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Abstract

A generalized version of the capital management problem posed in a classic paper
by R. H. Strotz is analyzed for the case of the “naive” planner who fails to anticipate
any impending change in his own preferences. By imposing progressively stronger
restrictions on the primitives of the problem — namely, the planner’s discounting
function, his utility index function, and the investment technology — the path of
the capital stock is characterized first implicitly as the solution to a differential
equation and then explicitly via formulae that may or may not be expressible in
closed form. Inasmuch as this procedure turns out to leave the discounting function
essentially unrestricted, the theory can accommodate, in particular, decision makers
who discount time according to the type of hyperbolic curve said to be suggested
by psychological studies. Strategies for numerical computation of capital paths are
discussed and are demonstrated in sample planning problems.

JEL classification codes: C60, D91, E21.

Keywords: consumption, computation, hyperbolic discounting, time preference.

1



0. OUTLINE

§1 discusses the rationale for and the objectives of this project.

§2 states the planner’s problem, identifies the prerequisites for time-consistent behavior,
and presents a schematic analysis of the general case in which consistency cannot
be guaranteed.

§3 carries out this analysis and illustrates the resulting theory.

§3.1 shows how linearity of the investment technology allows us to characterize the
path of the capital stock as the solution to an initial value problem.

§3.2 shows how we can solve this problem and determine the associated path when
the utility index function has either an exponential or a basal specification.

§3.3 defines the stationary hyperbolic discounting function.

§3.4 applies our findings to simple “cake-eating” problems.

§4 comments on the feasibility of approximating capital paths numerically using either
of two computational strategies.

§5 considers planning problems with credit constraints.

§5.1 demonstrates the difficulty of extending our analysis to cover such scenarios.

§5.2 obtains results for the restricted class of “savings-initiation” problems.

§6 offers two concluding comments.

1. INTRODUCTION

When Robert H. Strotz published his investigation [28] of “Myopia and Inconsistency in
Dynamic Utility Maximization,” he credited Allais, Hayek, and Samuelson with having
already raised, or having at least [p. 165] “alluded to” the questions that he then went on
to address. But despite this generosity, it is Strotz’s paper that has achieved the status
of the universally-cited founding document of the branch of economic theory that studies
agents whose preferences change over time, and whose voluntary behavior at one moment
they might themselves wish to thwart at another.
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It may be that Strotz’s contribution is still remembered so long after its appearance
primarily because the framework in which he formulated the issue of time inconsistency
remains, for the most part, that in which it is studied today. His paper considered a choice
at (variable) time τ among feasible consumption plans C with the goal of maximizing a
utility function of the form [p. 167]

Φτ =

∫ T

0

λ(t− τ)u[C(t), t]dt, (1)

and with the statement of this problem he placed the theoretical innovation of changing
preferences squarely within the context of what were to become two of its most important
applications: the analyses of personal savings and national investment. Strotz showed
that in this setting time consistency of the decision maker’s behavior is equivalent to
log-linearity of the discounting function (a specification of λ that he dubbed [p. 172] “the
harmony case”), thereby also demonstrating what is needed to model a time-inconsistent
decision maker. And he also introduced the important distinction between the cognitive
assumptions of “sophistication” (i.e., awareness of any inconsistency) and “naivete” (the
absence of such awareness), discussing each of these two possibilities in turn.1

If the first few papers to follow up on Strotz’s essay (namely, those of Pollak [24], Peleg
and Yaari [22], and Goldman [10]) dealt primarily with the sophisticated agent, it is only
because his analysis of this case [pp. 173–175] was soon found to be defective (see [24,
pp. 207–208]) and led to an extended and productive debate about the nature of strategic
equilibrium in dynamic “intrapersonal” games (a question addressed more recently by
Asheim [2]). Less easy to understand is why, when applied work incorporating time
inconsistency finally began to appear — with notable contributions by Laibson [15, 16],
Barro [3], Harris and Laibson [11, 12], and Krusell and Smith [14] — sophistication
continued to be imposed with at most a cursory acknowledgement that there might be an
alternative. This custom seems to have originated in [15], where Laibson declared [p. 451]
that it had become “standard practice to formally model a consumer as a sequence of
temporal selves making choices in a dynamic game (e.g., Pollak [1968], Peleg and Yaari
[1973], and Goldman [1980]).” But the papers cited here are, of course, precisely the
three mentioned above in connection with the purely theoretical project of correcting the
defective Strotzian analysis; these authors do not even take up the question of whether the
sophisticated agent is an appropriate modelling device for any particular applied problem;
and thus it appears that assuming sophistication has become standard practice simply by
being described as such, and with less than adequate consideration of its relative merits
vis-a-vis naivete in the economic contexts of interest.

In the context of savings behavior, Laibson does offer the argument that observed
large holdings of illiquid assets constitute evidence that investors sometimes [15, p. 444]
“prefer to constrain their own future choices”; and as examples of such “golden egg”
investments he mentions real estate, business equity, durable goods, pensions, and other
retirement (e.g., IRA, Keogh, and 401k) plans. There is undoubtedly some truth to this
claim, though Laibson himself concedes there to be other reasons to purchase a home or
a Honda than merely [p. 443] to remove money from one’s bank account before one has

1This terminology is apparently due to Pollak [24].
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a chance to spend it. And rather than as intrapersonal commitment devices designed
by sophisticates to achieve self-control, it may be more realistic to interpret employer-
matched savings and tax-advantaged retirement plans as incentive schemes designed by
paternalistic employers and governments to manipulate the behavior of their employees
and constituents.

Two excellent points of departure for thinking about these issues are the 1984 and
1991 Richard T. Ely lectures delivered, respectively, by Thomas Schelling [27] and George
Akerlof [1]. The first deals exclusively with sophistication, the second with naivete,
and the two together suffice to dismiss any claim that one or the other assumption is
universally valid.2 We shall not attempt here to summarize the conclusions of these
lectures, which merit being read in their entirety. But it is worth pointing out that
while the problem of intertemporal resource allocation is mentioned only in passing [p. 6]
in the course of Schelling’s engaging tour of sophisticated behavior patterns, it features
prominently in Akerlof’s [pp. 6–7] discussion of naive decision making.

Yet another source of insightful commentary on Strotz’s cognitive dichotomy is the
more recent work of O’Donoghue and Rabin [19, 20, 21] on the opposing phenomena of
procrastination and preproperation. In the first of the cited papers, these authors take on
the task of [19, p. 104] “explicitly comparing [the two] competing assumptions,” and hav-
ing done so warn [p. 119] that while “[p]eople clearly have some degree of sophistication,
. . . economists should be cautious when [working] solely with [this] assumption.” At the
same time, O’Donoghue and Rabin observe that presuming awareness of any changing
preferences does seem entirely natural from the perspective of rational choice orthodoxy;
indeed, another eminent economic theorist has suggested [personal communication] that
conscious or unconscious imperatives of professional self-preservation have had as much
to do with the traditional bias towards sophistication as any reasoned argument in its
favor.

Our intention in this paper, however, is not to adjudicate territorial disputes between
the two assumptions in question — this being more properly a task for empirical or
experimental work informed by cognitive psychology. Rather, our aim is to provide an
alternative to the methodology based on sophistication by investigating the pure theory
of the naive agent; understanding, of course, that any satisfactory picture of the impact
of time inconsistency on human decision making is likely to combine elements of both
approaches.3 Happily, filling the theoretical vacuum left by the neglect of the naivete
assumption will require simply that we carry out the analysis of this case hinted at
decades ago by Strotz himself, and for this reason the reader may wish to glance at the
relevant section of [28, pp. 170–171].

2Schelling writes [p. 1, emphasis added] that “a person in evident possession of her faculties and
knowing what she is talking about will rationally seek to prevent, to compel, or to alter her own later
behavior — to restrict her own options in violation of what she knows will be her preference at the time
the behavior is to take place.” Akerlof, with other situations in mind, declares [p. 17, emphasis added]
that a “modern view of behavior, based on twentieth-century anthropology, psychology, and sociology is
that individuals have utilities that do change and, in addition, they fail fully to foresee those changes or
even recognize that they have occurred.”

3O’Donoghue and Rabin [21] have already taken a step in this direction by allowing for what they
call “partial naivete.”
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More concretely, our goal is to determine, insofar as possible, the behavior of a naive
planner faced with a generalized version of the Strotzian capital management problem
mentioned above. At each moment, taking into account the level of the capital stock
inherited from earlier moments, such an agent will identify that feasible consumption
plan which is optimal with respect to his current preferences — a plan that we too can
identify by solving the ordinary differential equation (ODE) that constitutes the relevant
first-order condition for optimality. Failing to anticipate any impending change in his
own outlook, the planner will use this currently-optimal plan to choose his instantaneous
rate of consumption (or, equivalently, the instantaneous rate of change of his stock of
capital). The resulting relationship between the level of the capital stock (appearing in
the current resource constraint) and its time derivative (essentially the current choice
variable) can then be captured in a second ODE, and it is by solving this equation that
we can ascertain the actual (“historical”) capital and consumption paths.

Starting with a completely nonparametric capital management problem, we shall carry
out the analysis sketched above by adopting at each stage the weakest set of functional-
form assumptions that will allow us to proceed. This method will lead naturally to a
sequence of characterizations of the planner’s behavior of ever-increasing strength: first,
in Section 2.3, as the output of a mathematical algorithm presented schematically; second,
in Section 3.1, as the solution to an initial value problem; third, in Sections 3.2 and 5.2, via
explicit formulae for the historical capital path; and fourth, in Section A.1, via formulae
expressible in closed form. Together with the brief discussion of computational feasibility
to be found in Section 4, these characterizations are intended to delineate a sort of
“analytical possibilities frontier” — to acquaint the reader with approximate rates of
substitution between generality and tractability in the environment under investigation.
And in addition to providing a basis for theoretical work seeking to extend this frontier, it
is hoped that the results reported here will prove useful to applied economists wishing to
incorporate time-inconsistent preferences into models of, for example, financial markets
or the macroeconomy.

2. NAIVE CAPITAL MANAGEMENT

2.1. The planner’s problem

The calendar date t will advance as a continuous variable from the initial date 0 through a
fixed planning horizon T > 0. At calendar date t, the scheduling date s will range over the
interval [t, T ], allowing the planner to consider both his present and future behavior. Each
possible pattern of (anticipated future) consumption will be encoded in a consumption
schedule x : [t, T ] → <, and the planner’s date-t preferences over candidate schedules will
be presumed to admit a utility representation of the form

U t :=

∫ T

t

δ(s, t)u(x(s), s)ds (2)

(cf. Equation 1) for some strictly positive-valued discounting function δ and some index
function u that is both strictly increasing and strictly concave in its first (consumption)
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argument.4

Note that the representation in Equation 2 imposes additive separability of the total
utility into increments contributed by the various scheduling dates, as well as multiplica-
tive separability of the increment contributed by date s into a discount factor δ(s, t)
independent of the rate of consumption and a utility index u(x(s), s) independent of the
calendar date.5 The discount rate applied at calendar date t to scheduling date s can be
calculated via the relation

ρ(s, t) := −δ1(s, t)/δ(s, t) (3)

(where the subscript denotes differentiation with respect to the indicated argument). And
the convenient normalization δ(t, t) = 1 then leads to the inverse relation

δ(s, t) = exp

∫ s

t

[−ρ(v, t)] dv. (4)

Given a consumption schedule x, the associated capital schedule k will evolve according
to the differential equation

k1(s) = f(k(s), s)− x(s), (5)

where the technology f supplying the anticipated return on accumulated capital will be
assumed to be both weakly increasing and weakly concave in its first (capital stock)
argument.6 Using Equation 5 to change variables, we can express the planner’s date-t
objective function as

U t =

∫ T

t

δ(s, t)u(f(k(s), s)− k1(s), s)ds, (6)

to be maximized now by choice of the capital path k.
Our goal is to determine the history h of the capital stock over the domain [0, T ]. At

date t, this history will constrain the planner’s choice of k to among those satisfying

k(t) =

{
h(0) = K for t = 0,
h(t) for t > 0;

(7)

and we shall impose also the terminal condition

k(T ) = 0. (8)

(See Figure 1.) Hence, in summary, the planner’s problem at calendar date t is to select
a capital path k that maximizes the objective function in Equation 6 subject to the
constraints in Equations 7–8.

4Similar representations were proposed by Samuelson [26] and axiomatized by Koopmans [13] and
Fishburn and Rubinstein [7]. Frederick et al. [8] provide an extensive review of theoretical, experimental,
and observational studies relating to this functional form.

5Thus, as Strotz puts it [p. 168], the planner can express his enthusiasm for consuming from
his stock of champagne on the date of his birth by assigning a high value to the utility index
u(two glasses of champagne per diem, planner’s birth date), but this enthusiasm can neither increase nor
decrease as the date approaches.

6Note that, as implied by Equation 5, capital is consumable (“like rabbits,” according to Phelps and
Pollak [23, p. 187]).
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k(t) = h(t)

0
0 t T

h
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k

Figure 1: Equations 7–8. A candidate capital path k considered at calendar date t must
connect the points 〈t, h(t)〉 and 〈T, 0〉.

2.2. The question of consistency

Strotz inquires [p. 171]: “Under what circumstances will an individual who continuously
re-evaluates his planned course of consumption confirm his earlier choices and follow
out the consumption plan originally selected?” Or, in our terminology: Under what
conditions will the solutions to the planner’s problem at different calendar dates coincide?

The answer to this question (noted already by Burness [5]) is that coincidental plans
will arise if and only if there exists a function σ satisfying

δ(s, t) = σ(s)/σ(t); (9)

that is, if and only if the discounting function is multiplicatively separable.7 To see that
this property is necessary (its sufficiency is immediate), observe that any capital schedule
kt rendering U t stationary must satisfy the Euler equation

δ(s, t)u1(f(kt(s), s)− kt
1(s), s)f1(k

t(s), s) +
d [δ(s, t)u1(f(kt(s), s)− kt

1(s), s)]

ds
= 0 (10)

at each s ∈ [t, T ].8 Equation 10 has first integral

δ(s, t)u1(f(kt(s), s)− kt
1(s), s) exp

∫ T

s

[−f1(k
t(v), v)

]
dv = τ(t), (11)

where the constant τ(t) can be interpreted as the reciprocal of the shadow price of utility
in terms of date T consumption. And if the schedule k0 remains optimal at each calendar
date t ∈ (0, T ) then we can let

σ(s) =

[
u1(f(k0(s), s)− k0

1(s), s) exp

∫ T

s

[−f1(k
0(v), v)

]
dv

]−1

, (12)

7Separability is equivalent to the calendar invariance condition that, for each 0 ≤ t < t̄ ≤ s ≤ T and
ε > 0, we have δ(s + ε, t)/δ(s, t) = δ(s + ε, t̄)/δ(s, t̄).

8See [6, pp. 28–36], [9, pp. 14–18], or [18, pp. 179–183]. Equation 10 is in fact necessary and sufficient
for the optimality of kt since G(k(s), k1(s), s) = δ(s, t)u(f(k(s), s)− k1(s), s) is concave in 〈k(s), k1(s)〉.
This concavity follows, in turn, from the inequalities G11 = δ

[
u11f

2
1 + u1f11

] ≤ 0, G22 = δu11 ≤ 0, and
G11G22 −G12G21 = δ2u1u11f11 ≥ 0. (See [6, pp. 81–91].)
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whereupon Equation 9 holds since τ(t) = δ(t, t)/σ(t) = 1/σ(t).
With regard to the representation in Equation 2, it is common to assume (as does

Strotz) that the discounting function is stationary ; i.e., that there exists a function σ
such that

δ(s, t) = σ(s− t).9 (13)

Under this assumption, the planner’s point of view undergoes a rigid translation with
the advance of the calendar date, and in a sense the future never actually arrives at the
present.10

A third possible assumption is that of log-linearity, a property that δ is said to exhibit
whenever it admits a function σ such that

δ(s, t) = exp [−σ(t)[s− t]] .11 (14)

Such a function, when it exists, supplies the common discount rate applied by the planner
at a given calendar date to all future scheduling dates.

The latter two assumptions on the discounting function are together sufficient for
intertemporal consistency; indeed, any two of separability, stationarity, and log-linearity
jointly imply the third. Thus standard, “exponential” discounting (which satisfies all
three assumptions) is the unique stationary specification of δ that leads to time-consistent
planning.

2.3. Schematic analysis of the general case

When the discounting function is inseparable and hence intertemporal consistency fails,
the observed behavior will generally have the “unpleasant feature,” pointed out by Black-
orby et al. [4, p. 239], that “ex post [it] makes no sense from any point of view.” The
reason for this unpleasantness is that while at each calendar date t our naive planner will
be following a capital schedule kt that appears for the moment to be optimal, he will
adhere to this plan only for an instant and will soon find that he prefers a new “optimal”
schedule kt+dt. Accordingly, although the choice of kt is made with each future scheduling
date taken into consideration, this choice affects the history h only by determining the
instantaneous rate

h1(t) = kt
1(t) (15)

of capital accumulation at calendar date t. (See Figure 2.)
Using Equations 7 and 15 to calculate

τ(t) = u1(f(h(t), t)− h1(t), t) exp

∫ T

t

[−f1(k
t(v), v)

]
dv (16)

9Stationarity is equivalent to the absolute invariance condition that, for each 0 ≤ t < t̄ ≤ T and
ε > 0, we have δ(t + ε, t) = δ(t̄ + ε, t̄).

10Samuelson [26, p. 160] writes that “as the individual moves along in time there is a sort of perspective
phenomenon in that his view of the future in relation to his instantaneous time position remains invariant,
rather than his evaluation of any particular year.” (See also the commentary, cited by Strotz [p. 170], of
Rosenstein-Rodan [25].)

11Log-linearity is equivalent to the scheduling invariance condition that, for each 0 ≤ t ≤ s < s̄ ≤ T
and ε > 0, we have δ(s + ε, t)/δ(s, t) = δ(s̄ + ε, t)/δ(s̄, t).
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K

0
0 t T

h

h

kt

h1(t) = kt
1(t)

Figure 2: Equation 15. At calendar date t, the history h must be tangent to the optimal
capital schedule kt.

allows us to rewrite Equation 11 as

δ(s, t)u1(f(kt(s), s)− kt
1(s), s)︸ ︷︷ ︸

marginal utility of consumption

exp

∫ s

t

f1(k
t(v), v)dv

︸ ︷︷ ︸
price deflator

= u1(f(h(t), t)− h1(t), t), (17)

a first-order ODE in kt that in combination with the terminal condition

kt(T ) = 0 (18)

can in principle be solved to yield an expression of the form

kt(s) = Ξ(s, t, h(t), h1(t)) (19)

valid for s ∈ [t, T ]. And finally, setting s = t in Equation 19 leads to the relation

h(t) = Ξ(t, t, h(t), h1(t)), (20)

a first-order ODE in h that in combination with the initial condition

h(0) = K (21)

can (again, in principle) be solved to yield the historical path of the capital stock.

3. ANALYTICAL RESULTS

3.1. Linear technologies

Section 2.3 provides a recipe for computing the history h from the primitives of the
planner’s problem; namely, the discounting function δ, the index function u, and the
technology f . As we have seen, this computation requires the solution, in sequence, of two
first-order ODEs, the first (Equation 17) determining kt as a function of the scheduling
date and the second (Equation 20) determining h as a function of the calendar date.
The immediate difficulty in carrying out these tasks is that the unknown path kt in
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Equation 17 affects both the marginal utility of consumption and the price deflator, and
may therefore be in a nonlinear relationship with its derivative kt

1. Linearity of this ODE
(a property sufficient but perhaps not necessary for analytical solvability) can be assured,
however, if the technology is itself linear; that is, if

f(z, s) = α(s)z + β(s) (22)

for given functions α and β supplying, respectively, an “interest rate” and a flow of
“exogenous income.” In this case the price deflator

π(s, t) := exp

∫ s

t

α(v)dv (23)

is independent of the optimal capital path, and since u1(·, s) is invertible (being strictly
decreasing) we can put Equation 17 into the standard form

kt
1(s)− α(s)kt(s) = β(s)− u1(·, s)inv

[
u1(α(t)h(t) + β(t)− h1(t), t)

δ(s, t)π(s, t)

]
, (24)

with integrating factor

exp

∫ s

0

[−α(v)] dv = π(s, 0)−1. (25)

Solving the terminal value problem formed by Equations 18 and 24 then leads to the
formula

kt(s) =

∫ T

s

[
u1(·, v)inv

[
u1(α(t)h(t) + β(t)− h1(t), t)

δ(v, t)π(v, t)

]
− β(v)

]
dv

π(v, s)
(26)

for kt over the domain [t, T ], and hence to the expression

h(t) =

∫ T

t

[
u1(·, v)inv

[
u1(α(t)h(t) + β(t)− h1(t), t)

δ(v, t)π(v, t)

]
− β(v)

]
dv

π(v, t)
(27)

for the relation in Equation 20.

3.2. Tractable index functions

Exponential utility. We have seen that the assumption of a linear technology reduces the
problem of determining the history of the capital stock to that of solving the initial value
problem formed by Equations 21 and 27. Again we shall focus on parameterizations for
which the latter is a linear ODE, and one of two such cases arises when, for some strictly
positive-valued mapping γ, the planner’s index function has the exponential specification

u(z, s) = −γ(s) exp[−z/γ(s)], (28)

with associated marginal utility

u1(z, s) = exp[−z/γ(s)] (29)
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0

1

u11(0, s) = −1/γ(s)

u1(·, s)
1

ω(s) ω(s) + 1

u11(ω(s) + 1, s) = −1/p

u1(·, s)

Figure 3: Marginal utility curves for the exponential (left panel) and basal (right panel)
index specifications. Note that each curve is strictly decreasing and asymptotes to zero.
While exponential utility permits any rate of consumption at scheduling date s, basal
utility requires a rate of at least ω(s). The parameters γ(s) and p equal, respectively, the
slopes of the lines normal to the marginal utility curve at 0 for the exponential case and
at ω(s) + 1 for the basal case.

(see Figure 3) and elasticity of intertemporal substitution

ε(z, s) :=
−u1(z, s)

zu11(z, s)
= γ(s)/z. (30)

In this case Equation 27 evaluates to

h(t) = [α(t)h(t) + β(t)− h1(t)]

∫ T

t

γ(v)dv

γ(t)π(v, t)
· · ·

· · ·+
∫ T

t

[γ(v) log [δ(v, t)π(v, t)]− β(v)] dv

π(v, t)
(31)

and with the definition

Θ(t) :=

[∫ T

t

γ(v)dv

γ(t)π(v, t)

]−1

(32)

can be put into the standard form

h1(t) + [Θ(t)− α(t)] h(t) = β(t) + Θ(t)

∫ T

t

[γ(v) log [δ(v, t)π(v, t)]− β(v)] dv

π(v, t)
, (33)

with integrating factor

exp

∫ t

0

[Θ(v)− α(v)] dv = π(t, 0)−1 exp

∫ t

0

Θ(v)dv. (34)

The initial value problem in question is then solved by the capital history

h(t) = Kπ(t, 0) exp

∫ t

0

[−Θ(w)] dw +

∫ t

0

π(t, v) exp

∫ t

v

[−Θ(w)] dw · · ·

· · · ×
[
β(v) + Θ(v)

∫ T

v

[γ(w) log [δ(w, v)π(w, v)]− β(w)] dw

π(w, v)

]
dv. (35)
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Basal utility. The second case in which Equation 27 is linear arises when, for some real-
valued mapping ω and some parameter p > 0, the planner’s index function has the basal
specification

u(z, s) =

{
[1− 1/p]−1 [z − ω(s)]1−1/p for p 6= 1,

log [z − ω(s)] for p = 1;
(36)

with associated marginal utility

u1(z, s) = [z − ω(s)]−1/p (37)

(again see Figure 3) and elasticity of intertemporal substitution

ε(z, s) = p [1− ω(s)/z] . (38)

In this case Equation 27 evaluates to

h(t) = [α(t)h(t) + β(t)− ω(t)− h1(t)]

∫ T

t

[δ(v, t)π(v, t)]p dv

π(v, t)
· · ·

· · · −
∫ T

t

[β(v)− ω(v)] dv

π(v, t)
(39)

and with the definition

Ψ(t) :=

[∫ T

t

δ(v, t)pπ(v, t)p−1dv

]−1

(40)

can be put into the standard form

h1(t) + [Ψ(t)− α(t)] h(t) = β(t)− ω(t)−Ψ(t)

∫ T

t

[β(v)− ω(v)] dv

π(v, t)
, (41)

with integrating factor

exp

∫ t

0

[Ψ(v)− α(v)] dv = π(t, 0)−1 exp

∫ t

0

Ψ(v)dv. (42)

The initial value problem formed by Equations 21 and 41 is then solved by the capital
history

h(t) = Kπ(t, 0) exp

∫ t

0

[−Ψ(w)] dw +

∫ t

0

π(t, v) exp

∫ t

v

[−Ψ(w)] dw · · ·

· · · ×
[
β(v)− ω(v)−Ψ(v)

∫ T

v

[β(w)− ω(w)] dw

π(w, v)

]
dv. (43)
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0

δ1(t, t) = −r

t

r
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♣
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♠ : q = 100
♥ : q = 10
♦ : q = 1
♣ : limq→0

Figure 4: Hyperbolic discount factor (left panel) and discount rate (right panel) curves for
fixed r and variable q. (Cf. [17, p. 581].) Since limq→0 δ(s, t) = e−r[s−t], the parameter q
controls the degree of distortion relative to exponential discounting with discount rate r.

3.3. Hyperbolic discounting

Equations 35 and 43 provide explicit formulae for the historical path of a capital stock
managed by Strotz’s naive planner under the assumptions of a linear technology and either
exponential or basal utility. It should be noted that these results impose no conditions
whatsoever on the discounting function (which need not even be stationary), and that
in this respect the naive planning model provides a convenient laboratory for examining
nonstandard functional forms for δ.

One notable nonstandard form is the stationary hyperbolic specification

δ(s, t) = [1 + q [s− t]]−r/q (44)

advocated by Loewenstein and Prelec [17], among others. (See Figure 4.) When q, r > 0,
the associated discount rate function

ρ(s, t) = r [1 + q [s− t]]−1 (45)

is decreasing in the scheduling date — a phenomenon often generated in discrete-time
models using the “quasi-hyperbolic” (or [14] “quasi-geometric”) specification originally
proposed by Phelps and Pollak [23]. And writing r = ρ(t, t) and q = −ρ1(t, t)/ρ(t, t)
suggests interpreting these parameters of the hyperbolic form as short-term discount
rates of, respectively, first and second order.

3.4. Cake-eating problems

Within the class of planning problems defined in Section 2.1, the simplest are those in
which f(z, s) = 0 (a trivially linear technology). Here the planner’s task amounts to
scheduling over the interval [0, T ] his consumption of a non-perishable “cake” of size K.
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If we adopt stationary hyperbolic discounting, then imposing exponential utility with
constant intertemporal substitution parameter γ(s) = c > 0 leads via Equation 35 to the
capital history

h(t) = K[1− t/T ] +

∫ t

0

T − t

[T − v]2

∫ T

v

[−cr/q] log [1 + q [w − v]] dwdv

= [T − t]

[
K

T
− cr

q

∫ q[T−t]

qT

[v̄ − [1 + v̄] log[1 + v̄]] dv̄

v̄2

]

= [T − t]

[
K

T
− cr

q

[
[1 + v̄] log[1 + v̄]

v̄
+ Li2[−v̄]

]q[T−t]

v̄=qT

]
, (46)

where the polylogarithm operator

Linz :=
∞∑
i=1

zii−n (47)

— ordinarily treated as a known function — generalizes the natural logarithm in the
sense that log z = Li1[1− 1/z]. Alternatively, imposing basal utility with ω(s) = 0 (and
p 6= q/r) leads via Equation 43 to the history

h(t) = K exp

∫ t

0

[q − pr]dw

1− [1 + q[T − w]]1−pr/q
, (48)

which resists further simplification. Note that as q ↘ 0 and hyperbolic discounting tends
to exponential, these results tend to the textbook cake-eating formulae

h(t) = [T − t] [K/T − crt/2] (49)

for the exponential and

h(t) = K

[
1− epr[T−t]

1− eprT

]
(50)

for the basal case (cf. [24, p. 206], [18, p. 182], and [29, p. 547 ff.]).
The above calculations demonstrate that even in the simplest of capital management

problems, evaluating the integrals in Equations 35 and 43 to obtain closed-form histories
may require the use of non-elementary functions or may be altogether infeasible. And
as shown in Section A.1, our experience here turns out to be typical: While closed-form
paths can be obtained for a broad class of problems under exponential utility, the same
cannot be said of basal utility.

4. COMPUTATIONAL STRATEGIES

4.1. Numerical integration

Whether or not the formulae in Equations 35 and 43 can be expressed in closed form, the
corresponding linear/exponential and linear/basal capital histories can be approximated
with a high degree of precision by computing the relevant integrals numerically. This
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Figure 5: Capital history (left panel) and consumption and income histories (right panel)
for a planning problem with a linear technology, basal utility, and bi-level discounting;
computed by numerical integration.

strategy is easily implemented in Mathematica using the built-in function NIntegrate,
though the successive integrals being nested (i.e., involving dummy variables as limits of
integration) rather than multiple does keep the exercise from being entirely trivial. The
latter complication can be dealt with by making use of InterpolatingFunction objects
to record intermediate approximations (e.g., to the functions Θ and Ψ). And as these
interpolations are carried out on a finer and finer temporal grid, the overall approximation
error can be presumed to become arbitrarily small.

To demonstrate the capabilities of the numerical integration strategy, Figure 5 plots
the capital history h, the consumption history

xh(t) := f(h(t), t)− h1(t), (51)

and the income history
fh(t) := f(h(t), t) (52)

for the capital management problem with parameters T = K = 1, linear technology

f(z, s) = z/10 + 2s + sin[2 pi s], (53)

basal index function u(z, s) = 2z1/2, and (nonstationary) bi-level discounting function

δ(s, t) =

{
1 for s ≤ [T + t]/2,

1/2 for s > [T + t]/2.
(54)

Here the planner’s consumption — which decreases at an increasing rate from 3 to 0
over the interval [0, 1] — is funded at first from his initial endowment h(0) = 1 and his
small investment income α(t)h(t) = h(t)/10, later with substantial contributions from
his exogenous income β(t) = 2t+sin[2 pi t], and towards the end using a loan to reconcile
decreasing outflows with increasing inflows.12

12Note that the initial endowment is measured in units of capital, while income is measured in units
of capital per unit time.
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4.2. Numerical optimization

When the technology f is nonlinear or the index function u is neither exponential nor
basal, we can still attempt to approximate the capital history h by employing the method
of finite differences (see, e.g., [9, p. 4]) together with numerical optimization. Dividing
the interval [0, T ] into m + 1 parts of equal length ∆ := T/[m + 1], this strategy uses the
objective function

Û t =
T∑

s=t+∆

δ(s, t)u (f(k(s), s)− [k(s)− k(s−∆)]/∆, s) ∆ [s increment = ∆] (55)

to set up a version of the planner’s problem at date t ∝ ∆ with finitely many choice
variables.13 This discretized problem can then be fed into Mathematica’s built-in function
NMaximize, and the resulting solution vector k̂t used to assign ĥ(t+∆) = k̂t(t+∆). When
the discretization parameter m is sufficiently large, we can hope that an interpolation to
the vector ĥ of estimates constructed recursively in this fashion will approximate the
unknown history h with negligible error.

While numerical optimization is (at least potentially) widely applicable, its drawbacks
are many: Firstly, solving m maximization problems (the first in m variables, the second
in m − 1 variables, and so on) begins to require a substantial amount of either time or
computing power as the parameter m, and hence the accuracy of the method, increases.
Secondly, the recursive nature of the calculation presumably causes the approximation
error to grow as the calendar date advances. And finally, we have no guarantee that
NMaximize will always return correct solutions, or even any solutions at all. (Indeed,
problems involving nonlinear technologies seem to present a particular challenge in this
respect.)

As an application of the numerical optimization strategy, Figure 6 plots the histories h,
xh, and fh for the capital management problem with parameters T = 1 and K = 0, linear
technology

f(z, s) = z/2 + 3/2− sin[pi s], (56)

arctangential index function u(z, s) = arctan[2z], and hyperbolic discounting function
δ(s, t) = [1 + s− t]−1. Here the planner transfers inflows from good times to bad by at
first saving and then borrowing, and in doing so achieves a consumption history that is
quite smooth in comparison with his sinusoidal exogenous income.

5. CREDIT CONSTRAINTS

5.1. Discussion of the general case

The planner’s problem defined in Section 2.1 imposes the boundary conditions listed in
Equations 7–8, but does not constrain the choice of capital path k on the interior of the
interval [t, T ] relevant at calendar date t. More specifically, this formulation endows the
planner with an infinite capacity to borrow that we may in some circumstances wish to

13Since k(t) and k(T ) are fixed by boundary conditions, the problem in question involves precisely
[T − t]/∆− 1 such variables.
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Figure 6: Capital history (left panel) and consumption and income histories (right panel)
for a planning problem with a linear technology, arctangential utility, and hyperbolic
discounting; computed by numerical optimization.

restrict via the requirement that
k(s) ≥ g(s) (57)

for each s ∈ [t, T ] and a given credit limit g satisfying g(T ) = 0. Introducing such a
constraint obliges us to substitute for U t (see Equation 6) the Lagrangian maximand

Lt =

∫ T

t

[δ(s, t)u(f(k(s), s)− k1(s), s) + µ(s) [k(s)− g(s)]] ds; (58)

and the corresponding Euler equation can be integrated to yield

δ(s, t)u1(f(kt(s), s)− kt
1(s), s) exp

∫ s

t

f1(k
t(w), w)dw = u1(f(h(t), t)− h1(t), t) · · ·

· · · −
∫ s

t

µt(v) exp

∫ v

t

f1(k
t(w), w)dwdv (59)

(cf. Equation 17), where the weakly positive-valued mapping µt returns the time-varying
multiplier on the credit constraint at the Lt-extremum. Together with the complementary-
slackness condition

µt(s)
[
kt(s)− g(s)

]
= 0, (60)

Equation 59 characterizes the constrained-optimal schedule kt for an arbitrary calendar
date t. And with knowledge of these paths, we can in principle compute the history h of
the capital stock just as in the unconstrained problem (see Section 2.3).

In the case of a linear technology (see Section 3.1), Equation 59 again takes the form
of a linear ODE in kt that together with the terminal condition in Equation 18 can be
solved for the path

kt(s) =

∫ T

s

[
u1(·, v)inv

[
u1(α(t)h(t) + β(t)− h1(t), t)

δ(v, t)π(v, t)
−

∫ v

t

µt(w)dw

δ(v, t)π(v, w)

]
· · ·

· · · − β(v)

]
dv

π(v, s)
(61)
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(cf. Equation 26). But if we proceed to use this formula to eliminate kt from Equation 60,
we shall be left with an extremely complex integral equation in µt. And even if it were
somehow possible to obtain from this equation an expression of the form

µt(s) = Υ(s, t, h(t), h1(t)), (62)

the resulting generalization

h(t) =

∫ T

t

[
u1(·, v)inv

[
u1(α(t)h(t) + β(t)− h1(t), t)

δ(v, t)π(v, t)
−

∫ v

t

Υ(w, t, h(t), h1(t))dw

δ(v, t)π(v, w)

]
· · ·

· · · − β(v)

]
dv

π(v, t)
(63)

of Equation 27 would no longer be linear under either exponential or basal utility. It
follows — perhaps unsurprisingly — that we cannot solve the credit-constrained version
of the planner’s problem by analytical methods with the same degree of generality as we
can the unconstrained version, and that our techniques will have to be tailored to the
particular constrained problems we wish to study.

5.2. Savings-initiation problems

Rather than attempting to characterize behavior in the general credit-constrained capital
management problem, let us restrict attention to a simpler class of environments. These
are the savings-initiation problems satisfying g(0) = K and having the property that for
any t̄ < T with h(t̄) > g(t̄), we have that kt(s) > g(s) for all t̄ ≤ t ≤ s < T . In other
words, once the planner finds (at date t̄) that his credit constraint is nonbinding, then
from this moment on he always plans (at date t) to maintain positive “savings” up until
the horizon.14

Since in a savings-initiation problem the inequalities t̄ < t < T and h(t̄) > g(t̄) imply
that h(t) = kt(t) > g(t), there exists (at least when h− g is continuous) a date t? up to
and including which the credit constraint always binds and after which this constraint
never binds except at date T . Moreover, for any t ∈ (t?, T ) the above property implies
that kt(s) > g(s) and hence (by Equation 60) that µt(s) = 0 for each s ∈ (t, T ). At
t ≥ t?, therefore, Equation 63 reverts to Equation 27 in the linear technology case, and
so the latter ODE holds on the interval [t?, T ]. But of course we know also that

h(t?) = g(t?), (64)

which sets up an initial value problem solved under exponential utility by the path

h(t) = g(t?)π(t, t?) exp

∫ t

t?
[−Θ(w)] dw +

∫ t

t?
π(t, v) exp

∫ t

v

[−Θ(w)] dw · · ·

· · · ×
[
β(v) + Θ(v)

∫ T

v

[γ(w) log [δ(w, v)π(w, v)]− β(w)] dw

π(w, v)

]
dv (65)

14Note that this is a property involving not just the primitives of the model but also the derived objects
h and kt. For this reason, we cannot be entirely sure whether or not a particular problem falls into the
savings-initiation category prior to analyzing it.
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Figure 7: Equations 64 and 68. In a savings-initiation problem, the history h must be
both equal and tangent to the credit limit g at date t?.

(cf. Equation 35) and under basal utility by the path

h(t) = g(t?)π(t, t?) exp

∫ t

t?
[−Ψ(w)] dw +

∫ t

t?
π(t, v) exp

∫ t

v

[−Ψ(w)] dw · · ·

· · · ×
[
β(v)− ω(v)−Ψ(v)

∫ T

v

[β(w)− ω(w)] dw

π(w, v)

]
dv (66)

(cf. Equation 43). Together with the fact that, by our choice of t?, we have h(t) = g(t)
for each t < t?, Equations 65–66 supply full linear/exponential and linear/basal capital
histories — though there remains the task of locating t? itself.

In order to characterize t?, let us collect what we know about this “savings-initiation
date.” First of all, from Equation 27 we have the relationship

h(t?) =

∫ T

t?

[
u1(·, v)inv

[
u1(α(t?)h(t?) + β(t?)− h1(t

?), t?)

δ(v, t?)π(v, t?)

]
− β(v)

]
dv

π(v, t?)
, (67)

now to be considered an algebraic equation in t? rather than an ODE. We have also
Equation 64, which allows us to replace h(t?) with g(t?) above. And furthermore, our
many tacit smoothness assumptions ensure that the instantaneous rate kt

1(t) of capital
accumulation is continuous in t; this continuity implies that

h1(t
?) = kt?

1 (t?) = lim
t↗t?

kt
1(t) = lim

t↗t?
g1(t) = g1(t

?) (68)

(see Figure 7) by Equation 15 and the definition of t?; and replacing h1(t
?) with g1(t

?)
above then yields an implicit formula

g(t?) =

∫ T

t?

[
u1(·, v)inv

[
u1(α(t?)g(t?) + β(t?)− g1(t

?), t?)

δ(v, t?)π(v, t?)

]
− β(v)

]
dv

π(v, t?)
(69)

for t? expressed entirely in terms of the primitives of the planner’s problem. Note finally
that this characterization reduces in the case of exponential utility to

g1(t
?)+[Θ(t?)− α(t?)] g(t?) = β(t?)+Θ(t?)

∫ T

t?

[γ(v) log [δ(v, t?)π(v, t?)]− β(v)] dv

π(v, t?)
(70)

19



0 10.443
0

0.1

h

0 10.443
0

2

fh

xh

Figure 8: Capital history (left panel) and consumption and income histories (right panel)
for a credit-constrained planning problem with a linear technology, exponential utility,
and hyperbolic discounting; computed by numerical integration.

(cf. Equation 33) and in the case of basal utility to

g1(t
?) + [Ψ(t?)− α(t?)] g(t?) = β(t?)− ω(t?)−Ψ(t?)

∫ T

t?

[β(v)− ω(v)] dv

π(v, t?)
(71)

(cf. Equation 41).
Like Equations 35 and 43, Equations 65/70 and 66/71 can be used to approximate,

respectively, linear/exponential and linear/basal capital histories by means of numerical
integration (see Section 4.1). To demonstrate this capability, Figure 8 plots the paths h,
xh, and fh for the capital management problem with credit limit g(s) = 0, parameters
T = 1 and K = 0, linear technology

f(z, s) = z/10 + [10/pi]1/2e−10[s−3/5]2 , (72)

exponential index function u(z, s) = −3 exp[−z/3], and hyperbolic discounting function

δ(s, t) = [1 + s− t]−1/4. Here the credit constraint binds and the planner consumes his
entire income up until the savings-initiation date t? ∼= 0.443, at which point he begins to
build up a reserve of capital from which he will later withdraw.

6. CONCLUDING COMMENTS

1. In a discussion of “The Uncertainties of Numerical Mathematics,” Wolfram [30,
pp. 952–953] advises that “[i]n many calculations, it is . . . worthwhile to go as far
as you can symbolically, and then resort to numerical methods only at the very end
[in order to avoid] the problems that can arise in purely numerical computations.”
This has been our method in studying the Strotzian capital management scenario,
and reducing our exposure to the vagaries described by Wolfram has certainly been
one of our motives for proceeding analytically to the maximum extent possible. But
in addition to their usefulness in allowing us to test our computational machinery
on safe ground, the analytical results obtained also possess an intrinsic value to the
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extent that they reveal qualitative features of the planner’s behavior. For example,
it is apparent from Equation 35 (and obvious from Equations 74–76) that in the
case of exponential utility the functions β and δ exert independent influences on the
capital history h, and that this specification of the index function therefore rules
out certain interaction effects of whose absence we might like to be aware.

2. In circumstances where we have developed explicit formulae for the history of the
capital stock (see Sections 3.2, 3.4, 5.2, and A.1), we are already well equipped
to investigate how the shape of the path h is affected by manipulating parameters
such as the interest rate a (see Section A.1), the intertemporal substitutability
measure p under basal utility (see Section 3.2), or the degree of distortion q under
hyperbolic discounting (see Section 3.3). The reader may also wonder, however,
about the effect on h of manipulating “cognitive parameters” — or, more crudely,
of interchanging the assumptions of naivete and sophistication.

While a determined attempt to investigate cognitive comparative statics of this
sort is well beyond the scope of the present paper, it is worth pointing out what is
known about the special case of a cake-eating problem with basal utility: Firstly,
Pollak [24] shows that when p = 1 (i.e., when the index function is logarithmic) and
ω(s) = 0, the naive and sophisticated planners exhibit exactly the same behavior.
And secondly, O’Donoghue and Rabin [19, p. 119, fn 24] claim that when p 6= 1, the
sophisticated agent saves more or less than the naive agent according to whether
p < 1 or p > 1.

A. APPENDIX

A.1. Prospects for closed-form histories

Assume a linear technology and let α(s) = a ≥ 0, imposing a constant interest rate. Assume
exponential utility and let γ(s) = c > 0, imposing constant intertemporal substitutability. Then

Θ(t) =
[∫ T

t
e−a[v−t]dv

]−1

=

{
[T − t]−1 for a = 0,
a

[
1− e−a[T−t]

]−1
for a 6= 0;

(73)

and some straightforward calculations allow us to write the capital history in Equation 35 as

h(t) = B(t) + D(t) +





[1− t/T ] K for a = 0,

c [t− T ] +

[
1− e−a[T−t]

]
[cT + K]

1− e−aT
for a 6= 0;

(74)

where the paths B and D are defined by

B(t) :=





∫ t

0

T − t

T − v

[
β(v)− 1

T − v

∫ T

v
β(w)dw

]
dv for a = 0,

∫ t

0

1− e−a[T−t]

1− e−a[T−v]

[
β(v)− a

1− e−a[T−v]

∫ T

v
β(w)e−a[w−v]dw

]
dv for a 6= 0;

(75)
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and

D(t) :=





∫ t

0

T − t

[T − v]2

∫ T

v
c log δ(w, v)dwdv for a = 0,

∫ t

0

a
[
1− e−a[T−t]

]
[
1− e−a[T−v]

]2

∫ T

v
ce−a[w−v] log δ(w, v)dwdv for a 6= 0;

(76)

and determined, respectively, by the functions β and δ.
Now suppose that the planner’s exogenous income has the polynomial specification

β(s) =
∞∑

n=0

b(n)sn, (77)

bearing in mind that (according to the Weierstrass Approximation Theorem) the polynomials
are dense in the (Banach) space of continuous functions on [0, T ] under the maximum norm.
When a = 0 the necessary computations are then straightforward, and when a 6= 0 they can be
carried out easily enough with the aid of Equations 83–84 from Section A.2 together with the
First Fundamental Theorem of Calculus. Thus we obtain the path

B(t) =





∞∑

n=0

b(n)t [tn − Tn]
n + 1

for a = 0,

∞∑

n=0

b(n)
[[

1− e−a[T−t]
]
Γn+1 [0, at] +

[
1− eat

]
Γn+1 [at, aT ]

]

an+1 [1− e−aT ]
for a 6= 0;

(78)

where the gamma function

Γn+1 [y, z] :=
∫ z

y
vne−vdv (79)

generalizes the factorial operator in the sense that n! = Γn+1 [0,∞] for each integer n ≥ 0. And
likewise, when the discounting function has the stationary log-polynomial specification

δ(s, t) = exp
∞∑

n=1

d(n)[s− t]n (80)

with polynomial discount rate function

ρ(s, t) =
∞∑

n=1

[−nd(n)][s− t]n−1, (81)

Equations 83 and 85 from Section A.2 aid us in computing the path

D(t) =





∞∑

n=1

d(n)c[T − t] [Tn − [T − t]n]
n[n + 1]

for a = 0,

∞∑

n=1

d(n)c
[
1− e−a[T−t]

]
n!

an+1

[
1

1− e−a[T−v]
− log

[
1− e−a[T−v]

]
· · ·

· · ·+ av −
n∑

i=0

Γn−i+1 [a[T − v],∞] Liie−a[T−v]

e−a[T−v] [n− i]!

]t

v=0

for a 6= 0.

(82)
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Thus, given any capital management problem with linear f , constant α, and continuous β; with
exponential u and constant γ; and with stationary, continuous δ; Equations 74, 78, and 82 can
be used to approximate with arbitrary precision the associated history h.

Can we in a similar fashion obtain closed-form capital histories for the case of basal utility,
given only modest assumptions about the technology and the discounting function? The answer,
unfortunately, is that we cannot — or at least that it is not obvious that we can. Close scrutiny
of the (omitted) calculations leading to Equations 78 and 82 reveals our method here to be
heavily reliant on the log-linearity in the dummy variable of the integrand in Equation 32. For
the corresponding integrand in Equation 40 to have this property, it is necessary both that α
be constant, as before, and that δ itself be log-linear. But together with stationarity, the latter
assumption simply returns us to the rather uninteresting case of exponential discounting (see
Section 2.2).

A.2. Indefinite integrals

The following indefinite integrals are used in Section A.1:
∫

[v − w]ne−a[v−w]dv = −a−n−1Γn+1 [a[v − w],∞] . (83)
∫ [

[av]n
[
1− e−a[T−v]

]− eavΓn+1 [av, aT ]
]
dv

[
1− e−a[T−v]

]2 =
eaT Γn+1 [aT,∞]− eavΓn+1 [av,∞]

a
[
1− e−a[T−v]

] . (84)

∫
Γn+1 [0, a[T − v]] dv[

1− e−a[T−v]
]2 =

n!
a

[
1

1− e−a[T−v]
− log

[
1− e−a[T−v]

]
· · ·

· · · + av −
n∑

i=0

Γn−i+1 [a[T − v],∞] Liie−a[T−v]

e−a[T−v] [n− i]!

]
. (85)

Equations 83–84 can be verified routinely using the relation Γn+1
1 [z,∞] = −zne−z. To verify

Equation 85 (valid for integer n ≥ 0), first confirm using the relation Lin+1
1 z = z−1Linz that

the v-derivative of the right-hand-side of the equality takes the form

n![
1− e−a[T−v]

]2 −
n∑

i=0

n!
[n− i]!

[
[a[T − v]]n−i Liie−a[T−v] · · ·

· · · − Γn−i+1 [a[T − v],∞] ea[T−v]
[
Liie−a[T−v] − Lii−1e−a[T−v]

] ]
. (86)

Using the identity Γn+1 [z,∞] =
∑n

i=0
n!
i! [z

ie−z] (valid for integer n ≥ 0), this expression can be
written in the expanded form

n![
1− e−a[T−v]

]2 +
n−1∑

i=0

n−i−1∑

j=0

n!
j!

[a[T − v]]j Liie−a[T−v] · · ·

· · · −



n∑

j=0

n!
j!

[a[T − v]]j Li−1e−a[T−v] +
n∑

i=1

n−i∑

j=0

n!
j!

[a[T − v]]j Lii−1e−a[T−v]


 . (87)
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Since the difference of double sums is zero and since Li−1z = z [1− z]−2, the v-derivative in
question then equals

n!−∑n
j=0

n!
j! [a[T − v]]j e−a[T−v]

[
1− e−a[T−v]

]2 =
Γn+1 [0,∞]− Γn+1 [a[T − v],∞][

1− e−a[T−v]
]2

=
Γn+1 [0, a[T − v]][

1− e−a[T−v]
]2 . (88)
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