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1. Results on C-quasisupermodular functions and

the C-flexible set order

The central concepts in ‘The Comparative Statics of Constrained Optimization

Problems’ (Quah, 2006) are C-quasisupermodularity and the C-flexible set order. In

this section we develop more results relating to these concepts.

Turning first to Ci-supermodularity and C-supermodularity, it is clear that both

these properties are preserved by positive scalar multiplication and by addition. In

particular, let X be a convex sublattice of Rl and f : X → R a Ci-supermodular

function; then for any w in Rl, the map gw : X → R given by gw(x) = f(x)−w·x is also

a Ci-supermodular function. The next result gives the converse of this observation: if

the functions gw are Ci-quasisupermodular for all w then f must be Ci-supermodular.1

Proposition Ad(1): Let X ⊆ Rl be a convex sublattice of Rl.

(i) The function f : X → R is Ci-supermodular if, for all wi in R, the function gwi

mapping x in X to f(x)− wixi is Ci-quasisupermodular.

(ii) The function f : X → R is C-supermodular if, for all w in Rl, the function gw

mapping x in X to f(x)− w · x is C-quasisupermodular.

(iii) Suppose that f is increasing. Then f is Ci-supermodular (C-supermodular) if for

all w in Rl
+, the function gw mapping x in X to f(x)−w ·x, is Ci-quasisupermodular

(C-quasisupermodular).

Proof: (i) Suppose that f is not Ci-supermodular. Then there is λ in [0, 1] such

that for some x and y with xi > yi, we have

f(x5λ
i y)− f(y) < f(x)− f(x4λ

i y). (1)

Note that (x 4λ
i y)i = yi < xi, so there is a scalar w̄i such that w̄i[xi − (x 4λ

i

y)i] = f(x) − f(x4λ
i y). Furthermore, since x − (x4λ

i y) = (x5λ
i y) − y, we have

1Note that Milgrom and Shannon (1994) establishes an analogous result (Theorem 10) for qua-

sisupermodular functions.
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wi[xi− (x4λ
i y)i] = wi[(x5λ

i y)i− yi]. Deducting this term from both sides of (1) we

obtain

gw̄i
(x5λ

i y)− gw̄i
(y) < gw̄i

(x)− gw̄i
(x4λ

i y) = 0.

So gw̄i
violates Ci-quasisupermodularity and we have a contradiction.

Clearly (ii) follows from (i), so we only have to prove (iii). Note that if (1) holds

for λ = 0, then the right hand side of (1) is nonnegative (since f is increasing), while

(x− x∧ y)i = xi− yi > 0. We could then use the proof given for (i), choosing w̄i ≥ 0

and setting the other entries of the vector w̄ at zero. So we consider the case when

(1) is true for λ > 0. Note that (1) can hold only if x and y are unordered, and with

λ > 0, x and x4λ
i y must also be unordered. Thus, x− x4λ

i y has both positive and

negative entries, and there is w̄ in Rl
+ such that w̄ · [x− x4λ

i y] = f(x)− f(x4λ
i y).

Now repeating the steps in our proof of (i), we see that the function gw̄ must violate

Ci-quasisupermodularity. QED

The significance of Proposition Ad(1) is that in those situations where we require

C-quasisupermodularity for all functions in the class {gw}w∈Rl or {gw}w∈Rl
+
, then we

must necessarily impose C-supermodularity on f . Of course these classes of functions

do indeed arise naturally in comparative statics problems, since it can be interpreted

as a profit function, with f(x) as the revenue of the firm when it produces the output

vector x and with wi as the unit cost of producing good i (so w · x is the total cost

of producing x).

We turn now to a characterization of the C-flexible set order. Suppose H and

G are subsets of R2; representing the second variable on the vertical axis, we have

shown that H dominates G in the C2-flexible set order provided (in some specific

sense) H has a steeper boundary than G (see Lemma A1 in the main paper, and also

the discussion in the Supplement). The next result is a higher-dimensional version of

Lemma A1.
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Proposition Ad(2): Let S ′ and S ′′ be subsets of a convex sublattice X of Rl

which are both closed, obey free disposal and satisfy S ′ ⊆ S ′′.2 Then S ′′ ≥i S ′ if and

only if the following property (?) holds:3

whenever x and u are vectors with u > 0, ui = 0, x ∈ S ′, x + u ∈ S ′′, and x + tu /∈ S ′

for all t > 0, then for any scalar µ > 0, and û > 0 which is orthogonal to u with

ûi > 0,

x− µu + û ∈ S ′ =⇒ (x + u)− µu + û ∈ S ′′.

Proof: We first prove that (?) implies that S ′′i ≥i S ′. Let x be in S ′ and y be in

S ′′ with xi > yi. If x > y, the condition for S ′′ ≥i S ′ requires x to be in S ′′ and y to

be in S ′: the first is true since S ′ ⊂ S ′′, while the second follows from free disposal.

So we assume that x and y are unordered. If y is in S ′, the condition for S ′′ ≥i S ′

holds with λ = 1. This leaves us with the case of x and y are unordered, with y

not in S ′. Since x′ ∧ y is in X and less than x′, we know that it is in S ′. Define

v = y−x∧ y. By the closedness of S ′ and free disposal, there is λ∗ in [0, 1) such that

x ∧ y + λ∗v is in S ′ and x ∧ y + λv is not in S ′ for λ in (λ∗, 1]. Define u = (1− λ∗)v.

Choose µ = λ∗/(1 − λ∗) and û = x − x ∧ y. We have ui = 0, ûi > 0. We then have

x ∧ y + λ∗v in S ′, (x ∧ y + λ∗v)− µu + û = x in S ′, and x + u = y in S ′′. So by (?),

(x + u)− µu + û = x ∨ y − λ∗ must be in S ′′. Thus S ′′ ≥i S ′.

For the other direction, let x′ = x − µu + û. By assumption, this is in S ′; also

by assumption, x + u is in S ′′ and x′i > xi + ui. Note that x′ ∧ (x + u) = x − µu.

Since S ′′ ≥i S ′, there must be a positive t smaller than µ such that x− tu is in S ′ and

x + u + û− tu is in S ′′. Note that t cannot be negative because it is assumed that x

is at the ‘edge’ of S ′. Since S ′′ obeys free disposal, the fact that x + u + û− tu is in

S ′′ implies that x + u + û− µu is also in S ′′, which establishes (?). QED

2A subset S of X has the free disposal property if whenever x is in S and y in X satisfies y < x

then y is in S.
3The notation S′′ ≥i S′ means that S′′ dominates S′ in the Ci-flexible set order.

4



Proposition Ad(2) says, in a specific formal sense, that the set of substitution

possibilities which favor variable xi in the constraint set S ′′ is larger than the set of

substitution possibilities which favor xi in the constraint set S ′. Property (?) con-

siders two points x in S ′ and x + u in S ′′, where u is positive and orthogonal to the

direction i; furthermore, the point x is on the ‘edge’ of S ′ in the sense that it is not

possible to add anything in the direction of u and still stay within S ′. Suppose that

it is possible at x to substitute µu with u′ and still stay within the constraint set S ′

- note that this is a substitution which ‘favors i’ because ui = 0 and ûi > 0 - then

property (?) requires that it is possible to make the same substitution at the point

x + u in S ′′ and stay within the S ′′.

2. Results on increasing selections

Let X be a lattice and F : X → R a supermodular function. It is well-known

that if the constraint set S is a sublattice of X then argmaxx∈SF (x) is also a sublat-

tice. Indeed, in many contexts it is possible to show that this set is a subcomplete

sublattice, so that one could sensibly speak of the smallest or largest element of

argmaxx∈SF (x) (see Topkis (1998, Corollary 2.7.1)). This feature is significant for

the following reason. Let (T,º) be a partially ordered set, {F (·, t)}t∈T a family of

real-valued functions defined on X, and {St}t∈T a family of constraint sets in X

such that the family {argmaxx∈St
F (x, t)}t∈T is increasing in t (in the strong set or-

der). Standard comparative statics results identify conditions under which this is true

(see Milgrom and Shannon (1994)). Provided argmaxx∈St
F (x, t) is also a nonempty

subcomplete sublattice, then it has a largest and a smallest element; the fact that

{argmaxx∈St
F (x, t)}t∈T is an increasing family guarantees that the map from t to the

largest element in argmaxx∈St
F (x, t) is an increasing function (and so is the map from

t to the smallest element). Such maps are called increasing selections. The ability to

construct an increasing selection is useful in some contexts (see, for example, Milgrom
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and Roberts (1990)).

The constraint sets considered in our theory are not as a rule sublattices (with

respect to the product order, or indeed any lattice order). For this reason, the opti-

mal sets need not be sublattices and may not contain a largest or smallest element.

Nonetheless, there is a quick and easy way to guarantee the existence of an increasing

selection.4

Proposition Ad(3): (i) Let (T,º) be a partially ordered set and let Φ : (T,º) →
Rl be a compact-valued correspondence with the following property: Φ(t′′) ≥i Φ(t′) if

t′′ º t′. Then there is a function φ : (T,º) → Rl such that φ(t) ∈ Φ(t) for all t in T ,

and φi(t
′′) ≥ φi(t

′) if t′′ º t′.

(ii) Suppose that Φ : (T,º) → Rl is a convex and compact-valued correspondence

with the following property: Φ(t′′) ≥ Φ(t′) if t′′ º t′.5 Then there is a function

φ : (T,º) → Rl such that φ(t) ∈ Φ(t) for all t in T , and φ(t′′) ≥ φ(t′) if t′′ º t′.

Proof: (i) Since Φ(t) is a compact set, argmaxx∈Φ(t)xi is a nonempty set. By the

axiom of choice, there exists a function φ : (T,º) → Rl where, for all t, φ(t) is in

argmaxx∈Φ(t)xi. By assumption, if t′′ º t′, we have Φ(t′′) ≥i Φ(t′); by Proposition 3

in the main paper, this also means that φi(t
′′) ≥ φi(t

′).

(ii) Define g : Rl → R by g(x) = −∑l
i e
−xi . This function is supermodular and

strictly concave, hence C-supermodular; it is also continuous. The continuity of g

and the compactness of Φ(t) guarantee that argmaxx∈Φ(t)g(x) is nonempty; since g is

a strictly concave function and Φ(t) is a convex set, argmaxx∈Φ(t)g(x) is a singleton,

which we shall denote by φ(t). By assumption, if t′′ º t′, we have Φ(t′′) ≥ Φ(t′);

Theorem 2 in the main paper then guarantees that φ(t′′) ≥ φ(t′). QED

It should be quite clear that one can usefully combine Proposition Ad(3) with the

comparative statics theorems in the main paper. As an illustration, we shall apply

4I suspect that the requirement in Proposition Ad(3-ii) that Φ be convex-valued can be dropped

or considerably weakened, but the proof will be more involved.
5Φ(t′′) ≥ Φ(t′) means that Φ(t′′) dominates Φ(t′) in the C-flexible set order.

6



this result to the standard consumer problem (Example 1 in the main paper), with

the consumer maximizing the utility function U : Rl
+ → R. It is fairly common in this

context to assume that U is strictly quasiconcave, i.e., whenever U(x′) = U(x) for x

and x′ in Rl
+, then U(αx′ + (1− α)x) > U(x), where α is in (0, 1). (If the inequality

is weak, we say that U is quasiconcave.) If U is strictly quasiconcave, demand is

unique, so the issue of selection does not arise. But when it is not, it is natural to

ask whether there exists a selection from the demand correspondence with normality

properties. The next proposition identifies conditions sufficient for this property.

Proposition Ad(4): Suppose that the utility function U : Rl
+ → R has closed

preferred sets, i.e, U−1([k,∞)) is closed for all k. Then at all (p, w) with p À 0 and

w > 0, the demand set D(p, w) is nonempty. Furthermore, at any p À 0,

(i) if U is Ci-quasisupermodular, there is φ(p, w) ∈ D(p, w) such that φi(p, ·) : R++ →
R+ is an increasing function;

(ii) if U is C-quasisupermodular and quasiconcave, there is φ(p, w) ∈ D(p, w) such

that φ(p, ·) : R++ → Rl
+ is an increasing function.

Proof: For the non-emptiness and compactness of D(p, w) consult Mas-Colell et

al (1995). The assumptions in (i) guarantee that D(p, w′′) ≥i D(p, w′) whenever

w′′ > w′ > 0 (see Example 1 in the main paper). By Proposition Ad(3-i), there is a

function φ : Rl
++ × R++ → Rl

++ such that φ(p, w) ∈ D(p, w) for all (p, w) and with

φi(p, ·) : R++ → R+ being an increasing function.

For (ii), note that the assumptions guarantee that D(p, w′′) ≥ D(p, w′) whenever

w′′ > w′ > 0 (see Example 1 in the main paper). Furthermore, D(p, w) is convex-

valued because U is quasiconcave (though D(p, w) need not be singleton). The result

follows immediately from the application of Proposition Ad(3-ii). QED
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3. Applications to Comparative Statics Problems

We give two more applications of our techniques. For other applications, see the

main paper and the Supplement.

Example Ad(1). A demand function is said to exhibit the gross substitutabil-

ity property if a fall in the price of good i causes the demand for all other goods

to decrease. This property is important because, amongst other things, it helps to

guarantee the uniqueness and stability of the equilibrium price in general equilibrium

models (see, for example, Mas-Colell et al (1995)). The best known condition guar-

anteeing gross substitutability is the following. Let U : Rl
++ → R be of the form

U(x) =
∑l

i=1 ui(xi) where each ui : R+ → R is C2, with u′i(xi) > 0 and u′′i ≤ 0.

Then the demand function f : Rl
++ × R+ → Rl

++ generated by U will obey gross

substitutability if −xiu
′′
i (xi)/u

′
i(xi) < 1 for all i and xi > 0.6

One can easily obtain this result using the techniques developed here. First, it is

useful to give a different formulation of the demand problem. Suppose that x∗ is the

demand at (p, w); formally, x∗ solves the problem: (i) maximize
∑l

i ui(xi) subject to

p · x ≤ w. Clearly, x∗ solves (i) if and only if (s∗1, x
∗
2, ..., x

∗
l ), where s∗1 = p1x

∗
1, solves

the problem: (ii) maximize u1(s1/p1) +
∑l

i=2 ui(xi) subject to s1 +
∑l

i=2 pixi ≤ w.

Assume that income is held fixed at w and consider a price change from p′ to p′′,

where p′′i = p′i for i ≥ 2 and p′′1 < p′1. Suppose that demand exists at both prices, with

x′ being a demand at p′. We wish to show that there is a demand at p′′ in which the

demand for good i rises and that of all other goods fall. Since x′ solves (i) at p = p′

we know that (s′1, x
′
2, x

′
3, ..., x

′
l), with s′1 = p′1x

′
1 is a solution to (ii) at p = p′. Provided

the map from (s1, 1/p1) to u1(s1/p1) is supermodular, and since demand exists at p′′

by assumption, we know from Lemma A2 (in the main paper) that there is a solution

(s′′1, x2,
′′ , ..., x′′l ) to (ii) at p = p′′ such that s′′1 ≥ s′1. In other words, there must be a

demand at p = p′′ in which the expenditure on good 1 is higher than that at p = p′.

In particular, x′′1 > x′1.

6For a proof of this result see, for example, Hens and Loffler (1995).
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Since U is additive, we know that (x′2, x
′
3, ...x

′
l) maximizes Ū(x2, x3, ...xl) =

∑l
i=2 ui(xi)

subject to
∑l

i=2 pixi ≤ w − s′1. If uis are concave, so is Ū ; furthermore, Ū is additive

and therefore supermodular. From Example 1, we know that Ū generates normal

demand. When more is spent on good 1, the expenditure available for other goods is

reduced from w−s′1 to w−s′′1, and so there must be (x′′′2 , x′′′3 , ..., x′′′l ) which maximizes

Ū(x2, x3, ...xl) subject to
∑l

i=2 pixi ≤ w−s′′1 such that x′′′i ≤ x′i for i ≥ 2. Furthermore,

(s′′1, x
′′′
2 , x′′′3 , ..., x′′′l ) solves (ii) at p = p′′, which establishes gross substitutability.

It remains for us to point out what it means for the map from (s1, a) in R2
++ to

u1(as1) to be supermodular. It is not hard to check that this is equivalent to the con-

vexity of the map ũ1 : R → R given by ũ1(z1) = u1(e
z1). In short, we have shown that

the additive utility function U will generate demand satisfying gross substitutability

if for all i ≥ 1, ui is concave and ũi is convex. When ui is C2 with u′i > 0, then ũi

is convex if and only if −xiu
′′
i (xi)/u

′
i(xi) ≤ 1 for all xi > 0. So we have obtained the

non-differentiable version of the well known result.

The Supplement to the main paper concentrated on developing and applying the

general theory in a two-dimensional context. The main comparative statics result in

the Supplement is Theorem S1, which is a corollary of Theorem 2 in the main paper.

We now present a more general version of Theorem S1, after which we shall provide

an application. The objective function is f : X1 ×X2 → R where X1 = (x1, x1) and

X2 = (x2, x2) are nonempty open intervals in R. We wish to specify conditions on the

function f and the constraint sets H and G which guarantee that argmaxx∈Hf(x) ≥2

argmaxx∈Gf(x). As in Theorem S1, we assume that the indifference curves of f obey

the declining slope property, but we shall impose weaker conditions on the constraint

sets H and G. Let IH and IG be two nonempty and open intervals in X2 such that

IH dominates IG in the strong set order (this is equivalent to saying that the infimum

and supremum of IH are greater than the infimum and supremum respectively of IG).
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The set H has a boundary given by the graph of h : IH → X1; formally,

H = {(x1, x2) ∈ X1 ×X2 : x2 ∈ IH and x1 ≤ h(x2)}.

The set G with boundary given by the function g : IG → X1 is defined similarly.7

Proposition Ad(5): Suppose that f : X1 ×X2 → R has indifference curves that

obey the declining slope condition. Then argmaxx∈Hf(x) ≥2 argmaxx∈Gf(x) if either

(i) for all x′′2 and x′2 in Ig∩Ih with x′′2 > x′2, we have g(x′2) ≤ h(x′2) and g(x′′2)−g(x′2) ≤
h(x′′2)− h(x′2) ≤ 0; or

(ii) f is strictly increasing in x2 and for all x′′2 and x′2 in Ig ∩ Ih with x′′2 > x′2, we

have g(x′2) ≤ h(x′2) and g(x′′2)− g(x′2) ≤ h(x′′2)− h(x′2).

This result differs from Theorem S1 (in the Supplement) in two respects. In

Theorem S1, we assume that the boundary functions of H and G are differentiable and

decreasing and require h′(x2) ≥ g′(x2) whenever both are defined. In this proposition

the boundary functions need not be differentiable and the derivative condition in

Theorem S1 is replaced by an analogous condition on differences: g(x′′2) − g(x′2) ≤
h(x′′2) − h(x′2). So part (i) of Proposition Ad(4) is just a non-differentiable version

of Theorem S1. There is a second, and perhaps more significant, difference between

Theorem S1 and Proposition Ad(4): in part (ii) of the latter result, we remove the

condition that h and g are decreasing functions, at the expense of requiring f to be

strictly increasing in x2.

Proof of Proposition Ad(5): We claim that the conditions in (i) imply that H ≥2

G; the result then follows from Theorem 2 in the main paper. Let (x′1, x
′
2) in G

and (y1, y2) in H satisfy x′2 > y2 and y1 > g(y2). (All the other cases are trivial.)

Consider the points (x′1, x
′
2), (g(y2), y2), (y1, y2), and (x′1 + [y1− g(y2)], x

′
2); they form

a parallelogram, indeed a backward-bending parallelogram since x′1 ≤ g(x′2) ≤ g(y2).

7The casual way we are using the word ‘boundary’ here may bother some readers. The set H

has a boundary in the precise topological sense; the graph of h is part of, but generally not all of,

this boundary.
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Note that the second point, (g(y2), y2), is in G, so we need only show that the last

point is in H. This is true since

x′1 + [y1 − g(y2)] ≤ h(x′2) + [x′1 − h(x′2)] + [y1 − g(y2)]

≤ h(x′2) + [g(x′2)− h(x′2)] + [h(y2)− g(y2)]

≤ h(x′2).

The proof for case (ii) is just a modification of that for (i). Let (x′1, x
′
2) maximize

f in the constraint set G and let (y1, y2) maximize f in the set H. As in the proof for

(i), we assume that x′2 > y2 and y1 > g(y2) (the other cases being trivial) and consider

the points (x′1, x
′
2), (g(y2), y2), (y1, y2), and (x′1 +[y1−g(y2)], x

′
2). The same argument

as before guarantees that the second point is in G and the fourth is in H. They also

form a backward-bending parallelogram. If not, g(y2) ≤ x′1, so x′1 + [y1− g(y2)] ≥ y1.

Since (x′1 +[y1−g(y2)], x
′
2) is in H so must (y1, x

′
2). Since f is strictly increasing in x2,

f(y1, x
′
2) > f(y1, y2), which contradicts the assumption that (y1, y2) maximizes f in

H. Thus {(y1, y2), (x
′
1 +[y1−g(y2)], x

′
2)} >2 {(x′1, x′2), (g(y2), y2)}. Applying Theorem

2 again, we see that f(x′1 + [y1 − g(y2)], x
′
2) ≥ f(y1, y2) and f(g(y2), y2) ≥ f(x′1, x

′
2).

So (x′1 + [y1 − g(y2)], x
′
2) maximizes f in H and (g(y2), y2) maximizes f in G. QED

Example Ad(2): Consider a profit-maximizing firm producing a single product. If

it charges a price p > 0, its demand is D(p, θ) > 0 where θ is some parameter. (In a

Bertrand game with differentiated products θ will represent the prices of other firms.)

The cost of producing output q is C(q), so that the firm’s objective is to maximize

pD(p, θ) − C(D(p, θ)). Suppose that, as θ increases, ln D(p, θ) increases and the

difference ln D(p, θ) − ln D(p′, θ), for any p′ > p, also increases; respectively, this

means that demand increases and becomes less elastic with respect to its own price

as θ increases. Suppose also that the firm has increasing marginal costs. With these

assumptions, we can show that the profit-maximizing price charged by the firm must

increase with θ. Note that this is not a new result; it has already been established by

Milgrom and Shannon (1994), albeit with the additional assumption that the demand
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D is a differentiable and decreasing function of its own price. Nonetheless, this result

gives a good illustration of how to apply Proposition Ad(4).

Firstly, we reformulate the firm’s problem as a constrained optimization problem,

with the demand function acting as the boundary of the firm’s constraint set. Let q̃

be log output. The firm maximizes Π : R++×R → R given by Π(p, q̃) = peq̃−C(eq̃),

subject to (q̃, p) in S(θ) = {(q̃, p) ∈ R×R++ : q̃ ≤ ln D(p, θ)}. Note that the boundary

of S(θ) is the map from p to ln D(p, θ); if θ′′ > θ′, the properties we have imposed

on D guarantee that the conditions on the constraint set boundaries in Proposition

Ad(5-ii) are satisfied. As for the objective function Π, it is clearly strictly increasing

in p. It also satisfies the declining slope property since the slope of the indifference

curve at (q̃, p) is C ′(eq̃)−p, which increases with q̃ if C ′′ ≥ 0. Thus, all the conditions

of Proposition Ad(4-ii) are satisfied and we conclude that the profit-maximizing price

charged by the firm increases with θ.

It is also worth highlighting that this conclusion holds for any objective function

f with indifference curves that obey the declining slope property - and not just the

standard one we have considered. A particularly simple case is the following. Suppose

that marginal cost is constant and that, at price p, the log-demand is stochastic,

taking the value ln D(p, θ) + s, with the distribution of s governed by the density

function µ. Assume that the firm chooses the price p and thereafter meets the realized

demand, which will be D(p, θ)es for some value of s. The firm has the Bernoulli

utility function u and maximizes the expected utility of profit, i.e., it maximizes
∫

u((p− c)D(p, θ)es)µ(s)ds. This can be reformulated as a constrained optimization

problem: maximize U(q̃, p) =
∫
R u((p − c)eq̃+s)µ(s)ds subject to (q̃, p) in S(θ). U is

strictly increasing in p if u is strictly increasing. The slope of the indifference curve

at (q̃, p) is simply c− p, which is independent of q̃. So the declining slope property is

satisfied and we conclude that the optimal price rises with θ (under the maintained

assumptions on ln D(p, θ)).
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