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1. Introduction

It is commonplace to assume that agents are averse to risk or uncertainty in their income.

Yet the notion of aversion to income risks is really a derived concept, since what agents

ultimately care about is the consumption of consumer goods, and dislike income risks only

because of the risks it imposes on their consumption. So it is a little odd that the precise

connection between risk attitudes over income and risk attitudes over consumption goods

has never been formally explored. This note is an attempt to fill this lacuna.

Formally, the issue we have in mind is the following. An agent has a preference over

bundles in the commodity space Rl
+ and also over lotteries of these bundles. Provided the

von Neumann-Morgenstern axioms are satisfied, there exists a Bernoulli utility function

u : Rl
+ → R such that the utility of any lottery will be given by the expected value of the

Bernoulli utility.2 In other words, a lottery which gives the bundle x′ with probability t,

and x′′ with probability 1 − t, which we write as t • x′ ⊕ (1 − t) • x′′, will have a utility of

tu(x′) + (1− t)u(x′′). It is clear the the agent is risk averse in commodity space if and only

if u is concave. How is this related to his attitude over income risks?

Consider the lottery t • y′ ⊕ (1 − t) • y′′, where the agent has incomes y′ and y′′ with

probabilities t and 1− t respectively. Assume that the agent makes his consumer purchases

only after the uncertainty is resolved, that there is no price risk (so price is held fixed at

p) and that he maximizes his utility given his realized budget constraint. In this case, the

utility of t • y ⊕ (1 − t) • y′′ must be given by tv(p, y′) + (1 − t)v(p, y′′), where v is the

indirect utility generated by u. The agent’s risk attitudes over income is measured by the

curvature of v as a function of income, with price held fixed at p. If the agent is risk averse
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in income then v(p, ·) is concave. It is known that v(p, ·) is concave at all p if and only if

u is concave.3 In other words, an agent is risk averse in income at all prices if and only if

he is risk averse in commodity space. In this note, we sharpen this result by determining

precisely the risk attitudes over commodity space that is consistent with a particular level

of income risk aversion.

Suppose at the price p and income 1, the agent has a demand of x. Consider a lottery

t•x′⊕(1− t)•x′′, where p · [tx′+(1− t)x′′] = 1. We know that a risk averse agent will surely

prefer x to this lottery: his risk aversion means he prefers the sure bundle tx′ + (1 − t)x′′

to the lottery, and this bundle in turn must not be preferred to x, since it is in the budget

set. But suppose we now offer him the lottery t • [(p · x′)θ−1x′] ⊕ (1 − t) • [(p · x′′)θ−1x′′].

By assumption p · (tx′ + (1 − t)x′′) = 1; the price p gives this lottery a mean valuation of

(p · x′)θ + (p · x′′)θ, which must be greater than 1 if θ is greater than 1 or less than 0. So it

is no longer the case that a risk averse agent must prefer the sure bundle x to the lottery;

we will call an agent who always prefers x to such lotteries θ-risk averse at p (with income

normalized at 1). We show that an agent is θ-risk averse at the prices λp for all λ > 0 if and

only if, at the price p, the agent’s coefficient of relative risk aversion over all income levels has

an infimum of 1− θ−1, i.e., infy>0 R(p, y) = 1− θ−1, where R(p, y) = −yvyy(p, y)/vy(p, y).

Section 2 of this note is devoted to this result and its variants.

When an agent is θ-risk averse, the Bernoulli utility function has a curvature property

we call θ-concavity. Section 3 of this note is devoted to a result which is very useful in

helping us visualize this property. If u is concave, we know that at any point (x, u(x)) on

its graph, there is a tangent plane which sits on top of the entire graph, so that the family
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of such planes form a nest around the graph of u. Formally, there are functions g and h

from Rl
++ to R such that u(x) = infr∈Rl

++
{g(r) + h(r)(r · x)}. (Note that the graph of

the map from x to g(r) + h(r)(p · x) is a hyperplane.) When u is θ-concave, we obtain the

following representation: u(x) = infr∈Rl
++
{g(r) + h(r)(r · x)θ}. So the graph of u is now

nested by a family of hypersurfaces of a particularly simple type, where each of them is the

graph of a function from x to g(r) + h(r)(r · x)θ.

While we have chosen in this note to focus on the connection between risk aversion over

income and risk aversion over consumption, it should (or will) be clear to the reader that

the arguments could be easily adjusted to deal other issues; for example, the relationship

between the shape of the production function and the curvature of its cost curve. What we

develop here is a general mathematical theory which relates the curvature properties of an

objective function with the curvature, along rays emanating from the origin, of its dual, so

its potential applications go beyond the one discussed in this note.

2. Characterizing Risk Aversion Over Incomes

A function u : X → R is called a utility function if it has the following properties: (i)

X is convex subset of Rl
+ and if x is in X, so is λx for any strictly positive scalar λ; (ii)

for any x in X, u(λx) > u(x) for any scalar λ > 1; (iii) for any (p, y) in Rl
++ × R+, there

is x̄ that maximizes u(x) in the set B(p, y) = {x ∈ X : p · x ≤ y}. We refer to B(p, y)

as the budget set at the price-income situation (p, y) and to x̄ as a demand at (p, y). We

denote the set of demands at (p, y) by f(p, y). The indirect utility function generated by u

refers to the function v : Rl
++ ×R+ → R defined by v(p, y) = u(x̄) for any x̄ in f(p, y). In
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some instances, we will impose an additional condition on the utility function u called the

supporting price property. By this, we mean that at every x in X, there is (p, 1), with p in

Rl
++, such that x is in f(p, 1).

All our definitions are standard and conditions which guarantee that a function u has the

properties we require are mild and well known (see Mas-Colell (1985)). It is most familiar

to have X as Rl
+ or Rl

++ but we also allow X to be smaller, for example, the intersection

of Rl
+ with a proper subspace of Rl. In other words, we permit the market for consumption

goods to be incomplete.

An agent’s attitude towards income risks is measured by the coefficient of relative risk

aversion, with its value at (p, y) given by R(p, y) = −yvyy(p, y)/vy(p, y). Whenever we make

a statement referring to this coefficient we are implicitly assuming that v is C2. Conditions

on u guaranteeing that v is C2 are known (see Mas-Colell (1985)).

Instead of the coefficient of relative risk aversion, we will mostly rely in this paper

on a measure of the curvature of v which does not require its differentiability. We say

that an increasing function F : R+ → R is θ-concave if the map from y to F (yθ) is

concave. There is a particular ordering of the real numbers which is appropriate to this

concept. The total, transitive and irreflexive order <∗ is defined as follows: 0 is ranked

lowest, any positive number has higher rank, and any positive number is ranked higher

than smaller positive numbers; any negative number has a higher rank than a positive

number, with large negative numbers ranked more highly than low negative numbers. For

example, 0 <∗ 2 <∗ 2000 < −2 <∗ −0.5 <∗ −0.01.... We denote by sup∗(X) and max∗(X)

the supremum and maximum of the set X in R, with respect to the order <∗.4 The reason
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for introducing this order comes from the next simple observation, whose proof we will omit.

Lemma 1: An increasing function F : R+ → R is θ-concave if and only if it is α-concave

for all α ≤∗ β.

The notion of θ-concavity can be regarded as the non-differentiable analogue to the

coefficient of relative risk aversion, as the next lemma makes clear. Again we will skip the

straightforward proof.

Lemma 2: Infy>0R(p, y) = c if and only if max∗{θ : v(p, ·) is θ-concave} = (1− c)−1.

(Note that this lemma is applicable to c = 1 under the following convention, which we adopt

throughout this note: when c = 1, regard (1− c)−1 = ∞, so infy>0 R(p, y) = 1 if and only

if the map from y to v(p, yθ) is concave for all θ ≥ 0 and for no other θ.)

We wish to relate the concavity of v as a function of income with an appropriate notion

of concavity for the utility function u. We say that the utility function u is θ-concave at p if

u(x) ≥ tu((p · x′)θ−1x′) + (1− t)u((p · x′′)θ−1x′′), whenever x is in f(p, 1), 0 ≤ t ≤ 1, x′ and

x′′ are in X, and p · (tx′+(1− t)x′′) = 1. We say that u is θ-concave in the set P (contained

in Rl
++) if it is θ-concave at every p in P . Note that an agent’s utility function is θ-concave

at p if and only if he is θ-risk averse at p, in the sense defined in the introduction, i.e., the

agent prefers the certain prospect x to the lottery t • (p · x′)θ−1x′ ⊕ (1− t) • (p · x′′)θ−1x′′.

The concept of θ-concavity is crucial to everything in this paper so we should discuss

it in some detail. Note firstly, that u is always 0-concave. The bundles (p · x′)−1x′ and

(p · x′′)−1x′′ are both affordable at (p, 1); since x is in f(p, 1), u(x) must not be less than

than the utility of either bundle, nor any convex combination of their utilities. Secondly,

we note that if u is concave in the standard sense then it is 1-concave at all prices. To see
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that, we consider t, x′ and x′′ satisfying p · (tx′ + (1− t)x′′) = 1. Concavity guarantees that

tu(x′) + (1− t)u(x′′) is less than or equal to u(tx′ + (1− t)x′′), which is in turn no greater

than u(x) since x is in f(p, 1) and tx′ + (1 − t)x′′ is in the budget. It is also clear that

if u is 1-concave at all prices and has the supporting price property, then it is a concave

function: let p be a supporting price at tx′ + (1 − t)x′′; then 1-concavity at p guarantees

that u(tx′ + (1 − t)x′′) ≥ tu(x′) + (1 − t)u(x′′). The next result shows that θ-concavity as

applied to u can be ordered in the same way as θ-concavity in one dimension.

Proposition 1: The utility function u is θ-concave at p if and only if it is α-concave at

p for all α ≤∗ θ.

Proof: We first make the following observation: if u is θ-concave at p, with θ ≥ 0

(alternately, with θ ≤ 0), then u(x) ≥ tu((p · x′)θ−1x′) + (1 − t)u((p · x′′)θ−1x′′) whenever

x is in f(p, 1), t ∈ [0, 1] and p · (tx′ + (1 − t)x′′) ≤ (≥)1. To see this, we assume that

p · (tx′ + (1− t)x′′) ≤ 1 and choose δ such that p · (tδx′ + (1− t)δx′′) = 1. Clearly, δ ≥ 1. If

u is θ-concave with θ ≥ 0 and since u is increasing in all arguments, we obtain

u(x) ≥ tu(δθ(p·x′)θ−1x′)+(1−t)u(δθ(p·x′′)θ−1x′′) ≥ tu((p·x′)θ−1x′)+(1−t)u((p·x′′)θ−1x′′).

The proof of the other case is the same.

We we will first assume that θ ≥ 0 and show that u is α-concave for α in [0, θ]. Choose

z′ and z′′ so that (p · x′)α−1x′ = (p · z′)θ−1z′ and (p · x′′)α−1x′′ = (p · z′′)θ−1z′′. Then

p · [tz′ + (1− t)z′′] = t(p · x′)α/θ + (1− t)(p · x′′)α/θ

≤ [t(p · x′) + (1− t)(p · x′′)]α/θ = 1,

so by the observation we first made, tu((p · x′)α−1x′) + (1 − t)u((p · x′′)α−1x′′) = tu((p ·
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z′)θ−1z′) + (1− t)u((p · z′′)θ−1z′′) must be no greater than u(x).

For θ < 0, we wish to show that u is α-concave whenever α ≤ θ or α ≥ 0. To see this,

we first define z′ and z′′ as above and then notice that p · [tz′+(1− t)z′′] ≥ 1 provided α ≥ 0

or α ≤ θ. The rest of the proof is then analogous to the case of θ ≥ 0. QED

The next theorem is our main result and gives us the relationship between the concavity

of u and the concavity of its indirect utility function v, as a function of income.

Theorem 1: The indirect utility function v is such that v(p, ·) is θ-concave if and only if

u is θ-concave in the set [p] = {λp : λ > 0}.

Proof: To prove necessity, we write p̄ = λp for some positive number λ, and suppose

that x is in f(p̄, 1). If p̄ · [tx′ + (1− t)x′′] = 1,

u(x) = v(p̄, 1) = v(p̄, [t(p̄ · x′) + (1− t)(p̄ · x′′)]θ)

≥ tv(p̄, (p̄ · x′)θ) + (1− t)v(p̄, (p̄ · x′′)θ)

≥ tu((p̄ · x′)θ−1x′) + (1− t)u((p̄ · x′′)θ−1x′′),

The first inequality follows from the θ-concavity of v(p̄, ·) (which in turn follows from that

of v(p, ·)) and the second from the definition of v. So u is θ-concave at p̄.

For sufficiency, we first assume that ty′ + (1 − t)y′′ = 1. The agent has a demand at

(p, y′θ), which can always be expressed in the form (p · x′)θ−1x′. Similarly, we can write a

demand at (p, y′′θ) as (p · x′′)θ−1x′′. The budget identity guarantees that p · x′ = y′ and

p · x′′ = y′′. If x is in f(p, 1), the θ-concavity of u at p guarantees that

tv(p, y′θ) + (1− t)v(p, y′′θ) = tu((p · x′)θ−1x′) + (1− t)u((p · x′′)θ−1x′′)

≤ u(x) = v(p, 1).
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In general, if ty′ + (1− t)y′′ = ȳ then t(y′/ȳ) + (1− t)(y′′/ȳ) = 1. Since u is θ-concave

at p/ȳθ, the preceding proof for this particular price guarantees that

tv

(
p

ȳθ
,

(
y′

ȳ

)θ
)

+ (1− t)v

(
p

ȳθ
,

(
y′

ȳ

)θ
)
≤ v

(
p

ȳθ
,

[
t

(
y′

ȳ

)
+ (1− t)

(
y′′

ȳ

)]θ
)

;

equivalently, we have tv(p, y′θ) + (1− t)v(p, y′′θ) ≤ v(p, (ty′ + (1− t)y′′)θ). QED

This theorem says in particular that v(p, ·) is 1-concave, i.e., is a concave function, if and

only if u is 1-concave in the set [p]. As we had pointed out earlier, the 1-concavity of u is

equivalent to the concavity of u provided u has the supporting price property. So, assuming

this property, Theorem 1 recovers the known result that v is a concave function of income

at all prices if and only if u is concave. Of course the theorem says quite a bit more. The

next corollary is an immediate consequence of Lemma 2 and Theorem 1: it gives the precise

level of risk averse behavior over commodities which guarantees a particular infimum over

the coefficient of relative risk aversion over income.

Corollary 1: Infy>0R(p, y) = c if and only if max∗{θ : u is θ-concave in [p]} = (1 −

c)−1.

The global results we have obtained so far can easily be re-stated as local results once the

definitions are suitably modified. In particular, we say that u is locally θ-concave at p if there

is ε > 0 such that u(x) ≥ tu((p ·x′)θ−1x′)+(1−t)u((p ·x′′)θ−1x′′) whenever x is a demand at

p, t is in [0, 1], x′ and x′′ are in X, p·(tx′+(1−t)x′′) = 1, and max{|p·x′−1|, |p·x′′−1|} ≤ ε. It

is trivial to see that Proposition 1 remains true if θ-concavity is replaced by its local version.

In other words, local θ-concavity has the same ranking property as θ-concavity. We say that

v(p, ·) is locally θ-concave at ȳ if there is a neighborhood around ȳ such that the map from

y to v(p, yθ) is concave. With this definition, the following local analog to Theorem 1 is
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easy to check: v(p, ·) is locally θ-concave at 1 if and only if u is locally θ-concave at p. The

next result, which is the local analog of Corollary 1, should then be unsurprising.

Corollary 2: R(p, 1) = c if and only if sup∗{θ : u is locally θ-concave at p} = (1− c)−1.

Proof: Suppose R(p, 1) = c; since v is C2, for any ε > 0, there is some neighborhood of

income around 1 such that R(p, y) > c−ε in that neighborhood. It is easy to check that this

guarantees that v(p, ·) is locally (1−c+ε)−1-concave at 1, which implies that u is locally (1−

c+ε)−1-concave at p. Letting ε go to zero, we obtain sup∗{θ : u is locally θ-concave at p} ≥

(1− c)−1. But the inequality cannot be strict; if it were, there will be θ′ > (1− c)−1 such

that u is locally θ′-concave at p. This implies that v(p, ·) is locally θ′-concave at income 1,

which means that R(p, 1) > c: a contradiction. QED

3. A Representation Theorem for θ-Concave Functions

Our main task in this section is to proof the following theorem.

Theorem 3: Suppose u : X → R is a utility function with the supporting price property.

If u is θ-concave at all prices, for θ 6= 0, then there exists maps from g and h from Rl
++

to R such that u(x) = infr∈Rl
++
{g(r) + h(r)(r · x)1/θ}, where h > 0 if θ > 0 and h < 0 if

θ < 0.

Our proof will take an instructive roundabout approach, by first constructing a represen-

tation for the indirect utility function. This representation is analogous to that established

for nondecreasing and convex-along-rays functions by Rubinov and Glover (1999).

Lemma 3: Suppose v(p, ·) is θ-concave at all prices p. If θ > 0, there exists maps g and
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h from Rl
++ to R, with h > 0, such that

v(p, 1) = inf
r∈Rl

++

{
g(r) + h(r)

(
max
1≤i≤l

p
−1/θ
i

ri

)}
.

For θ < 0, the representation is the same, but with h < 0 and max replaced by min.

Proof: We denote (p−θ
1 , p−θ

2 , ..., p−θ
l ) by p−θ. It is not hard to check that since v is

homogeneous of degree zero, the θ-concavity of v(p, ·) for all p will mean that the map

ṽ : Rl
++ → R, which maps p to v(p−θ, 1) is concave along rays, i.e., ṽ(tp + (1 − t)λp) ≥

tṽ(p) + (1− t)ṽ(λp), for any λ > 0 and t in [0, 1]. If θ > 0, ṽ is also an increasing function

of p. At any point r in Rl
++, we let h(r) > 0 be a slope, along the ray, of ṽ at r. Note

that since ṽ is increasing, for any r, ṽ(p) ≤ ṽ((maxi pi/ri)r). The latter is in turn bounded

above by ṽ(r) + h(r)((maxi pi/ri)− 1). Therefore, we see that

ṽ(p) ≤ [ṽ(r)− h(r)] + h(r)
(

max
i

pi

ri

)

for all r. This gives us the result since the infimum of the right hand side of this inequality

for r in Rl
++ is achieved at r = p. The case of θ < 0 has an analogous proof. QED

Proof of Theorem 3: Since u has the supporting price property, for any x in Rl
++,

u(x) = min{p∈Rl
++:p·x=1} v(p, 1). Theorem 1 tells us that since u is θ-concave in Rl

++, v(p, ·)

is θ-concave at all p. When θ > 0 (the proof for θ < 0 is analogous), Lemma 3 says that

u(x) = inf
{p∈Rl

++:p·x=1}
inf

r∈Rl
++

{
g(r) + h(r)

(
max

i

p
−1/θ
i

ri

)}

= inf
r∈Rl

++

{
g(r) + h(r) inf

{p∈Rl
++:p·x=1}

(
max

i

p
−1/θ
i

ri

)}

= inf
r∈Rl

++

{
g(r) + h(r)

(
r−θ · x

)1/θ
}

.

. QED
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Our final result uses Theorem 3 to give a sharper characterization of the θ-concavity

of u in those cases where u is a concave function; in other words, when 1 ≤∗ θ. This

characterization is particularly nice since, unlike the definition of θ-concavity, it does not

make any reference to the demand bundle at a price.

Corollary 4: Suppose that the utility function u : X → R has the supporting price

property. Then u is θ-concave at all prices for some 1 ≤∗ θ if and only if the following is

true: for any p À 0, t in [0, 1], and x′ and x′′ in Rl
++ satisfying p · (tx′ + (1 − t)x′′) = 1,

we have u(tx′ + (1− t)x′′) ≥ tu((p · x′)θ−1x′) + (1− t)u((p · x′′)θ−1x′′).

Proof: Note that the ‘if’ part of this claim is clearly guaranteed by revealed preference.

For the other direction, we first observe that when u has the representation given in Theorem

3, tu((p · x′)θ−1x′) + (1− t)u((p · x′′)θ−1x′′) is weakly less than

inf
r∈Rl

++

{g(r) + h(r)
(
t((p · x′)θ−1r · x′)1/θ + (1− t)((p · x′′)θ−1r · x′′)1/θ

)
}.

We can write

t((p ·x′)θ−1r ·x′)1/θ +(1− t)((p ·x′′)θ−1r ·x′′)1/θ = tp ·x′
[
r · x′
p · x′

]1/θ

+(1− t)p ·x′′
[
r · x′′
p · x′′

]1/θ

.

Since tp · x′ + (1− t)p · x′′ = 1, if θ ≥ 1 (< 0), the right hand side of this equation is weakly

less than (more than)

(
tp · x′

[
r · x′
p · x′

]
+ (1− t)p · x′′

[
r · x′′
p · x′′

])1/θ

.

As h is positive in the first instance and negative in the second, we have shown that tu((p ·

x′)θ−1x′) + (1− t)u((p · x′′)θ−1x′′) is weakly less than

inf
r∈Rl

++

{g(r) + h(r)
(
r · (tx′ + (1− t)x′′)

)1/θ} = u(tx′ + (1− t)x′′).
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This completes the proof since 1 ≤∗ θ if and only if θ ≥ 1 of θ < 0. QED
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Footnotes:

1. The second author would like to acknowledge with gratitude the financial support of the

Economic and Social Research Council under its Research Fellowship Scheme.

2. The description of u as the Bernoulli utility function is slightly non-standard, but it

follows the usage in Mas-Colell et al (1995).

3. It is certainly known that when the utility function is concave, the indirect utility function

is concave in income. For example, Mas-Colell et al (1995) have essentially the same result:

they point out that when the production function is concave, the cost function is convex.

The necessity of the condition is also terribly easy to prove and surely has to be known,

though it is not easy to find a statement and proof of this result. One exists in Quah (2000).

4. Note that the difference between the maximum and the supremum is that in the case of

the former, the supremum is achieved within the set X.
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