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1 Introduction

Modelling and forecasting are distinct tasks because congruent, causal models need not
forecast better in practice than non-congruent or non-causal: see Clements and Hendry
(1999), Allen and Fildes (2001) and Fildes and Stekler (2002). Rather, causal models often
suffer forecast failure, as the widespread use of adjustments techniques, such as intercept
corrections, reveals (see e.g. Clements and Hendry, 1998). Explanations for forecasting less
well than ‘naive’ formulations (e.g., ‘no change’) mainly rest on model mis-specification
interacting with irregularities in the economy (especially structural breaks and regime
changes from legislative, technological or political shifts), and entail a need for robustness:
the M3 competitions emphasize this aspect (see e.g., Fildes and Ord, 2002).

When forecasting at several horizons, ‘direct multi-step estimation’ (DMS) is intuitively
appealing and offers a potential route to alleviating some of these difficulties: estimate a
model which minimizes the desired multi-step function of the in-sample errors, thereby
matching design and evaluation. One-step estimation is the standard procedure of min-
imizing the squares of the one-step ahead residuals, from which multi-step forecasts are
obtained by ‘iterated multi-step’ (denoted here by IMS).

The idea of multi-step estimation has a long history: Klein (1971) and Johnston, Klein,
and Shinjo (1974) suggested that DMS could be more efficient than IMS, following an idea
originally applied by Cox (1961) to exponentially-weighted moving-average (EWMA) or
integrated moving-average (IMA(1,1)) models. Johnston (1974) put a temporary end to
that literature by concluding that, if the model is correctly specified and a quadratic loss
function is used as an estimation efficiency criterion, the latter itself constitutes a “reli-
able indicator of prediction efficiency” so DMS is less efficient than IMS.1 In discussing
the Wharton model, however, he noted that DMS forecasts seemed more robust to the
mis-specification of the error processes. Findley (1983), Weiss and Andersen (1984), and
Weiss (1991) considered DMS criteria for ARIMA models, and the AR(1) process in par-
ticular. They showed that if the model was mis-specified and the loss function quadratic
in the multi-step forecast errors, then the asymptotically optimal estimators (in the sense
of minimizing the appropriate criteria) depended on the lead period in forecasting. They
found, however, that the small-sample properties of DMS varied with the degree of mis-
specification, and that the conclusion in Johnston (1974) about the relative efficiencies of
IMS and DMS still held. Tsay (1993) and Lin and Tsay (1996) showed that some forms
of empirical model mis-specification could justify the use of DMS (also called ‘adaptive’
estimation). These findings were recently corroborated by Kang (2003) and Marcellino,
Stock, and Watson (2004) in extensive empirical studies where estimation was carried out
on stationary variables (i.e. first differences in the case of integrated series) but forecasting

1This result was based on the findings by Haavelmo (1944), in the case of a scalar first-order autore-

gressive process, and Hartley (1972).

2



performance was evaluated for the level of the series. Other authors applied direct esti-
mation to alternative approaches: Haywood and Tunnicliffe-Wilson (1997), for instance,
found that it brought significant estimation improvements in the frequency domain for an
IMA(1, 1) process. When the number of lags of an AR(k) model is chosen by either a
one-step or a multi-step criterion and the true DGP follows a stationary AR(p), Bhansali
(1996, 1997) and Ing (2003) have shown that DMS can outperform IMS when the model
is misspecified with k < p.

One intuition behind DMS is, therefore, that a model which is mis-specified for the
data generating process (DGP) need not be a satisfactory forecasting device. However, mis-
specification is insufficient: predictors like constant growth are mis-specified but robust.
Here, the desired robustness is to mis-specification of the error process. Clements and
Hendry (1996) investigated model mis-specifications which might sustain DMS, and found
that for unit-root processes, neglected negative moving-average errors provided a rationale
at short horizons. In stationary processes, DMS could enhance forecast accuracy, but gains
fade rapidly as the horizon increase. Bhansali (1999) presents a detailed overview of recent
developments in the DMS literature: he distinguishes between the ‘parametric’ and ‘non-
parametric’ approaches. With the former class, the same model parameters are estimated
via minimizing distinct horizon-dependent criteria; the techniques used in this case are
most often nonlinear, and the model may or not be mis-specified. In contrast, and this
is the method which has led to fewer analyses and which we study here, non-parametric
DMS focuses on the parameters of a different model at each horizon.

The general properties of IMS and DMS can help gauge their implications for multi-
period forecasting when DMS is the only available technique. For example, IMS is infeasible
when there are more variables, n, than observations, T , so a factor analysis (or princi-
pal components) is carried out separately for each forecast horizon (see, e.g., Stock and
Watson, 1999). Additionally, when some regressors have marginal distributions that are
difficult to model and even harder to forecast—so are treated as ‘exogeneous’—DMS avoids
incorporating unreliable forecasts of such regressors into forecasts of variables of interest.
We show below that, when the model is well-specified for a DGP which is either stationary
or integrated of order 1—noted I(1)—DMS can improve upon IMS in terms of forecast
accuracy. Moreover, some model mis-specification benefits DMS. The cases which we find
favourable comprise estimated unit-roots with neglected negative residual autocorrelation,
perhaps caused by occasional and discrete alterations in the growth rate of an integrated
series (e.g., turning points in business cycles).

In this article, we build upon Clements and Hendry (1996) and extend their analysis.
Section 2 defines DMS, and its benefits are then analysed in the next two sections, when
the model is well specified and either stationary (section 3) or integrated (section 4) respec-
tively. Then section 5 discusses the properties of DMS for forecasting from mis-specified
models, focusing on neglected residual autocorrelation as in Clements and Hendry (1996),
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but now allowing for a deterministic term which we show alters the relative properties
of IMS and DMS. A Monte Carlo simulation—in section 6—illustrates our results. Sec-
tion 7 shows how our findings shed light on the existing literature and, finally, section 8
concludes. Appendices detailing the proofs are available from the authors on request.

2 Direct multi-step estimation

2.1 The data generating process

The properties of DMS depend on the type of DGP and potential mis-specifications con-
sidered. To clarify results, we use simple models which embody the salient characteristics
found in empirical studies, so vector autoregressive models (VAR) comprise the class of
DGPs for analysis, and more specifically a VAR(1), since any vector ARMA model can be
re-written in this form. Consider the dynamic system for a vector of n variables xt:

xt = τ + Γxt−1 + εt, for t ≥ 1, (1)

where the only requirement is that E[εt] = 0. If τ 6= 0, the process has an intercept (or a
drift): it can then be re-written in companion form as:(

1
xt

)
=

(
1 0
τ Γ

)(
1

xt−1

)
+

(
0
εt

)
, or Xt = ΨXt−1 + Et. (2)

Data processes are defined by their deterministic and stochastic properties, as known
since Wold (1938). In economics, the former are restricted—after suitable transforms of
the data—to the empirically relevant cases of a non-zero mean and/or a linear trend.
In terms of stochastic properties, we examine here series that are either stationary or
integrated of first order.

2.2 Estimation for forecasting

From an end-of-sample observation T (the forecast origin) the process {Xt} is determined
h periods ahead by:

XT+h = ΨhXT +
h−1∑
i=0

ΨiET+h−i. (3)

A forecast for the variable xt is to be made at various future horizons, using the model
(2), either from an IMS or an h-step DMS.

First, the 1-step estimator is defined by:2

Ψ̂ = argmin
Ψ⊆R(n+1)×(n+1)

∣∣∣∣∣
T∑

t=1

(Xt −ΨXt−1) (Xt −ΨXt−1)
′

∣∣∣∣∣ . (4)

2We denote by ˜ the estimators for varying horizon h, and reserve ̂ for one-step ahead estimation.

The same notation is used for the corresponding forecasts: ̂ for IMS and ˜ for DMS.
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The corresponding h-step ahead IMS forecasts are given by X̂T+h = Ψ̂hXT , with average
conditional error:

E
[(

XT+h − X̂T+h

)
| XT

]
=
(
Ψh − E

[
Ψ̂h
])

XT ,

where we neglect the dependence of the estimators on the latest observations. We refer to
the deviation Ψh − E[Ψ̂h] as the multi-step bias of the IMS estimator.3

The h-step DMS estimator is defined by the least-squares projection:

Ψ̃h = argmin
Ψh⊆R(n+1)×(n+1)

∣∣∣∣∣
T∑

t=h

(Xt −ΨhXt−h) (Xt −ΨhXt−h)′
∣∣∣∣∣ , (5)

with h-step DMS forecasts X̃T+h = Ψ̃hXT , and average conditional error:

E
[(

XT+h − X̃T+h

)
| XT

]
=
(
Ψh − E

[
Ψ̃h

])
XT .

Thus, the relative forecast accuracy depends on how accurate Ψ̂h and Ψ̃h are as
estimators of Ψh (i.e., the powered estimate versus the estimated power). When Ψ̂ is
badly biased, its powered values diverge increasingly from Ψh, whereas, ideally, if the
biases in Ψ̃h are independent of h, the dynamic estimator will produce ‘good’ forecasts.

3 Forecasting by well-specified stationary models

When the model is well-specified for the DGP, one-step estimation is more efficient than
multi-step, essentially because of the smaller sample size available for DMS and the auto-
correlation of the multi-step disturbances. Nevertheless, DMS might still be more efficient
for estimating the parameters of interest, namely the multi-step parameters, so we com-
pare the asymptotic distributions of the DMS and IMS parameters when model and DGP

coincide for a VAR(1). As noted by Johnston (1974), in such a framework, estimation
efficiency is a reliable indicator of forecast accuracy based on the mean-square forecast
error (MSFE) criterion.4

3.1 Direct multi-step GMM estimation

Under the conditions of (1), the relationship between xt and its hth lag is given by:

xt = Γ{h}τ + Γhxt−h +
h−1∑
i=0

Γiεt−i, for t ≥ h, (6)

3We only condition the expectation on XT , not on {Xt}0
T = {X0, ...,XT }, because the expectation

conditional on the whole sample can be difficult to establish in practice, although E[Ψ̂| {Xt}0
T ] = Ψ̂.

4The multivariate proofs are available on request from the first author.
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where for any integer h and stable scalar or square matrix ρ:

ρ{h} =
h−1∑
i=0

ρi = (1− ρ)−1(1− ρh).

DMS focuses on:

xt = τ h + Γhxt−h + uh,t, (7)

where, if εt ∼ INn [0,Ωε], uh,t is an MA(h− 1) process. Then, in univariate cases, gen-
eralized least-squares (GLS) or maximum likelihood (ML) should be preferred to OLS as
estimation methods; in a multivariate framework, generalized method of moments (GMM),
full-information maximum likelihood (FIML) or non-linear techniques are required. We re-
write (7) as:

xt = βhXt−h + uh,t =
(
X′

t−h ⊗ In

)
vec (βh) + uh,t,

where X′
t = (1 : x′t) , βh = (τ h : Γh), V[uh,t] =

∑h−1
i=0 ΓiΩεΓi′ and ‘⊗’ represents the

Kronecker product. Below, we compute the GMM estimator of vec(βh) and its asymptotic
distribution.

Since E[(Xt−h ⊗ In)uh,t] = 0, we use the objective function:

min
β̃h

(
mT

(
β̃h

)′
W̃h,T mT

(
β̃h

))
, (8)

where, for Th = T − h + 1:

mT

(
β̃h

)
= T−1

h

T∑
t=h

(Xt−h ⊗ In)
(
xt −

(
X′

t−h ⊗ In

)
vec (βh)

)
= T−1

h

T∑
t=h

mt

(
β̃h

)
.

The actual estimator depends on how W̃h,T is computed. Following Newey and West
(1987), we use the heteroscedasticity- and autocorrelation-consistent covariance matrix
estimator (HAC) given by:

W̃−1
h,T = Υ̂0,T +

h−1∑
i=1

[(
1− i

h

)(
Υ̂i,T + Υ̂′

i,T

)]
,

where Υ̂i,T is the estimator of the autocovariance of (Xt−h ⊗ In)uh,t defined as:

Υ̂i,T = T−1
h

T∑
t=h+i

(Xt−h ⊗ In) ûh,tû′h,t−i

(
X

′
t−h−i ⊗ In

)
.

Two options are available for computing ûh,t: either as the residual from OLS estimation
of (7) or defined as xt − β̃hXt−h when a non-linear minimizing algorithm is used for (8).
Here, we assume that ûh,t is the OLS residual, defined as:

ûh,t = xt − β̂hXt−h, (9)
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with:

β̂h =

(
T∑

t=h

xtX′
t−h

)(
T∑

t=h

Xt−hX′
t−h

)−1

.

Here, the weighting matrix W̃h,T does not depend on the GMM estimator so vec
(
β̃h

)
is

obtained by differentiating (8):

∂mT

(
β̃h

)
∂vec

(
β̃h

)′W̃h,T

[
mT

(
β̃h

)]
= 0,

and GMM and OLS coincide. In vectorized form:

vec
(
β̃h

)
=

( T∑
t=h

Xt−hX′
t−h

)−1

⊗ In

 T∑
t=h

(Xt−h ⊗ In)xt.

However, as the disturbances are autocorrelated, the implied asymptotic distribution of
β̃h depends on the limit of W̃h,T , which, in turn, varies with the stochastic properties of
the data. For stationary processes, the GMM estimator is consistent and:√

Th vec
(
β̃h − βh

)
L→ Nn(n+1)

[
0,V

β̃h

]
,

where, under stationarity and ergodicity:

V
β̃h

=
(
E
[
XtX′

t

]−1 ⊗ In

)(
plim
T→∞

W̃−1
h,T

)(
E
[
XtX′

t

]−1 ⊗ In

)
,

which in the univariate case, is given by (using ρ for Γ in the scalar case):

V
β̃h

= − 1
(1− ρ)2

(
hρ2h − 1 + ρ2

1− ρ2
+

2ρ2
(
1− ρ2h

)
h (1− ρ2)2

)[
τ2 −τ (1− ρ)

−τ (1− ρ) (1− ρ)2

]

+
1

(1− ρ)2

(
1 + ρ2h −

2ρ
(
1− ρ2h

)
h (1− ρ2)

)[
σ2

ε 0
0 0

]
. (10)

3.2 Iterated multi-step estimators

We now compare the asymptotic distributions of DMS to those obtained by IMS. If the data
are stationary, the asymptotic distribution of vec

(
β̂OLS − β

)
can be derived, following

Hamilton (1994, pp 298–9), as:

√
T

(
τ̂OLS − τ

vec
(
Γ̂OLS − Γ

) ) L→ N

[(
0n×1

0n2×1

)
,

(
Στ ,τ ΣΓ,τ

Στ ,Γ ΣΓ,Γ

)]
, (11)
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where:

Στ ,τ =

1 + τ ′
(
In − Γ′

)−1

( ∞∑
i=0

ΓiΩεΓi′

)−1

(In − Γ)−1 τ

Ωε;

Στ ,Γ = Σ′
Γ,τ = −

( ∞∑
i=0

ΓiΩεΓi′

)−1

(In − Γ)−1 τ ⊗Ωε

 ;

ΣΓ,Γ =

( ∞∑
i=0

ΓiΩεΓi′

)−1

⊗Ωε.

Using the delta method, we derive their asymptotic distributions in the multivariate
case, which in a univariate framework becomes:

√
T

(
ρ̂{h}τ̂ − ρ{h}τ

ρ̂h − ρh

)
L→ N2

[(
0
0

)
,

(
σ̂ IMS

ττ σ̂IMS
τρ

σ̂ IMS
τρ σ̂ IMS

ρρ

)]
= N2

[
0,Σ{h}

IMS

]
, (12)

defined as:

σ̂ IMS
ττ =

(
1− ρh

1− ρ

)2

σ2
ε + τ2h2 1 + ρ

1− ρ
ρ2(h−1);

σ̂ IMS
τρ = σ̂ IMS

τρ = −τh2 (1 + ρ) ρ2(h−1);

σ̂ IMS
ρρ = h2

(
1− ρ2

)
ρ2(h−1).

We compare both methods in the next subsection by means of a numerical analysis.

3.3 Numerical comparisons of efficiency

The above results allow us to proceed to a comparison of forecast accuracy as measured
by the two methods’ asymptotic MSFEs, given that the DMS forecast errors are:

ẽT+h|T = τh − τ̃h +
(
ρh − ρ̃h

)
xT +

h−1∑
i=0

ρiεT+h−i,

so that, taking account of the asymptotic independence of xT and
(
ρh − ρ̃h

)
under the

condition of stationarity, the MSFE converges to:

E
[
ẽ2
h

]
= Avar [τh − τ̃h] +

τ2

(1− ρ)2
Avar

[
ρh − ρ̃h

]
+2

τ

1− ρ
Acov

[
τh − τ̃h, ρh − ρ̃h

]
+

1− ρ2h

1− ρ
σ2

ε

=
σ2

ε

(1− ρ)2

{
2− ρ

(
1− ρ2h

)
−

2ρ
(
1− ρ2h

)
h (1− ρ2)

}
,

where we notice that the dependence in τ has disappeared. Similarly:

E
[
ê2
h

]
=

σ2
ε

(1− ρ)2
(
1− ρh

)(
2− ρ

(
1 + ρh

))
.
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Hence the ratio of MSFEs:

E
[
ê2
h

]
/E
[
ẽ2
h

]
=

h
(
1− ρ2

) (
1− ρh

) (
2− ρ

(
1 + ρh

))
h {2− ρ (1− ρ2h)} (1− ρ2)− 2ρ (1− ρ2h)

,

which is independent of τ , but as h →∞, when |ρ| < 1 :

h
(
E
[
ê2
h

]
/E
[
ẽ2
h

]
− 1
)
→

h→∞

2ρ

(1− ρ2) (2− ρ)
. (13)

When the horizon tends to infinity both methods yield the same MSFEs, but with DMS

dominating IMS in terms of forecast accuracy when the slope is positive, ρ > 0, and the
converse being true for ρ < 0.

At finite horizons, the same results hold: namely that positive slopes benefit DMS and
negative ones IMS. Figure 1 presents the logarithm of the ratio of MSFEs as a function
of both the horizon and the—positive—slope (0 ≤ ρ ≤ 0.95). The gain from direct
estimation is increasing in the slope parameter but, for fixed ρ, it first increases to some
slope-dependent horizon, then decreases. The value of h for which the maximum of the log
ratio of MSFEs is reached is itself increasing in ρ, and from (13), the log ratio tends to zero
as h tends to infinity. We have not presented the cases corresponding to negative slopes as
they are the converse of figure 1, but with the respective roles of IMS and DMS reversed
and some additional non-linearities related to whether the horizon is odd or even (which
renders the graphs difficult to read). To observe the variances of the estimators, figure
2 exhibits the ratios of the IMS and DMS slope and intercept estimator variances. For
ρ significantly different from unity, as the horizon increases, multi-step slope estimation
becomes much more accurate using IMS, whereas both methods yield similar results for
the multi-step intercept. By contrast, a slope ρ closer to unity benefits DMS (until some
slope-dependent horizon).

Thus, although the gain from using IMS or DMS varies with the horizon and the
stochastic properties of the data, the latter technique can be asymptotically more efficient
than the former even if the model is well-specified. This result is explained by the im-
provement in the variance of the multi-step estimator resulting from direct estimation. It
thus appears that the mis-specification of the error process in the case of DMS estimation
is not so detrimental to the accuracy of the estimators.

However, the limiting distributions reflect only partially the estimation properties of
the methods. Indeed, the estimators are, here, asymptotically unbiased and the gain from
DMS is achieved in terms of MSFEs via a reduction in the variances of the estimators.
Since the MSFE consists of the sum of the squared expectation of the forecast error and
of its variance, if DMS obtains parameter estimates closer to their true values in finite
samples, this method can outperform IMS, even if the latter achieves a lower variance of the
estimators, and hence of the forecast errors. Nevertheless, the simulations in Clements and
Hendry (1996) were unfavourable to DMS for stationary data and well-specified models,
so we next compare these estimation methods for integrated data.
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Figure 1: Ratio of the asymptotic MSFEs of the IMS over the DMS as fonction of the
horizon h and the slope ρ when τ = 0. The right-hand side panel represents sets of
same-altitude contours of the left-hand side graphs.

4 Integrated processes

When Γ = In so xt ∼ I (1), the distributions differ from those presented above. We
first assume that τ = 0 and define the n-variate Brownian motion B (r) such that
T−1/2

∑T
t=0 εt ⇒ B (r), where ‘⇒’ denotes weak convergence of the associated probability

measure. Let P be a square matrix of order n such that PP′ = Ωε (e.g., the Choleski
decomposition of Ωε), and U (r) represent n-dimensional standard Brownian motion, then:

B (r) = PU (r) where T−1/2
T∑

t=0

ut ⇒ hPU (r) . (14)

The estimators are consistent with the asymptotic variance-covariance matrix:

Avar

[ √
Th (τ̃ h − 0)

Th vec
(
Γ̃h − In

) ] =
[
h2 + 2 (h− 1)

]
D

(
(In ⊗Ωε) 0

0 1
2 vec (Ωε) vec (Ωε)

′

)
D′
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(15)

where:

D =

( 1
∫ 1
0 B (r)′ dr∫ 1

0 B (r) dr
∫ 1
0 B (r)B′ (r) dr

)−1

⊗ In

 .
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By contrast, the IMS estimators are such that:(
T−1/2In 0

0 T−1In2

)( √
T
(
τ̂ {h},OLS − hτ

)
T vec

(
Γ̂h

OLS − In

) )

⇒ h

( 1
∫ 1
0 B (r)′ dr∫ 1

0 B (r) dr
∫ 1
0 B (r)B′ (r) dr

)−1

⊗ In


×

 (In ⊗P) vec (U (1))

(P⊗P) vec
([∫ 1

0 U (r) dU′ (r)
]′)

 .

The asymptotic variances of the estimators differ by a ratio of 1+2 (h− 1) /h2. This ratio
is unity for h = 1, and is always larger than unity at longer horizons. Consequently, the
asymptotic variance of DMS is always above that of the IMS.

So far, we have assumed that no variable in {xt} drifts. If this condition is not satis-
fied, the results are substantially modified, since several I(1) regressors create determin-
istic trends so estimation suffers, as there are up to n perfectly-correlated variables (the
τ (t− h)) on the right-hand side. It is, therefore, necessary to rotate the data. Although
the presence of a non-zero drift radically alters the rates of convergence of the estimators,
we do not derive the results for that case here, but will consider it in the next section, in
a univariate framework to clarify the key features.

5 Forecasting from mis-specified non-stationary models

We now show that it is possible for DMS to lead to a substantial improvement in forecast
accuracy at all horizons relative to IMS in non-stationary processes, and for the gain from
DMS in terms of MSFE to increase with the lead time. The DGP, as in Clements and
Hendry (1996), is an integrated process with a negative moving average which is omitted
in the models, and we show that the maximum gain arises in the case of a low drift with
a magnitude often found in empirical studies.

5.1 Motivation

We focus on the special case of Γ = In in (1) with disturbances given by:

εt = θ(L)ζt,

where ζt ∼ INn [0,Σζ ], L denotes the lag operator and θ(L) = In +ΘL. This formulation
is motivated by the ‘structural time-series models’ of Harvey (1993, pp. 120–125) for a

12



univariate integrated DGP represented by:

xt = µt + εt, (16a)

µt = τ t + µt−1, (16b)

τ t = τ + ηt, (16c)

where εt ∼ N
[
0, σ2

ε

]
and {ηt} is an iid stochastic process with zero expectation and

constant variance σ2
η. Then {ηt} is a source of stochastic variation in the deterministic

trend of {xt} and, together with τ , forms the ‘local’ trend of the process. The process
{xt} can alternatively be modelled and estimated in the following congruent form:

xt = α + xt−1 + ξt + θξt−1, where ξt ∼ N
[
0, σ2

ξ

]
. (17)

These models are observationally equivalent provided that α = τ , θ = 1
2(
√

q2 + 4q−2−q)
and σ2

ξ = −σ2
ε/θ, with noise-to-signal ratio q = σ2

η/σ2
ε (keeping only the invertible MA

parameter). Under these conditions, 0 ≤ q ≤ ∞ corresponds to −1 ≤ θ ≤ 0, and as shown
below, are favourable to DMS forecasting, which performs best (relative to IMS) when θ

is close to −1 (as happens for low noise q).
The error {ηt} is a shock to the level of the otherwise trend-stationary process {xt}.

Owing to the integrated nature of {µt}, an occasional blip ηt entails a shift in the trend of
xt. The varying trend hence reflects variations in the growth rate of the series. Thus, any
such shifts can also be regarded as the turning points of a business cycle. The fact that
a modeller may be liable to omit such a variable as ηt justifies the use of DMS: as seen
in Hendry (2000), location shifts often occur in macro-econometric analyses, but growth
rate changes can be difficult to detect.

5.2 DGP and models

We consider a scalar process for simplicity and use the IMA(1,1), with x0 = 0 and θ ∈
(−1, 1) in:

DGP : xt = τ + xt−1 + εt, (18)

εt = ζt + θζt−1,

and ζt ∼ IN[0, σ2
ζ ]. We postulate the following models (the estimators coincide for h = 1):

MIMS : xt = α + ρxt−1 + εt, (19)

where εt c̃ IN
[
0, σ2

ε

]
(conjectured),

MDMS : xt = τh + ρhxt−h + vt, (20)

where vt is not modelled and h ≥ 1.

Notice that MIMS is a model of the DGP and thus, mis-specified whereas MDMS does not
claim to reflect the DGP: it is merely a procedure, although we still use the word ‘model’.
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Then, (3) becomes xT+h = xT + hτ +
∑h−1

i=0 εT+h−i, with corresponding forecasts:

MIMS : x̂T+h = ρ̂{h}α̂ + ρ̂hxT , and (21)

MDMS : x̃T+h = τ̃h + ρ̃hxT . (22)

When τ = 0 and the intercept is not estimated, Banerjee, Hendry, and Mizon (1996) have
shown that ρ̃h is asymptotically more (respectively less) accurate than ρ̂h if θ is negative
(resp. positive). By contrast, the presence of a non-zero drift means that IMS and DMS

estimators share the same asymptotic distribution: both (T 1/2(τ̃h − hτ), T 3/2(ρ̃h − 1))′

and (T 1/2
(
ρ̂{h}α̂− hτ

)
, T 3/2

(
ρ̂h − 1

)
)′ converge in law towards

N2

[
0, h2

(
4 −6/τ

−6/τ 12/τ2

)
(1 + θ)2 σ2

ζ

]
(23)

The distributions differ in finite samples, though since the conditional moments are non-
constant, owing to the presence of a stochastic trend and an omitted moving-average
component:

E [xt+h | xt] = xt + hτ + θE [ζt | xt] .

Since:

ζT | xT ∼ N

[
xT − Tτ

1 + (1 + θ)2 (T − 1)
, σ2

ζ

(1 + θ)2 (T − 1)
1 + (1 + θ)2 (T − 1)

]
, (24)

this leads to the non-stationary conditional moments:

E [xt+h | xt] = τ

h− θ
1
t

+
t− 1

t
(1 + θ)2

+
(

1 +
θ

1 + (1 + θ)2 (t− 1)

)
xt, (25)

V [xt+h | xt] = σ2
ζ

(
1 + θ2 + (1 + θ)2 (h− 1)− θ2

1 + (1 + θ)2 (t− 1)

)
. (26)

These converge asymptotically since, for θ > −1:

lim
t→∞

E [(xt+h − xt) | xt] = τ

(
h− θ

(1 + θ)2

)
lim
t→∞

V [xt+h | xt] =
(
h (1 + θ)2 − 2θ

)
σ2

ζ .

The interaction between the stochastic and deterministic trends in small samples—where
their influences have similar magnitudes—therefore affects estimation. Given that the
estimated parameters correspond to (25), we expect that, when θ is negative, one should
under-estimate the unit-root and over-estimate the intercept. The negative asymptotic
covariance of the biases in (23) reinforces this. Such a mis-estimation converts the intercept
from a ‘drift’ term to an ‘equilibrium mean’ of the (pseudo-) stationary estimated process.
The behaviours of the estimators for the two methods are therefore non-linear and non-
monotonic in the parameters of the DGP and the horizon. In such a setting, DMS is
more robust to unmodelled residual autocorrelation, as in Hall (1989). The next section
analyses the relation between estimation and multi-period forecasting.
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Table 1: h–step ahead forecast errors for IMS estimators.

êT+h = −
∑h−1

i=0 Ciτ − ChxT (slope estimation)

−hδ (intercept estimation)

−δ
∑h−1

i=0 Ci (second-order error)

+
∑h−1

i=0 εT+h−i (error accumulation)

Table 2: h–step forecast errors for DMS estimators.

ẽT+h = − λhxT (slope estimation)

− δh (intercept estimation)

+ ζT+h +
∑i=h−1

i=1 (1 + θ)ζt+h−i + θζT (error accumulation)

5.3 Forecast accuracy

We consider the gains from matching the criterion used for estimating the forecasting
model with that for evaluating forecast accuracy (which coincide for MSFE). A drawback
from using MSFEs lies in the non-invariance of the resulting rankings to transforms of the
variables in the models (see Clements and Hendry, 1998, pp. 68–73), but since DMS seeks
different estimators for each combination, any results hold, anyway, only for the specific
data formulation. Denoting the estimation errors, Ci = ρ̂i − 1, λ = ρ̂− 1, and δ = α̂− τ ,
we define the IMS forecast error:

êT+h = xT+h − x̂T+h, (27)

where x̂T+h is given by (21). A simplified forecast-error taxonomy for IMS follows, as
shown in table 1 (see Clements and Hendry, 1998, pp. 248–250).

A similar analysis for the direct multi-step estimation procedure provides its forecast
error taxonomy as reported in Table 2, with λh = ρ̃h − 1, and δh = τ̃h − hτ .

The difference between DMS and IMS lies in the absence, for the former, of a second-
order error, although it would appear in both conditional MSFEs. The interactions between
estimation and error mis-specification are also similar for the two models. However, to
emphasize the differences between the two methods, consider the following crude approxi-
mation to the components in Op

(
T−1

)
(i.e., the slope and intercept estimators, and their
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direct interaction). Consider first:

h−1∑
i=0

Ci =
h−1∑
i=0

(1 + λ)i − h =
h−1∑
i=0

(1 + iλ)− h + Op

(
λ2
)

=
h (h− 1)

2
λ + Op

(
λ2
)
.

Thus, an approximation to Op (λ) leads to:

êT+h ' −h

(
λ

[
xT +

h− 1
2

τ

]
+ δ

[
1 +

h− 1
2

λ

])
+

h−1∑
i=0

εT+h−i,

ẽT+h ' − (λhxT + δh) +
h−1∑
i=0

εT+h−i.

Notice three main differences between the methods: first, there is a potential gain from
multi-step if the corresponding estimation biases are lower than h times their one-step
counterparts, i.e., δh < hδ and λh < hλ (in absolute value for the MSFE); and, more sig-
nificantly, IMS estimation is equivalent to mis-estimating the forecast origin, and this effect
increases with the forecast horizon (because of the additional h−1

2 τ for IMS). Moreover,
a third difference arises in the interaction between the estimated slope and intercept, via
the correction in h−1

2 δλ for IMS, whose absolute value is also increasing in h. Hence, there
are many channels through which DMS can be more accurate than IMS. However, this ap-
proximation may be simplistic, so the next section compares the two methods in greater
detail, by numerically analyzing the accuracy of the forecasts from MIMS and MDMS .

6 Monte Carlo

One set of Monte Carlo simulations illustrates the preceding analyses for σ2
ζ = 1 (without

loss of generality) based on 10, 000 replications.5 The following parameters are allowed
to vary: τ between −3 and 3; θ ∈ (−1, 1); with the horizon h = 1, ..., 4. For each set
of parameters, all model coefficients are estimated, but the results are not presented for
negative intercepts when the sign of τ has no impact. We also only report simulations
for T = 25 as the gains from using DMS in mis-specified models fade as the sample
size increases. The notation EMC [·] refers to the Monte Carlo mean. When presenting
Monte Carlo results, the usual assumptions have to be made concerning the existence of
any moments simulated. In the case of a well-specified AR(1) model with an estimated
intercept, Magnus and Pesaran (1989) show that the forecast horizon h must not exceed
(T − 3)/2 for the MSFE to exist. We could potentially estimate these moments up to a
forecast horizon of h = 11 when the sample is T ≥ 25. The possibility that the slope

5Computations were performed using GiveWin (for graphs), OxEdit, OxRun and the Ox programming

language. Figure panels are referred to as a to d left to right, top to bottom.
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estimate is above unity, causing the forecast error to explode, could lead to tails too
thick for the variance to exist. However, as seen in Sargan (1982) and Hendry (1991),
the non-existence of the moments does not preclude sensible Monte Carlo results, which
can be seen as analogous to Nagar (1959) approximations. When the error term exhibits
negative autocorrelation, the probability that estimation might generate an explosive root
is reduced, so we can more confidently make use of simulation.

6.1 Model Estimation

Since the aim of this section is to analyse the relation between estimation and forecast
accuracy, we first study the performance of IMS for estimation of the one-step parameters,
and then show how this translates into multi-step IMS and DMS.

6.1.1 One-step ahead estimation bias

Figure 3 presents the simulation results for one-step ahead estimation biases. Pattern
similarities can be observed for the slope and intercept biases: first, when the true drift
is zero, negative residual serial correlation leads to large negative biases. Secondly, the
biases do not seem to depend much on θ when this is positive. The major difference lies
in the influence of low values of the drift when θ is close to −1: whereas EMC [ρ̂− 1] is
strictly increasing in both θ and τ , EMC [τ̂ − τ ] is first increasing then decreasing in τ ,
and the maximum is achieved for a value of the drift which increases with θ. Notice, also,
that a drift close to zero is under-estimated whereas it is over-estimated for values higher
than 0.1. Panel d in fig. 3 exhibits quasi-circular contour plots in the neighborhood of
{τ , θ} = {0,−1}, implying that the bias is close to a quadratic function of τ and (1 + θ)
in this neighbourhood.

6.1.2 Iterated and direct multi-step estimation biases

Figure 4 presents the Monte Carlo means of the IMS and DMS estimates of the slope at
horizon h = 4. For all θ, higher drifts lead to better estimation. However, when {τ , θ}
is close to {0,−1}, the estimated slope is close to zero, so the estimated models imply
that the observed variable is almost white noise; this is the case analyzed by Hall (1989).
Figure 5 shows a pattern similar to that of 1-step estimates, except that the biases are
comparatively much higher for DMS when θ ≥ 0, and for IMS when θ ≤ 0. Also, a
maximum (local in the case of DMS, global for IMS) is achieved for θ largely negative and
τ ranging between 0.15 and 0.40.

Thus, in the case of IMS, the non-linearity of the multi-step intercept bias results from
a combination of one-step estimation uncertainties in both the slope and the drift. As we
show below, this translates directly into a larger MSFE.
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Figure 3: Monte Carlo estimates of the slope and intercept estimator biases for 1-step
estimation for a sample of T = 25 observations, 10, 000 replications and varying drift and
moving average coefficient. The right-hand-side panels (b and d) exhibit a set of contours
for the panels on their left. The lines join points at the same altitude (z-axis) on the 3D
graphs.

6.2 Mean Square Forecast Errors

Given the non-linearities in the estimation biases, we now analyze how they affect the
forecasting properties of the models. Figure 6 exhibits the Monte Carlo means of the 4-step
ahead unconditional MSFEs for the two models and response surfaces for the parameters.
First, in panels b and d, for non-zero θ and τ , DMS entails a lower MSFE than IMS. The
striking feature is that MSFE is generally increasing in θ for DMS, which means that a
more mis-specified model will forecast better, but this is not true for IMS when the drift
is greater than 0.1, as the IMS MSFE surface is saddle shaped: it is increasing in θ for
θ ≥ −0.5, decreasing elsewhere; increasing in τ for value smaller than about 0.3, but
decreasing for higher values. Further, comparing fig. 6a, to fig. 5a–c reveals a similar
pattern for IMS: for a moving-average coefficient largely negative and a low non-zero
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Figure 4: Monte Carlo estimates of the slope estimator biases for 4-step IMS and DMS

for a sample of T = 25 observations, 10, 000 replications and varying drift and moving
average coefficient. The right-hand-side panels (b and d) exhibit a set of contours for the
panels on their left. The lines join points at the same altitude (z-axis) on the 3D graphs.

drift, the impact of iterating 1-step ahead estimates becomes large compared to direct
estimation as the horizon increases. Finally, for any given θ, the MSFEs for a zero-mean
process (i.e., τ = 0) are lower than for any non-zero value of the intercept. Figure 7c–d

record the Monte Carlo 1-step ahead MSFE for positive as well as negative values of the
moving-average coefficient: notice how similar its behaviour is to the 4-step MSFEDMS

with respect to τ (i.e., barely dependent on the intercept, when the latter remains low),
but decreasing in θ for negative values thereof, whereas the second moments are increasing
at higher horizons. The MSFE seems to behave as an increasing function of θ2, except
for a zero intercept, where it hardly varies with negative values of the moving-average
coefficient.

Figure 7a–b, summarizes some of the previous remarks: it shows the logarithm of
the ratio of the MSFEs, positive values corresponding to a gain from using DMS. Large
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Figure 5: Monte Carlo estimates of the intercept estimator biases for 4-step IMS and DMS

for a sample of T = 25 observations, 10, 000 replications and varying drift and moving
average coefficient. The IMS implied bias (panels c–d) is that which a modeller would
obtain, given that the estimated slope is strictly less than unity. The right-hand-side
panels (b and d) exhibit a set of contours for the panels on their left. The lines join points
at the same altitude (z-axis) on the 3D graph.

negative moving-average coefficients strongly favour DMS, even more so if combined with
a low non-zero intercept. The gain can be substantial for the largest values of the log-ratio:
as much as 0.8, which means that MSFEIMS is 220% of MSFEDMS , and is increasing in
the forecast horizon. As seen on fig. 7b, the gain from using DMS at horizon h = 4, is
obtained for θ lower than about −0.3.

6.3 Simulation conclusions

The conclusion that can be drawn from the Monte Carlo simulations is that when the
model is reasonably well-specified, estimation of the parameters of the mean of xt|xt−h is
more accurate by IMS than by DMS. By contrast, a large negative moving average (here,
with σ2

ζ = 1, θ ≤ −0.3) is beneficial to DMS, and even more so when the drift is low,
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Figure 6: Monte Carlo estimates of the 4-step IMS and DMS MSFEs for a sample of T = 25
observations, 10, 000 replications and varying parameters.

yet non-zero, so that the h-step ahead IMS intercept estimator is badly biased (see fig.
5). The essential feature here is the deterministic trend induced by the drift: then DMS

noticeably improves upon IMS. This feature combines in the multi-step intercept with the
powers of the estimated slope in the implied distribution of xt|xt−h: whether it is well
or badly estimated translates directly into the larger or lower h-step MSFE (fig. 6), and
yields the results in fig. 7a–b.

7 Explaining the literature

Having shown that direct estimation can improve forecast accuracy when the model omits
a negative moving average, the data are integrated and, potentially, exhibit a small de-
terministic trend, we are now able to understand some of results found in the literature.
Findley (1983) finds that series C (226 observations) and E (100) from Box and Jenkins
(1976) exhibit some accuracy gain when using DMS methods where the lag length is chosen
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Figure 7: Monte Carlo estimates of the logarithm of the ratios of 4-step IMS and DMS

MSFEs (panels a and b); and Monte Carlo estimates of the one-step MSFE (panels c and
d), for a sample of T = 25 observations, 10, 000 replications and varying parameters.

using an h-step AIC criterion. Both series are approximately integrated (with negative
serial autocorrelation for E). The series C can be represented by an AR(2):

Ct = 0.2645
(0.103)

+ 1.809
(0.0387)

Ct−1 − 0.821
(0.0387)

Ct−2 + εt

R2 = 0.99, σ̂ = 0.133,

whereas series E exhibits longer memory, and is more difficult to model. Findley (1983)
uses larger samples than the ones here, namely 150 to 200 for series C, and 80 to 90
for series E. He finds that at longer horizons, multi-step estimation can improve forecast
accuracy, and this corroborates our analysis since series C is indeed integrated with a small
drift. Stoica and Nehorai (1989) simulate the forecasting properties of an AR(1) model
applied to an ARMA(2, 2) process where the first lag has zero coefficient:

yt = 0.98yt−2 + εt − 0.87εt−1 − 0.775εt−2.
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Statistically, {yt} behaves as if it were integrated, so corresponds to forecasting an I(1)
process with a model which omits a negative moving average. In light of our previous
analysis, it is natural that Stoica and Nehorai (1989) find that DMS outperforms IMS at
horizon h = 4 with a sample of T = 200 observations. In a simulation study of DMS where
the data is generated by autoregressive processes, with potential additional regressors,
Weiss (1991) finds that DMS is preferred when the model is an AR(1) which omits negative
serial correlation, and the data exhibit long memory (via either integratedness or a large
autoregressive coefficient). This is again in line with the results above. Weiss (1991) also
finds that, when the DGP is:

yt = 0.8yt−1 + 0.5zt + αzt−1 + εt (28a)

zt = 0.5zt−1 + ut, (28b)

where εt and ut are both standard normal and are independent, and the model is yt =
φ1yt−1+φ2zt+vt, DMS outperforms IMS for α = 1/2, 2 and 5 at forecast horizon h = 4 for
a sample size of 1000 observations. Notice that in this case the DGP can be re-formulated
as:

yt = 0.8yt−1 + (0.5 + 2α) zt + (εt − 2ut) ,

so that both the implied coefficient on zt and the variance of the disturbances are larger
than in (28a). Given that the autoregressive coefficient of yt is large, this series exhibits
some long memory, so corresponds to neglecting some serial correlation in the case of a
near-integrated processes. Since Weiss (1991) had shown that DMS can be asymptotically
efficient, he uses very large samples for his simulations. In an empirical application of
multivariate multi-step estimation methods (which are similar to using the GFESM as
a forecast accuracy criterion), Liu (1996) finds that DMS can be more accurate when
forecasting the log of real US GNP and the US consumer price index for food in levels,
but when using the first-differences of the data, IMS is preferred. In both cases, the
series—in levels—are integrated and trending which could be modelled either as a linear
deterministic trend, or as an I(2) stochastic trend. This is close to the situation presented
above when DMS fares well. Finally, Clements and Hendry (1996) found that using DMS

was beneficial for forecast accuracy when the series were integrated and negative moving
averages were neglected. They derived their findings from models with small drifts, but
only compared these to the cases of no deterministic terms when the differences, not
the levels, of the variables were to be forecast, so the impact of the joint occurrence of
deterministic and stochastic trends was not obvious. Thus, our results corroborate those
obtained by these various authors. However, none of the previous findings stressed the
major influence that non-zero drift has in the case of integrated data, although positive
drifts were present in the simulations by Clements and Hendry (1996), and also for series
C in Findley (1983) and the seasonal model in Haywood and Tunnicliffe-Wilson (1997).
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8 Conclusions

We have shown that when the one-step model is well specified and estimation takes into
account the dynamic properties of the disturbances, DMS can asymptotically prove a more
accurate forecasting technique than IMS when it leads to more efficient estimation of the
multi-step intercept.

Moreover, when the DGP is unknown, and least-squares estimation entails an inac-
curate dynamic specification of the disturbances, direct multi-step estimation may be
preferred as a forecasting procedure in finite samples. Model mis-specification is then nec-
essary, but not sufficient, to justify the use of DMS. When the process is integrated, ‘large’
negative moving-average errors amplify the bias of the one-step ahead estimators. Even
so, omitting negative autocorrelation of the errors is not sufficient for DMS to prove more
accurate in small-sample forecasting. Processes which exhibit a deterministic trend, and
which are mis-specified for the errors, present the conditions for a successful use of DMS.
Unfortunately, the resulting gain is highly non-linear in the various parameters of the se-
ries and cannot be easily modelled. The stylized results are that the nearer (but not equal
to) zero the trend—with a maximum for certain low values which depend on the other
parameters—and the larger the negative residual autocorrelation, the higher the relative
accuracy from DMS. The class of structural time-series models allows us to understand
the role played by the negative autocorrelation of the residuals, and shows that potential
gains from forecasting with DMS arise when economic variables exhibit varying trends,
or are subject to cyclical patterns. Thus, DMS-based forecasts exhibit some robustness
compared to IMS.

When should a modeller decide to use direct multi-step estimation rather than iterate
the forecasts? Our analysis shows that DMS can prove either more efficient asymptotically,
or more precise in finite samples. A practitioner does not know ex ante how mis-specified
her model might be, or what shocks the economic series may encounter. By observing
the situations most beneficial here to DMS, she would be advised to resort to direct
multi-step estimation whenever the data she wishes to forecast exhibit either stochastic
or deterministic non-stationarity (unit-root and breaks) and the available sample is too
small for reliable inferences.
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