµ = (
∑p

i=1 Ai)
−1

ν andΨ(L) =
(
I − ∑p

j=i AiL
i
)−1

, such that for VAR(1) processes,Ψj =

Aj . The(k, l)-th elementψkl,j of the MA matrixΨj can be interpreted as the reaction of variablek in
response to a unit shock in variablel, j periods ago.

The assumption that the shocks occur only in one of the variables, as implicitly made in this type
of impulse response analysis, is fully justified under conditional independence, but problematic if the
residuals are correlated. In the later case, the VAR can be readily transformed to interpret the evolution
of the system as a function of orthogonalized innovations in any of the variables. Defineη∗

t = P−1εt

by decomposingΣ asΣ = PP ′, whereP is a lower triangular matrix, such thatη∗
t ∼ NID(0, IK). The

orthogonalized vector moving average representation is given by:

yt = µ +
∞∑

j=0

ΨjPP−1εt−j = µ +
∞∑

j=0

Φ∗
jη

∗
t−j , (4)

whereΦ∗
0 = P andΦ∗

j = ΨjP. It is a well-known fact that orthogonalized impulse-responses, which
are based on a Choleski decomposition of the variance-covariance matrix of the reduced-form VAR, are
not invariant against changes in the (causal) ordering of the variables.

2.2 The structural VAR

The type of structural vector autoregressive (SVAR) processes considered in this paper is:

Byt = δ +
p∑

i=1

Γiyt−i + ηt, (5)

whereB, Γi andδ are coefficient matrices and the innovation processηt is an unobservable Gaus-
sian zero-mean vector white noise process with a time-invariant diagonal variance-covariance matrix
E[ηtη

′
t] = Ω:

ηt ∼ NID(0,Ω). (6)

The SVAR in equation 5 can be considered a particular simultaneous equation model in the spirit of the
Cowles approach. Particularly, it is a recursive system of the sort proposed by Wold (1949) and Strotz
and Wold (1960) and closely related to the concept of causal ordering introduced by Simon (1953).

To recover the structural parameters it is useful to consider the structural VAR in equation (5) in its
reduced-form. The relation to the VAR in (1) is given by:

Σ = B−1ΩB−1′,

Ai = B−1Γi for i = 1, . . . , p, (7)

ν = B−1δ.
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The uniqueness of the model for the given structure, which guarantees the estimableness of the structural
parameters, is ensured by the following set just-identifying restrictions:

ωij = 0 for i 6= j,

βii = 1 for i = 1, . . . , n, (8)

βij = 0 for i < j.

The infinite-order structural vector moving-average representation results from (3) byεt−j =
B−1ηt−j as:

yt = µ +
∞∑

j=0

ΨjB−1ηt−j = µ +
∞∑

j=0

Φjηt−j , (9)

whereΦ(L) =
(
B − ∑p

i=1 ΓiL
i
)−1

with Φ0 = B−1. For a given causal ordering of the variables in
the SVAR, the representation (9) differs from (4) only by the missing adjustment for the standard errors
of theηkt. In other words, the relation to (4) is given byη∗

t = Ω− 1
2 ηt.

3 General-to-specific reductions procedures for VAR models

VAR modelling is a natural area for the application ofGets: The unrestricted VAR(p) model constitutes
the general unrestricted model (GUM) defining the model space to be searched for the unknown data
generating process (DGP), which as we presuppose is a subset of the unrestricted VAR. Such systems
can be analyzed one equation at a time, since every equation has the same set of regressors, but each
variable is the regressand in turn.

The considered model selection procedure is of the form

ξ : χ → Ξ : Y → ξ̃ = ξ(Y), (10)

whereχ is the observation space,Ξ is the model space, which collects all subsets models of unrestricted
VAR, and Y is the observed sample. The selection problem consists of inclusion versus exclusion
decisions for each coefficient of the full VAR and results in the binary selection vectorξ̃ ∈ Ξ = {1, 0}n

with ones signaling inclusion and zeros elimination of the coefficient,n is the number of coefficients
in the model. For a reduced-form VAR without deterministic terms we have thatn = K2p. Thus the
dimension of model space, dim(Ξ) is 2K2p. We assume that the unrestricted VAR is congruent: the
model space is consistent and includes the true selection vectorξDGP ∈ Ξ.

TheGetsreduction process relies on a classical, sequential-testing approach (see,inter alia, Hendry,
1995 and 2000) . Different critical values are set for multiple and single selection tests, and for dia-
gnostic tests. Denote byη the vector of significance levels for the misspecification tests (diagnostics)
and byα the vector of significance level for the various selection tests. During the specification search,
the current specification is simplified only if no diagnostic test rejects its null. This corresponds to a
likelihood-based model evaluation, where the likelihood function accepts the probability density func-
tion of modelξ, only if the sample information coheres with the underlying assumptions of the model

itself, i.e. min
(
η̃(Y; θ̃ξ) − η

)
< 0, where the vector of diagnostic test statisticsp-values,̃η(Y; θ̃ξ), is

evaluated at the maximum likelihood estimateθ̃ξ under modelξ, and mapped into its marginal rejection
probabilities.

Since jointly selecting and diagnostic testing eludes theoretical analysis, we approximate theGets
reduction process by:

ξ̃ = arg max
ξ∈Ξc

{
max
θ

[
1
T

(
2LT (θξ) − cT (αT )n(θξ)

)]}
, (11)
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whereLT (θξ) is the log-likelihood resulting for the selected modelξ at the parameter vectorθξ for
a sampleYT of sizeT andn(θξ) is the number of free parameters in the vectorθ associated with
selectionξ. The structure is similar to information criteria considered in the literature such as AIC with
cT = 2 (see Akaike, 1985), BIC withcT = log T (see Schwarz, 1978), and HQ withcT = 2 log(log T )
(see Hannan and Quinn, 1979). But in contrast to those, theGetsselection process also ensures the
congruence of a selected model, thusξ̃ ∈ Ξc whereΞc is the subset ofΞ consisting of all congruent
models.

The statistical properties of the proposed model selection procedure will me measured as the de-

viation of the selected model from the true model,
∥∥∥ξ̃ − ξDGP

∥∥∥, usually expressed in terms of size,
power and the probability finding the truth. For the framework considered here, the implications of
the selection in terms of the accuracy and precision of impulse responses and predictions is at least as
important. But before we analyze the properties of the procedure proposed here within a realistic Monte
Carlo example in§4, we investigate the critical issue of complexity.

System procedures have the disadvantage that the number of subset models of aK-dimensional
VAR(p) with an unrestricted variance-covariance matrix is given by2K2p (without deterministic terms).
Even for model selection procedures based on a single criterion such as the usual information criteria,
a full search over all possible candidates is computationally unfeasible: in aK-dimensional VAR(p)
without deterministic terms there areK2p coefficients, any full search requires the estimation of a total
of 2K2p subset models. Already for a four-dimensional VAR(p), the computational costs are immense:
a full search procedure has to check 65,536 subset models of order one, 4,294,967,296 forp = 2,
2.8 × 1014 for p = 3, 1.8 × 1019 for p = 4 and so on. The challenge for sequential simplification
and testing procedure for the system, comparable toPcGetsin single equations, is even greater. Such
is the chance to miss the DGP in such a high-dimensional model universe even with the most advanced
multi-path encompassing search algorithm. It is therefore imperative to the restrict the dimensionality of
the model universe by decomposing the selection problem into manageable sub-tasks. Single equation
procedure do so by partitioning the model space intoK subspaces,Ξ = Ξ1×· · ·×ΞK , with dim(Ξk)=
2Kp. The critical question is whether there a loss in efficiency by analyzing the equations of a VAR once
at a time using single-equation model selection algorithms rather than analyzing the VAR with a system
procedure.

3.1Getsreductions of reduced-form VAR models

We start by investigatingGetsreductions of the reduced-form VAR(p) model defined in equation (1) in
the case of a diagonal variance-covariance matrix, such that the equations of the system are unrelated to
each other:

Proposition 1 (Reduction under conditional independence).Suppose that in the reduced-form VAR
defined in equation (1), the variance-covariance matrixΣ is diagonal,i.e.all σij = 0 for i 6= j. Then, all
possible reductions of the system can be efficiently estimated by OLS, and model-selection procedures
can operate equation-by-equation without a loss in efficiency.

Proof. Conditional independence ofyt conditional on its pastYt−1 allows the factorization of the
probability density function ofyt in terms of its marginals:

fy(yt|Yt−1) =
n∏

k=1

fyk
(ykt|Yt−1).
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This implies that the log-likelihood functionLT (θ) can be separated with regard to the parameters of
interest,θk, of each equationk = 1, . . . ,K of the system which can be varied freely:

LT (θ) =
K∑

k=1

{
T∑

t=1

ln fyk
(ykt|Yt−1;θk)

}
=

K∑
k=1

LkT (θk).

Consequently, all possible reductions of the system can be (asymptotically) efficiently estimated by
single equation methods (OLS under normality), and reduction procedures can be applied equation-by-
equation without a loss of (asymptotic) efficiency.

Proposition 1 states that the efficiency of single-equation model selection algorithms depends on the
absence of instantaneous causality. In other words, if the variance-covariance matrix of the system is
diagonal,i.e., all σij = 0 for i 6= j, the system can be analyzed as collection of single-equation models.
Hence, single-equation reduction procedures can be applied under optimality conditions. In VAR mod-
els with instantaneous causality between the variables, the separability property of the log-likelihood
function is lost: due to the contemporaneous correlation of variables in the system, the equations of
the VAR are only seemingly unrelated to each other. Since eliminating a variable in one equation af-
fects the others, single-equation model selection procedures are inefficient. This is directly related to
the properties of the OLS estimation method, which is inefficient for subset VARs with non-diagonal
variance-covariance matrices whereas full information maximum likelihood (FIML) and estimated gen-
eralized least squares (EGLS) are (asymptotically) efficient. For the efficient reduction of interdependent
reduced-form VAR models,Getsalgorithms have to be implemented as system procedures.

3.2 Efficiency ofGetssingle-equation reduction procedures for SVAR models

In the following proposition, we argue that the recursive structure of SVAR models as defined in (5)
re-establishes conditions for the efficiency of single-equationGetsreduction procedures. The crucial
point is that the researcher does not aim to reduce the reduced-form VAR, but the recursive SVAR:

Proposition 2 (Reduction under causal ordering).Suppose that the GUM is a just-identified SVAR
of the form defined by (5). Then, all possible reductions of the SVAR can be efficiently estimated by
OLS, and model-selection procedures can operate equation-by-equation without a loss in efficiency.
Proof. Causal ordering ofyt allows the factorization of the probability density function ofyt in terms
of marginals and conditionals:

fy(yt|Yt−1) = fy1(y1t|Yt−1) · fy2|y1
(y2t|y1t,Yt−1) · . . . · fyK |y1,...,yK−1

(yKt|y1t, . . . , yK−1t,Yt−1).

This implies that the log-likelihood functionLT (λ) can be separated with regard to the parameters of
interest,λk, of each equationk = 1, . . . ,K of the system:

LT (λ) =
T∑

t=1

ln fy1(y1t|Yt−1,λ1) +
K∑

k=2

{
T∑

t=1

ln fyk|y1,...,yk−1
(ykt|y1t, . . . , yk−1t,Yt−1,λk)

}

=
K∑

k=1

LkT (λk).

In other words, y1, . . . , yk−1 are weakly exogenous for the parameter vectorλk =
(βk1, . . . , βkk−1, γk1.1, . . . , γkk.p, ω

2
k)

′ of the k-th equation of the SVAR, which can be varied freely.
Thus, reductions procedures for the SVAR can be implemented as single-equation techniques.

The great advantage of separability of the log-likelihood function for the recursive SVAR is that
the model space generated by the just-identified SVAR which is of dimension2K(Kp+(K−1)/2), can be
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searched inK subspaces of dimensions2Kp to 2Kp+(K−1). In §4 this case is studied in a Monte Carlo
experiment, where we usePcGetsas the computer-automated single-equationGetsreduction procedure.

4 Monte Carlo results

Although the sequential nature of the proposed model-selection process and its combination of variable-
selection and diagnostic testing has eluded most attempts at theoretical analysis, an evaluation of the
properties of the model-selection process can be achieved by simulation. In the Monte Carlo (MC)
experiment considered here, the properties of theGetsreduction of SVAR models are studied under the
conditions of proposition 2, which allows the optimal use of single-equation reduction procedures. For
the computer implementation of the proposed model selection procedure we usePcGets.

4.1 Design of the MC

The DGP is a three-dimensional Gaussian SVAR(1) model with the causal orderingy1t → y2t → y3t: 1 0 0
β21 1 0
β31 β32 1


 y1t

y2t

y3t

 =

 γ11 0 γ13

0 γ22 γ23

0 0 γ33


 y1t−1

y2t−1

y3t−1

 +

 η1t

η2t

η3t

 (12)

whereηt ∼ NID


 0

0
0

 ,
 ω2

1 0 0
0 ω2

2 0
0 0 ω2

3


 .

Its reduced-form is given by the VAR(1) model: y1t

y2t

y3t

 =

 γ11 0 γ13

−β21γ11 γ22 γ23 − β21γ13

−β21γ11 −β32γ22 γ33 − β31γ13 − β32γ23


 y1t−1

y2t−1

y3t−1

 +

 ε1t

ε2t

ε3t

 (13)

whereεt ∼ NID


 0

0
0

 ,
 ω2

1 −β21ω
2
1 −β31ω

2
1

−β21ω
2
1 ω2

2 + β2
21ω

2
1 −β32ω

2
2 + β31β21ω

2
1

−β31ω
2
1 −β32ω

2
2 + β31β21ω

2
1 ω2

3 + β2
31ω

2
1 + β2

32ω
2
2


 .

We can think of the following ‘deep’ structure associated with recursive structure of the SVAR:

∆y1t = −α(y1t−1 − y3t−1) + η1,

∆y2t = −β(y2t−1 − y3t−1 − y1t) + η2,

∆y3t = γ(y2t − y1t) − ρy3t−1 + η3,

which for α = 0.4, β = 0.4, ρ = 0.4, andγ = 0.5, results in the following parameterization of the
SVAR in (12): 1 0 0

0.4 1 0
0.5 −0.5 1


 y1t

y2t

y3t

 =

 0.6 0 0.4
0 0.6 0.4
0 0 0.6


 y1t−1

y2t−1

y3t−1

 +

 η1t

η2t

η3t

 (14)

ηt ∼ NID


 0

0
0

 ,
 1 0 0

0 1 0
0 0 1


 .



9

Thus the reduced form of the SVAR in (14) is given by the VAR(1) model: y1t

y2t

y3t

 =

 0.60 0 0.40
−0.24 0.60 0.24
−0.42 0.30 0.52


 y1t−1

y2t−1

y3t−1

 +

 ε1t

ε2t

ε3t

 (15)

εt ∼ NID


 0

0
0

 ,
 1.00 −0.40 −0.50

−0.40 1.16 0.78
−0.50 0.78 1.74


 .

With the eigenvalues ofA1 being0.672±0.351 and0.376, the DGP is stationary with a zero mean. The
sample sizeT is 100 and the number of replicationsM is 1000.

In the Monte Carlo experiment we intend to evaluate the properties of the proposedGetsselection
procedure. For the computer-automation of the reduction process, we use the conservative strategy of
Hendry and Krolzig (2001). In addition to the selection properties discussed in the next section, the
analysis of the simulation experiment will focus on the accuracy and precision of the resulting impulse-
responses.

4.2 Selection properties

Search commences from a just-identified SVAR(5) or unrestricted VAR(5) model. Although the just-
identified structural VAR and the unrestricted reduced-form VAR are identical models, they generate
different model spaces. Therefore aGetsreduction process commencing from one of these will al-
most surely select a different reduced model than when starting with the other. An important difference
between the selected VAR and SVAR arises from the fact that in subset VAR models the variance-
covariance matrix remains unrestricted during the search, while in subset SVAR models the free ele-
ments of the matrixB will be subject to significance tests like any other coefficient of the system,
resulting in a restricted variance-covariance matrix of its reduced form.

The selection properties ofGetsreduction process proposed in this paper are reported in table 1 in
terms of the ability of finding the DGP, the dominance of the selected model by the unknown DGP, as
well as its size and power.

Given the characteristics of the DGP, the probability to find the DGP byPcGetsis in between78.8%
and86% for the SVAR, and22.2% to 86% for the VAR. While naturally dependent on the design of
DGP, these figures indicate that it is possible to retrieve the structure hidden in the data with a high
probability. For the VAR, the success probabilities appear to be small, but they have to be compared
to the probability of finding the DGP when starting the search from it, which is in between33.3% and
100%. As the overall probability to find or miss the DGP is not very informative, we check by an
encompassing test whether the deviation of the selected model from the DGP results in a sound model
that, based on statistically criteria, could not have been improved by knowing the truth. As long as
PcGetsis able to find a model that is not dominated by the DGP itself, the reduction process has been
a success. If the specific model is dominated by the DGP, the search algorithm has failed. Our results
indicate that the risk of finding a model which is dominated by the DGP is relatively small (2.6% to
4.2%) when compared to the probability that the selected model dominates the truth, which is 3 to 15
times higher. Note that, by construction, the outcome of thePcGetssearch algorithm will always beat
the unrestricted VAR(5) model.

Next we analyze the ‘size’ and ‘power’ of the proposed model-selection process, namely the prob-
ability of including variables that do not (do) enter the DGP in the selected model. The ‘size’ ofPcGets
(the average probability of selecting a nuisance regressor) is with1.57% to 3.76% slightly higher than
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Table 1 Selection properties.
Model SVAR VAR
Equation y1,t y2,t y3,t y1,t y2,t y3,t

DGP found when commencing from it 1.000 0.982 0.999 1.000 0.333 0.386
DGP found byPcGets 0.860 0.788 0.843 0.860 0.222 0.282
Non-deletion probability 0.140 0.189 0.155 0.140 0.325 0.264
Non-selection probability 0.020 0.056 0.021 0.020 0.738 0.675
DGP dominated byPcGets 0.099 0.153 0.113 0.099 0.554 0.550
PcGetsdominated by DGP 0.026 0.042 0.031 0.026 0.033 0.038
Size 0.0157 0.0232 0.0169 0.0157 0.0376 0.0305
Size (reliability based) 0.0116 0.0165 0.0129 0.0116 0.0315 0.0263
Power 0.9880 0.9770 0.9920 0.9880 0.7227 0.7420
Power (reliability based) 0.9874 0.9727 0.9912 0.9874 0.7062 0.7250

the nominal size of at-test which is1%. The size can be further improved by basing the selection
decision on the reliability of the variables, which depends on the significance of the variables in two
overlapping subsamples. In this case, the ‘size’ shrinks to1.16% – 3.15%. The ‘power’ ofPcGets(the
average probability of selecting a DGP variable) is in between99.2% and72.27%. Overall, PcGets
works more than satisfactorily despite the presence of collinearity among the regressors.

Having clarified the ‘success’ and ‘failure’ ofPcGetsin selecting a parsimonious representation of
the structure found in the data, be proceed by checking how the selection properties of the proposed
reduction strategy are translated into accuracy and precision of the impulse responses implied by the
empirical model.

4.3 Impulse-response analysis

We now evaluate the properties the impulse-responses implied by the following models:

(i) the true SVAR(1) defined in (14);
(ii) the pseudo-true VAR(1) defined in (15);

(iii) a just-identified SVAR(5) with intercept, which nests (14) and is identical to an unres-
tricted VAR(5) with intercept nesting (15);

(iv) a Getsreduction of the just-identified SVAR(5) in (iii);
(v) aGetsreduction of the VAR(5) in (v).

We are interested in the responses to structural and non-structural shock as laid out by the vector
moving-average representations (3) and (9). The responses to the (normalized) structural shocksη∗

t =
Ω− 1

2 η are given by:
∂yt+h

∂η∗
t
′ = Φh = AhP = (B−1Γ)hB−1Ω

1
2 . (16)

The responses to the non-structural shocksεt result as:

∂yt+h

∂ε′t
= Ψh = Ah = (B−1Γ)h. (17)

The impulse-responses functions implied by the models (i) to (v) are illustrated in figure 1, without
loosing generality, for the response of the third variabley3t+h to shocks in the first variabley1t of the
system. The graph on the left displays the responses ofy3t+h to the structural shockη1t. Plotted are
their mean response (over theM = 1000 replications) and their90% confidence intervals as implied
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Figure 1 Impulse-response function: mean and 90% confidence intervals.

by the 0.05 and 0.95 quantiles. The graph on the right shows the responses to the non-structural shock
ε1t. Note that the90% confidence intervals for impulse-responses of the true and unrestricted SVAR
as well as reduced-form VAR only reflect estimation uncertainty, while the confidence intervals for
impulse-responses of the models selected byPcGetsalso account for the specification uncertainty.

Except for the subset VAR models, the mean impulse responses plotted in figure 1 are all close to
each other, indicating that consistent estimates of the impulse responses can not only be obtained from
unrestricted VAR models, but also from the selected SVAR model. Although the selected SVAR will
always differ from the DGP with a positive probability, the squared biases (and confidence intervals)
of its impulse responses are not much greater than for the true SVAR, when its structure but not its
parameters are known and necessitates estimation. The bias problem caused by single-equation based
reductions of the reduced-form VAR is nicely illustrated in figure 1: Some of the dynamic multipliers
are falsely shrunk to zero as statistically insignificant autoregressive parameters are eliminated from the
model

Figure 2 exhibits the squared bias of all structural and non-structural impulse responses. The bias
can be defined as:

Bias [φij,h] = φ̄ij,h − φij,h (18)

whereφij,h denotes the theoretical impulse response as implied by the model in equation (14) andφ̄ij,h

is the mean impulse response of one of the empirical models (i) to (v):

φ̄ij,h =
1
M

M∑
m=1

φ̃
(m)
ij,h . (19)

In a completely analogous fashion, the squared bias of the non-structural impulse-responses can be
calculated. While for the true SVAR, the pseudo-true reduced-form VAR and the selected SVAR, the



12

0 10 20

0.005

0.010
∂y1t+h/∂ η*

1t

True SVAR Selected SVAR True VAR Unrestricted VAR Selected VAR 

0 10 20

0.005

0.010

0.015
∂y2t+h/∂ η*

1t

0 10 20

0.005

0.010

0.015
∂y3t+h/∂ η*

1t

0 10 20

0.005

0.010
∂y1t+h/∂ ε1t

0 10 20

0.005

0.010
∂y2t+h/∂ ε1t

0 10 20

0.005

0.010
∂y3t+h/∂ ε1t

0 10 20

0.005

0.010
∂y1t+h/∂ η*

2t

0 10 20

0.005

0.010
∂y2t+h/∂ η*

2t

0 10 20

0.005

0.010

0.015
∂y3t+h/∂ η*

2t

0 10 20

0.005

0.010
∂y1t+h/∂ ε2t

0 10 20

0.005

0.010
∂y2t+h/∂ ε2t

0 10 20

0.005

0.010

0.015
∂y3t+h/∂ ε2t

0 10 20

0.005

0.010
∂y1t+h/∂ η*

3t

0 10 20

0.005

0.010
∂y2t+h/∂ η*

3t

0 10 20

0.005

0.010
∂y3t+h/∂ η*

3t

0 10 20

0.005

0.010
∂y1t+h/∂ ε3t

0 10 20

0.005

0.010
∂y2t+h/∂ ε3t

0 10 20

0.005

0.010
∂y3t+h/∂ ε3t

Figure 2 Squared bias of structural and non-structural impulse-responses.

accuracy of the non-structural impulse-responses is as good as that of the structural impulse responses,
the unrestricted VAR looses accuracy when structural impulse responses are considered. This is because
the Choleski decomposition fails to detect the structure in the variance-covariance matrix resulting from
the zero parameters in theB matrix.

The uncertainty associated with the estimated impulse-responses can be measured by their variance:

Var [φij,h] =
1
M

M∑
m=1

(
φ̃

(m)
ij,h − φ̄ij,h

)2
, (20)

which for the Gaussian framework analyzed here, allows the construction of confidence bands in the
usual way. For the non-structural impulse-responses, we analyze the elements ofΨh instead ofΦh.
Figure 3 plots the variances of estimated structural and non-structural impulse-responses for the model-
ling strategies (i) to (v). Limiting the number of parameters by model reduction clearly helps to reduce
estimation uncertainty. Consequently, the selected models produce more precisely estimated impulse
responses than the full VAR. As seen in figure 1, the confidence bands for the impulse responses of the
selected SVAR are much closer to those of the true SVAR than the ones of the just-identified SVAR. For
this purpose, also single-equation based reductions of the reduced-form VAR are beneficial.

Finally, the overall error in estimating the impulse responses can be quantified by the mean square
error:

MSE [φij,h] =
1
M

M∑
m=1

(
φ̃

(m)
ij,h − φij,h

)2
= Bias2 [φij,h] + Var [φij,h] (21)

for the response ofyi,t+h to a unit impulse to the structural shock termηj,t and accordingly by
MSE [ψij,h] for the response to a non-structural shock in equationj, εj,t. The results are displayed
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Figure 3 Variance of structural and non-structural impulse-responses.

in figure 4 with the structural impulse responses on the left and non-structural impulse responses on the
right.

As the MSE summarizes the effects of bias and variance, we get a clear picture of the relative
precision and accuracy of the impulse response functions generated by modelling strategies (i) to (v).
The true SVAR naturally delivers the best results throughout, followed by the pseudo-true VAR, and
then the SVAR selected byPcGets. These three models consistently dominate the unrestricted VAR as
well as the selected VAR. Forh < 8, the unrestricted VAR and the equation-by-equation reduced VAR
are close competitors, but for longer horizons, theMSEs of the subset VAR decline faster. Since the
DGP and the estimated models are stable, the theoretical as well as the empirical impulse responses fade
out with increasing distance between action and reaction. TheMSEs converge to zero with increasing
h producing the hump shaped plots in figure 4.

The precision and accuracy of the model selection strategies are summarized in table 2 by calculating
simple averages of the measures in (18) to (21) such as

MSE[φ] =
1

K2H

K∑
i=1

K∑
j=1

H∑
h=1

MSE [φij,h] , (22)

for the non-structural impulse-responses and, analogously,MSE[ψ] for the non-structural impulse-
responses. For the sake of convenience, the results have been normalized to one for the unrestricted
VAR (just identified SVAR).

Table 2 provides a clear ranking of the modelling strategies: The true SVAR delivers the best results,
followed by the pseudo-true VAR and the SVAR selected by proposedGetsmodel reduction procedure.
The loss in accuracy due to ‘reconstruction’ of the unknown structure is very small when compared to the
loss in accuracy when working with an unrestricted VAR (just-identified SVAR). Reducing the reduced-
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Figure 4 Mean square error of structural and non-structural impulse-responses.

Table 2 Precision and accuracy of impulse response functions.
structural impulse responses non-structural impulse responses
Bias2 Variance MSE Bias2 Variance MSE

true SVAR (i) 0.1244 0.3106 0.2945 0.2353 0.1489 0.1498
pseudo-true VAR (ii) 0.1536 0.3559 0.3384 0.3204 0.2013 0.2025
selected SVAR (iv) 0.1992 0.4465 0.4252 0.3112 0.2604 0.2610
selected VAR (v) 0.9912 0.7916 0.8088 5.2855 0.6631 0.7105
unrestricted (S)VAR (iii) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

form VAR with single-equation methods when the system is interdependent can cause a substantial bias;
but it avoids the inflation in variance, which affects the full VAR so badly.

Altogether, our MC results highlight the dangers of (i) using impulse response analysis for unres-
tricted, richly parameterized VAR models and (ii) employing single-equation reduction procedures for
reduced-form VAR models when the conditions stated in proposition 1 are not met. While our Monte
Carlo results suggest that the case for usingGetsreductions of SVAR models for impulse-response ana-
lysis is a strong one, it is still worth emphasizing two major limitations of the analysis presented here:
First, a larger variety of DGPs has to be considered before we can conclude that the features found
here are indeed systematic properties of proposedGetsprocedure for the reduction of SVAR models.
Secondly, it would be interesting to compare theGetsreduction procedure proposed in this paper with
other model selection strategies discussed in the literature. For VAR models satisfying the conditional
independence condition of proposition 1, Br¨uggemannet al. (2002) compared alternative computerized
model-selection strategies and found a clear advantage of thePcGetsalgorithm in forecast comparis-
ons. Similar competitions in the context of the SVAR modeling framework considered here are highly
desirable.
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5 Empirical illustration

To illustrate the proposedGetsprocedures for SVARs, we will now usePcGetsto analyze a small
macro-econometric model for the US. The model is the monetary system introduced by Christianoet al.
(1996) consisting of the log of real GDP,gdp, the log of the GDP deflator,p, the log of a commodity
price index,pcom, the Fed funds rate,ff, the negative log of unborrowed reserves,nbrd, the log of total
reserves,tr and the log of M1,m1.
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Figure 5 The extended Christianoet al. (1996) data set.

The data are in levels and are plotted in Figure 5. The graphs show trending behavior in all variables.
This could potentially cause a problem as, to date,PcGetsconducts all inferences asI(0). The imple-
mentation of cointegration tests and appropriate transformations would be useful (see the discussion in
§6). But most selection tests will in fact be valid even when the data areI(1), given the results in,inter
alia, Sims, Stock and Watson (1990). Onlyt- or F-tests for an effect that corresponds to a unit root
require non-standard critical values. Similarly, Wooldridge (1999) shows that diagnostic tests for the
unrestricted model remain valid even for integrated time.

Christianoet al.(1996) considered an unrestricted reduced-form VAR(4) of the variables. Extending
the data set to the period 1960 (i) to 1999 (iii), the VAR requires the estimation of 203 coefficients.
Only few turn out to be significant at a5% significance level (see table 3), calling for reductions of the
VAR. Using the liberal strategy ofPcGets, the reduced-form VAR can be simplified to the subset VAR
summarized in table 4. The results are in line with the earlier studies of Br¨uggemann and L¨utkepohl
(2000) and Krolzig (2001).

There are two major problems with this approach: First, the misspecification of all equations of
the VAR except the price levelp (see table 5). There is a structural break in the middle of the sample
period, which is presumably related to the Volcker deflation and affects the equations for commodity
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Table 3 Unrestricted reduced-form VAR.
variable ν gdp p pcom ff nbrd tr m1

lag 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

gdp . + . . . . . . . . . . . . − . . . . . . . . . . . + . .

p − . . . . + − . − + . . . . − . . . + − . . . . + . . . .

pcom . . . . . + − . . + . . − . . . . . . . . . . . . . . . .

ff . + . . . . . − + + . . . + . + . . . . . . . . . . . + −
nbrd . + . . − . . . . + . . . . . . . + − . . . − . . . . . .

tr . − . . + . . . . . . . . . + . . . . . . + . . + + . . −
m1 − − . . + . . . + − + − . − + − . . . . . + . . . + . . −

Legend: 0 Coefficient is set to zero. + Coefficient is positive and significant at the5% level.
. Coefficient is insignificant at the5% level. − Coefficient is negative and significant at the5% level.

Table 4 Subset reduced-form VAR.
variable ν gdp p pcom ff nbrd tr m1

lag 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

gdp 0 + 0 0 0 + 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 − 0 0 0 0 0 0

p − 0 0 + 0 + 0 0 − + 0 − 0 0 0 0 0 0 0 0 0 + 0 − + 0 0 0 −
pcom 0 0 0 0 0 + − 0 0 + − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ff 0 + 0 − 0 0 0 − 0 + 0 0 − + 0 + 0 − 0 0 0 − 0 0 0 + 0 0 −
nbrd 0 + 0 − 0 0 0 − 0 + 0 0 0 0 0 + 0 + − 0 0 − − 0 0 0 + 0 0

tr 0 − 0 0 + 0 0 0 + − 0 0 0 0 0 0 − 0 + 0 + + 0 0 + + − 0 −
m1 − 0 0 0 + 0 0 0 + − 0 0 0 − + 0 0 0 0 0 0 + 0 0 0 + 0 0 −

Legend: 0 Coefficient is set to zero. + Coefficient is positive and significant at the5% level.
. Coefficient is insignificant at the5% level. − Coefficient is negative and significant at the5% level.

pricespcom, Fed funds rate,ff, unborrowed reserves,nbrd, total reserves,tr, and M1. The residuals
of gdp, pcom, ff andnbrd are non-Gaussian. There is some autocorrelation left in the case of M1,
heteroscedasticity and ARCH effects can be found in thepcom andff equations. Secondly, there is
contemporaneous correlation among the residuals of the system. This violation of the condition for the
efficiency of single-equation reduction procedures as stated in proposition 1 sheds some doubt on the
properties of the reduction process, despite the fact that the over-identifying restrictions are not rejected
by the LR test:χ2(143) = 150.44[0.3186].

Table 5 Misspecification tests: Unrestricted reduced-form VAR.
gdp p pcom ff nbrd tr m1

Chow(1979:4) 0.9264 0.59360.0076 0.0000 0.0000 0.0025 0.0074
Chow(1995:4) 0.5470 0.9800 0.8844 0.9833 0.9971 0.0479 0.4010
normality test 0.0078 0.2585 0.0000 0.0000 0.0000 0.8698 0.2836
AR 1-4 test 0.0492 0.0424 0.0414 0.1169 0.0107 0.58760.0006
ARCH 1-4 test 0.9620 0.5889 0.0001 0.0000 0.2996 0.5952 0.0656
hetero test 0.9710 0.6477 0.04140.0000 0.2898 0.3695 0.0763

Reported are the marginal rejection probabilities. Tests in bold are significant at1%.

Given the strong indication of instantaneous causality, it seems appropriate to adopt the causal or-
dering imposed by Christianoet al. (1996),

gdpt → pt → pcomt → fft → nbrdt → trt → m1t,

in their analysis of the effects of monetary policy shocks using orthogonalized impulse responses. The
causal ordering is now used to set up the just-identified recursive SVAR. The involved sequential con-
ditioning will admit the application of single-equationGetsreduction procedures.
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Table 6 Just-identified structural VAR.

variable ν gdp p pcom ff nbrd tr m1 gdp p pcom ff nbrd tr
lag 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 0 0 0 0 0 0

gdp . + . . . . . . . . . . . . − . . . . . . . . . . . + . .

p − . . . . + − . − + . . . . . . . . + − . . . − + . . . . .

pcom . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . +

ff . . . . . . . − + . . . . + . + . . . . . . . . . . . + − + . +

nbrd . . . . − . . . . . . . . − . . . + − . . . − . . . . . . . . + +

tr . . . . . . . . . . . − . − + . . + . . + + . . + + . . . . . . + −
m1 − − + . . . . − + − . . . . + − . . . . . − . . . + . . . + + . − . +

Legend: 0 Coefficient is set to zero. + Coefficient is positive and significant at the5% level.
. Coefficient is insignificant at the5% level. − Coefficient is negative and significant at the5% level.

Table 7 Over-identified structural VAR.

variable ν gdp p pcom ff nbrd tr m1 gdp p pcom ff nbrd tr
lag 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 0 0 0 0 0 0

gdp 0 + 0 0 0 + 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 − 0 0 0 0 0 0

p − 0 0 + 0 + − + − + 0 − 0 0 0 0 0 0 0 0 0 + 0 − 0 0 0 0 0 0

pcom 0 0 0 0 0 − 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +

ff 0 0 0 − 0 0 0 − 0 0 − 0 0 + 0 + 0 0 0 0 0 − 0 0 0 + 0 0 0 + 0 +

nbrd 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 + − 0 0 0 − 0 0 − + 0 0 0 0 0 +

tr 0 0 0 0 0 − + 0 0 0 0 0 0 − + 0 0 + 0 0 0 + 0 0 0 + 0 − 0 0 0 0 + −
m1 − 0 0 0 0 0 0 0 + 0 0 0 0 0 + 0 0 0 0 0 0 − 0 0 0 + 0 0 − + 0 0 − 0 +

Legend: 0 Coefficient is set to zero. + Coefficient is positive and significant at the5% level.
. Coefficient is insignificant at the5% level. − Coefficient is negative and significant at the5% level.

Table 6 reports the properties of the exactly identified SVAR which is observationally equivalent
to the unrestricted VAR in table 3.1 Interestingly, conditioning removes the structural break in the
commodity price,pcomt, and the money demand equation,m1t indicating the presence of cobreaking
among the variables of the system. But, overall, table 8 shows that the (just identified) SVAR is also mis-
specified stressing the necessity of continued research on the formulation of a congruent representation
of the data.

Table 8 Misspecification tests: Just-identified structural VAR.
gdp p pcom ff nbrd tr m1

Chow(1979:4) 0.9264 0.5634 0.04500.0000 0.0000 0.0076 0.3329
Chow(1995:4) 0.5470 0.9730 0.6778 0.9797 0.9977 0.0698 0.6214
normality test 0.0078 0.2899 0.0001 0.0000 0.0000 0.1859 0.6647
AR 1-4 test 0.0492 0.0505 0.0644 0.0698 0.2272 0.0382 0.2558
ARCH 1-4 test 0.9620 0.6709 0.0001 0.0000 0.4869 0.4715 0.3567
hetero test 0.9710 0.7751 0.16220.0000 0.5533 0.0008 0.2833

Reported are the marginal rejection probabilities. Tests in bold are significant at1%.

The properties of the selected SVAR are summarized in table 7. The contemporaneous relationships
are found to be:

pcomt( pt
+

), fft( gdpt
+

, pcomt
+

), nbrdt( fft
+

), trt( fft
+

, nbrdt
−

), m1t( gdpt
+

, fft
−
, trt

+

).

The restrictions imposed by the reduction process can not be rejected by an LR test of the over-
identifying restrictions:χ2(151) = 154.51 [0.4056].

1A complete listing of the estimated equations of the models can be send by the author on request.
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Figure 6 Response to a monetary policy shock.

Figure 6 shows the response of all system variables to a monetary policy shock, defined as a unit
impulse in the Fed funds rate equation. Plotted are the responses derived from the (i) selected structural
VAR, (ii) the selected reduced-form VAR and (iii) the full VAR as considered by Christianoet al.(1996).
In case of a reduced-form VAR, the impulse-responses have been orthogonalized using the FIML (OLS)
estimate of the variance-covariance matrix of the subset (full) VAR.

All three parametric models considered predict that an increase in the fed funds rate will cause a
persistent drop in the level of GDP. However, while GDP is steadily falling in the unrestricted VAR
model, the contraction in GDP bottoms out after 14 quarters in the over-identified SVAR and after 22
quarters in the subset VAR. The responses of the aggregate and commodity price indices show, after
some delay, a smooth decline for the VAR and its reductions. The pattern of the own response of the
fed funds rate over time is again very similar in the selected SVAR, the subset VAR and the full VAR.
However, there are some striking differences in the impulse response functions of the selected models
with regard to the monetary aggregates when compared to the impulse responses of the unrestricted
system: While the full VAR predicts a secular decline or increase in the aggregates, the reaction of
the negative log of unborrowed reserves and total reserves are mean-reverting in the structural VAR.
Interestingly, the SVAR and the full VAR differ greatly regarding the responses in M1. Since we have
shown earlier, that the reduced-form equation for M1 is misspecified (see table 5), whereas the structural
equation for M1 was found to be congruent and stable over time (see table 8), we are inclined to put
greater trust in the impulse response function derived from the selected SVAR. Finally, it is worth noting
that since fewer parameters have to be estimated, the responses are estimated more precisely, making
them a useful framework for tests for Granger causality etc.
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6 Directions for further research

TheGetsapproach for the reduction of SVAR models presented in this paper has three important limit-
ations: (i) the assumption that the causal ordering of the variable is knowna priori, (ii) the stationarity
of the data-generating process, and (iii) the recursive structure of simultaneous relations in the SVAR.
In the following we briefly outline three directions for further research to overcome these limitations in
a more general setting allowing for the applicability of the reduction procedure discussed here.

6.1 Selecting the causal order

The approach to the reduction of structural VARs proposed in this paper has been based on the as-
sumption that the causal ordering of the variable is knowna priori. In practice, the true causal order
of the variables is usually unknown. While insight from the modeling context, particularly economic
theory, can be extremely fruitful, there may be no unique ordering of the variables available. This raises
the question whether sample evidence can be exploited for the selection of the causal order or, more
precisely, the order of sequential conditioning.

While SVAR models which impose over-identifying restrictions can be tested, this is not the case
for just-identifying restrictions. There is a rich literature on the determination of the design of the
matrix B in (5) from the data by using the partial autocorrelations implied the estimated variance co-
variance matrixΣ̃ of the reduced-form VAR (see,inter alia, Swanson and Granger, 1997, Reale and
Tunnicliffe Wilson, 2002, and Selva and Hoover, 2002). These approaches have in common a two-stage
approach: (i) the determination of the causal order based on the estimated covariance matrix of the
unrestricted system, and then (ii) the reduction of the VAR dynamics conditional on (i).

In contrast, we suggest the reduction of the fully-identified SVAR for all possibleK! causal order-
ings, and then the selection of the dominant model with the help of a consistent information criterion. If
theK-dimensional vector of random variablesyt is generated by a structural VAR in (1) overidentified
by restrictions onΓ, then the reduced-form VAR and all other factorizations of the joint density should
not be parsimoniously encompassing. A testing strategy would be preferable, but complications arise
from the fact that even over-identified SVARs with different causal orders can have the same reduced
form. Consider, for example, the following SVARs:

Byt = Γyt−1 + ηt, E[ηtη
′
t] = Ω (23)

B∗yt = Γ∗yt−1 + η∗
t , E[η∗

t η
∗
t
′] = Ω∗. (24)

If B−1Γ = B∗−1Γ∗ = A andB−1ΩB−1′ = B∗−1Ω∗B∗−1′ = Σ, then both models have the follow-
ing reduced-form representation:

yt = Ayt−1 + εt, with E[εtε
′
t] = Σ. (25)

Hence, the SVARs (23) and (24) are observationally equivalent (see Hendry and Mizon, 2000, for more
details).

6.2Getssystem reduction procedures for cointegrated VAR models

So far we assumed that the VAR is stable. Most economic data show stochastic trends, so that we should
allow for integrated and possibly cointegrated processes. Since cointegration is a common feature of
the variables in the system, and imposes nonlinear cross-equation restrictions on the parameters of the
VAR, only system reduction procedures can be efficient. In the following, we outline aGetssystem
procedure for the reduction of cointegrated VAR models.
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The reduced-form VAR(p) model in (1) can always be represented as a vector equilibrium correction
model (VECM) of orderp− 1:

∆yt = ν + Πyt−1 +
p−1∑
i=1

Υi∆yt−1 + εt, εt ∼ NID(0,Σ). (26)

If Π has full rank, the variablesyt areI(0), and without further restriction, the VECM is just-identified.
An identification issue arises when0 <rank(Π) = r < K, in which caseyt ∼ I(1) and there exist
r cointegration vectorsβ′yt ∼ I(0). Various methods for the cointegration analysis of multiple time
series have been proposed in the literature. As theGetsprocedures discussed here are likelihood based,
Johansen’s concentrated-likelihood-function approach (see Johansen, 1995) is the natural choice and
suggests a three-stage reduction approach:

(1) Reductions of the system. Johansen’s reduced rank procedures are based on reduced-form VAR
without any equation-specific restrictions. Therefore a reduction procedure for the system

∆yt = ν + Πyt−1 +
K∑

j=1

p∑
i=1

Υki∆yj,t−i + εt, (27)

precedes the cointegration analysis. This step should involve a straightforward, multivariate gen-
eralization of thePcGetsalgorithm for single equation models aiming to simplify equation (27) by
sequential tests for significance of theΥki parameter vectors involving block presearch reductions
(including a lag selection procedure to determine the order of the VAR as discussed in Hendry
and Krolzig, 2003) and a multiple-path encompassing search. The system procedure involves
joint reductions of the system,i.e. the analysis of cross-equation restrictions, whose acceptance
would exclude a regressor from all equations of the system (instead of individual equations as so
done far),

(2) Johansen cointegration testsandidentification of the cointegration vectors. The Johansen proced-
ure for empirically determining the cointegration rankr is then applied to the reduction of system
(27). It produces unique estimates ofα andβ as a result of requiringβ to be orthogonal and
normalized. This estimate provides a value for the unrestricted log-likelihood function to be com-
pared to the value for the log-likelihood function under overidentifying restrictions forα andβ

which have an economic interpretation. Omtzig (2002) has proposed an algorithm for automatic
selection of cointegration vectors.

(3) Reductions of the VECM

(i) Reduced-form representation. Given the outcome of the cointegration analysis (the coin-
tegration rankr, cointegration matrixβ and the structure ofα), the analysis then focuses
on reductions of the short-run dynamicsΥi in the corresponding (stationary) reduced-form
VECM(p− 1),

∆yt = ν + αr

(
β′

ryt−1

)
+

p−1∑
i=1

Υi∆yt−1 + εt, εt ∼ NID(0,Σ). (28)

Here, reduction paths for the system and the individual equations can be considered:

(a) System searches for the coefficient with the lowestt-value of the system:

(k∗, j∗, i∗) := arg min
k=1,...,K

min
j=1,...,K

min
i=1,...,p

t2kj,i.
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(b) Single-equation searches for the coefficient with the lowestt-value of thek-th equation:

(j∗, i∗) := arg min
j=1,...,K

min
i=1,...,p

t2kj,i for k = 1, . . . ,K.

If the coefficientakj∗,i∗ of regressoryj,t−i in equationk is insignificant, the coeffi-
cient is restricted to zero and the equation is re-estimated by OLS. Alternatively, EGLS
could be used whereby the variance-covariance matrix is taken from the reduced, but
otherwise unrestricted system.

Proposition 1 still applies: the single-equation analysis will only be efficient if the variance-
covariance matrix is diagonal.

(ii) Structural representation. For a given recursive contemporaneous structure, we might be
instead interested in the coefficients collected to theΥ∗

i matrices in the structural VECM

B∆yt = δ + α∗
r

(
β′

ryt−1

)
+

p−1∑
i=1

Υ∗
i ∆yt−1 + ηt, ηt ∼ NID(0,Ω). (29)

whereB is a lower-triangular matrix andΩ is a diagonal matrix. Identification of (29)
follows from the restrictions formulated in (8) and the equivalence with (27) is given by
Σ = B−1ΩB−1′, αr = B−1α∗

r, Υ∗
i = B−1Υi for i = 1, . . . , p − 1, andν = B−1δ.

Equation (29) becomes the new GUM to which the single-equationGetsreduction procedure
proposed in this paper can be applied.

Alternatively, if the cointegration vectors are delivered by economic theory, the first two steps are made
redundant and theGetsreduction approach serves to simplify the short-run dynamics only.

6.3Getsreduction procedures for simultaneous equation models

The recursive contemporaneous structure and closeness of the SVAR in (5) can cause problems if the
underlying economic theory predicts the interdependence of the endogenous variables in the temporary
macroeconomic equilibrium. Fortunately it is possible to relax the assumption of a causal ordering of the
variables made in§3 without risking thebasicproperties of theGetsreduction approach. In principle,
the reduction approach proposed here can be applied to any simultaneous equation model (SEM) of the
form:

Byt = Γzt + ηt, (30)

ηt|zt ∼ NID(0,Ω),

where restrictions on(B,Γ) guarantee that the model is identified in sense of the famous Cowles’
Commission rank condition. If the system is recursive (i.e. B is triangular), proposition 2 holds and
implies the (asymptotic) efficiency of single-equationGetsreduction procedure. But in general single-
equation reduction procedures will be inefficient.

Suppose that the VAR(p) model with (weakly) exogenous regressors:

yt = ν +
p∑

i=1

Aiyt−i + Dxt + εt, εt ∼ NID(0,Σ), (31)

is the reduced form of the SEM:

Byt = δ +
p∑

i=1

Γiyt−i + Rxt + ηt, ηt ∼ NID(0,Ω), (32)
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where, say, forK = 2:

B =

[
1 ∗
∗ 1

]
, R =

[
ρ11 0
0 ρ22

]
, Ω =

[
1 0
0 1

]
.

The otherwise unrestricted SEM is exactly identified by the restrictions on matrixR. Single-equation
Getsmodel selection procedures can be applied using instrumental variables estimation (IVE) and IVE-
based significance and encompassing tests as implemented inPcGets. Hereby,x2t is the additional
instrument fory2t in first equation, andx1t for y1t in the second. This reduction procedure will inherent
the properties of 2SLS estimation. Since the unrestricted reduced form is used for the construction of
the instruments on the first stage, the procedure will loose efficiency relative to aGetssystem procedure
based on FIML estimators.

Many SEMs used in practice suffer from sparsely formulated dynamics, which can affect the struc-
tural stability and economic interpretability of the model. A useful application of the reduction approach
proposed in this paper is the enrichment of the possibly misspecified SEMs as in (30) with additional,
potentially omitted variables (collected to the vectorwt), which do not interfere with the identification
restrictions of the original model (i.e. they do not include elements ofyt andzt) and enter each equation
unrestrictedly:

B∗yt = Γ∗zt + Cwt + η∗
t . (33)

η∗
t |zt,wt ∼ NID(0,Ω∗),

The reduction process proposed in this paper would look for simplifications ofC conditional on the
unaltered structure ofB∗ andΓ∗. The first step is the test ofC = 0 to control the size of the procedure.
This approach should help to identify omitted variables and avoid dynamic misspecifications. But the
approach might also be useful for researchers who derive (30) from a theoretical model, but want to
ensure the congruence of the empirical model (i.e. the absence of misspecifications) by introducing
variables or dynamics which might be important for the analyzed data set, but are not subject of the
theoretical analysis (see Flaschel and Krolzig, 2002, for an application of this approach to the modelling
of US price and wage Phillips curves).

7 Conclusions

The aim of the paper was to propose and evaluateGetsreduction strategies for structural VAR models.
We found that the recursive structural representation of linear VAR models ensures the efficiency of
single-equation procedures. Next we analyzed the properties of the proposed model selection proced-
ure, using a computer implementation based onPcGets, in a small Monte Carlo experiment to see if
the procedure worked well, indifferently, or failed badly. The results come much closer to the first: The
DGP specification was recovered from a large just-identified SVAR with anticipated size, and power
close to commencing from the DGP itself. The accuracy and precision of the empirical impulse re-
sponses of the selected model surpass those of unrestricted models even if selection errors are taken
into account. The feasibility of the proposed single-equationGetsprocedure for the SVAR modelling of
large macroeconomic data sets has been demonstrated. Finally, we outlined avenues for further research
involving Getsprocedures for the selection of the causal order, cointegrated VARs, and simultaneous
equation models.
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