
Estimating Quadratic Variation When Quoted Prices
Jump by a Constant Increment

Jeremy Large ∗

Jeremy.Large@Nuffield.Oxford.Ac.Uk

Nuffield College, University of Oxford, Oxford, OX1 1NF, U.K.

15 February 2005

Abstract

Financial assets’ quoted prices normally change through frequent revisions, or

jumps. For markets where quotes are almost always revised by the minimum price

tick, this paper proposes a new estimator of Quadratic Variation which is robust

to microstructure effects. It compares the number of alternations, where quotes

are revised back to their previous price, to the number of other jumps. Many

markets exhibit a lack of autocorrelation in their quotes’ alternation pattern. Under

quite general no leverage assumptions, whenever this is so the proposed statistic is

consistent as the intensity of jumps increases without bound. After an empirical

implementation, some useful corollaries of this are given.
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1 Introduction

There is widespread evidence of persistence in financial assets’ volatility. Therefore,

estimating recent volatility furthers the desirable goal of forecasting volatility in the

near future. In practice, it is more convenient to estimate a price’s recent quadratic

variation (QV) rather than its volatility, although the two are closely related, for QV

is the integral of the squared volatility over a specified period such as a trading day.

Andersen, Bollerslev, and Diebold (2005) provide a survey of the literature on this topic.

The availability of rich second-by-second price data has encouraged high-frequency

sampling when estimating QV. However, consistent estimation is significantly compli-

cated at the highest frequencies by market microstructure effects. This paper points out

features in many markets’ microstructure which, when tested for positively, can be used

as structural restrictions to control for this interference. Ultimately, this leads to a new

estimator for QV.

Specifically, the paper points to the fact that on many markets agents almost always

revise quoted prices by exactly the minimum admissible price increment, i.e. by one

price tick at a time. Furthermore, the direction of these revisions, or jumps, often has

a non-correlation property in its reversal pattern, called Uncorrelated Alternation. Both

these features are, for example, found on the Chicago Board of Trade’s (CBOT’s) market

for 10-Year US Treasury Bond Futures, as well as the London Stock Exchange’s (LSE’s)

market in Vodafone, which was its most active equity on a number of measures in early

2004.

Under theoretical assumptions that rule out leverage effects, the testable features

imply that a simple estimator of QV is consistent as the intensity of jumps grows large,

namely:

nk2 c

a
, (1)

where n ∈ N is the number of jumps in the quoted price sequence, the constant k > 0 is

the price tick, and a ≤ n is the number of alternations, i.e. jumps whose direction is a

reversal of the last jump. Engle and Russell (1998) studies these. Jumps which do not

alternate are continuations, and number c = (n − a). The term nk2 is the QV of the

observed price. This is an inconsistent, and normally an upwardly biased, estimate of

underlying QV because of microstructure effects. However the upwards bias implies an

excess of alternation, and in fact multiplying by the fraction c/a compensates consistently.
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The modelling framework necessitates a new double asymptotic limit theory reflecting

the high-frequency microstructure it describes. In this theory, the intensity of jumping

grows without limit, but the variance of each jump diminishes at the same rate (see

Delattre and Jacod (1997) for a related theory). The statistic then converges to the

truth at rate n
1
2 . This rate is faster than the statistic reported in Zhang, Mykland, and

Aı̈t-Sahalia (2003), whose rate is n
1
6 , or the alternatives in Zhang (2004) and Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2004), where the rate is n
1
4 . The added asymp-

totic efficiency is bought at a cost, however, because the necessary testable features do

not apply on all markets, and some markets exhibit leverage effects. With the same

proviso, the statistic is consistent regardless of the short-run order flow dynamics, and is

robust to a range of microstructure effects including the bid-ask bounce, informed trading

(see Kyle (1985), Glosten and Milgrom (1985) and Hasbrouck (1991)) , volume-related

effects (see Engle and Lange (2001)), and resiliency dynamics (see Biais, Hillion, and

Spatt (1995), Coppejans, Domowitz, and Madhavan (2003) and Degryse, de Jong, van

Ravenswaaij, and Wuyts (2003)).

The paper proceeds as follows: Section 2 presents the main theorem of the paper, as

well as the relevant asymptotic limit theory. Section 3 then outlines the theorem’s proof

(detailed derivations are left to the Appendix). Section 4 applies the method to Vodafone

equity data and treasury bond futures prices at CBOT. Section 5 discusses corollaries

and extensions, while Section 6 concludes.

2 The model and main result

This section first prepares the ground for the main result, given in Section 2.3. Consider

a probability space (Ω,F , P ). Let it have a filtration {Ft : t ∈ R+}, which, as the

sigma-field F , is generated by three stochastic processes on R+: X and Y , which are

prices, and σ, a volatility process. For some T > 0, only {Yt : 0 ≤ t ≤ T} is observed. Y

has a random initial value. Let

Xt = W[X]t (2)

where W is a standard Brownian motion and

[X]t =

∫ t

0

σ2
udu. (3)
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Therefore X is a time-changed Brownian motion, with stochastic volatility σ.1 A short-

hand for X is

X = W ◦ [X], (4)

where ◦ denotes composition on a time-change. The quantity to be estimated is the

QV of X over the observed period, or [X]T . Let σ be piecewise smooth, càdlàg and

everywhere positive with probability one. Hence [X] is invertible with probability one.

It is possible that σ is constant, and σ may have arbitrary serial dependence. X has no

leverage effects, in fact2

W ⊥⊥ σ, (5)

where ⊥⊥ indicates independence. As X is not observed, nor is [X]T . Instead, Y is

observed. But Y may jump and deviates from X by a microstructure effect, called the

process ε:

ε := Y −X. (6)

Definition The microstructure, ε, has no leverage effects if

ε ◦ [X]−1 ⊥⊥ σ. (7)

This means that viewed in “business time” the microstructure effect is independent of

current volatility. Operationally, this will mean that the frequency (not the magnitude)

of quote revisions grows with increased volatility – a realistic stance given the tightness

of spreads on the markets later introduced.3

Definition The microstructure, ε is stationary in business time if

ε ◦ [X]−1 is stationary. (9)

1For more on stochastic volatility, see, for example, the reviews in Ghysels, Harvey, and Renault
(1996) and Shephard (2005, Ch 1).

2Barndorff-Nielsen and Shephard (2004c) treat in detail time-change Lévy processes with no leverage.
3An alternative definition for there to be no leverage effects in the market microstructure, not adopted

here, would be one in “calendar time” :
{∫ t

0

εu

σu
du

}∞

t=0

⊥⊥ σ. (8)

This would imply that the normalized increments in ε were independent of current volatility, meaning
that, for example, the mean magnitude of revisions in quoted prices would grow with increased volatility.
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Assume that for all realizations of σ, eg. σ̄, the conditional probability measure

P σ̄(·) = P (·| σ = σ̄) (10)

exists.

2.1 The observed price as a pure jump process

The observed price, Y is a pure jump process specified by

Yt = Y0 +

∫ t

0

GudNu, (11)

where N is a simple4 counting process with an intensity. Its intensity and the process

G are adapted to the filtration generated by the process |ε|.5 They therefore depend on

both X and Y , but taking the absolute value of ε implies that they respond to buying

and selling symmetrically. N deviates from 0 with positive probability over [0, T ]. The

QV of Y is clearly

[Y ]t =

∫ t

0

G2
udNu, (12)

a random variable.

Decompose the process N by

N = A + C, (13)

where A and C are counting processes. The alternation process, A, counts the jumps

in Y which have opposite sign to the one before, and the continuation process C counts

jumps that continue in the same direction as the one before. Both are adapted to Y .

Notice that as N is simple, arrivals of A and C at the same time are not possible, so the

decomposition is unique. View the first jump in Y as an alternation. For all i ∈ N let ti

be the time of the i’th jump in Y . Define the random sequence Q = {dAti−dCti : i ∈ N}.
So Q records +1 for an alternation and −1 for a continuation.

Definition Y has Uncorrelated Alternation if Q has zero first-order autocorrelation.

4I.e. the probability of observing two or more events in a small period of time, when divided by the
probability of observing one event, is second order.

5For richer dynamics in Y , this filtration (and the full filtration) can be arbitrarily augmented by
some stochastic, real vector-valued initial condition independent of the sign of Y0.
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Identification Assumption Given two events observable before any jumping time ti,

H1 ∈ Fti− and H2 ⊂ H1,

{ E(Yti|H1) = E(Yti|H2) } ↔ { E(Xti|H1) = E(Xti|H2) }. (14)

Thus, if H2 adds (no) new information to H1 concerning the likely direction of Y ’s next

jump, it adds something (nothing) new about the level of X.

2.2 Asymptotic limit theory

A long sample invites invites the time series econometrician to suppose that the sample

were of “infinite” length. This is behind much sampling theory used in macroeconomics

and financial economics. Of course, in practice the data is finite and so these asymptotics

provide an approximation, whose accuracy can be assessed through the simulation of

realistic cases.

Similarly, high frequency market microstructure data invites the asymptotic thought

experiment that, given an underlying price process, the microstructure had evolved “in-

finitely” fast, with “infinitely” small jumps. Delattre and Jacod (1997) exemplify such

an approach. This implies a double asymptotic theory with a relative rate of convergence

between the increase in jumping intensity and the decline in jumping magnitude. The

rate is here proposed so that [Y ]T can, in line with observed data, have a non-zero limit

in probability. The next part formalizes this intuitive idea in terms of a scaling constant,

α ∈ R+, which converges to zero from above.

2.2.1 Formal asymptotic theory

As σ is measurable with respect to X, P σ̄ may be factorized into a marginal and a

conditional distribution by

P σ̄(Y, X) = P (Y |X)P σ̄(X). (15)

Define the process Xα by

Xα
t :=

1

α
Xα2t, (16)

So, for α < 1, the functional X → Xα slows X down, but normalizes it so that its

spot volatility is preserved. Holding P σ̄(X) fixed, define a new conditional probability

measure Pα(Y |X) by:

Pα(Y |X) := P (Y 1/α|Xα). (17)
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The asymptotic theory studies

lim
α→0

Pα(Y |X)P σ̄(X), (18)

as an approximation to (15).

Intuition Suppose that α < 1. The conditional measure Pα can be understood as the

result of a three stage process: first the latent X is slowed and scaled up. Second, Y

evolves stochastically according to the model, conditional on the slowed and expanded

X. Third, Y (and, implicitly, X) is speeded back up, and appropriately shrunk.

Therefore the measure Pα(Y |X) makes more likely, for given X, realizations of Y

with more jumps, of smaller magnitude. Indeed, with probability 1, NT →∞ as α → 0.

Note that this asymptotic formalization is also applicable in cases when Y is not simply

a pure jump process. This manipulation preserves the stationarity of ε in business time.

7



time (seconds)

pr
ic

e 
(b

as
is

 p
oi

nt
s)

-12

-10

-8

-6

-4

-2

0

2

4

Figure 1: A simulation of this paper’s proposed model. It shows an asset’s observed
price, which jumps, and its continuous underlying price, here a scaled Brownian motion.
The observed price has a propensity to alternate.

2.3 The main result

Theorem 2.1 Suppose that

(A) Y has Uncorrelated Alternation,

(B) Y always jumps by a constant ±k,

(C) ε has no leverage effects, is stationary in business time, is ergodic, and E(ε) = 0.

(D) Y always jumps towards X, and

(E) The Identification Assumption holds.

Then

[Y ]T
CT

AT

(19)

is a consistent estimator of [X]T as α → 0. Conditional on σ, the limiting distribution

as α → 0 of √
NT

[
[Y ]T

CT

AT

− [X]T

]
(20)

exists and is normal. Its variance depends on σ and the market’s short-run order dy-

namics, and is detailed later in Proposition 3.5.

Proof. Section 3 provides the proof of this Theorem through a series of propositions,

whose detailed derivations are left to the appendices.

Figure 1 shows a process satisfying the Theorem’s assumptions.

Discussion of the result The result is semi-parametric because it does not refer

to the dynamics or the intensity of N . The proposed estimator is easy to calculate. It
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multiplies together two components: [Y ]T , which is equal to NT k2, and CT /AT (a positive

ratio which in practice tends to be less than 0.5, though the theory does not require

this). Many jumps are indicative of high stochastic volatility unless most of them are

alternations, a possibility which the observed proportion of alternations to continuations

provides a means to account for.

Discussion of the assumptions Note that (B) and (D) are jointly equivalent to

G ≡ −k sign(ε). (21)

Assumptions (A) and (B) can be tested empirically. (A) states that the likelihood

that a jump is an alternation does not depend on whether the last jump was. It may

be tested via a regression of Q on itself lagged. (B), which assumes a constant jump

magnitude, is true of many markets, including both markets studied in the empirical

section of the paper.

The assumptions (C), (D) and (E) cannot be tested. (C) states that viewed in “busi-

ness time” the microstructure effect is ergodic and independent of current volatility.

Thus, while at times it evolves fast, these are exactly the times when X also evolves fast.

(D) states that Y always jumps towards X, meaning that [X]T includes the effects of

noise traders on prices at the microstructure level. Finally, (E) is innocuous.

Relationship to the existing literature The availability of rich second-by-second

data has encouraged high-frequency sampling of prices when measuring their QV. The

benchmark case is to compute the observed price’s Realized Variance (RV) at some high

frequency. This (in calendar time) is calculated by breaking up a period of time, e.g.

a trading day, into many intervals of equal length, then squaring the observed returns

over these intervals, and adding them up. Barndorff-Nielsen and Shephard (2002a) and

(2002b) provide an asymptotic limit theory for RV as it approaches QV but before market

microstructure becomes a central concern. In the current framework, at the highest

frequency RV is [Y ]T .

However, researchers have found that a price’s RV at high frequencies typically de-

viates significantly from RV at low frequencies, see Zhou (1996), Andreou and Ghysels

(2002) and Oomen (2002). This has been attributed to microstructure noise, i.e. ε,

in Zhang, Mykland, and Aı̈t-Sahalia (2003) and Barndorff-Nielsen, Hansen, Lunde, and
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Shephard (2004). This paper follows these in making a correction to RV to account for

microstructure effects.

The idea that observed prices are pure jump processes, which deviate from a fun-

damental price, is already present in Oomen (2004) and Zeng (2003). This perspective

explains two interrelated puzzles. First, if prices are pure jump processes, then the ob-

served asymptotic behavior of bipower variation, the influential statistic introduced in

Barndorff-Nielsen and Shephard (2004b), which converge to zero with finer sampling, is

explicable. Second, when studying quotes data, Hansen and Lunde (2004) find that at

high frequencies RV is at times a downwards-biased estimator of QV. They show that

this result implies a negative covariation between efficient returns and the error due to

microstructure effects. They also document time-dependence in the error, a phenomenon

that has been abstracted from in much of the literature. A pure jump process can ac-

count for these features: the local infrequency of jumps implies both serial correlation in

the error and instantaneously negative covariation between the error and efficient price.

The use of a time-change argument in the proof of the Theorem relates to Barndorff-

Nielsen and Shephard (2004c).

3 Proof of Theorem 2.1

Proposition 3.1 Suppose that Assumptions (B),(C) and (D) of Theorem 2.1 hold. Let

R be the ratio [X]T
E [Y ]T

. The error just before the i’th jump is εti−. Taking the ergodic

expectation, for all i

E[ | εti− | ] =
k

2
[R + 1] . (22)

Proof. See Appendix B.

Discussion Note E [Y ]T exists because N is simple and σ is bounded over the compact

set [0, T ]. This proposition implies that the expected magnitude of the error, measured

just before a jump, is an increasing affine function of R = [X]T
E [Y ]T

. Its intercept is k
2
,

so that if X is constant, then Y simply jumps between X ± k
2
. As [X]T increases, the

expected error magnitude increases.

Proposition 3.1 provides a unbiased estimate of | εti− | while the direction of the jump

at ti gives the sign of εti−. Combining these, an unbiased estimate of εti− itself is available.

Equally, Xti can be estimated without bias by adding or subtracting E[ | εti− | ] to/from
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Figure 2: The solid line shows Y , while the dashed line shows Z. The letters on the
time axis indicate if the jump is an alternation or a continuation. The diagram is of
an example illustrating the relative contribution to the QV of Z by alternations and
continuations.

Yti−, depending on the direction Y jumps at ti. This is illustrated in Figure 2. Since X

is a martingale, this estimate remains valid until Y next jumps at t(i+1), and is clearly

an improvement on the estimate just given by Y . The next definition gives the name Z

to this conditional estimation process.

Definition For each of Y ’s jumping times, ti, define Zti by

Zti = E[Xti | Yti , Gti , R ]. (23)

(Recall that Gti = ±k is the jump in Y at ti.) Extend the sequence {Zti : i ∈ N}
rightwards to a càdlàg pure jump process Z. Note that Z is not observed because R

is not observed. The evolution of Z is described in Figure 2, which also illustrates the

following lemma.

Lemma 3.2 The Quadratic Variation process for Z, denoted [Z], is a linear combination

of the processes A and C given by

[Z] = k2(C + R2A). (24)

Proof. When Y jumps by continuing in the same direction as the last jump, Z jumps by

k. When Y jumps by alternating in direction, Z jumps by Rk. This follows from simple
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calculation, and is easily seen in Figure 2. The QV of Z is the sum of its squared jumps.

The lemma now follows.

Definition A process S, adapted to {Ft}, has Ideal Error if conditional on any σ,

E [S]T = [X]T , (25)

where the expectation is ergodic.

Proposition 3.3 Suppose that Assumptions (B), (C) and (D) of Theorem 2.1, as well

as the Identification Assumption, hold. Uncorrelated Alternation then implies that Z has

Ideal Error.

Proof. See Appendix C.

Uncorrelated Alternation may be tested simply by regressing Q linearly on itself

lagged, and making the usual F test that the regressor is significant.

Proposition 3.4 Suppose that Assumptions (B), (C) and (D) of Theorem 2.1 hold.

Suppose that Z has Ideal Error. Then,

E[AT R− CT ] = 0, (26)

and R has the Method of Moments estimator

R̂ =
CT

AT

. (27)

(Define R̂ = 0 if CT = AT = 0).

Proof. See Appendix D. The main case is when Y does not have Ideal Error. In a

sketch, as Z has Ideal Error, and [X]T = R E[k2NT ],

E[k2(CT + AT R2)] = RE[k2NT ]. (28)

Thus the expectation of a quadratic in R is 0:

E[AT R2 −NT R + CT ] = 0. (29)

The quadratic has roots at 1 and CT /AT . But R 6= 1 since Y does not have Ideal Error.

Hence (26) is true.
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So, recalling [X]T = R E[Y ]T , the proposed estimator of [X]T is

R̂[Y ]T . (30)

Denoting by Ẑ the estimate of the process Z constructed by replacing R with R̂ in (23),

R̂[Y ]T = [Ẑ]T . (31)

The final proposition in this section provides the asymptotic limit theory for this estima-

tor, proving its consistency.

Proposition 3.5 Suppose that Assumptions (B), (C) and (D) of Theorem 2.1 hold.

Suppose that Z has Ideal Error. Then conditionally on σ, the following limit theory

applies:

lim
α→0

√
NT

(
R̂[Y ]T
[X]T

− 1

)
∼ N(0, UV U ′), (32)

where U is the pair (1, (1+R)2

R
) and V is the long-run variance matrix of the stationary

time series of pairs, Π:

Π =

{ (
[X]ti − [X]t(i−1)

E([X]ti − [X]t(i−1)
)

,
Qi + 1

2

)
: i ∈ N

}
. (33)

The left hand term here is the elapsed QV in X between the (i − 1)th and ith jumps in

Y , once de-averaged. As previously defined, Qi takes value +1 if the ith jump in Y is an

alternation, and −1 if it is a continuation.

Proof. See Appendix E.

This asymptotic limit theory is infeasible because the elapsed QV is not directly

observed, ruling out estimates of Π and so of V .

Proof of Theorem 2.1 Suppose that Assumptions (B), (C) and (D) of Theorem 2.1

hold. (Then Z may be constructed as in Figure 2.) If in addition Assumptions (A) and

(E) hold, then Proposition 3.3 shows that Z has Ideal Error. Therefore Propositions 3.4

and 3.5 apply and the Theorem follows.
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Figure 3: A representation of the five most traded stocks on the London Stock Exchange
in January 2004, relating the price tick to (on the vertical axis) daily estimated volatility
(excluding overnight returns) and (on the horizonal axis) the size of quote revisions. The
diameters of the disks are proportional to the value of shares traded in the month.

4 Empirical implementation

4.1 Vodafone on the London Stock Exchange

This part implements the proposed estimator for Vodafone stock traded on the LSE’s

electronic limit order book, called SETS. Vodafone was the LSE’s most heavily traded

stock (by dollar value) in January 2004. This month was a period of 21 trading days

running from 8:00am to 4:30pm. Figure 3 compares Vodafone to the next four most

traded equities in the period.6 It shows that Vodafone’s price tick was on average larger

as a proportion of the average daily squared return (excluding overnight returns), and

that Vodafone had many fewer quote revisions of magnitude greater than the price tick.

In line with, for example, Engle (2000), the first 15 minutes of the trading day were

excluded. Quotes were timed to the nearest second. Vodafone’s best offer was revised

4,580 times over the sampled interval, on average 218 times per day. Of these, 8 revisions

(i.e. jumps), or 0.2 per cent, were of magnitude greater than the price tick.

Andersen, Bollerslev, Diebold, and Labys (2000) introduced a graphical technique

6More than 1 per cent of the quote revisions in BP, Shell, GSK and HSBC stock were by more than
one price tick. This makes them somewhat less applicable, given Assumption (B) of Theorem 2.1. A
more detailed tabulation is given later in Figure 11.
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Figure 4: Volatility signature plots for Vodafone’s best ask price. The diamonds show
the estimated RV of the quote at various observation frequencies (the unit is pence). The
squares show the estimated RV of the transformed quote, Ẑ, at various frequencies.

known as the volatility signature plot. This plots the Realized Variance of a price process

as a function of the frequency at which it is sampled. Legibility is enhanced by plotting

sampling frequency on a log-scale. Finally, by analyzing a long enough time series, it is

hoped that (even at its right-hand end) the shape of the schedule will be reasonably stable

due to large number effects. Figure 4 shows for the current data, volatility signature plots

of Y , and the process Ẑ, which approximates Z and is constructed using R̂ = CT /AT .

Under the assumptions of Proposition 3.3, passing the Uncorrelated Alternation test

implies that Z has Ideal Error. Therefore loosely, the test can be interpreted as a sufficient

test for the hypothesis that the volatility signature plot of Z is flat. Inspection of Figure

4 suggests this may at least be so of Ẑ. But more formally, for each trading day, the

sequence of alternations / continuations, Q, was regressed on itself lagged. For each of

the 21 days, the significance of the regressor could be assessed with the usual F test. On

17 days the null hypothesis of no first order autocorrelation was accepted at a confidence

level of 5 per cent. On two further days, it was accepted at 2 per cent. On the two days

where it was still rejected, the lower of the p-values was 0.3 per cent. Having passed

specification testing, QV estimation was performed day by day. Its results are reported
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in Figure 5, and are tabulated in detail in Figure 10.

The initially surprising lack of correlation in alternation may be due to the fact

that the Vodafone market is deep, with a bid-ask spread that is at or adjacent to its

regulatory minimum most of the time, meaning temporary resiliency effects do not play

a large role. Furthermore, concentrating on its quoted prices, not transaction prices,

eliminates Vodafone’s bid-ask bounce. These features are also present on the 10-Year

Treasury Bond Future at CBOT.

4.2 CBOT Treasury Bond Future

The data contains the prices of the 10-Year Treasury Bond Future on 29 July, 30 July and

2 August 2004 (the dates span a weekend), as displayed in Figure 7. Open trading was

observed on the electronic limit order book from 7:30am to 4:00pm on each day.7 The

outstanding best price at the bid was studied, which is quoted in quantities representing

1
12,800

of the contract’s nominal value, $100,000. The price level on this market was

approximately 14,000 at this time. The minimum admissible price increment was two.

The best bid was revised 2,432 times over the sampled interval, or on average 811 times

per day. Of these, 21 jumps, or 0.86 per cent, were of magnitude greater than the price

7Trading begins at 7:00am.
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Volatility Signature Plot for CBOT, July / August 2004
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Figure 6: Volatility signature plots for the best bid on the CBOT limit order book for the
10-Year Treasury Bond Future. The diamonds show the estimated RV of the quote at
various observation frequencies. The squares show the estimated RV of the transformed
quote, Ẑ, at various frequencies.

tick.

Each day was divided into the period before 9:00am, and the period after. Small

intervals containing jumps greater than the price tick were excised, principally a 25-

minute period around 9:00am on 30 July. At this time there was a sudden period of

very high volatility, perhaps due to a public announcement (See Figure 7).8 For three

of the six periods the null hypothesis of no first order autocorrelation was accepted at a

confidence level of 5 per cent. For the other three periods, it was accepted at 2 per cent.

The data’s volatility signature plot, as well as the one for Ẑ, are presented in Figure 6.

The latter’s flatness provides further corroboration of the hypothesis that Z has Ideal

Error. QV estimation results for CBOT are reported in Figure 8.

5 Extensions and corollaries

This section first discusses a closely related filtering technique. It then shows how when

certain further restrictions can be imposed on a well-specified model, the central limit

theory presented in Proposition 3.5 becomes feasible, permitting inference about the

estimated QV. This is followed by a discussion of an extension to the bivariate case

8In addition, a few seconds’ trading around 7:30am on 29 and 30 July were excluded.
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Figure 7: The price-path taken by the best bid for the 10-Year Treasury Bond Future on
29, 30 July and 2 August 2004.

where two price processes have correlated returns.

5.1 A filtering technique

Under the assumptions of Theorem 2.1, X may be estimated by Ẑ. For further economet-

ric analysis, first constructing Ẑ provides a better estimate of X, the underlying price,

than using Y directly. In this sense, Ẑ thus constructed is a useful filter for Y .

When estimating the QV [X]T , [Ẑ]T may be preferable to the proposed statistic,

k2NT CT /AT if the data contains short episodes of model mis-specification with large

quote revisions or swings due to public announcements. The two are identical if there

is no mis-specification. The CBOT data provides an example of this. Its price path is

presented in Figure 7. It is clear that around 9am on July 30 2004, there was a brief

substantial increase in volatility: [Ẑ]T would include a contribution to volatility from this

time, but k2NT CT /AT would not. This discrepancy is reported for CBOT in Figure 8.
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29-Jul 1,021487 672 38 % 1,021
30-Jul 2,134834 1,163 39 % 1,835

02-Aug 759456 597 31 % 738

3,9141,777 2,432 37 % 3,586

[Z]TAT R NTk2CT/ATNT

Total

^ ^

Figure 8: Estimation results for the 10-Year Treasury Bond Future on 29, 30 July and
2 August 2004. The discrepancy in some values of the two right-hand columns is due to
the short episodes of mis-specification described in the text.

5.2 A feasible limit theory when volatility is constant

The asymptotic limit theory of Proposition 3.5 is infeasible because Π is not observed, and

therefore its long-run variance matrix, V , cannot be estimated. However, circumstances

may exist where the econometrician may reasonably suppose the process σ to be constant.

Then the elapsed QV in X between jumps at ti and ti−1 is given by

[X]ti − [X]t(i−1)
= σ2(ti − ti−1), (34)

and, de-averaged,
[X]ti − [X]t(i−1)

E([X]ti − [X]t(i−1)
)

=
(ti − ti−1)

T
E(NT ). (35)

Substituting NT for E(NT ) gives an estimate Π̂, on which the Newey and West (1987)

method, and related long-run variance estimation techniques, can be used to estimate V .

5.3 A feasible limit theory when Y follows Sluggish Rounding

Where the assumption of constant volatility is untenable, nevertheless inference may still

be feasible by assuming a specific dynamic structure for the order flow. This approach

is exemplified by Sluggish Rounding, which is introduced below.

When prices jump by a constant increment, it would seem reasonable to view them

as resulting from rounding off a continuous process to the nearest penny, half-penny etc.

This approach is taken (with the inclusion of trading costs) in Hasbrouck (1998). It

is also present in Zeng (2003) (where the underlying price is corrupted by noise, then

rounded). An appropriate central limit theory is provided in this context by Delattre and

Jacod (1997). In these papers, prices are discretely sampled. However, in the current
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Figure 9: The estimated QV for Vodafone on each trading day in January 2004. The
floating columns estimate ±2 standard deviations’ error, under an assumption that prices
evolved according to Sluggish Rounding. The vertical axis is in pence squared. The
dashed columns represent days where specification testing failed.

setting of continuous sampling, rounded-off Itô processes must have QV either of zero,

or of ∞, the latter with positive probability (provided prices are unbounded). This is

because when an Itô process crosses a rounding threshold, with probability 1 it does so

infinitely more times in the next instant.

While retaining continuous sampling, this problem can be avoided by introducing a

“sluggishness”,9 whereby any threshold for rounding observed prices up by one increment

exceeds by a small margin the threshold for rounding them back down. Formally, suppose

that there exists ρ > 0 such that Y moves towards X by amount k whenever |X−Y | = ρ.

For this to have finite activity, it must be that

ρ >
k

2
. (36)

Otherwise, any single jump would precipitate an infinite flurry.10

Proposition 5.1 Suppose that Y evolves according to Sluggish Rounding. Then it has

Uncorrelated Alternation. Furthermore, Π is an i.i.d. sequence and

UV U ′ =
2

3R
(1 + 4R + 2R2). (37)

Therefore UV U ′ may be estimated consistently by replacing R in (37) with R̂ = CT /AT .

9I am grateful to Peter Hansen for introducing me to this idea and suggesting the term sluggish.
10In the case where ρ = k, Y jumps to exactly the value of X whenever X reaches (Y ± k).
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Proof. See Appendix F.

This method is implemented in Figure 9 for Vodafone, January 2004, assuming that

the observed price evolves according to Sluggish Rounding. A simulation of Sluggish

Rounding 10,000 times based on R = 0.4 and [X]T = 1296, estimates which are in

line with the CBOT data, is suggestive of good small sample properties. In particular,

the truth was rejected at 1% on 1.0% of runs, at 5% on 4.7% of runs, and at 10% on

9.3% of runs (standard errors were estimated one run at a time using Proposition 5.1).

Logarithms were taken at the lower tail to mitigate the influence of the lower bound at

zero.

5.4 Estimating bivariate covariation

It seems plausible that where the returns of two financial assets are positively correlated,

the value of a portfolio containing both might have disproportionately many continu-

ations. This intuition is supported by the following formalization. Let (X1, Y1) and

(X2, Y2) be the models of two asset prices, satisfying the assumptions of Theorem 2.1,

and let (X1, X2) be a bivariate Itô process. Note that without loss of generality they

can be scaled so Y1 and Y2 have the same jump size, k. The quantity of interest is the

covariation of X1 and X2, written

[X1, X2]T = p-lim
M∑

j=1

[X1(tj)−X1(tj−1)][X2(tj)−X2(tj−1)], (38)

where {0 = t0, t1, ... tM = T} is a lattice on [0, T ] whose mesh tends to zero in the limit,

and p-lim denotes that limit in probability, as studied in Barndorff-Nielsen and Shephard

(2004a).

Corollary 5.2 Suppose that the models (X1 + X2, Y1 + Y2) and (X1 −X2, Y1 − Y2) each

satisfy the Assumptions of Theorem 2.1 and, conditional on (X1, X2), Y1 and Y2 are

independent. Write C+ (A+) for the number of observed continuations (alternations) in

Y1 + Y2. Define C− and A− analogously for Y1 − Y2. Then

1

4

(
C+

A+
− C−

A−

)
( [Y1]T + [Y2]T ) (39)

is a consistent estimator of [X1, X2]T .

Proof. See Appendix H.
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The corollary has the interpretation that, asymptotically, the covariation is positive

if and only if there are more continuations in the summed price processes than in the

differenced prices. However, the assumptions of this corollary are strong, and it is not

expected that they would hold of all data.

6 Conclusion

This paper views the observed price as a pure jump process whose deviations from an

underlying stochastic process are stationary. Noting that on many markets the magnitude

of jumping is constant and equal to the market’s minimum admissible price increment,

it proposes a new estimator for QV which down-weights the QV of the observed quoted

price process by a factor that takes into account its propensity to alternate. Provided that

alternation is uncorrelated at the first order, and given a set of theoretical assumptions,

this estimator is consistent and converges at a rate proportional to the square root of

the number of observed jumps. Some extensions and corollaries are discussed, and the

proposed technique is implemented for a UK equity and a US future.
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A An equivalence with the constant volatility case

Lemma A.1 Suppose that X and ε have no leverage effects. Let σ̄ be any realization of

σ. Let

s̄(t) =

∫ t

0

σ̄2
udu, (40)

and for any t let

f̄ t : Ft 7→ Fs̄(t). (41)

be the natural transformation of events induced by the time-change, s̄. Let

f̄ = ∪t∈R+ f̄ t. (42)

Then f̄ : F 7→ F is invertible, and for any A ∈ F ,

P σ̄
(
f̄−1(A)

)
= P 1(A). (43)

Proof. Suppose that σ = σ̄. Note that s̄ = [X]. As σ̄ is piecewise smooth, càdlàg and

everywhere positive, it follows that s̄−1 = [X]−1 exists. So, f̄ is invertible. As X and ε

have no leverage effects,

(X, Y ) ◦ [X]−1 ⊥⊥ σ. (44)

Let σ be another realization of σ. Since F is generated by X and Y , for any A in F ,

(44) implies that, with the obvious notation,

P σ̄
(
f̄−1(A)

)
= P σ

(
f−1(A)

)
. (45)

The proposition follows by putting σ ≡ 1.
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Consequently, where Assumption (C) of Theorem 2.1 holds, any properties of the

conditional model when σ ≡ 1, will also hold for σ equal to arbitrary σ̄, when its events

are transformed by the function f̄ , which is induced by s̄ = [X]. For analytical clarity,

proofs in the Appendix do not restrict σ to be 1, but rather begin by restricting σ to be

a positive constant. This restriction is removed in a final step.

B Proof of Proposition 3.1

The proposition states: Suppose that if Assumptions (B),(C) and (D) of Theorem 2.1

hold. Let R be the ratio [X]T
E [Y ]T

. The error just before the ith jump is εti−. Taking the

ergodic expectation, for all i

E[ | εti− | ] =
k

2
[R + 1] . (46)

Proof Assume that σ is constant. The proof proceeds by equating the ergodic variances

of ε at (i.e. just after) two subsequent jumps, at random times, say the second and third,

at times t2 and t3. For all t, V ar(εt) = E(ε2
t ). Define λ̄ as the ergodic or average intensity

of N . Define {xi} and {yi} as the respective sets of random increments in X and Y :

xi = Xti −Xti−1
, (47)

yi = Yti − Yti−1
, (48)

so that y3 is equal to the jump at t3, i.e. ±k, and {xi} are i.i.d. of known variance:

xi ∼ N( 0 , σ2(ti − ti−1) ). (49)

It then follows that

εti = εt(i−1)
+ yi − xi. (50)

So,

E[ε2
t3
] = E[(εt2 + y3 − x3)

2] (51)

= E[ε2
t2

+ y2
3 + x2

3 − 2x3εt2 + 2y3εt2 − 2y3x3] (52)

= E[ε2
t2

+ y2
3 + x2

3 − 2x3εt2 + 2y3(εt2 − x3)]. (53)

But by Assumptions (B) and (D), y3 is −k sign(εt2 − x3). Furthermore, E(x2
i ) is σ2/λ̄.

Further, as X is a martingale, E[x3|εt2 ] = 0, and so E[x3εt2 ] = 0. So, (53) is

E[ε2
t2
] + k2 + σ2/λ̄− 2kE[ | εt2 − x3 | ]. (54)
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Moreover, (εt2 − x3) is ε−t3 , the right limit of ε before the jump at t3. As ε is stationary,

we may equate E[ε2
t2
] and E[ε2

t3
] to obtain the equality

E[ | ε−t3 | ] =
k

2

[
σ2

k2λ̄
+ 1

]
. (55)

But, [X]T = Tσ2 and E [Y ]T = Tk2λ̄. As one could equally have looked at any two

successive jumps (not only the second and third), the proposition follows in the case

of constant volatility. By Lemma A.1 it also follows, conditional on σ, in the case of

stochastic volatility.

C Proof of Proposition 3.3

The proposition states: Suppose that Assumptions (B), (C) and (D) of Theorem 2.1, as

well as the Identification Assumption, hold. Uncorrelated Alternation then implies that

Z has Ideal Error.

Proof First suppose that Y has Ideal Error. Then Z = Y has Ideal Error trivially.

Now, and for the rest of the proof, assume that Y does not have Ideal Error. If Q has

first lag autocorrelation of zero then it is easily checked that

E(Gti+1
|Gti) = E(Gti+1

|Gti , Gt(i−1)
). (56)

Therefore, by the Identification Assumption, and the fact that between jumps ε is a

martingale,

E(εti|Gti) = E(εti|Gti , Gt(i−1)
). (57)

The Proposition now follows from Corollary C.1.

Corollary C.1 Assume Assumptions (B), (C) and (D) of Theorem 2.1, and that Y does

not have Ideal Error. Then Z has Ideal Error iff at each jump, timed ti, i > 1,

E(εti|Gti) = E(εti|Gti , Gt(i−1)
). (58)

Proof. If Z has Ideal Error, then by Lemma C.2, for all t,

E (Zt −Xt| the last two jumps in Y went up, then down ) = 0. (59)
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So, conditional on the two jumps in Y before t going up, then down

E (Yt −Xt) = Yt − Zt. (60)

So,

E (εt| last 2 jumps in Y went up, then down) = E (εt| last jump in Y went down) .

(61)

The proposition now follows by the up-down symmetry of the model, considering exhaus-

tively the four cases where prior to t:

the last 2 jumps in Y went up, then down,

the last 2 jumps in Y went up, then up,

the last 2 jumps in Y went down, then up, and

the last 2 jumps in Y went down, then down.

So Z has Ideal Error whenever conditioning not only on the last jump, but also on

the last-but-one jump does not improve the best ergodic estimate of Xt given Yt.

Lemma C.2 Assume Assumptions (B), (C) and (D) of Theorem 2.1. If Y does not

have Ideal Error then for any t,

E[Z]T − [X]T
E[Y ]T − [X]T

= 2pAE

(
Zt −Xt

k
| the last two jumps in Y went up, then down

)
,

(62)

where pA is the probability that a jump is an alternation.

Proof. See Appendix G.

D Proof of Proposition 3.4

The Proposition states: Suppose that Assumptions (B),(C) and (D) of Theorem 2.1 hold.

Suppose that Z has Ideal Error. Then,

E[AT R− CT ] = 0, (63)

and R has the Method of Moments estimator

R̂ =
CT

AT

. (64)

(Define R̂ = 0 if CT = AT = 0).

The proof studies two cases in turn. The second case, where Y does not have Ideal Error,

contains an important argument.
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Case where Y has Ideal Error Then R = 1. By Proposition 3.1, the expected

absolute value of εt just before a jump is k. Therefore, the expected value of εt conditional

on Y just having jumped upwards is 0. The Identification Assumption implies that Y

has equal probability of jumping up as down after this upwards jump. Given buy-sell

symmetry, and as Q is uncorrelated, the ergodic probability that any given jump is an

alternation is 0.5. Hence

E[ AT − CT ] = 0. (65)

Case where Y does not have Ideal Error Z has Ideal Error if

[X]T = E([Z]T ) (66)

= E(k2(CT + AT R2)). (67)

Also, R is defined by

[X]T = RE([Y ]T ) (68)

= E(k2R(CT + AT )). (69)

Subtracting and dividing by k2, we therefore have the moment condition,

E[ (CT + AT R2)−R(CT + AT ) ] = 0. (70)

Or, factorizing,

(R− 1) E[ (AT R− CT ) ] = 0. (71)

Since Y does not have Ideal Error, R 6= 1. Divide through by (R− 1):

E[ AT R− CT ] = 0. (72)

E Proof of Proposition 3.5

The proposition states : Suppose that Assumptions (B), (C) and (D) of Theorem 2.1

hold. Suppose that Z has Ideal Error. Conditionally on σ, the following limit theory

applies:

lim
α→0

√
NT

(
R̂[Y ]T
[X]T

− 1

)
∼ N(0, UV U ′), (73)
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where U is the pair (1, (1+R)2

R
) and V is the long-run variance matrix of the stationary

time series of pairs, Π:

Π =

{ (
[X]ti − [X]t(i−1)

E([X]ti − [X]t(i−1)
)

,
1 + Qi

2

)
: i ∈ N

}
. (74)

Left hand term is the de-averaged elapsed QV in X between the (i− 1)th and ith jumps

in Y .

Assume that σ is constant. Then Π reduces to

Π =

{ (
λ̄(ti − t(i−1)),

1 + Qi

2

)
: i ∈ N

}
. (75)

Note that the right-hand fraction takes the value 1 when Y alternates, and 0 when it

continues. Suppose first that T →∞ so that NT →∞ with probability 1. By a standard

central limit theorem, as T is the sum of the durations between events, ignoring the time

after the last jump in the sample,

lim
NT→∞

√
NT

((
T λ̄
NT
AT

NT

)
−

(
1
pA

))
∼ N(0, V ), (76)

where pA is the probability that a jump is an alternation. Let

f : (x, y) → (1− y)/xy. (77)

Then f is differentiable in the positive quadrant and so by the Delta Method,

lim
NT→∞

√
NT

(
NT CT

T λ̄AT

− (1− pA)

pA

)
= N(0, df ′V df), (78)

where df is evaluated at (1, pA)′. But the moment constraint in Proposition 3.4 implies

that
(1− pA)

pA

= R, (79)

so, by simple calculation, the evaluated df is −RU ′ and

lim
NT→∞

√
NT

(
NT CT

T λ̄AT

−R

)
= N(0, RUV U ′R). (80)

So,

lim
NT→∞

√
NT

(
NT k2CT

Tk2λ̄RAT

− 1

)
= N(0, UV U ′). (81)

But, Tk2λ̄R = [X]T , while NT k2 = [Y ]T and CT /AT = R̂.
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Now consider the asymptotic theory as α → 0. As α → 0, NT , AT and CT all → ∞
almost surely. However, due to the definition of Xα, k2λ̄ is invariant to α. Therefore,

R = σ2/k2λ̄ is also invariant to α. Thus, given the moment constraint, CT /AT converges

almost surely to R as α → 0. As ε is stationary and independent of σ, the distribution

of Π is invariant to α. Hence V is also invariant, and (76) is true as α → 0. The

proposition now follows for constant σ. But, due to Lemma A.1, the proposition also

holds, conditional on σ, for stochastic σ.

F Proof of Proposition 5.1

The proposition states : Suppose that Y evolves according to Sluggish Rounding. Then

it has Uncorrelated Alternation. Furthermore, Π is an i.i.d. sequence and

UV U ′ =
2

3R
(1 + 4R + 2R2). (82)

Therefore UV U ′ may be estimated consistently by replacing R in (82) with R̂ = CT /AT .

Proof Suppose that σ is constant. The duration between jumps is the time taken for a

scaled Brownian motion of volatility σ to exit the interval (−k, Rk). A moment’s thought

reveals that Q and Π are then i.i.d. The probability that a Brownian motion of volatility

σ starting at zero reaches the level Rk before the level −k is known to be

k

k + Rk
, (83)

or 1/(1 + R). The expected time to the first hit is Rk2/σ2. This therefore also describes

the probability that at a jump Z moves up (down) by Rk rather than down (up) by k,

i.e. the probability that Y alternates, rather than continuing, and the expected duration

before this jump. The following formulae are derived from results recorded in Borodin

and Salminen (1996):

The variance of the time between jumps is

Rk4(1 + R2)

3σ4
(84)

So the variance of the normalized time between jumps, (ti − t(i−1))/δ, is

1 + R2

3R
(85)
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The expected time between jumps, conditional on them alternating, is

2Rk2(2R + 1)

3(R + 1)σ2
(86)

Therefore the covariance of Qi and λ̄(ti − t(i−1)) is

− 1−R

3(1 + R)
(87)

The variance of Qi is
R

(1 + R)2
(88)

These give the components of the matrix V . UV U ′ is now easily calculated.

G Proof of Proposition C.2

The proposition states : Assume Assumptions (B), (C) and (D) of Theorem 2.1. If Y

does not have Ideal Error then for any t,

E[Z]T − [X]T
E[Y ]T − [X]T

= 2pAE

(
Zt −Xt

k
| the last two jumps in Y went up, then down

)
,

(89)

where pA is the probability that a jump is an alternation.

Proof Suppose that σ is constant. The stationarity of ε implies that

E((εt + dεt)
2) = E(ε2

t ). (90)

Therefore,

E(ε2
t + 2εtdεt + dε2

t ) = E(ε2
t ). (91)

And

−2E(εtdεt) = E(dε2
t ). (92)

Or,

−2E(εt(GtdNt − dXt)) = E((GtdNt − dXt)
2). (93)

So

−2E(εtGtλt)dt = E(G2
t λt)dt + σ2dt. (94)

Multiplying by −T/dt and adding on a constant,

2TE(εtGtλt) + 2TE(G2
t λt) = TE(G2

t λt)− Tσ2. (95)
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Or,

2TE((εt + Gt)Gtλt) = TE(G2
t λt)− Tσ2. (96)

But the left hand side of this is

2T λ̄E(εtGt| jump at t ) (97)

While the right hand side is

E[Y ]T − [X]T . (98)

Putting this together, given the up-down symmetry of ε,

E[Y ]T − [X]T = 2T λ̄E(εtGt| Y jumped up at t ). (99)

G.1

Write

ηt = Zt −Xt. (100)

We can define G̃ so that η obeys

dηt = G̃tdNt − dXt. (101)

This means |G̃t| = k if a jump at t would be a continuation, or |G̃t| = Rk if the jump

would be an alternation. Then in the same way as in (99),

E[Z]T − [X]T = 2T λ̄E(ηtG̃t| Y jumped up at t ). (102)

And
E[Z]T − [X]T

E[Y ]T
=

2

k2
E(ηtG̃t| Y jumped up at t ). (103)

So, writing pA for the ergodic probability of alternation; and distinguishing the case of

an alternation from that of a continuation in order to extract the magnitude of G̃ from

the expectation, (103) is

2

k2
{pARkE(ηt| Y alternated up at t ) + (1− pA)kE(ηt| Y continued up at t )}

=
2

k
E(ηt| Y jumped up at t ) +

2

k
pA(R− 1)E(ηt| Y alternated up at t )

= 0 +
2

k
pA(R− 1)E(ηt| Y alternated up at t ).
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Therefore,
E[Z]T − [X]T
E[Y ]T (1−R)

= −2

k
pAE(ηt| Y alternated up at t ). (104)

That is, reversing the up/down direction of the conditioning,

E[Z]T − [X]T
E[Y ]T − [X]T

=
2

k
pAE(ηt| Y alternated down at t ). (105)

H Proof of Corollary 5.2

The corollary states: suppose that the models (X1 + X2, Y1 + Y2) and (X1−X2, Y1− Y2)

each satisfy the assumptions of Proposition 3.4 and, conditional on (X1, X2), Y1 and

Y2 are independent. Write C+ (A+) for the number of continuations (alternations) in

Y1 + Y2. Define C− and A− analogously for Y1 − Y2. Then

1

4

(
C+

A+
− C−

A−

)
( [Y1]T + [Y2]T ) (106)

is a consistent estimator of [X1, X2]T .

Proof. Begin with the identity

[X1, X2]T =
1

4
([X1 + X2]T − [X1 −X2]T ) . (107)

Note that as Y1 and Y2 are conditionally independent pure jump processes,

[Y1]T + [Y2]T = [Y1 + Y2]T = [Y1 − Y2]T . (108)

As (X1 + X2, Y1 + Y2) and (X1−X2, Y1− Y2) satisfy the assumptions of Proposition 3.4,

[Y1 + Y2]T
C+

A+
and [Y1 − Y2]T

C−

A− (109)

are consistent estimators of

[X1 + X2]T and [X1 −X2]T . (110)

The corollary now follows by a straightforward substitution.
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# jumps p-value # alternations QV + / - 95% error

2-Jan 95 0.29 75 1.58 0.76

5-Jan 216 0.88 184 2.35 0.83
6-Jan 127 0.86 112 1.06 0.53
7-Jan 176 0.02 160 1.10 0.51
8-Jan 328 0.14 281 3.43 0.99
9-Jan 156 0.08 131 1.86 0.75

12-Jan 128 0.13 109 1.39 0.64
13-Jan 216 0.007 181 2.61 0.90
14-Jan 282 0.12 251 2.18 0.74
15-Jan 323 0.85 274 3.61 1.03
16-Jan 377 0.19 309 5.19 1.31

19-Jan 150 0.46 123 2.06 0.82
20-Jan 293 0.04 261 2.25 0.75
21-Jan 169 0.003 135 2.66 0.97
22-Jan 318 0.37 274 3.19 0.95
23-Jan 206 0.84 176 2.19 0.80

26-Jan 196 0.91 164 2.39 0.86
27-Jan 175 0.16 147 2.08 0.80
28-Jan 299 0.18 248 3.84 1.11
29-Jan 246 0.88 193 4.22 1.26
30-Jan 103 0.14 81 1.75 0.81

4579 3869 52.52 3.97

Figure 10: For each day of January 2004 (grouped in weeks), various statistics are
recorded for Vodafone’s best ask price. The p-value is for the test that Q has zero
first-order autocorrelation. QV records the estimated quadratic variation, while the col-
umn to the right shows estimated 95% confidence intervals for this estimate, on the
hypothesis that Y evolves according to Sluggish Rounding.
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Bid Ask Bid Ask Ask
Price increment (pence) 0.25 0.25 1.0 1.0 0.50 0.50
Number of jumps 4,607 4,580 11,774 10,620 11,334 10,418
Number of alternations 3,890 3,869 9,076 8,034 8,707 7,945
Number of jumps of tick size >1 10 8 329 307 335 314
Percent of jumps that are of tick size >1 0.2% 0.2% 2.8% 2.9% 3.0% 3.0%
[Y]T 288 286 11,774 10,620 2,834 2,605
Continuations / Alternations 0.18 0.18 0.30 0.32 0.30 0.31

[Y]T CT / AT 53 53 3,500 3,418 855 811
Implied average volatility 1.6 1.5 13.2 13.1 6.5 6.4

Root mean squared daily return 1.4 15.1 7.4
(leaving out overnight price movements)

Price increment (pence) 0.25 0.25 0.25 0.25
Number of jumps 15,153 14,048 19,817 16,825
Number of alternations 11,759 10,848 15,123 12,559
Number of jumps of tick size >1 697 595 1,307 1,090
Percent of jumps that are of tick size >1 4.6% 4.2% 6.6% 6.5%

947 878 1,239 1,052
0.29 0.29 0.31 0.34

273 259 384 357
3.7 3.6 4.4 4.2

Root mean squared daily return 3.8 4.5
(leaving out overnight price movements)

Vodafone GSK HSBC

Shell BP
Bid Ask Ask

[Y]T
Continuations / Alternations
[Y]T CT / AT

Implied average volatility

Value of stock traded in the month (£m) 12,901 8,219 8,326

5,966 9,808Value of stock traded in the month (£m)

Figure 11: Summary Statistics for the five most actively traded stocks in January 2004
on the LSE.
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